{ "cells": [ { "cell_type": "code", "execution_count": 1, "id": "9f7d9a2a-a991-4c33-96c6-9a29bb14f170", "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Populating the interactive namespace from numpy and matplotlib\n" ] } ], "source": [ "%pylab ipympl \n", "\n", "from multizone import mppnp_reader\n", "import multizone_plot as mzp" ] }, { "cell_type": "code", "execution_count": 2, "id": "a3a32481-cecb-4cfc-ab6b-f1db18a8fb95", "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Reading in data for cycle block 0000001. This may take a while.\n", "Searching files, please wait.......\n", "Writing preprocessor files\n", "my_test_hif.0000001.out.h5\n", "Warning this method will overwrite /data/niagara_project/projects/ocmerger_issa2025/RUNS/MLT_RUNS/hif7.95E+03/H5_out/h5Preproc.txt\n", "Would you like to continue? (y)es or (n)no?\n" ] }, { "name": "stdin", "output_type": "stream", "text": [ "--> y\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Yes selected\n", "Continuing as normal\n", "Reading in data for cycle block 0010001. This may take a while.\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ "Exception in thread Thread-3:\n", "Traceback (most recent call last):\n", " File \"/usr/lib/python3.6/threading.py\", line 916, in _bootstrap_inner\n", " self.run()\n", " File \"/usr/local/lib/python3.6/dist-packages/nugridpy/h5T.py\", line 458, in run\n", " write(self.preprocName,header,dcols,data,sldir=self.filename)\n", " File \"/usr/local/lib/python3.6/dist-packages/nugridpy/ascii_table.py\", line 480, in write\n", " tmp1=data_fmt.format(data[i][j])\n", "ValueError: Unknown format code 'f' for object of type 'str'\n", "\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Searching files, please wait.......\n", "Writing preprocessor files\n", "my_test_hif.0010001.out.h5\n", "Warning this method will overwrite /data/niagara_project/projects/ocmerger_issa2025/RUNS/MLT_RUNS/hif7.95E+03/H5_out/h5Preproc.txt\n", "Would you like to continue? (y)es or (n)no?\n" ] }, { "name": "stdin", "output_type": "stream", "text": [ "--> y\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Yes selected\n", "Continuing as normal\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ "Exception in thread Thread-5:\n", "Traceback (most recent call last):\n", " File \"/usr/lib/python3.6/threading.py\", line 916, in _bootstrap_inner\n", " self.run()\n", " File \"/usr/local/lib/python3.6/dist-packages/nugridpy/h5T.py\", line 458, in run\n", " write(self.preprocName,header,dcols,data,sldir=self.filename)\n", " File \"/usr/local/lib/python3.6/dist-packages/nugridpy/ascii_table.py\", line 480, in write\n", " tmp1=data_fmt.format(data[i][j])\n", "ValueError: Unknown format code 'f' for object of type 'str'\n", "\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "WARNING:\n", "This initial abundance file uses an element name that does\n", "not contain the mass number in the 3rd to 5th position.\n", "It is assumed that this is the proton and we will change\n", "the name to 'h 1' to be consistent with the notation used\n", "in iniab.dat files\n", "Reading reaction cross-section information. This may take a while.\n", "Processed 0/404 files\n", "Processed 50/404 files\n", "Processed 100/404 files\n", "Processed 150/404 files\n", "Processed 200/404 files\n", "Processed 250/404 files\n", "Processed 300/404 files\n", "Processed 350/404 files\n", "Processed 400/404 files\n", "WARNING:\n", "This initial abundance file uses an element name that does\n", "not contain the mass number in the 3rd to 5th position.\n", "It is assumed that this is the proton and we will change\n", "the name to 'h 1' to be consistent with the notation used\n", "in iniab.dat files\n", "Ingestion rate is understood to be in Msun/second\n" ] } ], "source": [ "MLT = mppnp_reader(initialpath = \"/data/niagara_project/projects/ocmerger_issa2025/CONDITIONS/initial_abund.dat\",\n", " solarpath = \"/data/niagara_project/projects/ocmerger_issa2025/CONDITIONS/iniab2.0E-02GN93.ppn\",\n", " multizonepath = \"/data/niagara_project/projects/ocmerger_issa2025/RUNS/MLT_RUNS/hif7.95E+03/H5_out\",\n", " surfpath = \"/data/niagara_project/projects/ocmerger_issa2025/RUNS/MLT_RUNS/hif7.95E+03/H5_surf\",\n", " ingestionpath = \"/data/niagara_project/projects/ocmerger_issa2025/CONDITIONS/ingested_abund.ppn\",\n", " xsectionpath = \"/data/niagara_project/projects/ocmerger_issa2025/RUNS/MLT_RUNS/flux_run/fluxes_fixed\",\n", " networksetuppath = \"/data/niagara_project/projects/ocmerger_issa2025/RUNS/MLT_RUNS/flux_run/networksetup.txt\")" ] }, { "cell_type": "code", "execution_count": 45, "id": "87228a1e-0765-4fd9-aca5-031b329c0fcb", "metadata": { "tags": [] }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Reading in data for cycle block 0000001. This may take a while.\n", "Searching files, please wait.......\n", "Writing preprocessor files\n", "my_test_hif.0000001.out.h5\n", "Warning this method will overwrite /data/niagara_project/projects/ocmerger_issa2025/RUNS/PPM50_RUNS/hif7.95E+03/H5_out/h5Preproc.txt\n", "Would you like to continue? (y)es or (n)no?\n" ] }, { "name": "stdin", "output_type": "stream", "text": [ "--> y\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Yes selected\n", "Continuing as normal\n", "Reading in data for cycle block 0010001. This may take a while.\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ "Exception in thread Thread-9:\n", "Traceback (most recent call last):\n", " File \"/usr/lib/python3.6/threading.py\", line 916, in _bootstrap_inner\n", " self.run()\n", " File \"/usr/local/lib/python3.6/dist-packages/nugridpy/h5T.py\", line 458, in run\n", " write(self.preprocName,header,dcols,data,sldir=self.filename)\n", " File \"/usr/local/lib/python3.6/dist-packages/nugridpy/ascii_table.py\", line 480, in write\n", " tmp1=data_fmt.format(data[i][j])\n", "ValueError: Unknown format code 'f' for object of type 'str'\n", "\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Searching files, please wait.......\n", "Writing preprocessor files\n", "my_test_hif.0010001.out.h5\n", "Warning this method will overwrite /data/niagara_project/projects/ocmerger_issa2025/RUNS/PPM50_RUNS/hif7.95E+03/H5_out/h5Preproc.txt\n", "Would you like to continue? (y)es or (n)no?\n" ] }, { "name": "stdin", "output_type": "stream", "text": [ "--> y\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Yes selected\n", "Continuing as normal\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ "Exception in thread Thread-11:\n", "Traceback (most recent call last):\n", " File \"/usr/lib/python3.6/threading.py\", line 916, in _bootstrap_inner\n", " self.run()\n", " File \"/usr/local/lib/python3.6/dist-packages/nugridpy/h5T.py\", line 458, in run\n", " write(self.preprocName,header,dcols,data,sldir=self.filename)\n", " File \"/usr/local/lib/python3.6/dist-packages/nugridpy/ascii_table.py\", line 480, in write\n", " tmp1=data_fmt.format(data[i][j])\n", "ValueError: Unknown format code 'f' for object of type 'str'\n", "\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "WARNING:\n", "This initial abundance file uses an element name that does\n", "not contain the mass number in the 3rd to 5th position.\n", "It is assumed that this is the proton and we will change\n", "the name to 'h 1' to be consistent with the notation used\n", "in iniab.dat files\n", "Reading reaction cross-section information. This may take a while.\n", "Processed 0/404 files\n", "Processed 50/404 files\n", "Processed 100/404 files\n", "Processed 150/404 files\n", "Processed 200/404 files\n", "Processed 250/404 files\n", "Processed 300/404 files\n", "Processed 350/404 files\n", "Processed 400/404 files\n", "WARNING:\n", "This initial abundance file uses an element name that does\n", "not contain the mass number in the 3rd to 5th position.\n", "It is assumed that this is the proton and we will change\n", "the name to 'h 1' to be consistent with the notation used\n", "in iniab.dat files\n", "Ingestion rate is understood to be in Msun/second\n" ] } ], "source": [ "PPM50 = mppnp_reader(initialpath = \"/data/niagara_project/projects/ocmerger_issa2025/CONDITIONS/initial_abund.dat\",\n", " solarpath = \"/data/niagara_project/projects/ocmerger_issa2025/CONDITIONS/iniab2.0E-02GN93.ppn\",\n", " multizonepath = \"/data/niagara_project/projects/ocmerger_issa2025/RUNS/PPM50_RUNS/hif7.95E+03/H5_out\",\n", " surfpath = \"/data/niagara_project/projects/ocmerger_issa2025/RUNS/PPM50_RUNS/hif7.95E+03/H5_surf\",\n", " ingestionpath = \"/data/niagara_project/projects/ocmerger_issa2025/CONDITIONS/ingested_abund.ppn\",\n", " xsectionpath = \"/data/niagara_project/projects/ocmerger_issa2025/RUNS/PPM50_RUNS/flux_run/fluxes_fixed\",\n", " networksetuppath = \"/data/niagara_project/projects/ocmerger_issa2025/RUNS/PPM50_RUNS/flux_run/networksetup.txt\")" ] }, { "cell_type": "code", "execution_count": 11, "id": "11ee0389-8fb9-4176-90b4-fe24545b5a12", "metadata": {}, "outputs": [], "source": [ "from nugridpy import utils" ] }, { "cell_type": "code", "execution_count": 100, "id": "b01fe255-3d75-4794-82d5-41033fbe6401", "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ " reading ['iso_massf']...100%" ] }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "df91b327673e4b8b84297af86b6dcec4", "version_major": 2, "version_minor": 0 }, "image/png": "iVBORw0KGgoAAAANSUhEUgAAAlgAAAH0CAYAAADhUFPUAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAA9hAAAPYQGoP6dpAADPKUlEQVR4nOydd3gc5fW2n5nZvtKuepcsucpdxhgb27hQbWroISQEAoGQXn4fhCQkIUAgHdILYAiQhAQIhF4MuGGDsbGNe1XvbVfbd8r3x+zMzmyRZWlV99yX55p2ZubdsXbm2XPOe15GkiQJBEEQBEEQRMpgR7sBBEEQBEEQEw0SWARBEARBECmGBBZBEARBEESKIYFFEARBEASRYkhgEQRBEARBpBgSWARBEARBECmGBBZBEARBEESKIYFFEARBEASRYkhgEQRBEARBpBgSWARBEARBECmGBBZBEARBEESKIYFFEARBEASRYkhgEQRBEARBpBgSWARBEARBECmGBBZBEARBEESKSTuBFQwGceedd6KkpARWqxWLFy/GW2+9NdrNIgiCIAhiApF2AuvGG2/Er3/9a1x//fV4+OGHwXEcLrzwQmzevHm0m0YQBEEQxASBkSRJGu1GjBQffvghFi9ejF/84hf4v//7PwBAIBDAnDlzUFBQgPfff3+UW0gQBEEQxEQgrTxYzz77LDiOw6233qpus1gsuPnmm7F161Y0NDSMYusIgiAIgpgopJXA+vjjjzF9+nQ4HA7d9jPOOAMAsGvXrlFoFUEQBEEQEw3DaDdgJGlpaUFxcXHcdmVbc3NzwuOCwSCCwaC6Looiuru7kZubC4ZhhqexBEEQBEGMGpIkoa+vDyUlJWDZU/dHpZXA8vv9MJvNcdstFou6PxEPPPAA7rnnnmFtG0EQBEEQY4+GhgaUlZWd8nFpJbCsVqvOE6UQCATU/Ym466678O1vf1tdd7lcqKioQENDQ1y4kSAIgiCI8Y/b7UZ5eTkyMzMHdXxaCazi4mI0NTXFbW9paQEAlJSUJDzObDYn9Hw5HA4SWARBEAQxgRlsKlBaJbnX1NTg8OHDcLvduu0ffPCBup8gCIIgCGKopJXAuuqqqyAIAv7617+q24LBINatW4fFixejvLx8FFtHEARBEMREIa1ChIsXL8bVV1+Nu+66C+3t7Zg6dSqeeOIJ1NbW4tFHHx3t5hEEQRAEMUFIK4EFAH//+99x991348knn0RPTw/mzZuHl19+GStWrBjtphEEQRAEMUFIq6FyUoXb7YbT6YTL5aIkd4IgCIKYgAz1XZ9WOVgEQRAEQRAjAQksgiAIgiCIFEMCiyAIgiAIIsWQwCIIgiAIgkgxJLAIgiAIgiBSDAksgiAIgiCIFEMCiyAIgiAIIsWQwCIIgiAIgkgxaVfJnSAIgiAIAgC8QQEBPnG99T4vP6Rzk8AiCIIgiDSmP5EBABYDA7uZG8EWjQyCKOHVva6kn93v7RvS+UlgEQRBEESacjKRAQAWI4MrarLBscwItmz4YRnAbmYR4IVhOT8JLIIgCCKtSVcPDjAwkWE3sRir2kqSJIiSLBRPNhckQIzMle3ZNgO6vCSwCIIgiGEiXUVGOntwAIBhGNSU2bD+UPJwWE2ZDQwjf/ZEgkYrXJLNdfYiIErSgMVQf+cSk/+3jToksAiCINKcdBYZY92DI0oSRBEQ+plHBUvsfGDCRRBEGDkgnOAWMAA2He2DJDHyNcewoAHk/0+WATiW0cwZcCzi5hzDgGWBIC+hxRWOO1dJ1tAkEgksgiAApK8HQyGdP/9YFxnDyUA8ONMKzOjxCf2KHJ3Y6dfj0p8gis6Vc462npEAhARlKZ5EgkYRLknnLAOOAdjIXC+GEosi7bHR60TPocwVT9spfUZJwmv7XOj2CpAgi8ocO4dl5ZlDuHMksAhCR7q+ZNPZgwHQ5z/VMNGpoISU5EkWDaIUFSDqdgmqwBBj9ultNQImka0Yfy1RigqW6DFQPTLCSdwy2074TvlzDxfxYiZeZCQWLIkFjCJcWAB7mv3wBEX1Wg4Li2VTMmBgmaTXGMzfxFgj9u9fgvL3HhjSeUlgDYFuL48wJ9fJmCgv3nQVGEB6v2TT2YMBjM3PL0kSJEQFhaQVKZplKdk2ERAhb5e0wiIyjz1OEEVYDEzCv38Tx+Bgqx8HWgORY/Xn0ommWCEz2i6YIcIygIHrT8AkDj8l9cAMYB5/PKN6ioZT0FhNrE5kL5pkR16GcdiuN5YodhqRa+fQ5RWQa+dQ7DSir48E1qjx5gE3rHb56TERXrzpLDCAsfmSHSmG04MxEBQxIUmIziPbIAFiZC5B0tloX/YSNMvKPkg6OylyLknS20oSkGPvvzeRzcTiozqfLGBirq8Iodhzikp7+7GNXY6KpmG51YMiJEhocg2t6KIWltF4ThhZRLCKmIhZZxlEBUhE5CjHcLr16HJCW+21Ym1ZOSz07uE+9Pr0YaK1s50TwkszEBKJjHSBYRgsKLdhe60XC8pT86wjgZUiJsKLN50FBjAwkTG72IogL0VeghpRoLwYkfjlmmhdgv5lrKxDOQcQd43YbQA0x+jFR9zx6nn0x6vXFqWkia4GFtjd6MOuRj8kWenEtOvk14bmPiDGdjzQ0BMGEJ8IO9LIXgyNUNAsM7Hb2MS2ybYxkHCiKwR/OPq/YjMxmF1s1YWEYq8bK1Z052b1oonB2A0rnVaeKEw0Nts6HAyHyBhPFDtNuHS+KWXnI4GVIsb6F1H78hWl5C/eGYUWvH/cm/Q8lblmtPfx0Rdo7DljPASJ1qO//hN7AhKtJxIkAxEsUU/GwNonikk+eISNRz1D/r8Yj/Ai0DlMtWJOBfnlHJ2rwoABWCjCIWKjiA5olmNso/YMGACBsIi2vnhPTXm2EQ4LJ9sxcr6K7hrJzpnEloHmOEYf/okXTVEBMxLipNgZ0v3IOLMqAyVZqXvpjGXS2YOjkGqRkc6QwEoBJo7BsY4AjnUGAUQ9A9plCdFwhxS3L8YLECMIEnkKtKIA0IqIxF6PVLGjfuwke44m6os+8tKLegASvdwHtq4/Z8z5oLcBokICJ7FNdA0kPa+ET5oC8IaiSjPDzOK0cisYho05X7J2Rrcr12FPsZ3K54tt53CTrDfRymmZY/oHVCpJZ5GR7h4cIrWQwEoBIUFCbffohw6GgvalmSz/w2xgYOKYuJc1q33RJvg1H7cOvechzsPQ3zqiL+FY70DcOqDzGCTyWCRaZyDh3UMe9PqjL9lsG4cLZjnAssyIvexHC7uJ03kwFlfa08aDkbw30cT9/44l3UUGeXCIVEECa4jYjAxmFFnARh5C6q92yC/1yL+4fdHtTHRdKxAQL0BivQeKaFHOHSd0Eh2HxGJFS7Jf8emU7Hlahf4lu6DcBgPHjm6jRoh09mAA9PkBEhkEkQpIYA2RMydPvPwE+hWf3i/ZdPdgpPvnJwgiNZDAGgI5NnbCvnjTWWAA9JJNdw9Gun9+giCGTnrEPIaJeaUT98WrCAynhU1LgQEoL9lsFDvpRUsQBEGcGuTBGgJFE/zFS7/iCYIgCGJwkAeLIIiTc/xd4A9nyPN0he4BQRCnAAmsoXBi42i3YGRI9xdLun9+SQLW3wN0HpLnUiorq40T6B7IpPt3gSBOARJYQ2HDgxP/QZvuL5Z0//wAcGw90PyxvNz8sbyebtA9oO+CAolMYoBQDtZQaNkDvPp/QP4MRKtdAShbCJScJi/7uoB9z8ccqLEtng+ULZKXAy5g73MxphrbgllA+WJ5OewDPvlP8vPmTgUmLZWXhRCw59/JP0d2JVC5XF6WRGD3v6L72vfrXyxbHgKWfyu6/5P/yMckakNGATB5VXR9/4uAEE5oCmsOMOXs6PqhV4GwP2IXk2BvdgBTz42uH34DCGnGD9Q+9012YMba6PqRt4BAr8ZWY2wwA7Mui64ffRs4vkH/+d+6W/5/4IzA3Kv1tu4mzfkiZfSVSmKnf0Hfhp4TSWwBnHEbwHIR2zeB9gPRfYqdcuySLwNGa/Q+tOyK+Vwa2zO/AlicUduGbQnOGbFd+g3Anidve+0O+TMon+WFLwGzroj+/y37BuAojd6Hg6/Efy6lDcu+CeROkZePvQPsfVZ/3dg2FM6Wl09sAHY8nvh+SZJsW3a6vF63Bdj2R+hg5Mp0YBj5/k5aJm9v3gls/T3UD6O1A4Ca64HKFcC79wEMG/lbZ4Dnb5X/rhg2ajv7cmDyanm5pxZ4/3cJzhmxnX4+MOUcebmvJdIG6O0YVp4mLY3+vft7gO2PRPfFTkVzo99l5RmR0JYBsquA0oWyrRAGjr4Vb6Ms2wvkv2/td+HDv8jPo9hzmzMBZ1n03ve1yttZLjI3RJa56PJ4IVZkVq2Kfz6lA8ffBV67E1j7s+jfPBFH2gislpYWPPzww/jggw/w0UcfwePx4N1338WqVauGduKPHonftvoHUYHV1yKLsGQs+1ZUYPk6gVe+ldz2jNuiAivgBl76enLbBZ+LCiw+APzvK8lt51ypF1gv3p7cdvNv5Jek8lB58cuygEtE1Uq9wHrp63pxo6VskV5gvfIdoK85sW3hHL3AevN7QNfRxLbZVXqB9c49QOsniW0zCvUCa8PPgcYP9DZbIy9NU6ZeYG39ffJftAynF1g7HwcOvpzYFgBOvzn60vnkP8An/Yjj02+KCqxDrwA7n0huu/DzUYF1/D3ggz8mt11wgyywjq0Huo9pdkiAtwPY/pfopprrowKrZRew47Hk5635TFRgdRwCdj2d3HbuNVGB1VOb4IdKjK2Cu7n/+zvjIo1tS/yPGi3lS2TxoQgLAIAE+LuAXU/pbfNmRF82nrbEzwYFe15UYHk7NQIrAZKoEVjdsthLxhlfin6XB/KMUARW2Af867rktrOvkH8UMBwgRcakfP3OxLbT1wDXPRNdf3huP8+IFcANL0XXf10NBPsi4ovTC7GSGuBazd/LU5fL946N7Ncekz0ZuOThqO1rdwDedo2NISr27AXA6u9FbT96TD4vZwBYo2yjLPfU6kXmtj8CedMj+yM2nFG+BmcGCmZGz+vvBkQx3pYZZ4EkEpkDJm0E1qFDh/Czn/0M06ZNw9y5c7F169bUnbziTPnlrJA3PbpsdgAzL9UYx7jVtV9Aox2ovjj5dQpmRZcNJmDGhZrTxpy3cG50mTUA0y5I3gatLZjow9zbBbR8rLcNuuSXrmIzeTUghhO3oWiefr1yufzwTNSGvBn69fJFgK9bv005f3alfnvp6UBmsX6b8oWP3V56OmDLRYyxPLNm6zdnFCAhxQuArDL9trIzAINF76VQBw2M+YVevjjygI+1ZaJeA4WKJZHjNV4V7TGcppfnpGUauwTnNdqitpXLoHqkdHaR81uz5Put89woMPK9qfmsvE97nyqWAivv0rdVO9yAs1xjuxg458cJbCPzvGn6+7vmZ0naC6BoTtS29DTg4ofivWfKQKDKjx8AKJwFXPBgArvIsaWnAy9/XS8slLZmFgELvwB1fKnyM6K7HaXAyu8m9g5KUvSHEiCLraXf0NtJSjtEva0pUxa/khjdr06S7BFX4CLPCJ2NZtI+pxhW/qyx51OWRSFGZEaw5cnXUY8RoiJee6+SwcR8N4IeIJRkQHVnqX69bT/gaU1s6+vRrx95UxaIiciZHCOwHgXa9ia2VYScJMjzd+8Hwt7EtmYH8N2G6PqzX0jyI4yRfyR9ryW66X9flX8EsVxUiHFG+V5zJuBzL0S/+x/+DWjaHt3HmSK2Znl56deiP8Lqt8n3QXsurW3xfNmTD8jeUj4QY2OUPc+x4XLtD15ChZGk2LfixKSvrw/hcBg5OTl49tlncfXVVw/ag+V2u+F0OuH6biYcVgNQPA+45d2JpeIlCXhktRwG1b5YGG5ift5Y0v3zA3K47+krk++//rmJ/2Cle5C674IkAiIvizVJkJcZVhYiCr318g82MSLWxIidJMg/EPKro7a1m2UBoD2fsmx2ANPOj9ru+bfsPVdslHOKAmDJAhbfFrXd+AvA1Rix5eX2CGE51Nn4YfznyqkCDDaNbeQ4cwbwle1Ru79fKoe6E2GwAN9vi67/4xrgyBvJ7+Xd3dEfbs/eCOz7b3Lb7zZE7/GLX4n3vGr59iH5hwMge/0+/EtyWyD6NzDnamD3P2Vxpk4WWZwZLMDZP4j+uKrbAtS9L283WGRngcESPaZ8cfTHrq9bFnqxNqxxRJ6/6rve5YLD4Tj5ATGkjQcrMzNzeE4sCRNTxWuTerVM1M8bS7p/fsV7BRaAmMCAlfdPOWfiCk26BzKp+i4wbMQb0o9NVsXA26WEQgfCvGtObqOw4v/Fb1NEZqwnk+FkgTYQkXnD/6LeQEW0Kcsir7dd8yCw8s4YW14OtQohvVd83nVAycLIvjAgBDXLIVmQKBTMkv9etfvVeUgWMlpYQ3zbdPcl8jfgKAPakqReAPq83eMbgI0/S257yzvR0PXHTwJv/zCBESOLrc8+H82n3PsssPkhvbePNUSXV/w/oLhGtm34QBbdnDEaLtbmHc65Sh9dGiRpI7CGlwn2oE33F0u6f35Afti6mpD480Pe7m6KPJTNI9mykYPuAX0XFFIqMln5xd7f6GM5kwfetukXyNNAOPMr8jQQ1v5cnhSRxweBJy6Ww6falAGGk/M0r39O/i7wAYBX5kF5rk2hKZ4vh7mFGBs+KItDbYiZ5QCzU94vBDWNk+RtrEbC9LX1L/K0ebDtB/rPkSyuIYE1UgSDQQSD0f9ct9sdYzHBHrTp/mJJ988PyJ/ri+/KHS+SYc+fuJ8foHsA0HcBIJGpdByo3Qy07onfLwlyb3NAnxecjOqL5GkgnPlVeQJkURcr4LT5n7MulXv0q56+sH5ZG14ungesuCNqo+Y+RnIJY/N8B8m4FFiiKCIUStIrJQaz2TzkcfQeeOAB3HPPPfE7bnoVyMyQlyfSgzbdXyzp/vkVnGX67vbpSLrfA/oukMgExobIZNho3lYinOX6TjT9UXKavrPLMDEuBdbGjRuxevXAam8cOHAA1dXVJzfsh7vuugvf/va31XW3243y8nK5l9wgEt/GBen+Ykn3z08QCun+XSCRSSJzkIxLgVVdXY1169YNyLa4uPjkRifBbDbDbKY/GoIgiLSERCaJzEEwLgVWUVERbrzxxtFuBkEQBEGkB+kuMgfBOCshSxAEQRAEMfYZlx6swXLfffIQE/v27QMAPPnkk9i8eTMA4Ac/+MGotYsgCIIgiIlF2lRyB9Bvb8JTuQ1Dre5KEARBEMTYhiq5nwJppCUJgiAIghhFKAeLIAiCIAgixZDAIgiCIAiCSDEksAiCIAiCIFIMCSyCIAiCIIgUQwKLIAiCIAgixZDAIgiCIAiCSDEksAiCIAiCIFIMCSyCIAiCIIgUQwKLIAiCIAgixZDAIgiCIAiCSDEksAiCIAiCIFIMCawh0Oryj3YThpUWlx8/fmUPWib45yQIgiCIVEMCawi09k1s4dHi9uOe1z5Bi3tif06CIAiCSDWG0W7AeOalT5pwpJcHyzDyxAIsw2B+aTbmlGQBAFz+EN4+2AqWZcAyAAMGHMvAwDIwcCwqc+yYkp8JAAiGBRxsc+v2G1gGBpYFxzLIMBuQaTECACRJAi9K4BgGLMuM1i2Y0LS4/PjL5iO4bfk0FDuto90cgiAIYhxBAmsI/HL9fsBUG7f93ovnqQKrrtuLqx7dlPQcd543Cw9etgAA0NjrQ82Drya1/drKGfjt1acDAFrdAZR8/3kAAMMABlYWY1xEkH3ujCrV1hMMo+aBV2HgWBhZBkaO1U3nzijC99fMAQCIooTP/f19GDkWLn8IAPCLt/ej1GmDkWMwuzgLnz2jSm3THzceBsNAPhfLwshFz1/ksGJJVZ5qu7OhGwDi2mAysLAaOTitpn7v90ijePAunVeWdgKLxCVBEMTQIIE1BLKtJiyaVgQjx0KUAFGSIEoSJudmqDY2kwHLp+TL+0TZRhAlCJIEXhBR7NC/vIodVvCiCF6U7ZRlXpDAaTxVgiipy5IEhAURYSF6noBmJSyIONbpSfo5SjQvUF4U8Y+PanX7/7WjTl2+bF6ZTmB949mPwGvaouXcGUV462vnqOtn//ZtuPzhhLZnVuXh/e9coK6X/+C/aOsL6ASbKSLG5hRn4aUvrVJtP/vEFrS6A+p+ZW5kWZRmWXHfJTWq7Z82HUaXNxix4WDSnNthNeLy+eWq7YFWFwBgX0svWAYwcZx6frOBRaHm/06SJDDMxPEkprO4JAiCSAUksIYAwzLY0dCDP127CFefNimhzdT8TGz61vkDOt+U/Ew0//SKpPslKSpkSpxW9Pz8ap0A40UxIsokZJqj/7UZZiM2f+s88KIUEWIiwhH7sCCiPNuu2rIMgxvOqMKzu+oBAFU5GTjeJYuz1dMLccmcUl2brqypQEg9p6g7/6xip8621GlDhjmEsCC3I8SLCEfaYOT06YBBXtCIRkG3L9dm1q1vOd6B2i5vwntWXejQCaw/bjyMvS2uhLZlWTadwHrwzX0AgBv+vjXONttmQvfPr1bXz/3demw82q565KJij4PdxOGT71+s2n7/f7vwYV1XjJ0s+Iwsgz9cuwgcK9+P5z6ux8E2t144KmKTY3Hlggr13h1qc2vEo16UmjgW+RkWCicPEPLgEQQxVEhgDYEP/28N7nztIPa1uHD1yc2HjNZDwrIMsmwDC6kZORbLphQMyNbAsajMzcDaWSX447VnoCDTgva+AL78zIeYU5yFm5dO1dn/6wvLB9z+fT+4OOk+McYLtvf7F8sCTBFsESEW4kWYDZzO9vdXL4LLH4oIPQkhXkBIEBESRGTFhB2vOW0Slvb6EOJF1UZeFpBrjwq39r6AmtxvNrBwWkwQJAkhQUBYkGCJaUNYiAhdUYA/rBeEdpP+a7azsRtvH2pNei/+9Okz1OV/7azDsx/XJ7X1zC1TBdYDb+7DEx8cT2rb9sCVKMi0AAC+9u/t+Ov7R1WhphV5Jo7FLy+Xw9aSJOFvW47iv7sb4gVhxP6u82erImTLsXZsq+2COYF4NHEsVkwtUP9uW91+tLr9MEf2ac9vNnCwGLhRE4Tp7sEjgUkQQ4cE1hDIz7Tg2VtWxImD8c6P1s7VvdgKRuBzxr5IFSEwEC6K8ar1x91r557U5j8763D7M9vBMAyuOa0C7xxugyBJ/XoqX7xtJfwhQSPYIoJQEHXhXAD47nmz8dlFVaqA1B7Di6JOSJ87owhZVqNeOGrEockQ9fzlZ5gxNT8zoV2IF2HkoucN8pH9vJjw8/zwlT0AgK8/+xHmFGfhtf3NSe/XV1ZMV1/Cr+1vxv1v7Etq+9Eda7CwIhcA8Pi247jrf7uS2m745rlYMbUQAPDXzUfwvZd2JxRiJo7Fb65cqOb7vXOoFX/dcjSBh1Cef+b0KtW7erSjD+8daYsTmnU9PgBAtzeotscTDKO9L5BQECoex4lCugtMgkgFJLBSwEQLuyT7PBPtcyZjb4sLq6YVxHnw+vNUZtvMyLYN7PwrpxUOuC23LZ+G2zBtQLa/uPw0/OLy0xLu04aXZdsF+OHauQgJgirEgryI1/c345frD6C2y6uKy30tLnz5rOmoKctWxVtQEW+8gDyN529+aTY+u6hSL/A0c21HBouRQ5HDEicEFUxc1EvYF+TRpRE7sXhDvLp8pKMPz+ysS2q7aFKuKrC2nejEF//xQVLbD2o7cW51MQDgrYOtuOJvGxPacSyDv3z6DNXDu+loOz7/5NYYb19UEN5+1jR8KhKOPtrRh5+/tT+pIFw5rRCLK2Xx2OML4q2DrQns5PzAEqcVRZHcQF4Q0esPqdc0cmzafIeHAnnviFRBAosgYkjmwQuGhXGbzB7bZqfVlLDX5st7m3BedVGcuMzPMOOLy6bG2cdy9WmTknr5Yvnm6mp8c3W1bptSfkQOBUe9QjctmYy1s0riBKEi+OZFeu0CwLLJ+fjtVaerAjBqKx83JS9TtS1xWnHp3DLdeb1BHofb3fCGBPzjo1p8cdk0FGRaIEkSbCYOIV6M69ghiPpOKO5AGCe6kncsuXRu1Ova2OPD394/mtT2wctqVIF1rMODax/bnNT27jVz8JOL5wOQhdvM+17W7TewjCy4DCy+tnIG7rloHgA5XLvmD++qoi3Iy2Hubz23AwWZFqyZWayKR2+Qx49e2ZNUEM4scqo/IkRRwjuHW2E2cDBHBKZ2nmE2wmE1Jv08owF574hUQQKL6JewIMLAMuNSVAyWRL/yuzwh3PPSUeTajbhiYRHmlGRMyHsyGuFhLQzDqD1HteTYzcixm5McpWdOSZZaJuVknD2jCGfPKFLXlfCw1WTARXNK8c7hNsy672U1PHxFTQUAWTjEhncdlqhQWDY5H1u/c0FSQbgoEiYFgMpcO+67eL4qCIMxnr+5ms9iMxmwalqh7rzR8wu6nMOQEB/+5UUJfIiHNwRVRAGyaNrd1BNnv/FoOwCgSBOy7wuG8at3DiS9pzcunqwKLF+Yx3m/fyep7VULKvCfm88CIItr+7efUT19sYJs1bQC/OqKheqxn3tiCwDZExprPzU/E9cvivZ2fvbjekiSpO7XHuO0GjFZI7p9EW9orNc3XSAPXuoggUUkJV1ExUDoC/BwB3j0BXj86s0TqMq1Tsh7QuHhgYWHWZaBmeVgNnIJz5NlM+lqwPVHZW6GWofuZMwqduLdb5w7INt5pdngf3tdwlCt3AEkKgiLnVa88ZWz8c6hVvxx02EAwMwiJ/a3uiBJQF5GVNxajRzuOHdWQkEY5AWcXpGj2gqihLklWQhG7GLnWi9lkBfhDyudROLLuVTExOD/uaMuLr9R4dwZRTqBdcs/tg24RMzlkTDw6T9/PSL2op0u5pVm4ZXbV6u2n3tiC9oieXmxgrA0y4ofrInmfD714Qk1ZGsxsrAYOFiM8nkzLUbd30tHXwCALB4tRm5Ef+SSBy91kMAikpIuouJUUB7ntd3+tL8nE9G7OdoevFTDsSysJhYne03aTAacP7MYW4534PyZxXECU+vMcVpN+NmnFgzo+k6rCXu+d1HS/dr7auJYnLjnsoRCLBiT6ydJEn59xWmJbcMCqov0JWLOmlIAdyCMQDj+vPkZUe9ce18Avb6Quq50BOmD7NUqcug732w61oG67uQlYrQC68G39mFfPyViGu67XF2/5C/v4YPaLnWdZRhVlBU6LNj/g0vUfd989iN80tyrijVFlFmNHOwmg+7/6pW9TWh2+eMEnnKMVhx7gzw8wTAsBg4GbmJ14khGqr13JLCGwHhyIYuSXCtL2+usL8DDE+RhNxngsMp/CoIo4UCLB6IUraWlioouvaiYVWzHm/u6IEoSzp2Vp/4a3d/ch92NfZicZ8PiyVnq9R7b3ICQIOH6xSXItMjn/qjWhXcPdaG6KAOXzI+Wknjg1WPwBgV87ZxJKHTID9YPT/Ti+Z2tmFWSiRvOjOaw3P/KUXR5w/jGOZWYlGtVz/v3bU2YXmDHV8+O5gT98o3jaHOHcNvKckwtkOt/HWjx4OltzSjPteC2FRXR9m5pRKsriKsXFul64AFQXziK0MrNMGJagR0Xzc1HeY7cBpc/jI/r3bCbOSyqjN6Hpt4AAmERBZkm9T6IooSgIMLEsbpcnrHKRPVuprsHb6QFpvZaLMugUlOkuT8YhsHXV1Wf3DCCtjBxMpTwcJbVhLOm5mPj0XaIEvDjC+fi7OlFCPICTDFC43dXn45ef0gVdopoC/AicmLK6KyZWYKZRU4EwwICEYEXiCwXxvSajvXMiZIEX0iALyTonuEAsKOhG5uPdST8TBlmvcD6/cZDeH1/S9J7IP7uM+p77Z7XPsH6SDkZjmU0QkwWZ5987yJYIyVofvH2fmw40qYKNb14Y3HX+XNgj7xPthxrx/EuT0KBZzGwmFHogClSBifEC2AYZsR+yKXae0cCawg8+NpxfOasqf2+XHhRgifAQxAl5GZEv3AN3X70+HiUZJmRF9nuCfB4/5hcNfzcWVF38YbD3Tja7sXiqizMKZVzBXp9YfzpvXqwDHDn2imq7b8/asH7x3qwdk4+LpidDwBw+3l8/V/7AQDrbpyrtvV/u9rw1oEuXDyvAFctlPNQeEHCL988AQD4vua8QGLvzYkuuVbU8mnZqsA61uHHG/s6sWJatk5gfXDChSAv4orTClVh0eMLY1+zBxlmfailxRWEO8AjLEQfNL6QgFZ3CMVOvau/2xdGtzesSzwOCyLcfj6uJlW3N4wOTyjuvI29AViM+gdXQ7cfJzr98IUEOK2JvyqK0OryhNHl6cVpFQ5VYLW7Q3j8/SYUZJp0Auvf21uwu7EPX1hWhhXT5V+MTb0B3P3iETisBvz207NU279vbcK+pj5ctqAQS6dkA5D/7594vwk2M4cvnhUtjPpRrQtNvQHMLslQxWOIF7Gv2QOzgcGskmieiTcoJ+xbjOygfp2Sd1PPRPHmpbPATBYe7vaGkub0XTK3bMDn/+UViXv4JmL7HWvlH128LMAC4agYE2N+2P/konlodQfU/YFwZOJFxP63LanMg4nj9LaRuSQBHZ4gvv7sRwCiQ5sBsuDzhnhdb11tnuSO+m68si95KZf/d270mbZu23E8uvVYUtvG+y5HaZYcDr7zxV146N2DOg+eVsS9cvsqVZQ/+eFxvLC7USfWtALu1mVT1dE39jb3Yn+rC5ZISJeLfHePdrgByO/iVEACawjUaYTGVacX4b1D3fiksQ+fX1qKMyMvw8ZuP3780lHk2Iz49bUz1WNf2NWGHXVu3HBmKc6ulhNe3QEe//iwGTYTpxNYh1u92HKsByVOiyqwREnCoTZvnLcjEBbR6+PhC0WFRewQO4aIN8Zi5GAzcdC+XzmOQXm2BRzLQELiX63K9/tElx9WI4vTK50waK4xtcCGC+fkoypfnzNx1cIiSJK+8ObskgzcuqIc+Rn6X3tfXl0BQZSQlxHNE6kpd+CutRZkWPRi7BvnVIIXJJRkRUMI88oyce9l02CJyZG5fVUFgryIkqzoL8ZpBXb8vwuqYI2xveb0YniCPCblWtHrS5y/wTDy/cixGzEp16J62wDAZuKwoMKBrBhxlmkxIDfDCLtGVCqCzxTjKevxhtHWF9KVL/CGBHzc4EZmjCj9qM6Fbcd75STfiMDqC/B4eH0tDByDR26Ihiv+s6MF7x3qxqdqCvGpBXJCsjco4O4XDsNoYPDTy2eofzebjnRjT2MfTp/kVAWzomVjRXdZthlnTs7GokonCjT3whsUYDYw6oNsIjFRvXnpxlgLD7MsA6vJoHqJkrF6elG/+7X86MJ5Sff9Z2cdZt33MhgGcomWQ23ItZvwi8tPw5qZJaoY80cEnPaH2ZdXTMMFM4vl/aF4D5322TqryInzqot0+7WiUFvEWRnyTevB06L9mu1p6sXzuxuSfr4raspVgfXcrnr8+NVPktrWdnuwAgMrzt0fJLBSwIkuP57a1owChwmBSMKngoFjwTD6PwQAKMg0Y1KOBTZT9I/JbuawuMoZ96I/vdKJ4iwzphdFh7TJMBvw5VUVOmEDABfOzcfK6TnIskX/a60mFr+/bhY4jtGJrSsXFuHKhfovp4FlcO+npgMAajt9CT+vIioUYTlb4xkBgJnFGZhZHO/qP29WfNJvSZZFJ3YUqovij8+yGZFli+/SXZET78q1mw2qS1pLeQJbh9WA2dbMuO3azxArsJR7UJmT3HNTmm3BN86pjDvvLRqvk0JVnhV//dycuO7/1y4qxoVz85GfGRWgTqsBNy4tBRtzvVnFGbAYWFTk6O/n5DxrnAdCCUGYDNHtIV5Ety8MjtGL8tpOP7bXunQCNhzTQ00R3Y09QfxnRyve2NeB21ZWYHZJJkRJwlf+IRcf/e11s+CIeC/fPtCJdw50YcnkLFxaE60N9rdNDWAZ4NrTi5ERsa3t9OFIuw9l2Rbd/8vRdi8MLIOSLIsaOhFECQxGzutC3ryJQTp774DkHry6Lu9Jw2UrphaqRYFPxrfPmYlvnzPz5IYAHrpyIR64tEYn3KJiTEBhZrRdV9ZUYEpeBgKKcIsRb9ocvvJsO1ZOLVCFoChJCIUF1PX44A8L+M27B7FmVgkGXu46MYw0nhKJxghutxtOpxOf+cMWGK0ZqtAodpoRFiQ4rAZVJI3XukmA/FL78UvR+jxaYZVuLxDlXjCQvTYT4R6IogQRUEU6L4ho7AkgLEiYVhgV84davWjo9qMyz6p6xg61evDAa8mH5QGAYqcZD1wxA8GwiNue2gsA+Mtn58AcCcU+u6MVL+9px3kzc3H9EjmnTpIk3PS4/Mvy4U/PhDPS0+3lPe14dkcrzpqWjZuXRwXql57ai0BYxM+unKF6D98+0ImntjVjyeQsfGllNKfuF28cRzAs4osrylXbI21ebDvei4pcK1ZOjyb4bq/thSBKmFOSqYo8b1CAOxCGzcSp7QLoe5KIiRIyTSdEUUooJpNtn0hER+8Azp5eiHcOt0GSgF9dVI0bV86Fy+WCw+E45fOSB2sIVORY8Zmzqvp9gE6EB4wiKvrz1kx0HFYDnFYDcmwTJwzEsgy02VcGjkVlXnw5+hlFdszQeE8B6LrXa4n1bgKyl+yRG+YgyEs6j9mqGTmYXZKh87ZKEnDdGcUIC5LOk1vsNOOMSieqYtqXYzfCH9J391fCqVzM/4+ST6fNYWnoCWD9wS4snOTQCax/ftiCbm8YP7pkqiqwdje68deNDZhdkoH/d8Fk1fYvG/VhCW0IXZtCMLskE28f6IQ3KODMyVlqCNXlD+NEpx+ZFgOmaMLqngAPhpFD+eOh44MChUzHJ+nswUvmvTvY5h7SeUlgDYHvrp0MpzM+tDRRmIiiYrDk2E345dXVcb/KJUmCKIrguMT1kNKF/kKmDMPAwDGIGR8beRkmtYOHAssyaucMLQsnObFwkjNu+08vnxG37bxZeThrWk5cWP4rqysQCOt7d1XmWnHp/AJd+BMAphfa4fLzujw5QM6rs5r02/wxeSGxKCkED1wxA+8d7EZjbwBTC2yqwDrR6cdDb9eiKs+KH10SHRbpobdrcbTDh6+dPUn97EfbvfjzhnqUZlvwrXOjdZ5e3NWGVncQ51Tnql7GXl8Y2473wmE1qB0kAKCpJ4AgL/diVcSjKEmQJKREyFHIVA9588Y+yfLventdeHAI5yWBNQQm+hcmmahIV7S9ZiRJQltbG/bt2wefz4dzzjkHNtsAByOcQIxF76YxMu5eLLG5ggAwOd+Gyfnx/2/a0KLC0inZOqGicNOyMvzm7dq47dpwsuLNWzw5C1O9IeTaoyLPbGBRlWdFaUwuopLnpvXO+UICOj1hZMTkF+5r9uBwmxenVURFaHtfCP/a3oJCh0nX7me2t2BPUx9uXl6Gs6bJXruG7gB+9L8jyLUb8atrZupsD7V6cOHcApxeKZ/b5Q/jhY/bYDcb1N7HgBw27vKG1Y4aVDOOvHnjheHy3qWNwFq/fj2efvppbN68GY2NjSgqKsLZZ5+Ne++9F8XFxaPdvDFLohdVOqMVVj090aFFgsFgWgmsWO/m7GL7uM43HAqxJTxUb14CQaGt9aYwszhD57lSuOey6eBFSRfGnVpgx90XT0VMZ1OcNysPCyocKM+OijS7mcOZk7PUkigKai9Wk7YXqyzmYl8oza4Ajnf64dV46dx+Hu8e6obDohdY7xzswgcnXFgzW9+ZJbZmXFWuFVl2Aw63+nBpTYHqsfQGBfzh3TqYDAy+fk6l2oljV4MbJzp9qC6Kdp4RRAm7G9wwGVjMKs5Q2+0PCRBECWZjYpE90pA3L71JG4F15513oru7G1dffTWmTZuG48eP4/e//z1efvll7Nq1C0VFA+/qSoxPJEkCz/MIhUIQBAE8z0MQBHXSrjudThQUyC9Dnudx8OBBeL1eeDwe9PT0xD0cjx07BqvVCoZhdKExhmHAsixYlgXHcbDb7cjPj4bAOjo6wLIssrOzwbLyCyEUCqlhR47j1O1jCcW7yTFAe3s73n33w7T25AHD482L7SVsM3G6PC2FRZXx4dPSLAtuS+CJ++KK+F6sk/Ns+P1nZsUVuLy8phCrpueiXNMzNdNiwKdqCtVyL+r1si2YHRSQbeu/ZtyJLj+sbhb+sAjt5QJhAftbPDCwjK6H7O4GN9491A2mhlEFViAs4Lfv1AEAHrlhDlhEavvtbsdrezuwZnYePn1GCQBZjN3x7EGYDCzuvniq2nP7g+O92FnvwrwyB5ZNjXr4XtvbAQPL4Kxp2WqZl05PCN3eMLJtRl2P3iAvwsgxcT164z57ZJ7O3jwg/cKlaSOwfv3rX2P58uW6l9WaNWuwcuVK/P73v8d99903iq0jBovWaxIMBlFXVwdRFFFdHa3yvG3bNnR0dCAUCg24+v7kyZNVgdXa2oqDBw8CiIaFY89TW1s7oPOWlpaqAkuSJGzYsAEAcPHFF8NikV9i+/btw7Fj0UJ8ijjjOA4Gg0Fd1q47nU7MnBkN7Rw9ehSSJKGiogJms5zr4/V6EQgEYDAY1Ek5z6k+8CRJQldHe9p78oCJkavIskxc2BEAKvNsqIzZlmUzqrXTtFw6vxCYP7DyLhfOzUdptkXNAQNkj9ttK8rjRN6MIvl+Ts6PdsmXJDm8ywuiLm+Mj3jitNXOQ4KILq9cZkUrWOu7/fjghAtOq1EVWKIk4ZntcqXzxZOzoIzfvfVYL57b2YoV07LxBU0v1q//cz+CvIifXzUDBZny92zL0R68vrcDNRUOLKzQ9zyL9eaVZpkxuyQDCyqcuvIjDd1+sAyD/EyT+lnGu4c4HcOlaSOwVqxYkXBbTk4ODhxIPjI8MbpIkoRgMAiPxwOPx6N6kZT5lClTMHv2bACy52fPnj0wGAw6gcXzPILBoLrOsqwqLhIJFsWjpLB3715dexJRVlYGs9kMSZLUCQBEUdRNWVlZuuMyMzMhimK/Xirl2HA4cbFT5bNrBdb+/fsRCoVQWFioCqza2tqkf+ta0aUVX5mZmaipqVHtjh07ht7eXnR3d8PlcsU9IAOBAEKhkHof0wFtriIA6vQQw0BqxgFyb8kzE+S4LZmchSWaESEAIMNiwA8vnhpne/2SUnz6jBLd99TEsfjRJVMRinibFGrKHXBajajIjXrnRFHCsqnZCPEiLBqRZjWyKHSYdHX4JElSe6xqh9Dp8YXR0BNQh+1KhNK8pt4gmnqD6PbyOoH1q7dOoNfH48eXTFV79r5/rBePbW7A/HIHvq6pr/eHd+vgDvD47OIStc5fXZcfW472oCTLjFUzclXbXQ1uhAURMwoz1OHRAmEBLj8Pq5FTtw0H6RguTRuBlQjlpZ2XN7BR74nhJRgMwuVywe12w+12q8v9CQu/368uW61WlJWVwWq16kTLvHnzMGfOHJhMJpjN5lN++S1YsAB79+5VQ4OJRNaMGTN0omwgMAyDCy64IOH1ampqIIqiLmzZX0hT8X4plJWVIRQKwWSKhjMMBgPsdjt4nlePVVC2xRIKRQe+bWtrw+7duyGK0SKjsfdiy5Yt6rIiZLViVpmsVitOOy06dEhDQwPC4TCKiopUD1goFEIwGITBYIDRaByUp22kMLAMdXqIYbQ6QMgeLUa3HlveAwCmFdp19d4AuVTJFxMUAj53Vp5udA2FP392DkKCqOttumRyFipzrXBaDXHeOAVFdBZmmpBhNei8cwCQaTZAECTdSBRBXoQgaT+ZzPEOH7q8Yd3wX029Aby5vxOzSzJ0Aus/H7WgqTeIO9dMhsMqC7oDLR48vL4Ok/NtOtH6s9ePo7HHj9tWVKgjiNR2+vDsjlYUO81q7ToA2HC4C70+HqdXOtXOGp4AjyPtXtjNBkzX3Od0CpemtcB66KGHEAqFcO211/ZrFwwGdR4Qt3totTGIqJhSwnAAsH37drS2tia0t9lsyMjIgN1uV+fKpGAwGLBkyZK4YwdTIE5LYWEhCgoKdMntyYRWqmAYRvWqDQateFGYMWMGZsyIljVQctIUsaUsayejMfqLfdeuXTpxlazdWu9dKBTSiTQF7f8bABw6dAi9vb1Yvny5KkyampqwY8cOnZ1WpBmNxjivm8lkwty50SGBOjo6EA6HkZ2dDavVqrZL8TIN9YFOnR7imQgh04HAMAzMRkYtnKugLT8SGy4dqDdPGU1Dy/Kp2agpz4zL97ppWRl8IQGFjuiPqdIsCy6KGQECAKrybMgwG3QdH0QJsBhZWGM+R1+AR19A0JU76fXz2Nvs0XV6AIBNR3pwNDLSgiKwGnsDeHh9nVpwOJbYcCnHAMVOC+67PPrZX9nTjrpuP1ZNz8Wskgy1XRsOd8Nu4rC6Oioem3oC8AQFnadRlCQEeTnvazQ6PYxLgaU8uAeC2WxO+Ae8ceNG3HPPPbjmmmtw9tln93uOBx54APfcc8+g2kpEw3yKlyUcDuOll14CAFxyySVqCMvhcKCvrw8OhwNOpxMOhwMOhwOZmZmjHnJhGAZFRUUoLCxM+EIdjzAMA6PRqBNR/VFTU3NST97ZZ58Np9OZUKxphVxs+LCgoABWq1UVQQoGg0HnWUvmaVOIFVj79+9HR0cHFi9ejPJy2TPR3NyMbdu2qedPJtZit02bNk19lrjdbrS3t6O2tha9vb0TUkAMlhy7Cb+4agZYSDAYxuUrJuWkwptnMrDIMZjitiveJS2Tcq0JQ5SJhulKVmPum+dWwh8SkKcRaRU5FnzxrHLYTPrv7+mTnCjPtqBAY2viWEzOtyHP3v/zRXmMCBLQ4g7o9h1q82JPYx/maj5jjy+MZ3e0wmk16ATWi7vb8OEJF65fXKIOy9bpCeGOZw/BamLxp+vnqLaPb2nEByd6cfmCIpwf6fXq8odx/yvHYOJYncgbCuPyr3/jxo1YvXr1gGwPHDigy8cBgIMHD+Lyyy/HnDlz8Mgjj5z0HHfddRe+/e1vq+tut1t9WKcr/RXYFEUR3d3d6OzsVKfs7GysXLkSAGA0GpGZmQlJkuD3+1WBNXfuXMybl3ww0rFAIqHl8/nUzzCRGagnj2VZmEwmXXjyZCT6f6+qqkJVVRUkSdJ52MLhsE60addjX1qZmZngeV4XQk0k2AIB/YM9FoZhMG2aXEqhra0N27Zt04WuY+/B1q1bYTabk4o1Zd1oNKKkpETXgxSQvyPjUbRRfTg949mbF1sEGJDF87Kp8dvXzIkvDhwbckyG4tUrcZpxzsxc3b6zq3MxtzRT13PWauSwfGo2LDEeN6fFgCKHSeedC/Hy9zJ2VIcgL8IfFiFovrdhQUJ7Xyiu5+5QGJdjEba2tuL1118fkO3ll18OpzOqzhsaGrBs2TIYDAZs2bJlUDWwlLEIBzs+0Xgm0QPUarXC4/Ggra0NbW1t6OjoiPMymM1mXHzxxerDRRCEUfdKpYJ0reSeLDR2zjnnnHIu2kijFWxacRYOhyEIQtw25W954cKFAIA33ngDfX19KWvPpz71KdXTs337dtTV1WHOnDnqD0OXy4WPPvooTpglmivLRqMRdrt9xDoajOe/h+Em3UoTJGM0xuyUJAkhQYIoSroRGNx+Hr6QgAwLp/aeDfEi6rr8kAA1Z2yo7/px6cEqKirCjTfeeMrHdXV14fzzz0cwGMT69eupwOgpkOwBumvXLvT29sLn0+camEwm5OfnIy8vD3l5eXA6nbovz0QRJEquVLoxnj15DMOoYiS2c8BAGEio9LTTToPFYknqadOua/9+lI4H2rBtMBgcVDj6oosuUkOun3zyCerr6zFt2jRMny6HP/x+P/bu3XtS0aadsywbN1RUrEeT0DMWCp6OJUay8wPDMDAb4s/tsBriekyaDGxcp4ehMi4F1mDwer248MIL0dTUhHfffVd19xP9c7IHaHNzMwA5LJSbm4vCwkIUFRXFCSpiYqIVWuniyRtIqDQ7O3tQnpslS5boencCgNPpxLJly3SiLBwOJ/S0aefa/KdgMAi/36/rpBAIBFBXV3dK7WMYBueddx4cDgfa2tqwY8cO3Y+rWLHZ1taGQCCgetW0gi0dynikq4c7EeM5XDpY0kZgXX/99fjwww/xhS98AQcOHNDVA8rIyMCnPvWp0WvcGEXplq/tNRn7AC0rK8OkSZOQn59PCa1pTLp58oaz00PsfTSbzUP2ts+ePRtTpkzReewsFgvmzJmTVKDFet0A+fuvfM937doV57mORVtDLhaWZXXCa9GiRWo6R3t7O1pbW5Gbm4vS0lL12u3t7bowqOKJHGsvaspFiycdx7ZNmzfirl27AACPPfYYHnvsMd2+SZMmkcCKoOSnGAwG7Nq166S5JoOp/0QQE4XxEipN1EPTarXGdQBKhlLSIxwOq+epqak56TNCKayrFWyKF00UxbgSOAqdnZ04fPgwqqqqVIEVDoexadOmhNdJ1HlAmc+YMUPNn3G73eju7kZGRoau/qHP51PPMRTPGpXt6J90C5emjcAa6FAm6YgkSejs7ERjYyMaGxsxbdo0VFdXo6amBp988gl6e3tHu4kEMaaZ6KHSRCU9CgsLcf755/cbKl24cGHcDzClgK42zBkOh3W10XJycjBt2jTk5ubqjnM6nbrjlGv11xu0qqpKXVa88mVlZarAkiQJr776qmqjLYob23lAu1xWVqYKN7/fj/r6etTV1cHtdqeNh2agpGuoNG0EFqFHK6qampp0D6a2tjZUV1ePSoFNghjPUKj05KHSgZTxKCoqQlFRkW6bxWLBeeedp64rL+1EeWna0KZWuFmtVhQWFuqGrFLKeyjPNWV0hESeNS1ZWVkDzkXbsmULTCZTvz0/leW8vDy1zcpnUfaPN9I9VDr+/seIQSNJErq6ulRPlVZUGY1GlJaWoqysTFddfSIW2CQIIrWMRqh0MKMdlJWVoaysTLfNaDTiyiuvTFhrrb+aaxkZcmXxgeSiBQKBk9ZaUzjjjDNUgdXe3o73338fOTk5uoLYGzZsAM/z/XralLnikcvMzFRz8BQBOFyeNgqVypDAmuBIkoTu7m5VVGnH7lOKHJaVlaGwsLDf3IPxkmtCEMToMZ5DpYpYO9Vn2kDKdixatEhXtqM/AafNlVN6lMZ6r3p7e/sdozURCxYswJQpUwDIQ0ht3LgRWVlZOPfcc1WbDz/8UB3/c6CTzWZT7xmV7dBDAmuC09nZiQ0bNqjrBoNBJ6pO9QE4nh+gBEGMDOkUKh1IKoXD4RhUZ6Dy8nKUlZXFibalS5cmLNORbJ3neZ1wVHqFxgqgzs7Ok3rjYpk9ezZmzpyJtra2uE4Pse3et28fbDbbSUUbx3GwWCzj/gc8CawJhNfrxYkTJ9SeMwDUeH5OTg7KyspQVFSUkgdfOj1ACYIg+mM4UykYJr6sQX5+/NA0p0JRUREuvvjiOAFUU1ODUCiUdAzRRJMiggbS67y1tXXAbZwxY4Y6rqjH48Gbb74Js9mMiy66SLXZvXs3XC6X6n1UxFnsutI7lGVZ2O12VeyKoojOzk4wDIO8vDz1Pvt8PoTD4SGP2EACaxyjLakAyENqHDx4EBaLBdOnT1e/mGvWrEl7Vy1BEMRwM15SKViWTTiKQUlJyaDPOZBe51OnToXRaDypaON5XtdjVRAEiKKoK5QLAD09Pejs7Dyldk6ePFkVWOFwGBs3bgQAXHnllarNnj170NjYeMrevFhIYI0zBEFAR0cHmpub0dzcjIqKCnWg3MLCQpSVlaGkpASSJKmiisQVQRDEyJGOqRQDCZVOmjRpUKHSzMxMXHjhhXECa/bs2fD7/apYU3qAapeVdUWgKZ0TFBwOh+59Ccj5eCaTKW5M3VNlXA72PNrEDgA5nDU+JElCX18f2tvb1Un7nx6bpEgQBEEQo8lEGfw7LQd7HitIkoTW1taU1viQJEmtNtzZ2Yn29nZdzz9ArgdTXFyMkpISXUkFgiAIghhtxkuodLghgTUENmzYgFAopK6fao0PpZutEmtubm7Ghx9+GOeW1A6kXFBQgOzsbAr7EQRBEGOadAyVaiGBNQR6e3t1gqqjo0NNipMkSU1CD4VCCIVCmDlzpvoHtn37dtTV1aGmpgZTp04FIFcZ5nkeHMchJycHOTk5KCgoQF5eXtr9YRIEQRATg3TtdU4CK4Xs2bOn3/1TpkxRi8gprlJtLwWn04nzzjsPDoeDPFQEQRAEMY4hgZVCHA6HGu5TBJLBYIDJZILRaNSJpurqasycOVPXFZVlWTidzpFtNEEQBEEQKYcEVgpZtGjRgHtI9DfQKUEQBEEQ45vkg88RJ4XCeARBEARBJIIE1hCgcB5BEARBEImgEOEQWLlyJfx+f9rW+CAIgiAIIjEksIZAutf4IAiCIAgiMSSwUkC61vhId0RRjBvpXql/xrLJo++SJKljZSnjYynDLWkHNFVGf+c4LuEy5QASBEGMXUhgEcQg+c9//oMTJ05g1apV4HkeHR0d2LJlCywWCwoLC+HxeOD1ehEMBhEKhXTzVAwBqgguo9GolgLRzmOXtZPFYlEnq9UKs9kMq9Wq226xWOLKi5yMwYpOgiCIiQYJLILoB7/fj+bmZjQ3N6OpqQktLS3o6OhAZ2cnPB4PgMQFZo8fPz6o6zEMo3qntN6sRCj7w+GwrmBtKuE4Lqn4slqtsFqtsNls6rRnzx64XC5ceumlKCgoAM/zeO6551BRUYGrr756WNpIEAQxFmGkVPyUTjOGOsI2MTYJBAI4ceIEjh49imPHjuH48ePo7Ozs9xiz2QxJkhAKhZCRkYEFCxYgNzcXGRkZyMjIgN1uh8VigclkgtlsVudGoxEGg0EN9ymiKtZbpB1ySRtSFEVR3RYOh9XhmLTLsevKcjAYRCAQSDj5/X4Eg0EEg8GU319FhCmiLHaebL92O3nBCIIYKYb6ricPFpG2BAIBHDx4EHv37sW+fftQX1+fMHTndDpRWlqK4uJilJaWorCwELm5ucjNzYXNZkNtbS2+//3v46677kJVVVVK26iILpZldVX/hxtRFBOKr9h1n8+nzpXlvr4+tLa2qoOZKyg2g4VhGFitVtjtdthsNtjtdt1ysrmybDabKW+NIIgRgwQWkVb09PRg+/bt2L59Ow4ePAhBEHT7c3JyMGXKFEyZMgVTp05FRUUFMjIyRqm1owfLsqrnaDCcOHEC3//+93HfffehrKxMFVexgky7HivUtMvhcBiSJA1JpHEcl1R8aZeTibfBCFzKSSOI9IUEFjHh8Xg82LJlC7Zu3YojR47ovFR5eXmYM2cO5syZg+rqauTk5IxiSyceDMOoifVZWVmDPk8oFILP54PX64XX61WFlna9v31KSLWvrw99fX2DaoPJZBqQGNNOGzZsQGdnJ26++WZkZWXB5XJh3bp1KCsrw1VXXTXo+0EQxNiHBBYxIRFFEQcOHMC7776L7du368JVU6dOxRlnnIGFCxeiqKhoyGGjrKwsXHHFFUMSEET/DEWkSZKEYDA4YDEWO1c8ZkouW29v7ym3YceOHTAYDBAEAQzDoK2tDW1tbaoQU/L1Eq3TuKUEMT6hJPdBQEnuY5dwOIwtW7bglVdeQVNTk7q9oqICK1euxBlnnIHc3NxRbGF60NPTg/Xr1+Occ84Z8ADoYxVRFHVCLHaebNnj8cDj8cSFoU8Vk8kUJ8C0Iqy/fRSGJIjBM9R3PQmsQUACa+zh9/vx9ttv4/XXX0dPTw8AwGq1YunSpVi9ejWqqqoowZkYcRTv2cGDB/Hzn/8ct9xyCzIzM1UxptRKU+ax01Afz7FhS60YSybQMjIyYLFY6PtCpD3Ui5BIa3iex/r16/Hf//4XbrcbAJCdnY01a9bgnHPOGXSSNkGkAoZhYLFY1IHhq6qqBtzTVBRF+P3+hOKrP2Hm8XgQCAQARHtudnR0nFK7lQ4ByUKXQwlpUuI/kS6QwCLGJZIkYevWrfj3v/+N9vZ2AEBhYSEuu+wyLFu2bERLGhDEcMCyrCpaThWe5xMKskTrscvKME6D7RBgMpn6zS07fPgwPB4P1q5di4KCAoiiiBdffBGVlZVUjJaYUFCIcBBQiHB0aWpqwqOPPoqDBw8CkOtUXXHFFVi9ejUMBvrNQIw9xktOmlI092SesmQCbaivE6vVOqB8s1gbq9VKIU0i5VAO1gDZuHEjfvnLX+Ljjz9GR0cHsrKyUFNTg7vvvhvLli07pXORwBodQqEQXnjhBbz00ksQBAEmkwmXXnopLrzwQlgsltFuHkGkNUpx2mTiS7ve29uLuro6BINBsCzb75BQA0Hr7TtVgUa9NIlkUA7WADl8+DBYlsWXvvQlFBUVoaenB0899RRWrFiBV155BWvWrBntJhL9cPjwYfzpT39CW1sbAGDBggW48cYbkZ+fP8otIwgCOPXitEox2nvvvRfl5eW63pcnE2ja7eFwGKIoDjqkaTQaB9wrM3Yfx3GnfL1EUF7axCRtBNYtt9yCW265Rbfty1/+MiZPnoyHHnqIBNYYhed5/Pe//8ULL7wASZKQk5ODG264AYsWLaKQAEFMEAwGAxwOx6C8BEpIM5H4OlloU5IkhMNh9Pb2Dqq+mTJ0U7IemskEWmxI8/nnn0djYyNuuukm1WNCBWnHP2kjsBJhs9mQn58/qC8WMfy0tLTgD3/4A44fPw4AWL58OW688UbqGUgQhIpShPZUc9skSYLf7+/XO5ZMoPn9fgByeRi/33/SQeFjYRhGJ77C4TCam5vx8ccfIy8vD11dXWAYBtnZ2fj44491IwVYrVYaV3OckHYCy+12IxQKobOzE3//+9+xd+9efO973xvtZhExbNu2DX/5y18QDAZhs9lw880348wzzxztZhEEkSJGewQEhmHUkOapphoIgnDKpTOUuTKuplKIVkl7UGhpaVGX33jjDbzxxhtx11fKaGhFV6wIix3OSVm22WywWCwUehwB0ibJXWHNmjXqH6zJZMJNN92Ehx56qN8k6WAwiGAwqK673W6Ul5dTkvswwPM8/vnPf+K1114DAMyaNQu33347VV8nCGJCkKiXpjICQFNTE9avX4+FCxeCZVk1L03xtCnjag4VrbhMJMASbbNarbrJZDINmxdtrOSkpWWSuyiKCIVCA7KNdaU++OCD+M53voOGhgY88cQTCIVC4Hm+33M88MADuOeee4bUZuLk9PT04Le//S0OHToEALjkkktwzTXXpCyRlCAIYrTpL6R54sQJrF+/HldccUXCgrTacTW1oivRulJkNnaYJ57nIUmSKuwGC8uycaJLO8WKskQiTQl3xoqmiZKTNi49WO+99x5Wr149INsDBw6guro64b5QKITTTjsN1dXVePbZZ5OegzxYw09tbS1++ctforu7G1arFV/60pewaNGi0W4WQRDEiKH0rLz//vsHXPH/VAmFQicVYbHrgUAAfr8fPp8Pfr9/yPXOtCijHWhFVygUQnNzMwAgJycHPT09YBgGZ5xxBqZPnw6LxQKz2Zx0bjKZUuLpSksPVnV1NdatWzcg2+Li4qT7lDpKDz74IPx+P6xWa0I7s9kMs9k8qLYSJ2fHjh34/e9/j2AwiNLSUnz729/u9/+NIAhiIjISeWmKB22w11C8aFrBdSqT9hhBENTOBkrHgViUkToAYPPmzdi8efOA2qm8ty0WC4xGIwwGAziOg8FgSLrMsqwammQYRudYGQzjUmAVFRXhxhtvTMm5FDXe19eXVGARw4MkSXjttdfw9NNPQ5IkzJkzB9/4xjcGNTQIQRDEeCc7O3vMh8AUj5PFYhnSqARKiYxkQi0QCKClpQWvv/46li9fDrPZrEaTAoGAOtcuawWRYquMUTsYwuHwoI8FxqnAGgzt7e0oKCjQbevt7cVzzz2H8vLyuH3E8CKKIp588km1w8HZZ5+NG2+8kYa6IQiCSAMYhlG9acpg6LGcOHECr7/+OtauXTugkKmSnx0rwnieVydBEBIu8zyvdiBQ5h6Pp9/0oZORNm+ztWvXoqysDIsXL0ZBQQHq6+uxbt06NDc345lnnhnt5qUVPM/jz3/+M95//30AwPXXX48LL7yQ6roQBEEQg4ZlWdW7lky0nQpD8X4BaSSwvvCFL+Bf//oXfvOb36C3txfZ2dlYsmQJ/vGPf+Css84a7ealDYFAAA8//DB2794NjuPwpS996ZTHgiQIgiAmPqNdK22ojMtehKMNDfY8ODweD37xi1/gyJEjMJlM+OY3v4mamprRbhZBEARBxJGWvQiJ8UdPTw8efPBBNDQ0wGaz4Y477sD06dNHu1kEQRAEMSyQwCKGnZaWFjz44IPo6OhAVlYWvvvd76KiomK0m0UQBEEQwwYJLGJYqa2txYMPPgi3243CwkLcdddd1GOTIAiCmPCQwCKGjQMHDuCXv/wl/H4/Jk2ahO9+97sp6dlBEARBEGMdEljEsPDRRx/hd7/7HcLhMKqrq/F///d/sNlso90sgiAIghgRSGARKefdd9/FI488AkmSsHDhQnzta1+DyWQa7WYRBEEQxIhBAotIGZIk4cUXX8S///1vAMCqVatw8803g+O4UW4ZQRAEQYwsJLCIlBA79M2ll16Ka6+9lqqzEwRBEGkJCSxiyITDYfzpT3/Ctm3bAACf+9znsHbt2lFuFUEQBEGMHiSwiCHhdrvx0EMP4eDBg+A4DrfffjuWLl062s0iCIIgiFGFBBYxaOrr6/GrX/0KHR0dsFqt+MY3voF58+aNdrMIgiAIYtQhgUUMCFEUwTCMmlO1fft2/OEPf0AoFEJhYSG+853voKysbJRbSRAEQRBjAxJYxIB4/vnn0djYiBtuuAFvvPEGXnrpJQBAfn4+7r33XmRkZIxyCwmCIAhi7EACixgQZWVleOONN/D1r38doigCAIxGI6699loSVwRBEAQRAwks4qSIogi32w2e51VxVVxcjB/+8Ic09A1BEARBJIAEFtEvdXV1WLduHQ4fPgwAqKioQH19Pb761a+mn7hq+wTwtgFVZwMMO9qtIQiCIMYwJLCGiCRJkCQJLDuxXrhdXV34z3/+g02bNkGSJFgsFnz605/GlClTcPfdd49280aeYB9w8AXAUQ64G4GwHxBCkSmoWQ4BBXOArEr5OE8bULcBMDuAqWui5zv6BhDqA8DIYo1hAUZZ5gDOCLBGgDUAnEmeZxYDGUXy8UIY8HXK+2y5I3cfSGQSBEEMCBJYQ8DlcuGxxx5DWVkZrrrqqtFuTkpobm7GK6+8gk2bNoHneQDAkiVL8JnPfAZ5eXk4ceLEKLdwmBAFWbCIYcBRBgTd8nTgeVlchb2yXfdheeoPa25UYIW9QOsuwJavF1gd+wFfx6m1sersqMDydwMf/g4wWIGVGsG7+0mgr0kWXgaLPOfM0WWDObIemRutgC0PsBfIx0sSACmxeAp5gEMvAtmTSVwRBEGcBBJYQ+C73/0urFYrFi5cONpNGRKhUAgfffQRNmzYgL1790KSJABAdXU1PvOZz2Dq1KmqbVZWFq644gpkZWWNUmtTQLAPcDcA9sKo96d9L7DvGdlDteh2oOlD4MQ78cdyJsBol4WJIl44k35ylEbtrbnA1LWAya4/z6QVsviSRM0kReaC7KESw5E5Ly/b8jQnkABTJmC06c8b6pOF4alQdiYw45LI8R5g8wOyIFv8DXkdAFp2Am17ZA+dJQuo3yyLO4NFnozKslUWbyTACIJIcxhJeZsSA8btdsPpdOKqq66C0WgEwzAoLS3FlClT1Km8vBwGw9jVrz09Pdi7dy927NiBPXv2IBAIqPsWLlyIiy++GDNmzBjFFqYISQL8XUDXEaC3VhZWgV5537QLgYrl8rKnFfjoL0DWJKDmxogHqw/wtMhioWErEOgBlnwTMI3hXpP+HiDsk8OWfFAzDwF8IBrSVPcFgML5QPmZ8vHedmDbQ7JYKl+aWGQOBM4MlCwEpl8sr4s8cOglWYhNPlcOeQKAt0MWjwarLBY5kxwqJQiCGGWUd73L5YLD4Tjl48euAhgHTJ48GW63Gy6XC42NjWhsbMSGDRsAyCUMqqqqUFlZifLycpSXl6OsrAw2m+0kZ009LpcLDQ0NqK+vR319PQ4fPozW1ladTV5eHlasWIGzzjoLhYWFI97GlCKEge4jQOdBoPtoVFCpMEBGoSwiFOyFwMofRl/uZoc8Kd6o3Omy8Dj0P2DuZ0bgQwwSa7Y8DRZbHnDW92QhxhqAvJny9p5jQOM2IOQFCuYCEi+LMz4g56Mpy2JYtheCkXBjhLAfaN4OgAGmnB/dfvxtoP2T6DrDRsSWNTo32iJeMpu8LaMIyJkSPSbYJ9ux9DgjCGLsQE+kIXD99ddj3rx56OnpwfHjx3Hs2DF18vl8OHz4sNr7TiEvLw8lJSXIy8tTp+zsbNjtdmRmZsJut8NkMvWbNC9JEkRRhN/vh8fjgcfjgdfrhcfjQU9PD7q6utDZ2alOXq837hwMw2DSpEmoqanBwoULUVVVNb4T9YWwLKja9wJdh2SBoMBwgLNCfik7K+QcK624Ak7uNTFlADMukxO8JXHihsAYVu+hM0d+tTlKgeLTZJEphpKLTFEjvFhjdDtrkD1XQlh/7wxmOdQZ9smhUUmUQ6fh+L9ZlaIFUYEl8nJIEwBW3C0LLUAOYfbWJhdpyjajTfa2nYrXjBL9CYIYACkXWO+++y7Wr1+PLVu2oLGxEZ2dnbDZbMjPz8fcuXOxcuVKXHzxxSgqKkr1pUeN7OxsLFy4UM3FEkURbW1tOHbsGOrq6tDQ0ICGhgb09PSooudksCwLo9EIjuNgMBggiiIEQQDP8+B5HqcS2WUYBgUFBaioqEB5eTmmTJmC6dOnw263n/zg8cKRV+S8KQWzE8ifJXuesqvk0NNQKZwLYO7QzzNeGYjIZA2yXWwY1WiVBUksM6+Q55Ike7/CfoD36+dhn36bszx6fNgPICKODObodle93JFgIChes4LZQPWnotuPvi6LsrIzo+fua5V7k2ZXkbgiCKJfUpKD5fV68dvf/hZ/+9vfUFdXp778LRYLcnJy4Pf74XK5dBXAL7nkEnzrW9/CsmXLhnr5EUeJy9bW1mLSpEkDPs7j8aChoQFtbW06D5PL5VI9UYIgnFJbLBYLMjIyYLfbYbfb4XQ6dd6xvLw85Ofnw2KxnPxk4wVRkMNKjvJoknpvHbD3X0DhPLlMgqOUXoDpgiTKOWWK9woAeo7L+V3JRFrYJy8rIU1A9ozNvlpeFnng3R/KywtuiQqsXU8A4UjiP2uIesEMGo+Y1jtmtMmdAjJLhv02EASRWoaagzVkgfXnP/8Z99xzD9ra2jBv3jxcc801OPPMM3H66acjMzNTtZMkCUeOHMEHH3yAN998Ey+++CK8Xi8uu+wy/OpXv0JVVdVQmjGiDPWmJ0OSJASDQYRCIZ23iud5sCwLg8EAg8EAjuPAcRysVuuYTqQfNvY/B7TsAEoWATMvl7f1V16AIJIhhCNiy6evKSaEgOPr5Rw+T8vQrpE7A6j5fHR9009lcbbwNsASKdbbsV+ur6YVZlrRZrAALDe0dhAEcUqMepL71772NVx33XW44447MGfOnKR2DMNg+vTpmD59Oj73uc/B7/fj6aefxgMPPIAnn3wSP/zhD4falHEPwzCwWCwTy9uUCoSQ7KVQ8qaKT5PzrbRlCxgGaqiIIAYKZwQ4Z1ToqNtNwLS10d6kCodfkuulnX67LOYVcaZ6yHxR75iynKHpNCKEo6UvtCHNzkORTgD9oOSQKeLLWQFMPie6v32v3O6sytSExAmCGBJD9mAdPnwY06dPH/TxgiCgvr6ePFhEPCIPNG0Hat8FimrksgpApF6UQL3GiJEn5JET/bMnD643qSRGS2k4yqLJ9W175KT8WHHGR3poJiKvGph/Q3T93R/JIc+l/wdYc+Rtx96ScxO1njHdZI3fZrDKwrM/KNGfSANG3YM1FHEFABzHjStxRYwAkiR7qA6/LNeeAoCuw8CUC+QwCcMADIkrYhQYam9Sho2EIWOGNyqcJ0+JEAV93pgivsyZehtnubxfW3w21HfyXpmxOCcBp98WXf/knwAk+QeOJUsWmQf/K5c2yZ2uD2OS2CIIFXpLEWMLX6csrLoi5S1MmfKv5JKFlINCjA1GujcpyyXumRlrc9ot8dunXCD3gkwayvTpw5q8X99ZQJLk/DBJAIpOk+ugHX5JFnSuOuCjP2suxujDmLFeMmsuUDQ/ah50R0dCoOKyxARkWAXW1772NfziF7+AxWKBy+WC0+k8+UFEeiLyctXwuk3yw5zh5Crrlav0uSoEQQwckz1+mKb+kERZPEU3AHkzZJG15+/RzRnF+hw0ISjb8hGR5u+KP7dzkl5gffgH2cO26CvRgr6tu+UewonCmYaYcCb94CLGOMMqsFwuFwKBACwWC7Kzs1FRUYH58+dj3rx56nzatGlg6NdLeuNqAA48Jw/TAshhh+kXx4y9RxDEsMOwAMfq12dcClSujm5TEv21w0aJwsm9ZNaYsKhSDFgb0uxrHnj9Ms4sH+soA+ZeF93esBWAJI84oIRR+WC0o0yq3jeUh0achGEVWH//e/QXz8GDB7F7927s2bMHu3fvxpNPPon6+nrYbDbMnj0bH3zwwXA2JY4vfvGLeOSRR3DRRRfh5ZdfHtFrExGEsDxUSv1mAJI8iPKMS+U6ViS6CWJsoAwbpTDvs/HDRrGcLGa0eWEnY+UPZZGlTagvmCMP9RSbb6YTbwEAkuw1E4LxPUBr35M9Y1mV0fY0bgWOvakZiukkSf5Gm3ysvSBx20Me4NCLcmcHEldEElIisF577TWsXbu2XxulRMPVV1+tbnO5XKroGkk++ugjPP7441QOYTQJuIBd66Jeq6Ia2Wul/TVLEMTYI1XDRjFMfPjfWa6v1J8ISYyMgRkRXLHXL5gjCyyTRuzxweixA036txfIXjpAzhfb/ZR83clny+NyAkDxQqB2g37sTO3cYCYBlsakpJK7yWTCH//4R9xyS4IkyzGGJElYtmwZZs6cifXr12POnDmn7MGiMg0pQBSAHX+RB2KuvhzInznaLSIIYiKjLSqbNNlfs82eL3vrANnTfuId/fkK5gKZxbJnLClK4r9GeFlzgerLoiYdB+S806zKaMhVEuVjyZM/qox6mQYAKC0txW233Yba2lrcd999AzpmqPWzBsuTTz6JvXv34vnnn8f69etH/PppTdgn502wnDzNuU4OD/TXO4ogCCIVJCsqOxBKzwCsebIoyygCjr0B9ByTOwAUn6YfgokPaIZh0iT+K9j79Oc++jrg6wAW3AzkRJ6FTdvlXLfYAcrj1mPmGRNnjN+JQEoE1gcffIALL7wQDzzwAOrr6/HYY48lHcLlk08+wf3334/nnnsO4XA4oc1w0dfXhzvvvBPf+973JtRg0+MCVwPwyT/kUODUC+Rt1uxRbRJBEMSAMDuA4proupKH1nkwecFZkdeMgxmIjoUZWyDZUSaLI23+Gu+PhDMj3rQBtdEJLL8zuv7xOlm4zbwSyJkib3PVyz01Va+aJWaKhDUNloEVcqZE/35JicAqKCjAxo0bce211+Kpp55Cc3Mznn/+eZ1Lbfv27bjvvvvw8ssvQ5IkLFq0KBWXPiV+8pOfwGq14lvf+tYpHRcMBhEMBtV1t9ud6qZNfPzdQNAl9xCqWk1DeRAEMX4ZSB4aaxhY4v/sq+O3lS+TBx/XDVB+krkp5jqBXnnS0tciJ/wPBNYoCy2zAzjjK9HtDVvlZ3nOtGiif8grizmDRY5SGMyRaIUhrcOcKetFaLPZ8OKLL+KrX/0q/vznP2P58uV45ZVXcOLECdx///14++23IUkSli9fjh/84Ac4//zzB30tURQRCoUGZGs2m8EwDA4fPoyHH34Y//znP2E2n1pdpQceeAD33HPPYJpKKBTNl/MM8meRuCIIYvwznAVnlXAmhlA7cv4N0VwyhcwSubYgH4iGMpVlZRIizgQxDITCUYGkjMvZvB3wtEbLacy4FOg+Bux7Jr4NDKsXXNq5wSLn3yrn7z4qCzVneXSoJyEst2egHrUxRkqS3GP5xS9+gTvvvBNWqxWBQACSJOGcc87B3XffjRUrVgz5/O+99x5Wr159ckMABw4cQHV1NdauXQu/34/33ntP3VdZWTmgJPdEHqzy8nJKcu8Pb4ecQzDrKn0Xb4IgCGLsIolyr0tlHExlGKZkif5zr5MHGj/2liyG+GBUpPUHZwJW/Ti6vutxeQSPmVfKI3cA8iDou5+QlxkuIjxN8sQqy8b49alrooKs54TscXOURWsr8gG55hrDySKQjcyV9Yjoc7v74CyqHN0kdy3/+9//8OyzzwIA/H4/GIbB/fffj7vuuitl16iursa6desGZFtcXIx33nkHr7/+Op5//nnU1taq+3ieh9/vR21tLXJycpLeQLPZfMper7SmfS+w/zn5S3b45cENiksQBEGMPAwbqQ9m1W8vPQPI0/T2PvySnOgf8silMQrmRPdJolzjTBFbcfOAPAyTloxiOW/NkhXdJmgiVZIA8ELywc+1TNWUjWr6QB5MXVu8uq8F2PnIyc/jHYBQ7IeUCaxnnnkGP/3pT7F3714wDINrrrkGF198Mb7+9a/jnnvuQXl5OT772c+m5FpFRUW48cYbB2xfX18PALjiiivi9jU1NaGqqgq/+c1v8M1vfjMl7UtbREHuXVO/WV7PqgSmXzKqTSIIgiBSwEAKziowbDRxfqAonZ+0FM4FCmZHxFpAngtheS6GE6+LvH4YJXshkD1FL9xYgyy2JDE6PJQkRNcV8ccKGAopCRFWV1fjyJEj4DgOn/nMZ/C9731PLcGwf/9+rF27Fo2NjbjvvvtS6skaKPX19di5c2fc9ltvvRWTJk3C97//fcydOxdTpkwZ0PmoDlYCgm7gk3/KA8ACQMVZwJTzabwwgiCIicoE70U41Hd9SgSW2WzGjTfeiO9+97uoqqqK29/c3IwLL7wQn3zyCW699Vb88Y9/HBPjDw40BysWElgx9BwH9v5LdhVzZmDWlXp3MUEQBEGMM8ZEodHjx4+jtLQ06f6SkhJs3rwZV1xxBf7yl7+gqakJzzzzDKxWa9JjiHGAJAH1m+RKxpIoF7mb+xkapJkgCIJIe4alF2EyeJ7HzTffjCeffBKLFi0a8QGeUwV5sCB3/z3wfLSrbtECefgHKsFAEARBTADGhAdrwBczGPDEE0+grKwMDz744Ehemkgl3ceA/f+R864YTu6dUXpGWheUIwiCIAgto1K56/7770dlZeVoXJpIBS07ZHFlywNmXws4koeHCYIgCCIdGbXSqF/84hdH69LEYJBEoH2f3GNk+iVyd92qsykkSBAEQRAJGHK/yjVr1mD79u2DOtbr9eLBBx/EH/7wh6E2gxgu+Eix0I/XyeNOedvlAnRT15C4IgiCIIgkDFlgdXR0YMmSJVi9ejXWrVsHl8t10mO2bduGr371q5g0aRLuvfdeFBYWDrUZRKoJugF3kzw+VMM2uWKvJMrjThEEQRAE0S8p6UX4xBNP4J577kFtbS1YlsWMGTOwcOFCFBYWIisrC4FAAN3d3Th06BA++ugj9PX1geM4fPrTn8Z9992HioqKVHyWEWPC9yL0tAHtnyQfd4ogCIIgJjhjotAoAEiShFdffRXr1q3De++9h+7u7jgblmUxb948XH755bjllltQXFycikuPOBNSYEkS0HUIqNsI9NYC8z6nHxbh8EuArxNY8k3AlDFarSQIgiCIEWHMCKxYDhw4gMbGRnR1dcFqtSI/Px+zZ8+G0+kcjsuNKOpNP/I+HKx3fA8TEOwDWj8Gmj+SBRQgl16YthYoXxq1C3nkcaeyJ9PgzQRBEMSEZ8zWwZo5cyZmzpx5csPxzOGXgbJZ409cBXqBzoNyr8DeE3JuFSAPc1N6BlCxTO+9AmSv1YzL5F6Ekjj+PjNBEARBjCCjVqZhQsAHZKGy9TeAPR+wF8iTLV9eHyu97AIuoPuIHPrrOQEEevT7HeVA6SI5x8pgTn6ewrkA5g5nSwmCIAhiQjAiAsvj8eAf//gHtm7ditbWVgBAUVERli5diuuuuw4ZGeM4p0cSAF+HPCnDxihYsqKCy5oNlCwCOOPwtqd9L9DXLIulzEiOW9dh4OB/ozYMCzjKgPxZQP5swJY7vG0iCIIgiDRj2AXWnj17cMEFF4DneaxatQqTJ08GALS3t+N73/sefvSjH+HNN9/EnDlzhrspqcdoBU6/DeD9gLdDrhHli8zDPjkUF+iVBQ7DAqWLo8d+8k+g5zgw/SKgqEbe5m4C6jcDrAFgOQCMHI6TBEAU5LkQlq8X9stzIQys/GF0mJrmHXKyuiUrKrAySwDnJCCrEsiukpf781QRBEEQBDEkhl1gfeUrX8GaNWvwyCOPgOM43T6e53Hrrbfi9ttvx6ZNm4a7KcND/SY56Tt3un57yCsLLW874O8ChFBENCn7+4CwV5/LFOgB2nafehvEcDQcmVcte8ts+dH9jlJZCBIEQRAEMSIMWy9CBavVip07dyZNeD9w4ABOO+00+P3+4WxGSklJL8KQR57MTtkTBsi9+DoPyt4qkZe9Vywn9+pT5wbZ3mAFjDZ52eygpHOCIAiCSCFjthehQmFhYb8Ca+fOnSgoKBjuZgwPBbOBwdbBMmXE15Oy5QEVy4feLoIgCIIgRpVhF1jf+ta3cMstt2Dnzp0455xz1GFx2trasH79evz5z3/Ggw8+ONzNIAiCIAiCGDGGXWB94xvfQH5+Ph566CH89re/hSAIAACO47BgwQI88sgjuO46Gn6FIAiCIIiJw7DnYGkJh8Po7JSrhefl5cFoHOaSBcPEhBwqhyAIgiAIlTGfg6XFaDSO2/EHCYIgCIIgBsqodz3r6enB3//+99FuBkEQBEEQRMoYdYFVX1+Pm266abSbQRAEQRAEkTKGPURYX1/f7/7m5ubhbgJBEARBEMSIMuwCq7KyEowyjEsCJEnqdz9BEARBEMR4Y9gFVnZ2Nu69916sXLky4f6DBw/immuuGe5mEARBEARBjBjDLrAWLlyInp4ezJ49O+F+nucxgpUiCIIgCIIghp1hF1i33347vF5v0v0VFRVYt27dcDeDIAiCIAhixBjRQqMTBSo0ShAEQRATm6G+60e9TANBEARBEMREI+Uhwi984QsntWFZFg6HAzNmzMDFF1+M0tLSVDeDIAiCIAhi1Eh5iJBlWbXsQqJTMwyj224wGPDDH/4QP/jBD1LZjGGFQoQEQRAEMbEZcyHCY8eO4eKLL0ZBQQF++tOfYsOGDTh48CA2bNiAn/70pygsLMSll16KDz74AH/9619RUlKCH/3oR3jmmWdS3RSCIAiCIIhRIeUerAcffBAPPfQQdu/ejcLCwrj9ra2tqKmpwbe//W3ccccdaGpqwqxZs1BTU4MNGzaksinDBnmwCIIgCGJiM+Y8WI8++iiuueaahOIKAIqKinD11Vfjb3/7GwCgtLQUF198MXbv3p3qpuh4/PHHwTBMwqm1tXVYr00QBEEQRHqR8iT3xsZGmM3mfm0sFgsaGxvV9YqKCgQCgVQ3JSE/+clPUFVVpduWlZU1ItcmCIIgCCI9SLnAKi0txQsvvIB7770XFoslbn8gEMALL7yg6znY3t6O7OzsVDclIWvXrsXpp58+ItciCIIgCCI9SXmI8Oabb8axY8ewfPly/O9//0NXVxcAoKurC//73/+wfPlyHD9+XFfOYdOmTZg/f36qm5KUvr4+CIIwYtcjCIIgCCK9SLkH64477sCBAwfw1FNP4fLLLwcgl24QRRGAXLrhM5/5DL773e8CANra2nDRRRdhzZo1qW5KQlavXg2PxwOTyYQLLrgAv/rVrzBt2rQRuTZBEARBEOnBsA2V88477+DJJ5/Enj174Ha74XA4MH/+fFx//fU455xzhuOS/fLvf/8br732GlavXg2Hw4EdO3bg17/+NWw2G3bu3Iny8vKkxwaDQQSDQXXd7XajvLycehESBEEQxARlqL0Ix+VYhKIoIhQKDcjWbDarhU9j2bx5M1asWIFbb70Vf/7zn5Oe48c//jHuueeeuO0ksAiCIAhiYpKWAuu9997D6tWrB2R74MABVFdXJ91/5plnoqOjA0ePHk1qQx4sgiAIgkgvhiqwUp6DpbBlyxY8/vjj2LVrlxoirKmpwec//3ksX758SOeurq7GunXrBmRbXFzc7/7y8nIcOnSoXxuz2XzS0hMEQRAEQRAKw+LB+ta3voXf/va36piD2vEHGYbBN77xDfz6179O9WUHxemnn46+vr6TiiwtVMmdIAiCICY2Y66S+xNPPIGHH34Y06ZNw9NPP43m5mbwPI+Wlhb84x//wPTp0/Hwww/j73//e6ov3S8dHR1x21599VXs2LFjxHowEgRBEASRHqTcg7VkyRI0Nzfjk08+gdPpjNvvcrkwd+5clJSUYNu2bam8dL9MmzYNCxYswOmnnw6n04mdO3fiscceQ3FxMbZv3550aJ9EkAeLIAiCICY2Yy4Ha9++fbjlllsSiisAcDqduPLKK/HII4+k+tL9cu211+KVV17Bm2++CZ/Ph+LiYnzxi1/Ej370o1MSVwRBEARBECdj2JLc+yNZ2YTh5L777sN999034tclCIIgCCL9SHkO1uzZs/Hcc8/B4/Ek3N/X14fnnnsOs2fPTvWlCYIgCIIgxgQpF1i33XYbGhsbceaZZ+K5555DZ2cnAKCzsxPPPvssli5disbGRtx+++2pvjRBEARBEMSYIOUhwptuugkff/wxfv/73+Oaa64BED8W4de+9jV8/vOfT/WlCYIgCIIgxgTDVsl906ZNcYVGFyxYgM9//vM466yzhuOSIwb1IiQIgiCIiU1aDpUz2pDAIgiCIIiJzZgrNEoQExFJktDS0oLe3t7RbgpBEAQxDhhyDtYXvvCFQR3HMAweffTRoV6eIEaMQCCAzs5O2O12GI1GdRvP87BYLDAY5K9TKBSC2+2GwWBAVlaWenx3dzfC4TCcTicsFgsAIBwOw+VygeM4ZGdnq7Z+vx+iKMJsNqvnlSQJoiiCZdlRKXVCEARBDJwhC6zHH398UMeRwCLGKn6/H8FgEBkZGaq46evrU0VPbW0tSktLAQC1tbUIhUKYMmUKMjMzAciiq7GxEVarVSewurq64PV6YTabVYEVDAbR2NgIs9msE1jNzc3o6+tDRUUFcnJy1HYdPnwYBoMBc+bMUW1bWlrg8/mQn5+vurF5nkd3dzcMBoN6vLKdYZhBizRJktDa2hr32QiCIAg9QxZYJ06cSEU7CGLECYVC6OvrA8MwOhFSW1uLYDCoE02KPcdx8Hq9OHz4sLqdZfWRdoPBAKfTCZPJpNvucDhgMpl02zmOg9PpVD1i2nOYTCZwHKduU9IltdsAWXj19fXpBE84HEZzc3OcwGpqakJPTw9KSkpQUFCg2jY0NMBgMKCiokK19fl8qndO2+ZEnjyCIAhCz5AF1qRJk1LRDoIYVkKhELxeL+x2uyoWAoEAGhoaYLFYdCLEZrPFiRibzYZJkyahsbERdrtd9WABgNFo1AkNm82GqqqquDYkGpLJarUmtE30vbLZbJg7dy5i+6UUFBQgKysLdrtd3cayLLKysuLEnyAIAPQijed5NaSppaOjI06M8TwPr9cLQRBw4sQJlJWVAQC8Xi9EUYTD4YDVagUQFYQUziQIIh0ZlaFyCGK4kSRJ92Kvq6uD1+tFWVkZ8vLyAAAWiwWZmZmqIFBIJG44jlMT3CsrK0fFc8MwTJzwA4CMjIy4bWazGZWVlXHbq6qqIIqi7t4YjUaUl5fH2RqNxjjvVTgcVsOMPp9P58lT2qjcz3A4jP3798NgMGD27NnqNXt6euD3++FwONS2S5KEUCgEg8FAOWYEQUwISGAREwqe59HU1ASfz4fq6mr1Re1wONQEcQWTyYQpU6YM+NwWiwXZ2dnjOiyWSKQZDAbk5ubG2ZaUlKCkpES3zWKxYPLkyaitrYXNZlM9eT09PQgEAmpuGSD/X2ivq+ByudDb2wuDwaAKrHA4jAMHDgAA5s+fr9p2dnbC6/UiOztbzS+TJAl+vx8GgwFGo5HEGEEQYxISWMS4RxAEVTRwHAe32w1BEODxeNQcqoKCgoQhuoHCMAyKi4tT0t7xDMMw6OrqAsMwOk+ezWaLs7VarZgzZ44allRQcs60xwiCAJZl47xXHo8Hvb29sFqtqsAKh8M4fPgwGIbBvHnzVNv29nZ4PB7k5OSo+WiSJMHj8cBgMMBisZAYIwhixCCBRYxbfD4fGhsbwTAMpk2bBkAWAGVlZTAajbqcJHqxpo6BevIYhoHBYIjL7crOztb1mARkMTZv3jx1SC2FnJwcWK1WXRhUFEXVc6X9f/X5fHC73bqOCeFwGMeOHYsTY21tbXC73cjLy1PbIoqimotmt9v7/Zuh3pQEQZwMEljEuMVgMMDn84FhGITDYfWFH/vyJlLHcHvyYpPyHQ5HXAVli8WC2bNnxyX75+XlISMjQyesRVFUw5ZaweT3++H1enXiiOd51NbWxomxlpYWuFwu5Ofnq6FURYx1dHTAZrPF9RglCIIggUWMCwRBQHt7OwCoL3iTyYTKykoqF5CmxHqYMjIy4hL+LRYLqqur444tKCiA0+nUdXCQJEkVZ9pzB4NBBAIBnXdNEAT4/X4AclkPpTdle3s7vF4vCgsL1c4Uoiiis7MTBoMB2dnZ6rljO2IQBDGxIIFFjAu8Xi/a2trAMAzy8vJUQUXhGWIw2Gy2uLwxs9mshpq1FBUVIScnB2azWd0mSRIcDgd8Pl/C3pRa75pSk4xhGJ13ValJVlRUhPz8fACyGGtvb1c7HigCTOn5SYKMIMYPJLCIMYkkSRAEQc3fyczMRG5uLjIzM+NyeghiOLFYLLrekYAsxsrLy3Hw4EFdXbRwOAwAOs8YwzDqDwGtQAqHw3EdAMLhMFpbW8EwjK5nZ1NTE7q7u1FUVKR21hBFES0tLTAYDCgoKFDPLQiCWq2fIIjRg95UxJhDqSweDAYxY8YMtWdZolpNBDEaSJKExsZGACevi6aEsmMpLy9HUVGR7geDIqxiw4c8z0OSJJ1oCofD6OjoAMuyuh6yzc3N6OrqQlFREYqKigDIoqupqQlGoxFFRUXquRVBaDAYyDtGECmGBBYx5mBZFj6fD4IgwOv16nqFEcRYYah10RL1sDSZTAl/SEyaNAk8z+sEFsuyKCgoiEv2V7xi2nMrY1OyLKvrpNDa2oquri4UFhaq2wVBUIdOKi0tVYVXKBSCJEkwGAxqWRTqTUkQySGBRYwJYmtZTZo0Sa0kThBjjZGui8aybFxPRaPRGFcIFpDFWKxIY1kWRUVFcWJMSdzXikSe59Hb2wuWZdXkfUAubZHIM9bV1QVBEHS9KZVOASaTiUL6RNpCf/nEqNPT04PGxkZUVlaq3iryWhHE4EhUrV8JDcYyadIkVFRU6IQXx3EoLS2NE2OALNS0gkkQBLVif11dnZqL1traCrfbHSfGjh8/DoPBgMrKStUz5vf71UHFqTcwMZEggUWMOn19feovYRJWBDGyxPZONBgMaq9GLeXl5SgvL48TY+Xl5eqQRtrelCzL6gRTOByG1+uNq9bf0dGhJvArYozneRw9ehQGgwFTpkxR7X0+H8LhMCwWi65XJ0GMRUhgEaNOaWkpLBZLwoc6QRBji1gx5nA40NzcrOtNCcheM63AMhqNqKysjKvWbzAYYDabdSFQnucRCATixFhnZ2dCMXbo0CEYDAZMnz5dtfd4PAiFQrDZbGqqgSIOKaGfGAlIYBEjjsfjgcfjUR+QHMehoKBglFtFEMSpciq9KTmOS5gIn2hQcaPRiClTpsSVsTCZTLDZbDrvFc/zaskLrXDq7u5Gd3c3iouLVYElCAL27dsHg8GAWbNmqfa9vb3w+XxwOBxqsVpJkhAMBtWkfho6iThVSGARI0ooFMKxY8cgSRIsFgs9jAhinDPU3pSJ4DguYbqA1nOlYDKZMG3atDjPmMViQUZGRpwYU2rsaQWT2+1Gd3c3OI5TBZYgCDh48CAAYP78+aptR0cH+vr6dGNqSpKEvr4+GjqJ0EECixhRTCYTCgoKEAwG48aYIwhifDHSvSkTwbKsbvxJhYKCgjjPuNlsxqxZs+I8Y5mZmWBZVlfdXxAENUQZO46l2+2OG/PS5/MB0A+dpIgxbVskSUJTU5NaIFYpvREKhSAIAoxGI/W8nCDQ/yIx7EiSpCuSqPwCpTwIgiBGEoZhEnqXtN4oBbPZjHnz5sX1pszNzYXdbtdV6xdFEXa7HYFA4KRDJ/E8j87OTgDQFYjt6OhAR0cHCgoK1JCpJEk4dOgQOI7D5MmT1d6hHo8HPp8PNptNN/5mIBAAx3FUOHaMQAKLGFZEUUR9fT0kSVK7ZtMXnyCI8ULs88put8d5zJRq/bFDJyklLLT1/BiGQUFBgTq+pHY7x3G6EhtKsj8AXZFZl8ulijFFYImiqIY058yZo3rBOjo60NXVhZycHJ1Hr7m5GSzLIj8/X71mKBQCz/NxHRQGCuWi6SGBRQwrgUAALpcLgNzFOpErnyAIYjxzKsn+BoMhYYHYRMn+HMdhypQpcWLMarUiOzs7zovGcZyuaDMgi6ZAIKCKPcW2vb0dAJCXl6du7+7uRmtrK3Jzc3XFaj/55BMAwIwZM1QPYG9vL7q7u5GZmanrAa6IP+0YnuFwGOFwGAaDQedBnOiDmJPAIoYVm82meq5IXBEEMVEZjmR/lmUTJvvn5OQgJydHt81gMGDu3Llx41jm5eXB4XDEtSs/Pz9OjDEME5cDpnQKUNqjEAgE4Ha7dedlGEb1uNXV1akirbu7G52dncjKytKNy7l//37wPI8ZM2aoYrG3txetra3IzMzUlf1obGyEKIooLCxUOy74fD64XC6YzWbd/ejt7YUgCLrPHQ6H4ff7YTAYdLl2fr8foijCYrGo90IQBIRCIQSDwbh7fyqkncB6++238dOf/hQ7duyAKIqYPn067rjjDlx77bWj3bQJgyRJ6q8pAHA6naPcIoIgiOFjLCT7K8R6g8xmc1xRVpZldeJFobCwUJcXpjBr1izdMx2AKl6055YkCdnZ2fB4PPD7/XGFZ2OT95Wen7GDmAcCgbhh0np7e8HzvM7j5vf70dbWhszMTJ3Aam5uRigUwtSpU1WB5fV6UVtbC7vdjmnTpqm2dXV1CAQCmDJliipmPR4PTpw4Edcz9VRJK4G1bt063HzzzTjvvPPw05/+FBzH4dChQ2hoaBjtpk0YJElCQ0MD/H4/pkyZQr1hCIIgxjHJOgbYbDadJ0ixLSkpictFA+ILzwLA7NmzIYqi7j3hdDp13iSFoqIitZelgsViQV5eXpyAzMzMVEOSCizLJhwBwGg0JsyHMxgMurDqYGCkRANOTUBqa2sxa9YsfPGLX8TDDz88pHO53W44nU64XC4qNRBDKBTC4cOHwfM8Jk+eTPeHIAgiTZAkCbW1tfB4PKiurh73Y0sO9V2fNu6FP//5zxAEAT/5yU8AyC5Au90+YZPrRguTyYSpU6ciEAiQuCIIgkgzhiMXbbzCntxkYvD222+juroar776KsrKypCZmYnc3FzcfffdQ46zEvo6L1ShnSAIIv1QctHo+S+TNh6sI0eOgOM43HTTTbjjjjswf/58PP/887jvvvvA8zweeOCBpMcGg0FdbwK32z0STR43+Hw+1NXVYdKkSXExeYIgCIJIR8ZlDpYoigiFQgOyNZvNagE3URTx4IMP4s4771T3r127Fhs2bFB7IiTixz/+Me6555647ZSDJXP06FF4PB44nU5UVVWNdnNGhfb2dhqwmiAIYgIx1ByscRki3LhxI6xW64CmQ4cOAYBaY+O6667Tneu6666D3+/Hxx9/nPR6d911F1wulzqle69DpUCdQmVlJXJzc1FRUTFKLRo9QqEQXn31VTz++ON49dVXEQ6HR7tJBEEQxBhgXIYIq6ursW7dugHZKrVJSkpKcOTIkbgaH4rXoaenJ+k5EtURSUdCoRDefvtt7N27F3PmzMF5552nFqXTVv1NFzo7O/Hf//4Xvb29AIB9+/ahubkZn/rUp3S1WgiCIAgg2FEPvq8z6X5DZh7M+RPnh/q4FFhFRUW48cYbT+mYhQsX4siRI2hqasLkyZPV7c3NzQCgK/VPxJNITDQ2NuKKK64YkJgQBAGBQAB+vx9+v19dDgQCCIfDmDdvnhqiPXjwIPbs2aMOryCKojoJgoBLL71Ura/y8ccf49133wWAuDomAHDppZeq/9+HDh3CO++8A47jwLKsOu6XMp155pmYNGkSAKC1tRUff/wxTCYTDAaDKiSVWi5erxebN2+GKIpqgr8kSejp6cETTzyB888/H3Pnzk3BnR+/UNiUIAiFYEc9dn9tBqRwIKkNY7Rg/u8OTRiRNS4F1mC49tpr8a9//QuPPvoo7r//fgByLte6deuQk5ODhQsXjnILxy579+7FG2+8EScmXC4XnnjiCSxbtgzFxcXweDy66eyzz1ZF0/vvv4+tW7cmvUZlZaVq29fXh9ra2qS2sWG4/orBaXuIhkIh9PX1JbWtqalRl3t7e9Xxt04FZViJ1157DW+88QZMJhNWrVqFefPmAZCF6qZNm2A0GmEymWAymdRlo9GI0tJSVeyHw2F1KAplf2zxvbFIMk8nQRDpC9/X2a+4AgApHADf15kygSWJIsSQH2LQCyHghRj0QRJ5QOAhCmFA4CEJPCQhHJlHlwEJfV7fkK6fNgLrsssuwznnnIMHHngAnZ2dmD9/Pl544QVs3rwZf/nLXygEmITm5ma8+uqrCfcpYmLjxo0J959++umqaFJy4JQBQJUcOYvFApPJpBu0tKqqCjabTfUaKR4nZdIOiTBr1izVQ6UVf8pcGWkeAKZOnYobbrgBoiiC53nVI6ZM2oFW8/LycNZZZ6leNJ7n1XkoFILL5UJvby/66yMiiqI6LpdCX18fjhw5kvSY1atXqwKrvb0dTz/9tG4/x3Gq2Fq8eDEWLFgAQE7G3LhxY5xoU5YLCgpUT6MgCPB6vapNKkUbhU0JQk+6hcWGSqDlGCQ+DCHohRjwRsVRwKPfFlkWAh6NgNJvE4NDE0jeIabUjstehIPF4/HgBz/4AZ555hl0d3djxowZuPPOO3H99def0nkmciX3lpYWHDlyBN3d3ejq6kJ3d3e/IkIhOzsbmZmZyMjIUKcZM2aoAksQBDAMoxtzaryhfVDWt3bhpc3JO0ZcdtllKC4uRigUgt1uVwWk2+3G8ePHEQqFEA6HdfNQKIT58+djypQpAICGhgb897//RTgcVgdb1bJq1SqcccYZAGQh/NRTTyVtz9KlS7F8+XIAQFdXFx599FF1H8uyOlE2b948LFq0CIA81teGDRuSetxycnJUQbhnzx689dZbOk8nAPX//YILLsCcOXNOfqMnKBQyTT8mUlhMkiTZG6QIGEXw+BXh41H3RUVPdFu4uxmew8mjGMMNa7aBNVnBcEYwBiMY1gCGM8jrnAHQLDMsBzAsvCEBZ/xsE1VyHwgZGRl46KGH8NBDD412U0YNn8+Hrq4uderu7sbKlSvVB39rayu2bdt2Sue86qqrdHltiRgPoa3+iH1QSgAyZ38VffZSgImKRoZhUFhYiOnTpyccJcDhcOhCkf1RXl6Or3/96wCio7trRZnWO5eZmYlVq1YlFW7Z2dmqbTgcBsdxqmhTPG2Kt03rdfP5fNizZ0/SNs6bWo6zamagvceN19d/mNBG8XS++uqryMvLQ1FREcLhMN577z2dWNPOnU6nKtwkSUIgEEi5t22kSMeQKXltZEY6LCbyYYhBH8SQL+Lp8UEI+eRt2imyTecFCnhiPEWa9Yhgwgj4Yzh7Fgz2LLBmO1iLHZzZDtZsB2fJAGtRlu36/ZaM+G1mOzhrhrzNZAUziB/3brcb+Jlz0J8lrQRWqnnzzTdx2WWXjbmHpSRJkCRJ9RbV1dVhy5Yt6Orqgt/vj7OfOXOmKrCKi4sxf/585ObmIjc3F9nZ2ejq6sLbb78Nl8ulO04RE+lQ+yr2QckAqGx8E59U36yzkyQJZ511VsqHYOI4Tg2rJiIzM1P1Zp2MoqIifOc734EgCGoIVBFi4XBYVw/OYrHgrLPOihNuAY8bvYe2wff2C9j79FZIAGxzvwmftQhI8tltNpvaizcYDPZbGmXOnDm48MILAciC8He/+x0AvbdNmSZPnoyzzjoLgHz/33rrLd1+7eRwOHShYJfLpeu8MNj/t2SCotvtwWvv74ErksuRDiHTieS1GSlce9+Dv+lQRAB5VSEUJ460wijBdjl3aPhhzTaN6ImIG0uGKoI4S0bc/rC7E03P/Oik55754/WwTz5tBD7F8EMCawgcOHAAvb29o/awFAQBPT09Om+UMr/gggswa9YsALKHorGxUT3O4XCoAio3NxdlZWXqvqKiIhQVFemuY7fbMXXqVOzYsUO3fbjExHgh23UYp32iHzh86jefxqTKytFp0Cmi9J60WCxJbex2O84888y47d7jO7H3+RvUdQbAlPpX4wSnFu3fisFgwNKlSxN63MLhcJzHTSHW2wZA990TBAG7du1K2oZp06bh8ssvByD//f71r3/VhTO1YmvSpElYu3atuk/JRYwVbQj0oeupbyGnK9opwmMtQldWNerKzoPEMADDqddUeppO1JDpqXhtXJJlRMKmkiTJCcx8CFI4CJEPQgwFIIUDctgrFJlH1qVQQF1W9ulstXaa43S24QCEgGdA7Wt44jup/cAsKwscsw2syRYRRJEpss5ZZM+OKow0XqI44WTWCCizbVDeIO/xnQMSWBMJElhDYLgflpIkwefzwe12w+VyITc3Vw2b1NfX45lnnkmaH9XV1aUuFxUV4aKLLkJubi5ycnJgMplOqR2KlyDWU5ebm4vKcSIm+kOSJAj+PgjeXgh+NwSfC4LPLS97XRD8bvibD8cdxwDI9DXrtrmf/jr2/ccGSCIgiZDEmLkkApFlMAzAsGq8n2HZ6DrLgmHY6HaWU9fBsnH5A2pOQX9zrX0/c3AGsJF53Pkj2wLttXH3I9t1GJmehqRhU6UnJSB7xpScsJNht9vxne98J6G3LRwOw2636+yXLl2q65ignbRiTBRFcByn64XK8zx4nlfLiWg5cOBAwlw4AHAWnKkTWLtmfgmCMbG3MTZkun37dgSDQbVThzIZjUZkZmaqHRkA4MSJExAEQVc2RCsK+xPLqUYSBE3vq7C6HOpuOemxAmvEa2+tx3GXhGn5diwpt4OTwhDDQUh8EGJECEl8SN4WjmzjgxGbiFBSbHi9rbqsOddIhLcGi7ViLozOfLBmO/pMucixMCcRRvp9XMw6YzCl7Q/fsQQJrCGifVhu3boVGRkZmDt3riq2/H4/9uzZoyb6Mgyj/uGHw2GUlpaqHqSuri6sX78ePp8PXq8XPp9PJ6CWLVumCiy73Q5JkmAymZCTk6PzSOXk5OgG27RarZg9e/agP2M4HIbH40FxcbFafwrAkEIqI4EkSeA93Qh11CHYUY9QZz1CnQ0Iu9sRdnWAd7cj7JInKRw8+QkHgL/u1Es7TBT6C5sWbHwQH732JVm0sVw0kZSNWR/ofja63sdy8HAGWYwyDIoZFmCYiCBl1O1gWOAAg9qDz6jbr8xiIIGFwDAQwIGXWPDgIICB0f0xGv6xEwzDQgKDGqcRgsTINhIgiAAvAaFgAJz7hO4zG3kPBIMJAJswZMpAQrZRQGj973G8JQNBMbFHINvAI3fvvyCJAiAKeLUrH14x8WM7gwnifG4/JEmEJArYLM6ABxZwEMBJIjjw4CQBnCTALPox1787Iv4FNBgrEGTMYMUQODEMVgiB5QNgxBC4sB9ZnlpVSIVggCQKso3Ig8GpCRevtQD7pt0Af68AMCyOtPehsf4EZh95EnZ/+8lPkAoYRvbeGC1gTFawJou6zpqsYEwWdVm7T7U1JtimHG+ObDdaEGg9hiM/u+ykzZnytcdhLJsTzdWrmni5eobMPDBGy0lDx4ZMfTRoPHcOIYGVQnp6etDT06PLSXK5XNiwYUPSY5YuXaoL0SWq/5SRkQGn06lLas7Ozsbtt9+OjIyMYRM5kiShublZHei6srJyTH7hw+5OBJoOwh+ZAk0HEWg9hlBn/Sl102UMJnA2JzibA5zVoVsWwwH0bH32pOco//yvYC2epvNAqS/7mG0AAFFQvVryPGY98gKExgMmCfLLVu89SDTvb190rq8JM7BjxVAAYoLwR6KwKQBk+Johxm0d24QAeDXrGckME7B4zy/R7ZyeNGQqgUHpJ4+jxXUEU7LnQOAsEDgjRMYoz1l5MoXcaNkSfX5Yp30WrCkLAhu1EVgTRNYAyd+Frr3/Um298/4PAWskQTfmEWEJdMFzcIu6fmL2YngyypAIY9iDpTvvVdf3zrwNLke0UwsjCmAlHqwYhkEI4Ix9DwO8PFbssfK18NhLwYphsCKPoMmBvoxI3pXi5WRYBCx52DH3WyhnulBgCMDAseAMBhg4DgajEQaDETk2AzijGazRDJ4xgjWaYDBZwBpN4IwWMAYTWKMZjNEM1mCKzM2yNydynGIje4SH/8ehxA/sh1u324PXn3hiQpc3MedXYP7vDg2488NE6BxCAitFnH322cjJyUEwGNRVhTeZTJg9e7aaeK5MANT6RAoOhwMXXnghbDYbbDYb7HY7bDZbwp5TLMsmHZw6VbS3t6OjowMcx6GsrGzU/7glgYe/8QC8x3fCe3wnfCc+hr9xP/i+rn6PM2YVwpRXAXP+JJhyy2DMKoLRWQCDswBGZwGMjgIYnPngzLak5/Ae3zkggeWcs2rCJGj2h/f4Tuz9f/HFeWPDptU/ehvW8lmySFSEmyjIybiiAEmMWU+0P3absi5q1iOFASVRBCDJAjUyj90OSYqI1+gcCdalk21XPNHuLvR++N+4e5E0ZAoJ2VwI1UvXgGHWoDCifmQvG6NaRTYCWBjx5nEoUULFHKcJLcvLIsrBLXpIFg8si+wQwEsMBImFACayzEAAwLH5mHb+c2ro2VvXhb4AD0GUwIsSeEmeC4IEkykHc2/Yp4aHD7/2Llzt0ZekxHIQwEHgzOAy8zDnga3q34bHXoZe59ST/j1JkftTj3zU8wB4ADHa5Dvf+Y76LHz55Zex/+P96n2LHZXhC1/4glrbcNu2bTh27FicDcuyMBgMWL16tRpaPXbsGFpaWuJslWnKlCnqeXt7e+HxeOLOyXGyeLPZos8TSVW4UqzWRWveadj89ocQNe+GiZqrZ86vGFDHholST48E1hBR8ksWLlyY8BdRTk4OLrroogGdy2g0jqkvUmZmJnp7e5Gfn69LOh4JJElCqKMO7v2b4Dm8VRZUdbshhRK7l035k2AtrYa1tBqW0mpYiqbKgiqvHKxp5PJSCD2GjGyYsotHuxnDivf4zoQCK2nIFAzOueKzw977tvDkJipnLxq47edurFKL9QqCoJuLogh4oh1qJjWtR1HHdoisAQJjQEPJaoRMDp3g1GI2m1FUVBR3XkEQdDX0tHlzkiSpuXMKWtvu7m40NTUl/TwrVqxQl48fP95v79Zbb71VFVi7du3Chx8mLk0CADfddBMckbBYbcFy1JWdB0D2+DGSAAYiIEpyrp4Y79/Vpp/s2LEDFosFLMvqyurU1dVh7969ukLMShoKwzBqj3AAaGtrw9GjR9V9yj1Sjpk8ebJaxLm3txf19fVx51PWi4qK1LpQPp8P7e3tCYcqA6I1EgG593BnZ2ecjbKcmZmJ2trahCOHKIJz6dKlmDp1quqEAOS/h9he7losFotqq3QO689WiRaJCf5fTgUSWENkIveks9lsmD59+ohcSxJF+Bv3o2//JvQdkKdQV2OcHWvNhL1qAeyTT4Ot6jTYJs2FpXgaOIs9wVlTx2DzB4j0RhsynfrNp2EprQbDMOM2p0RBKZeRCK9GYGX1HdftswW7++1peumllw5IeF522WWq8FLGK9WOymAwRF9tCxcuxNSpU3X7lUkURd3nKCsrU4WN1kZZ1tpaLBZkZWXFXVs5nmVZmHPlsJhn6weoOyjn6UksBwmRqERkxjBMvwWd29ra1OUlS5aoy52dndi3b1/S4yorK3UCa8uWLUltMzMzVYHV0tKC119/PanthRdeqDoDmpub8fzzzye1Pe+889SOGq2trXjmmWeS2i5cuDCut7qCcl83bdqETZs2YdmyZVi2bBkAOT1n3bp1Sc97xhlnYNWqVQDk0TQee+yxpLYLFizAeefJYjhRWaNTgQTWELjuuuvgcDjG/cMyFkmSVME4nMIx1NMK1+434dr1Bly73wTv1sfmGc4A2+TTkFm9HPYpp8M+ZSEsRVMH1UV4qJxq/sBEhwTnwNCGTPOzHbDHlECZiPT3t3GynqYD7ZXMMMyAe04WFhaq9ddOxsyZMzFz5swB2S5ZskQndpJhzq/AigtLcOZ58QPXS5KE+vp6vPXWW0mPX7p0KfLy8tTjtEOFlZaWYuXKlar40KahiKIIpzNaJDM3Nxc1NTXqPgCql0gURV2l8oyMDEyePDnufMqyNvxpMpmQn58fN1SZsqz9/zEYDLoOWLHH5OTkoKioCG1tbUkFp7YWnnZbshqBAHS2DMMM2HaopNVQOaliIg+VEwqFcOTIERQVFSEnJyelAksSePQd3ILej1+Ha9fr8J3YpdvPmm3ImH4mMmedhcyZZyFj2uJh90wRg4eqdctQYc14+vvbSDbM1NVXX50WRYtjkSQJTz75ZJyoUETn5z73uQkZIUnGiRMn8J///Cfp/pH8Oxnqu548WISOjo4OhMNhdHd3634pDRYxFIBrz9vo+eB59Gz/X1xCum3yaciqWQNnzQXImHEmWMP46iWSzgw0YXWiQ97NePr726iukpAzZV6cmJhokYCBwjAMzjrrrDhRMZHTT/qjsrIyoRfrVL2cYwHyYA2CiezBkiQJHR0dyMzM7NeN2h+C34Pena+i+4Pn0bvjFV13fkNmLpwL1iKr5gI4a86H0ZmeD1WCIAgFSZLQ3t6eUHSmm8ACknuxRtrLOdR3PQmsQTCRBVYsAw0DiXwY7t1voXPT0+j58AVd/SljTilyllyBnMVXIHPmcnnkcoIgCIJIwFgRnBQiJFKC3++HxWLR/fEOKLfEYELu8uvQu/NV8O4Odbu5aApyllyFnCVXwD7l9FFJTCcIgiDGH0o4cLxDAotAMBjE4cOHYbPZMHnyZLWY34AGbeVD6HzvCQCAwZGP3OWfRt6Kz8I+dVFaurYJgiAIAiCBRSBa60MpVHeqOBesQdGFX4dj3rmUpE4QBEEQIIFFAMjKyoLVatUNRH0qlH/m/rQYHoYgCIIgBgoJLAIA1OEfFDyHP0Djv388Oo0hCIIgiHEOCaw0pqurCxkZGaq4EsNBdL//H7S+9jt4jyQfY4sgCIIgiP4hgZWm+P1+NDQ0gGEYTC3NR++7j6Lt9T8g3CuPecUYTHDWXIDej14a5ZYSBEEQxPiDBFaawrIsbLwbgU3rsH/7v9W6VcacEhRe8GUUnPdFhLoaSWARBEEQxCAggZWGeGt3o+XFX6Bn878AUQAA2KoWoPiy/4ecM69SewKKoQAN6EsQBEEQg4AEVpogSRLce99Dy4s/h+vj19XtjnnnouRTd8Ax79y4HoQ0xhpBEARBDA4SWBMcSRDQ/eF/0fLCz+E9ul3eyLDIOfMqlFx+50nLK9CAvgRBEARx6pDAmqCIoQA63nsCLS/+EsHWowDkcB4z/1IYlnwOxYtWwZ6RMcqtJAiCIIiJCQmsCQbv7UXbG39C2ysPqz0CuYxsFK35KgrWfhVeyQifz4cMElcEQRAEMWyQwJoghLqa0PLyb9D+5l8gBjwAAFNeBYov+Tbyz7kZnFUWVCYA2dnZo9hSgiAIgpj4kMAa5/jq96L1pV+jc+NTkPgwAMBaMRcln7oDOcuuBWswgud5iKI4qHEGCYIgCII4dUhgDQHviV3gMmXP0Ej2ppMEHj0fvojW136Pvn3vqdszZ69EyWV3wHnaWoiiiFA4DCnMo76+HoIgoKSkBBaLZUTaSBAEQRAnw2g0guO40W7GsEACawgcuHsl7HLJKDBGC+b/7tCwiqxwbxva33kM7W/8CaHOBnkjyyFn8eUovvT/kDF9MSRJQmtrK1wuFyRJgiRJCIdlz1Zzc/OgBnMmCIIgiOGAYRg4nU4UFRVNuPcTCawUIYUD4Ps6Uy6wxKAfPR/9D53v/R29u95QC4MaHPkoOO9WFJx/G8x55aq9y+VCb28v8vPzYbfbwTAMJEmCKIoT9lcCQRAEMf6QJAlerxcdHR2wWq3Iysoa7SallLQRWKtWrcKGDRsS7jMYDKqXZywQdneid+dr6N35ClwfvwbB51b3ZUxfgoILbkfu0mvAmvThPkmS0N7eDofDgbw8qq5OEARBjG2sViuCwSDa29vhdDonlBcrbQTW97//fdxyyy26bV6vF1/60pdw/vnnp+Qa3hO7YcwugTGrcMB/JJIgINhRB9+Jj9F3eCv6DmyG9+iHgCSpNqb8Schb+TnkrfwcrCXTk55LEAQIggCHw4FwOAyWZclrRRAEQYxpHA4H3G43BEGAwTBxZMnE+SQn4bzzzovb9tRTTwEArr/++pRc48QfvwAAYM02mAuqYHQWgLNngbM5wVkzAUmCJIQh+PsQdrUj3NOCQOtRSOFg3LlslfORddpFyFp4ETKmLwEzgB6APM8DkGPaikfOYrFQ70GCIAhizKKIKp7nSWBNFP7xj3/AbrfjsssuS8n5DFlF4N3tEIM++Bv2wd+wb0DHMQYTrGUzkTH9TGRMXwLHvHNgzi0bdDs4jgPLsmAYhsQVQRAEMaaZSGFBLWn79u3o6MBbb72FT33qU7Db7Sk5Z/X3X8Gif/gx/3eHMePuNzD1W/9E5a1/Qvn1D6DkirtQ8v/bu/PwJqr1gePfSbekdKNQaCnQsraABeSyyUVWyyKIRYuAgguyePFWEbeLG8sPRHFFdkHAKy2rFEWKCgqIgoosIovI0qLs0GpD6ZKmmd8fvY0NTZe0adK07+d58mhmzsyc05eZvDlz5iT2JUKHT6fxQ2/SNO6/RLz0Oe0WnKJTQiZRbx2iyYRFBPV+qELJFeT/Y/X09MTDw8Mu7aoqFi1aRIcOHfDw8GDatGlF1s+ZM4dGjRrh6+vLrbfeyvXr1x1fSWHV+PHjCQkJwc/Pj6ioKDZv3gxATk4OY8aMoXHjxvj5+dG1a1f27t3r5NqK0hQXT4CjR4/So0cP/Pz8aN26NTt37nReRYWFvXv3otFomDlzpnlZaddVUX41tgdr7dq1GI3GMt0ezMnJISfn79t4er2+2LIaD0+0DVqgbdDCLvUsK6PRSHp6uvl9dfxGEBISwrRp00hISCiybsGCBXz++ed89913NGrUiF9++QVPT08n1FJYM3nyZObNm4eXlxf79u3jjjvu4MyZM2i1WsLDw/n2229p2LAh69at46677iIlJUV+zqkKKy6efn5+3H333TzxxBPs2LGDHTt2EBsby4kTJ6hTp46zq12jmUwmnnrqKTp16mSxvKTrqqgYl+zBMplMZGdnl+mlFhosXlhCQgJBQUFWx2bdbPbs2fj7+5tfjRo1KlJG8dDi7uucJ/dMJhOnTp3iwoUL5OXlOaUOjhATE8OQIUOKPMqbl5fHrFmzWLp0KY0bN0ZRFNq2bYuXl5dzKiqKiIyMNMdDURQMBgPnz5+nVq1avPLKKzRu3BiNRsOIESPw9PTkxIkTTq6xKElx8Txx4gR//vknTzzxBG5ubtxxxx3ceuutJCYmOrnG4v3336dLly60atXKYnlx11VRcS6ZYH3zzTfodLoyvaxdqM+cOcPevXsZPnx4mQbUTZkyhfT0dPPrjz/yJ/l0f2gZHmMT8BibQMjL36D61sNkMtm9vaXRaDQEBASYx17VNOfOnSMzM5MNGzZQv359IiIiWLp0qdWyR48eZdSoUYSGhuLl5UWDBg144IEHOHq0bOPlRPlNnDgRnU5Hp06d6NOnD1FRUUXKnDx5krS0NJo3b26x/JdffiE2NpawsDC0Wi2hoaFER0czb948R1Vf3KS4eN78pVZVVYvza+XKlSiKwk8//WRRLj09nc6dO6PVavn8888rvwE1SGpqKu+++y7Tp0+3eVuJV/m55C3CyMhIVqxYUaayISEhRZYVdIWW9elBLy8vq70hdVvdRnh4OJA/3f/p06fJycmhadOm+Pr6lmnf5aWqqsUjrfXr16dWrVqcO3euUo9bFZ0/f5709HR+++03UlJSOHnyJH379iUyMpLbb7/dXG7jxo2MHDmSwMBAHn30UZo0aUJKSgoffPABGzZsYM2aNQwdOtSJLaneFi5cyLx589i5cydHjhwpchs7KyuLUaNGMWXKFPz9/c3L9+zZQ+/evWncuDHjxo0jODiYP/74g++//565c+cSFxfn6KYIrMczIiKCgIAA3n77beLi4vjqq6/YtWsXTZs2LXFfer2efv36cfjwYRITExkwYICDWlEzvPjii0yaNMluvVQSr7JxyQQrODiYhx9+uNzbJyQk0KxZM7p27VqhejRs2BBvb2/g7zmoVFVFp9OZy+j1em7cuEFAQIDF8orIysri999/x83NjWbNmqEoCoqiVLtB7WVV8Hd95ZVX0Ol0tG3blhEjRpCUlGROsE6fPs3o0aNp2rQp33zzDUFBQebtn3zySW6//XZGjx7N4cOHS/0wEOXn5uZG3759effdd2nRogV33nknALm5uQwbNozmzZvzyiuvWGwza9Ys/P392bdvX5EPiCtXrjiq6sIKa/HctGkTcXFxzJo1i44dOzJ8+HAaNiz+wZ3r16/Tv39/Dh06xMaNGxk4cKADW1D9HTx4kH379rFgwQK77E/iVXYumWBVxMGDBzl+/Dgvv/yyXffr5uZG69atMRgMFrcd09LS+OuvvywSL5PJREZGBjqdrkxJkaqqGI1Gc1l3d3eys7PRaDQYDIZKG2t0IyePbKP1MWwAWneFWl7On8i0ZcuWeHp6WvSI3Nw78sYbb5CZmcn7779vkVwB1K1blyVLltCzZ0/mzJnD4sWLHVLvypSbZ8Jdo1TZhx2MRiOnTp0C8s+H0aNHoygKH374YZE6nz59mjZt2lj99l2vXj1HVFeUonA827Zta/GrGd26dWPUqFFWt8vIyGDAgAEcOHCAjz/+mEGDBjmkvpUt5+rvGK9fK3a9u2/dSv3d2sJ27drFiRMnCA0NBfJv7bm7u3P69Oky3wkqUF3jVVlqXIIVHx8P2G9y0cIURSmS7BR8KBS+5ZGVlcWZM2fw8PCgTZs25uWXL1/GYDBQt25dczKWnp5OSkoKvr6+5p4VDw8PwsPD8fb2rrReqzyTStKR9JITLA+Fe9rXxk3jmA9xo9GI0WgkLy8Po9FIdnY2Hh4e1KpVi9jYWGbNmsV7773HmTNnWLt2LRs2bDBvu3nzZsLDwy1uGRbWo0cPwsPD2bJli0PaUplSMwxM33yKOrU8uOcfwdzSwMepiVZ6ejpbtmxhyJAhaLVaEhMT2bFjB7NnzwZgwoQJXLx4kS+++MLqmMiwsDD27t3LkSNHuOWWWxxdfXGT0uJ5+PBhWrZsiclkYsGCBZhMJqu3kG7cuMHAgQPZt28fGzZsYPDgwY5uSqXIufo7P8dFoOZmF1tG8dDSbt4JhyRZ48ePZ8SIEeb3Tz75JE2aNOE///kPUPx19eZfAamu8apMNWpEtMlkYs2aNXTo0IGIiAiHHDMgIIDw8HCLubZMJpPVcV3p6emkpqZiMBjMy9zd3VFVlaysLIvBo/7+/pV6S1CjQC2vkv951PLU4KDcCoCZM2ei0+lYtmwZs2bNQqfT8dFHHwH50zRcu3aNunXrcuedd/J///d/5mQqPT2dCxcu0K5duxL337ZtW86dO+fy82ddzzaizzaSkprFW18mM2PzKX45f73YJ2orm6IoLF26lIYNG1KnTh1ee+01EhISaN++PWfPnmXZsmX8+OOP1K1bFx8fH3x8fNi9e7d5+2eeeYbMzEzat29Pt27deP755/nyyy+r1O+HOsXlX+DMdlAd+2BNSfEEWLFiBcHBwQQHB/P999+zadMmq/t56KGH+OGHH1i/fj1DhgxxXAMqmfH6tRKTKwA1N7vEHi578vb2NscjODgYnU6Hj4+P+ct/SdfVwqprvCpTjerB0mg0VWIQuK+vL61atSrygVe3bt0it/x0Op35kejy9EKoqoqxnNffWxro2HUyo8T1+fu27YPbXVO+ebqmTZtW7ER4AQEBfPzxx1bXFSRMpT14ULBer9dX+kMKtsjJzQ+gp/vft/yMeSbyTKDRgIebxqJs7v96HQuikpKWn2iF1dERW6hHq2C/Hu4KmoL9mlTy8lQUBTzdC+3XaMLLvXzfx/z8/NixY4fVdWFhYaUmftHR0ezdu5fZs2fzxRdfsHfvXubMmUNQUBDLli1zvYt9nqH0MjdT3EDzvx4FUx7kpMOvn0BgU1A0tu/XrfxzxJUUT4B33nmHd955p9T9XL58Ga1Wa3Xam6pCVVVMOZk2bZOXk1XmcnnZN2zat8bLu8K90StXrrR4X9J1tTBXiFdVU6MSrKrm5hMlMDCwSBmNRoNWqy33MYwmWPNTWrm3L0lJyVdJRnQMxMOBQ7cKkqXSeqbKmog52oRVRwB4b2Rr/LT5p2zSkatsPHCZHi0DGfPPvwcQx605isF482Py+f89+78erSZ1dMR2DGbxzt+5npPHrJiWhNbO/zf27ck0Vu45z62N/Xiyb7h5Hy8knuCtYZbz5zhSp06d2LhxIwaDgZ9//pnExETeeecdYmNjOXToEK1bt3Za3Wy2c5rt20TEgF/+GBrSTsHpL/ITq4hCyeV3cyC3jMlA31dtr4OdLVmyhMmTJzNgwAB2797tsLsKtjDlZPLTA5Uz4e3xl7rbvE3H+AzctPb55RFbuUK8qpoadYtQ1Ez+/v6EhIRw+PDhEssdPnyY0NBQ/Pz8HFQz50hOzWLV9xecXY1y8fT0pFOnTrz66qssWrSI3Nxc1q9f7+xqVb60U7BvQf7r9Bf5y9x14Om6s923bt2apKQksrKyiI6ONs8vKKomiZftpAermnPX5PcYlZeqqmw7rufPzDxUQAFqe7sR3cqv3F3V5bzTVCGDBw9m6dKlfPvtt3TvXvSb4+7du0lJSWHChAmOr1wplozKH9jt6f733/vOW4Lo3zqIm+eVnTeiDb+nZjFr6+ki+1GU/N6sgh6s5kH534Q9Cu23e4tAbmtam5tD++rQqvdttWPHjgBcvHjRyTWxUa9ptm9jyITwnvn/r+bBb1sgKxUMGX8nWf98zm5VdJTOnTuzadMmBg0aRHR0NLt37y7ylK8zaby86RhvW0/9jeRDZeqdajXzW2o1aW9zfZypqserqpEerGpOURQ83Mr/8nTXcGsjb/N4HhW4tZE3nu6acu/TGU+0Pfvss+h0OiZMmEBqaqrFurS0NB577DG8vb159tlnHV630nh5aPDy0Fj83dzd8pcVHn9VULZwwgSYk6XwQB1P92vCK3c1p00DX/N+NYX3q1Hw8tBYjL8Cyj3+yh527NhhdZxWUlISgOvdqnDztP2lC8i/RegXCv6Nod3o/H2d+LR8+61C+vbty+rVqzl16hQDBgwo8bdeHU1RFNy0tWx7eZVtvkM3L53N+64K065U5XhVNdKDJUoV4u9BnVpupN7Io04tN0L8XW9C0xYtWvDhhx/ywAMPEBUVVWQm92vXrrF69WqaNWvm7KrajUJ+QhweqKsS0zWUV1xcHJmZmQwdOpTIyEgMBgN79uxh7dq1hIeH88gjjzi7io7n6QMRd8ONy/lPESqu/V156NChLF26lDFjxjBkyBA+//zzCo09FZVL4lU2kmCJUimKwq2NvNmXcoNbG1X8KRZnGTZsGJGRkcyePducVNWpU4fevXvzwgsvVJs5lvx07vjr3An0rhrzYFXUm2++yfr160lKSuL999/HYDDQuHFjJk6cyEsvvVRzf6S2fhRQ9PccXdUjjzxCWloazzzzDMOGDSMxMbFMvxVb1bj71kXx0JY6D5a7b10H1sr+qku8KpOiOmtyHBem1+vx9/cnPT29Sg2Izs7OJjk5mSZNmsi3iRquqs/kLkR1VpVmcncFVfWzq6Kf9ZJuClEN3Tw2SwjhOF5BjSWBEjLIXQghhBDC3iTBEkIIIYSwM0mwhBBCCCHsTBIsIYQQQgg7kwRLCCGEEMLOJMESQgghhLAzSbCEEEIIIexMEiwhhBBCCDuTBEsIIYQQws4kwRJCCCGEsDNJsIQQQggh7EwSLOEyxo8fT0hICH5+fkRFRbF582bzuqtXrzJo0CBq1apFREQEX331lRNrKm5WUux69eqFVqvFx8cHHx8fBg4c6MSaClvs3bsXjUbDzJkzzcvkXKy6rMVLzr/KIwmWcBmTJ08mJSUFvV7P8uXLGTVqFKmpqQA8/vjjBAcHc/XqVd544w3uu+8+0tLSnFxjUaCk2AEsW7aMjIwMMjIy2Lp1qxNrKsrKZDLx1FNP0alTJ4vlci5WTcXFC+T8qyySYAmXERkZiZeXFwCKomAwGDh//jwZGRls2rSJ6dOn4+3tzZAhQ4iKiuKTTz4p13FWrlyJoiikpKTYsfY1W3GxqwwSP8d4//336dKlC61atTIvs/e5KOzHWrxE5ZIES7iUiRMnotPp6NSpE3369CEqKoqTJ0/i4+NDw4YNzeWioqI4evSoxba//PILsbGxhIWFodVqCQ0NJTo6mnnz5jm6GTWStdgVeOqppwgKCiI6OprDhw9b3f706dNMmDCBpk2botVq8fPz45///Cdz584lKyvLUc0QQGpqKu+++y7Tp0+3WF6Wc7EgAf7pp58stk1PT6dz585otVo+//zzym1ADVNcvAqUdv7JtbN8JMESLmXhwoVkZGSwfft2+vXrh6IoZGRk4OfnZ1HOz8+PjIwM8/s9e/bQsWNHfv75Z8aNG8f8+fMZO3YsGo2GuXPnWmw7evRosrKyCAsLc0ibagprsQOYM2cOycnJ/P7770RHRzNw4ECuX79use2WLVuIiopi3bp13HXXXcybN4/Zs2fTuHFjnn32WZ588klnNKnGevHFF5k0aRIBAQEWy8tyLlqj1+vp168fhw8fJjExkQEDBti7yjVacfGC0s8/W66dwpK7sysghK3c3Nzo27cv7777Li1atCAkJAS9Xm9RRq/X4+PjY34/a9Ys/P392bdvX5GLzJUrV4rs383NrdLqX5PdHLs777yTzp07m9c/99xzLF++nO+//57o6GgAkpOTGTFiBGFhYXz99deEhISYyz/++OOcOnWKLVu2OLwtNdXBgwfZt28fCxYsKLLOx8en1HPxZtevX6d///4cOnSIjRs3yiBrOyspXkCp558t105hSXqwhMsyGo2cOnWKFi1akJGRYTGm58iRI7Rp08b8/vTp07Rp08bqN7h69epZvJcxPJWvIHbWaDQaVFU1v58zZw4ZGRl88MEHFslVgebNm0sPlgPt2rWLEydOEBoaSnBwMGvXruX111/nkUceKdO5WFhGRgYDBgzgwIEDfPzxxwwaNMhRzXAoZyYiJcXLmpvPP1uunQDnz5/n0UcfpUGDBnh5edGkSRP+9a9/YTAY7NYmVyEJliibMztgQef8/zpBeno6CQkJZGRkYDQaWb9+PTt27KBHjx74+Phw9913M3XqVLKysvjss884fPgwd999t3n7sLAw9u/fz5EjR5xS/5qspNj99ddfbNu2jZycHAwGA++88w5paWl06dLFvP3mzZtp2rQp3bp1c2IrRIHx48dz6tQpDh06xKFDhxgyZAiPP/4477zzTpnOxQI3btxg4MCB7Nu3j/Xr1zN48GAntKZyGQwGkpKSWLlyJUlJSeTm5jq8DiXFqyznny3XzgsXLtC5c2fWrFnD8OHDee+99xg9ejS7du0iMzOzMptZJcktQlE6VYWvpsO1E/n/bdIL/jd+xlEURWHp0qVMnDgRVVVp3rw5CQkJtG/fHsgf3/PQQw9Rp04dGjZsyNq1awkMDDRv/8wzzzBw4EDat29P586duf322+nbty+9e/fGw8PDoW1xFJPJhKIo5rFOAKqqoqoqGo3jvluVFLurV68yZcoUTpw4gYeHB+3btycpKQl/f38g//bS+fPnrX5A1zSqqnLp0iV0Op3V3gRH8fb2xtvb2/xep9Ph4+NjrlNp52KBhx56iAsXLrB+/XqGDBniqOo7zLVr10hMTOSvv/4C4OjRo1y4cIGYmBjq1q3rsHqUFK/Szj+w7do5ZcoULl26xA8//EDHjh3Ny2fMmGHRK1ZTSIJVUxhuFL9O4wbu2uLLntkJFw7m//+Fg3D6K2h+R+n7VTTgofv7fW4meHgXX74Efn5+7NhRfO9ZUFAQSUlJxa6Pjo5m7969zJ49my+++IK9e/cyZ84cgoKCWLZsWZW8wKuqSk5OTrm337RpE+fPn2f06NH4+fmh1+v56KOPCA0NJSYmplz79PLyskjYyqKk2AUFBRV5mqywgvE8vr6+Nh2zKsvLywPyb8UU/C1NJhOqqqIoikXyW7gsQHZ2NteuXUOn0+Hh4VFs2YL9qqpqTrQrK6leuXKlxfvSzsUCly9fRqvV0qhRo0qplz2VdHtLo9Hg7u5uUfbYsWN89dVX5rhCfiz+/PNPPvzwQ/r3788tt9xS4n4VRamUL3+F41Xa+Qdlv3aaTCY2bdrEXXfdZZFcFbD1ulEdSIJVU8xuUPy6Fv3g/vV/v3+zeX4yVJwdM6FZ3/xerLlRkJlqvVyDW2Hczr/fL+gCk36xqdr21KlTJzZu3IjBYODnn38mMTGRd955h9jYWA4dOkTr1q2dVjdrcnJyGDNmTIX3s3///iLvP/3003Lta/ny5Wi12tIL2knBE2k3P1Xoyn75Jf8cuOWWW8wfzFeuXOHSpUsEBgbSuHFjc9mjR49iMplo1aoVXl5eNGzYkOPHj3P8+HF8fX3NY9I8PDz49ddfycvLIyIiAp0u/4tNWloaf/zxB35+fjRt2tTBLS3ZkiVLmDx5MgMGDGD37t1EREQ4u0rFevfdd4td17RpU2JjY83v58+fj9FotFpWVVXy8vJISkqibt26rF+/vtgpRoKDg3nwwQcrVG97Kcu18+rVq+j1em655RZnV7fKkDFYwnYFvVguytPTk06dOvHqq6+yaNEicnNzWb9+fekbCofz8/OjQYMGMnbufzw8PPD09ATyk87ffvuN3377jWvXrjm5ZrZr3bo1SUlJZGVlER0dzR9//OHsKjmEoigEBwdTv359Z1fFZnLttI30YNUUUy4Uv05z05QEz/zv6S5VhQ/vhEtHQM37e73i9ncv1pMl9EgpN+Xvj/9gW50doKAr++LFi06uSVFeXl4sX768wvs5e/Ys06dPZ+rUqRWe26tgNnZHGjx4MO+//z579+7ltttuc/jx7a1ggtXCt+zq1atHUFBQkdsoBU/fFZTNzc0lNzcXb29vGjRoYF7u4eFhfqKr8H4DAwMJCAiosrdnOnfuzKZNmxg0aBDR0dHs3r2boKAgZ1eriEmTJhW77uZbr//+979JSUlh06ZNVsurqsrtt9+OoihMmDCh2P1W1ZgVuPnaGRQUhJ+fn3wZKqRG9WDt37+fwYMHExwcjI+PD23btuW9994zj12o1jxrFf9y11ov+8f3cPFny+QK8t8X9GKVtN/C46+g3OOv7GHHjh1WB1kWjBWpircnFEVBq9VW+FXQ4+Hp6VnhfTnjov/cc89Rq1Ytxo4dy+XLl4usP336tEtNeFgwz1rhv6VGo8HNza3Ih3Xhsqqqcu7cOQCaNGmCj4+PeQCzh4eH1f0qimJ1v1VJ3759Wb16NadOnWLAgAFF5tGqCjw9PYt9FR5/VVC2RYsWBAcHFzlfCnqvwsPDS91vVXn4pqzXTo1GQ0xMDJs3b7Y6rksGuVdj+/fvp1u3brRo0YLnn38eb29vtm7dypNPPulyF2iHUNX8Xio0gMlKAY3lWKwqLi4ujszMTIYOHUpkZCQGg4E9e/awdu1awsPDi50TRjhfs2bNSEhIYPjw4bRq1YoHH3zQPEB4z549rF+/nocfftjZ1XQIrVZL7dq1q8yHr70MHTqUpUuXMmbMGIYMGcLnn3/u0LF+9qYoCrfffnuR22eFe69chS3XzldffZUvv/ySnj17Mn78eFq1asXFixdZv3493377rVOffnWGGpNgLVmyBIBvvvnG/MjwhAkT6NmzJytXrpQE62Z5Bkg/j/Xkivzl+vP55dwdf9vIVm+++Sbr168nKSmJ999/H4PBQOPGjZk4cSIvvfRStT7xAwICuOeee1y6jUOGDOHw4cO88cYbfPLJJyxatAgvLy/atm3LW2+9xbhx45xdxUqnKIrViVari0ceeYS0tDSeeeYZhg0bRmJiYpHeIVcSHh7OQw89ZNFzoyiK1ck5qzJbrp2hoaH88MMPvPzyy8THx6PX6wkNDWXgwIEWU0XUFIpaQ/rtRowYwdatW/nzzz8tustHjBjBzp07uXTpUpn3pdfr8ff3Jz09vcjvbjlTdnY2ycnJNGnSxD7f/tLPQWYJg2drBYFfaMWPI4QQosay+2eXnVT0s951vx7YqFevXqxdu5YJEyYwefJk8y3CjRs38sYbbzi7elWTf8P8lxBCCCFsUmMSrHHjxnH06FGWLFnCsmXLgPwBpPPnz+exxx4rcducnByLCR+r4iBMIYQQQlQdLplgmUymMv9wZMHM025ubjRr1oz+/fszbNgwtFotq1evJi4ujuDg4BJntp49ezbTp0+3U+2FEEIIUd255BisnTt30rt37zKVPX78OJGRkbz22mvMnTuXkydP4uPjY17fu3dvfvvtN86ePVvsgEprPViNGjWq/mOwhBBCiEpWVT+7auQYrMjISFasWFGmsgVP3SxcuJA+ffpYJFeQ/3TS5MmTSUlJoXnz5lb34eXl5ZQJFoUQQgjhmlwywQoODrZ53pvLly9bnVA0NzcXoNjfjhJCCCGEsFXVnd7Xzlq2bMm2bdtITf37h4nz8vJYt24dvr6+NGvWzIm1E0IIIUR14pI9WOXxn//8h1GjRtGlSxfGjx+PTqdj9erV7N+/n5kzZ1a7mZGFEEII4Tw1JsF64IEHqFu3LrNnz+aNN95Ar9cTERHB4sWLS/zBTSGEEEIIW9WYBAugf//+9O/f39nVEEIIIUQ1V2PGYAkhhBBCOIokWMJljB8/npCQEPz8/IiKimLz5s3mdYsWLaJDhw54eHgwbdo051VSWFVS7A4dOsQ///lP/Pz8aNq0qfmXFoQQwpVJgiVcRsF8ZXq9nuXLlzNq1CjzU6EhISFMmzaNe++918m1FNaUFLvRo0fTv39//vrrLzZs2MBTTz3F8ePHnVxjIYSoGEmwhMuIjIw0T/iqKAoGg4Hz588DEBMTw5AhQwgICHBiDUVxSopdSkoKI0eORKPR0KFDB1q1asWvv/7qzOoKIUSFSYIlXMrEiRPR6XR06tSJPn36EBUVVabtVq5ciaIo5pdWq6Vly5b8+9//5vLly5VcawHFxy4uLo5Vq1ZhNBr58ccf+f333+natavVfSxcuBBFUejSpYsjqy6EEDaTBEu4lIULF5KRkcH27dvp168fiqLYtP2MGTP46KOPmD9/Pt26dWPRokXcdtttZGZmVlKNRYHiYjdw4ED++9//otVq6datG6+//rr5J65uFh8fT3h4OD/++COnTp1yZPWFEMImkmAJl+Pm5kbfvn3Zvn07SUlJNm07cOBARo0axdixY1m5ciWTJk0iOTmZTz75pJJqKwq7OXZpaWkMGjSIN954g5ycHA4cOMCUKVM4cOBAkW2Tk5PZs2cPb7/9NkFBQcTHx5fpmDdu3LB3M4QQolSSYIlyUVXV6m87OpLRaKxwL0afPn2A/A9v4TgFsTt9+jS1atUiNjYWNzc32rZtS7du3di1a1eRbeLj46lduzaDBg0iNjbWaoI1bdo0FEXh2LFj3H///dSuXZvu3bs7oklCCGFBEixhE1VVuXTpEl9//TVJSUkOu7WWnp5OQkICGRkZGI1G1q9fz44dO+jRoweQ/4GdnZ1NXl6exf+X5vTp0wDUqVOnUuvvTBfTs5i25TAX07OccvySYteyZUsyMzP55JNPUFWVY8eOsXv3bqtj6+Lj47nnnnvw9PRk5MiRnDx5kn379lk95rBhw8jMzOTVV19l3Lhxld1EIYQookbN5C7KT1VVLl++zNGjR/nzzz/Ny3NycvD29q704yuKwtKlS5k4cSKqqtK8eXMSEhJo3749ADNnzmT69Onm8rNmzWLFihU8/PDDFvtJT0/n2rVrZGdn89133zFjxgx0Oh2DBw+u9DY4y0V9FtO3/sKQtg0J8dc5/PilxW7dunU8//zzjBo1isDAQCZPnswdd9xhsY/9+/fz66+/Mm/ePAC6d+9Ow4YNiY+Pp1OnTkWO2a5dOxISEiq9bUIIURxJsGoIo9Fo8zYajQZFUbh8+TJHjhzhr7/+KjKovKDHqKzc3cv3T87Pz48dO3YUu37atGllmmD05g/usLAw4uPjCQ0NLVe9HOFGTvF/XzeNgtbDrcSyWYb8Zdm5lutK2q9GAZ3n37HKNBjx9qyc2JXlJ6zi4+OpX78+vXv3BvKTtuHDh7Nq1Sreeust3NzcLMo/9thj5aqrEELYiyRYNcSmTZts3qZVq1ZcunTJosdKVVWLMt9++61NCVZsbKzN9bCnBQsW0LJlS9zd3alfvz4RERFoNFX7TrnP02uLXXdnmwZs+Vdv8/t6UzaQabB+azRu3U/s/8+d5vfhUzdxLSPHatmOjQPZ99xA8/vWMz8jZUaMjTW3j7y8PNasWUPv3r0txsp16dKFt956i6+++op+/fpZbNOkSRNHV1MIISxIgiWKlZycTHZ2trOrYVedO3emY8eOzq6GU5y6lsGV69nU89U6uyo2+frrr7l48SJr1qxhzZo1RdbHx8cXSbB0OsffChVCiMIkwaohYmJibN7m2rVr5jFXiqIU6b2C/LEwMnt65cp4a3ix69w0lrdsr8z+u4dw489/MGnDTyiKQs/m9fjm1BVaz/yMRcM7MaxDGCnTY4rd70275dhLzhujFh8fT7169ViwYEGRdRs3biQxMZHFixdLUiWEqFIkwaohyjP2KTg4mPr161sMbr850XJzcyv3uCpRNrW8yv73LVz21NXr9G5Zn4XDO1PPV8uV69lMXPsjRy+mM8zG/ZZ3/FVFZWVlsXHjRoYNG2b19nKDBg1YvXo1n376KcOHF5+ICiGEo8knoyiRoihWEy1R9U0dGIWmUFdUPV8tG8b2wGQq2hNZVX366adcv36dIUOGWF3ftWtX86SjkmAJIaoSSbBEmVhLtDIzM80/4CuqHs3N9/lKWV4VxcfHo9VqiY6Otrpeo9EwaNAg4uPjSU1NdXDthBCieIpqbWCNKJFer8ff35/09HT8/PycXR2z7OxskpOTadKkCVpt5Q5kVlUVk8lU5PF4IYQQwhaO/OyyRUU/66v28+miylIURZIrIYQQohiSYAkhhBBC2JkkWEIIIYQQdiYJlhBCCCGEnUmCJYQQQghhZ5JgCSGEEELYmSRYQgghhBB2JglWNSRTmwkhhHAV1fUzSxKsaqTgNwGNRqOTayKEEEKUTcFnVnX7XVtJsKoRNzc33Nzc0Ov1zq6KEEIIUSZ6vd78+VWdVK90sYZTFIV69epx8eJFvLy8qFWrForiOr87J4QQouZQVZUbN26g1+sJCQmpdp9XkmBVM/7+/mRlZXHt2jWuXr3q7OoIIYQQxVIUhYCAAPz9/Z1dFbuTBKuaURSFkJAQ6tWrR25urrOrI4QQQhTLw8Oj2t0aLFCjEqxt27Yxffp0Dhw4gJeXF3379uXNN98kPDzc2VWzu+p4P1sIIYRwFTVmkPtnn33GgAEDyMnJ4bXXXuPpp59m165ddO/eXW6lCSGEEMKuFLW6TkBxkzZt2mAwGDh69Cienp4A/Pzzz3To0IFJkybx1ltvlXlfer0ef39/0tPT8fPzq6wqCyGEEMJJKvpZXyN6sNLS0jh27BhDhw41J1cA7dq1o1WrVqxZs8aJtRNCCCFEdVMjEqycnBwAdDpdkXXe3t5cuHCBS5cuObpaQgghhKimasQg9/r16xMQEMB3331nsTw1NZVjx44BcP78eYKDg61un5OTY07SANLT0wFkQk8hhBCimir4jC/vSCqXTLBMJhMGg6FMZb28vNBoNEyYMIHXX3+dKVOmMGbMGPR6Pc8995x5P1lZWcXuY/bs2UyfPr3I8kaNGpWvAUIIIYRwCdevXy/XPF0uOch9586d9O7du0xljx8/TmRkJAaDgYkTJ7JixQpMJhMA/fr1o2nTpixevJiDBw/Svn17q/u4uQfLZDKRlpZGnTp1qt3Ms3q9nkaNGvHHH39U2wH80kbXV93bB9LG6qK6t7E6t09VVa5fv06DBg3QaGwfUeWSPViRkZGsWLGiTGVDQkIA8PT0ZNmyZcyaNYvffvuN+vXr07JlS+6//340Gg3Nmzcvdh9eXl54eXlZLAsICCh3/V2Bn59ftTtZbiZtdH3VvX0gbawuqnsbq2v7KjLDvEsmWMHBwTz88MPl2rZ+/frUr18fgLy8PHbu3EmXLl3w8fGxYw2FEEIIUZO5ZIJlL2+++SYXL15k3rx5zq6KEEIIIaqRGpNgrVq1io8//pgePXrg4+PD9u3bWbduHWPHjuXee+91dvWqDC8vL6ZOnVrklmh1Im10fdW9fSBtrC6qexure/sqwiUHuZfHjz/+yLPPPssvv/xCVlYWERER/Otf/2L8+PHVbqC6EEIIIZyrxiRYQgghhBCOUiNmchdCCCGEcCRJsIQQQggh7EwSLCGEEEIIO5MEqxrKyMhg6tSpDBgwgMDAQBRFYeXKlTbtY/v27fTp0wd/f398fX35xz/+wdq1a4uU+/TTT+nQoQNarZbGjRszdepUjEajnVpinaPaFx4ejqIoRV6PPfaYHVtjXUXa2KtXL6v1VhQFDw+PIuWdEUNwXBtdNY4A+/fvZ/DgwQQHB+Pj40Pbtm157733yMvLK1LWFc/FsrbPlWO4bds2unfvjre3N7Vr1yY2NpaUlBSrZV3xXISyt9GZcXSGGjNNQ01y7do1ZsyYQePGjWnXrh07d+60afsVK1bw6KOPEh0dzauvvoqbmxsnTpzgjz/+sCi3detWYmJi6NWrF/PmzeOXX35h5syZXLlyhUWLFtmxRZYc1T6A9u3b8/TTT1ssa9myZUWqXyYVaeOLL77I2LFjLZbduHGDxx57jH79+lksd1YMwXFtBNeM4/79++nWrRstWrTg+eefx9vbm61bt/Lkk09y+vRp5s6day7riueiLe0D14zhZ599xt13302HDh147bXX0Ov1zJ07l+7du3Pw4EGCgoLMZV31XLSljeC8ODqFKqqd7Oxs9eLFi6qqquq+fftUQF2xYkWZtk1OTlZ1Op36xBNPlFq2devWart27dTc3FzzshdffFFVFEU9fvx4uepeFo5qX1hYmDpo0KCKVLXcKtJGaz766CMVUOPj4y2WOyuGquq4NrpqHMeNG6d6enqqqampFst79Oih+vn5WSxzxXPRlva5agxbt26tNm/eXM3JyTEvO3TokKrRaNTJkycXKeuK56ItbXRmHJ1BbhFWQ15eXgQHB5dr28WLF5OXl8eMGTOA/K5j1cpMHseOHePYsWOMHz8ed/e/O0InTpyIqqps2LChfJUvA0e0rzCDwcCNGzfKdbzyqkgbrUlISKBWrVrcfffd5mXOjCE4po2FuVoc9Xo9Wq22yO+ehoSEoNPpzO9d9Vwsa/sKc6UYpqWlcezYMYYOHYqnp6d5ebt27WjVqhVr1qwxL3PVc9GWNhbmjDg6gyRYwsL27duJjIwkKSmJhg0b4uvrS506dXj55ZcxmUzmcgcPHgSgY8eOFts3aNCAhg0bmtdXNWVtX4Gvv/4ab29vfHx8CA8PL3LbwhVcvXqVbdu2ERMTQ61atczLXTWG1hTXxgKuGMdevXqh1+uZMGECx48f5+zZsyxevJiNGzcyZcoUczlXjWNZ21fA1WKYk5MDYDVZ9Pb25sKFC1y6dAlw3Rja0sYCrhbHipAxWMLCyZMncXNz45FHHuG5556jXbt2bNy4kZkzZ2I0Gpk9ezYAFy9eBPK/bd4sJCSECxcuOLTeZVXW9gG0bduW7t27ExERQWpqKitXrmTSpElcuHCB119/3YmtsM3atWsxGo088MADFstdNYbWFNdGcN04jhs3jqNHj7JkyRKWLVsGgJubG/Pnz7cYFOyqcSxr+8A1Y1i/fn0CAgL47rvvLJanpqZy7NgxAM6fP09wcLDLxtCWNoJrxrEiJMESFjIyMjCZTLz22ms8//zzANx7772kpaUxd+5cXnjhBXx9fcnKygKw+vtTWq0WvV7v0HqXVVnbB/lP9BT2yCOPMHDgQN5++23i4uJo2LChw+tfHgkJCQQFBREdHW2x3FVjaE1xbQTXjaObmxvNmjWjf//+DBs2DK1Wy+rVq4mLiyM4OJiYmBjAdeNY1vaBa8ZQo9EwYcIEXn/9daZMmcKYMWPQ6/U899xzGAwG4O/YuWoMbWkjuGYcK0JuEQoLBV29I0eOtFg+cuRIsrKyzF3VBeUKuogLy87OLnYMhbOVtX3WKIrCU089hdFotPnJRWc5c+YMe/fuZfjw4RZjO8B1Y3izktpojavE8bXXXuP1119n9erVPPjgg9x3330kJibSvXt3Hn/8cfPj+64ax7K2zxpXieGMGTN49NFHmTNnDi1btqRjx464u7vz6KOPAuDj4wO4bgyh7G20xlXiWF6SYAkLDRo0APK7fgurV68eAH/++Sfwd1d2Qdd2YRcvXjTvp6opa/uK06hRIyB/cKcrSEhIALB668xVY3izktpYHFeI48KFC+nTp0+RD6ghQ4Zw4cIF8zxDrhrHsravOK4QQ09PT5YtW8aFCxf45ptvOHHiBF988QXp6eloNBqaN28OuG4MoextLI4rxLG8JMESFv7xj38A+ffNCysYA1Awp0n79u0B+Omnn4qUO3funHl9VVPW9hXnzJkzZSpXVSQkJNCsWTO6du1aZJ2rxvBmJbWxOK4Qx8uXL1udUDQ3NxfA3MPjqnEsa/uK4woxLFC/fn1uv/12WrZsSV5eHjt37qRLly7m5NJVY1hYaW0sjivF0VaSYNVgFy9e5NdffzVf0ACGDx8OwAcffGBeZjKZWLFiBYGBgeYEpU2bNkRGRvL+++9bXCQXLVqEoijExsY6qBXFq0j70tLSilz8c3Nzee211/D09KR3794OaEHprLWxwMGDBzl+/Dj333+/1W1dIYZQsTa6chxbtmzJtm3bSE1NNS/Ly8tj3bp1+Pr60qxZM8A14liR9rlyDK158803uXjxosVkm64QQ6hYG10ljvYkg9yrqfnz5/PXX3+Ze2Y2b97MuXPnAIiLi8Pf358pU6bw4YcfkpycTHh4OAB33303ffv2Zfbs2Vy7do127dqxadMmvv32W5YsWWIxCPONN95gyJAh9OvXjxEjRnDkyBHmz5/P2LFjadWqlUu379NPP2XmzJnExsbSpEkT0tLSSEhI4MiRI7z66qt2nb/J3m0sEB8fD5R868yZMYTKb6Mrx/E///kPo0aNokuXLowfPx6dTsfq1avZv38/M2fOtPhJIFc8F8vaPleO4apVq/j444/p0aMHPj4+bN++nXXr1jF27Fjuvfdei2O46rlY1jZWhTg6nDNnORWVJywsTAWsvpKTk1VVVdWHHnrI4n2B69evq08++aQaHBysenp6qlFRUeqqVausHicxMVFt37696uXlpTZs2FB96aWXVIPBUMmtq/z2/fTTT+pdd92lhoaGqp6enqqPj4/avXt3dd26dZXetgIVaWNeXp4aGhqqdujQodTjOCuGqlr5bXT1OH7++edqz5491bp165r/rS5evNjqcVzxXCxL+1w5hj/88IPao0cPtXbt2qpWq1XbtWunLl68WDWZTFaP44rnYlnbWBXi6GiKqpYyjbUQQgghhLCJjMESQgghhLAzSbCEEEIIIexMEiwhhBBCCDuTBEsIIYQQws4kwRJCCCGEsDNJsIQQQggh7EwSLCGEEEIIO5MESwghhBDCziTBEkIIIYSwM0mwhBBCCCHsTBIsIYSoIFVV+cc//kG/fv2cXRWrTpw4gbu7OwsXLnR2VYSoMSTBEkJUqpSUFBRFQVEUgoODMRqNVssdP37cXC48PNyxlayg//73vxw4cIAZM2aYl1WldkdERDBy5EimT5/O9evXK+UYQghLkmAJIRzC3d2dy5cvk5SUZHX9Bx98gEajQaNxrcuSyWRi2rRp3H777XTt2rXI+qrS7ueee44rV67w3nvvVepxhBD5XOtKJoRwWd26dcPf35/ly5cXWWc0Glm1ahV33HEHHh4eTqhd+W3dupWUlBQefPBBq+urSrujoqJo27YtS5cuxWQyVeqxhBCSYAkhHESn0zFixAi2bNnClStXLNZ99tlnXL58mTFjxhTZzmAwMG/ePPr370+jRo3w8vKiXr163HPPPRw8eNDqsT7++GN69uxJvXr10Gq1NGjQgDvuuIOPP/64XOVKsmLFChRF4d5777VruyvDfffdx9mzZ9mxY4dDjidETSYJlhDCYcaMGYPRaOSjjz6yWL58+XICAwOJiYkpsk1aWhqTJk0iJyeHO++8k6eeeopevXqRlJREt27d2Ldvn0X5RYsWERsby8mTJxk6dCiTJ09mwIABXLp0icTERJvLlURVVXbs2EFERAS1a9e2a7srw2233QbAV1995ZDjCVGTuTu7AkKImqNz587ccsstrFixgqeffhqAS5cusXXrVv71r3/h5eVVZJvatWvz+++/ExoaarH86NGjdO3alRdeeIFt27aZly9btgxPT08OHTpEvXr1LLZJTU21uVxJjh8/TlpaGgMHDrR7uytDx44dAfjuu+8ccjwhajLpwRJCONSYMWM4evQoP/zwAwAffvghRqOx2NtkXl5eRZIrgDZt2tC7d2+++eYbcnNzLdZ5eHhYHdNUp06dcpUrzrlz5wCoX79+qWVtbXdl8PPzQ6vVmusthKg8kmAJIRxq1KhReHh4mAd9r1ixgltvvZX27dsXu82hQ4e4//77ady4MZ6enuZpDTZv3ozBYODatWvmsiNGjODGjRvccsstPPvssyQlJaHX64vss6zlSlLQ0xUQEFAp7a4MgYGBFn8vIUTlkARLCOFQQUFB3HXXXaxZs4bt27dz4sSJEntx9uzZQ9euXdm4cSPt27cnLi6OV155halTp9KuXTsAcnJyzOWfeeYZPvjgAxo0aMBbb73FoEGDqFOnDjExMSQnJ9tcriQ6nQ6A7Oxsu7e7OMuXL6d9+/bmQflxcXFlvqUJkJWVhbe3t83HFULYSBVCiEqUnJysAmr//v3Ny7Zs2aICamhoqKrVatW0tDTzOi8vLzUsLMz8/s4771QBdffu3UX23b9/fxVQk5OTrR772rVramJionrfffepgNq6dWvVaDSWu9zNvv32WxVQH3vsMbu325onnnhCbdeunfrFF1+of/31l/rrr7+qEydOVJs3b65euXKl1Prm5eWpGo1GjYqKKrWsEKJipAdLCOFw/fv3JzQ0lPPnzxMTE1PiE3inT58mMDCQ7t27WyzPzMzkwIEDJR6noEdq7dq19OnTh2PHjnHq1Klyl7tZmzZt0Gg0nDhxotSyYFu7b/b111+zZcsWvvnmG/r164e/vz8REREsWLCAe+65h8mTJ5e6j5MnT2IymYiKiirzcYUQ5SNPEQohHM7NzY1NmzZx7ty5UscghYWF8dtvv3H06FHatGkDQF5eHs888wxXr14tUn7nzp307NkTRVHMy3Jzc0lLSwNAq9XaVK4kAQEBtG3blp9++gmTyVTqbOy2tPtmq1atYvLkyfj5+RVZ98ILL9CoUSMMBgOenp7F7qNggH3Pnj1tOrYQwnaSYAkhnKJjx47maQNKEhcXx5dffkn37t2577770Gq17Ny5k/Pnz9OrVy927txpUT4mJgY/Pz+6du1KWFgYubm5bNu2jWPHjhEbG0tYWJhN5UozdOhQpk6dyvfff0+3bt3s1u6bnTt3jpEjR5rfK4rCokWLeOyxx/D398fHx4fU1FRCQkKK3ce2bdtwd3dn8ODBNh9fCGEbuUUohKjSBg8ezIYNG2jatCmrVq0iISGByMhIfvzxR6tJ0OzZs7n11lv58ccfmT9/PqtWrcLHx4dFixaRkJBgc7nSjB07Fnd3d1atWmWX9hYnNDSU06dPm98Xntz0+vXrZGRkEBgYWOz2mZmZbNq0icGDB9OgQYNKrasQAhRVVVVnV0IIIVzZ6NGj2bJlC2fPnsXX17dSjvHll18SFxfH/v378fHxsVj30ksvcebMmRITw2XLljFu3Dh27dpFjx49KqWOQoi/SYIlhBAVdPbsWSIjI3n55Zd54YUXKu04EyZM4MCBA7z99tt07tyZy5cvM3fuXDZu3MiePXuKvT1oNBpp2bIlUVFRfPLJJ5VWPyHE3+QWoRBCVFBYWBgffvhhpfVeFVi8eDEPPfQQjz76KDqdjrZt25KWlsb3339f4tir33//nQcffJC33367UusnhPib9GAJIYQLKstTi0II55EESwghhBDCzuTrjxBCCCGEnUmCJYQQQghhZ5JgCSGEEELYmSRYQgghhBB2JgmWEEIIIYSdSYIlhBBCCGFnkmAJIYQQQtiZJFhCCCGEEHYmCZYQQgghhJ1JgiWEEEIIYWeSYAkhhBBC2JkkWEIIIYQQdiYJlhBCCCGEnUmCJYQQQghhZ5JgCSGEEELY2f8DXrDdoC8/kQ8AAAAASUVORK5CYII=", "text/html": [ "\n", "
| \n", " | ISO1 | \n", "ISO2 | \n", "f_ij | \n", "REACNUM | \n", "NUM1 | \n", "NUM2 | \n", "INPUT2 | \n", "NUM3 | \n", "NUM4 | \n", "OUTPUT2 | \n", "TYPE | \n", "V | \n", "VAR | \n", "idx1 | \n", "idx2 | \n", "
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 0 | \n", "Cl-36 | \n", "K-40 | \n", "[8.169958283745773e-11, 7.624890504878784e-11,... | \n", "1718 | \n", "1.0 | \n", "1.0 | \n", "He-4 | \n", "1.0 | \n", "0.0 | \n", "OOOOO | \n", "(a,g) | \n", "[167168.0, 166866.0, 166242.0, 165283.0, 16364... | \n", "1.0 | \n", "139 | \n", "4 | \n", "
| 1 | \n", "Cl-37 | \n", "K-40 | \n", "[4.505171860551684e-09, 4.350351283106481e-09,... | \n", "1734 | \n", "1.0 | \n", "1.0 | \n", "He-4 | \n", "1.0 | \n", "1.0 | \n", "Neutron-1 | \n", "(a,n) | \n", "[2156580.0, 2151220.0, 2140140.0, 2123160.0, 2... | \n", "1.0 | \n", "140 | \n", "4 | \n", "
| 2 | \n", "Ar-37 | \n", "K-40 | \n", "[2.5795605395223004e-08, 2.4975616779074708e-0... | \n", "1923 | \n", "1.0 | \n", "1.0 | \n", "He-4 | \n", "1.0 | \n", "1.0 | \n", "H-1 | \n", "(a,p) | \n", "[785208.0, 783343.0, 779491.0, 773582.0, 76353... | \n", "1.0 | \n", "154 | \n", "4 | \n", "
| 3 | \n", "Ar-39 | \n", "K-40 | \n", "[-1.3521029734597534e-08, -1.6877028055700458e... | \n", "1944 | \n", "1.0 | \n", "1.0 | \n", "H-1 | \n", "1.0 | \n", "0.0 | \n", "OOOOO | \n", "(p,g) | \n", "[20233500000.0, 20216300000.0, 20180700000.0, ... | \n", "1.0 | \n", "156 | \n", "1 | \n", "
| 4 | \n", "Ar-40 | \n", "K-40 | \n", "[-6.530672998386538e-09, -6.502006065952314e-0... | \n", "1960 | \n", "1.0 | \n", "1.0 | \n", "H-1 | \n", "1.0 | \n", "1.0 | \n", "Neutron-1 | \n", "(p,n) | \n", "[12394000000.0, 12372400000.0, 12327500000.0, ... | \n", "1.0 | \n", "157 | \n", "1 | \n", "
| 5 | \n", "Ar-40 | \n", "K-40 | \n", "[-6.530672998386538e-09, -6.502006065952314e-0... | \n", "1966 | \n", "1.0 | \n", "0.0 | \n", "OOOOO | \n", "1.0 | \n", "0.0 | \n", "OOOOO | \n", "(-,g) | \n", "[7.80646e-09, 7.78872e-09, 7.75207e-09, 7.6958... | \n", "1.0 | \n", "157 | \n", "-99 | \n", "
| 6 | \n", "K-39 | \n", "K-40 | \n", "[3.0833847171387215e-07, 2.1249016189631022e-0... | \n", "2143 | \n", "1.0 | \n", "1.0 | \n", "Neutron-1 | \n", "1.0 | \n", "0.0 | \n", "OOOOO | \n", "(n,g) | \n", "[3913650000000.0, 3911860000000.0, 39081500000... | \n", "1.0 | \n", "171 | \n", "0 | \n", "
| 7 | \n", "K-41 | \n", "K-40 | \n", "[-1.989211996596665e-08, -1.9817456924468115e-... | \n", "2172 | \n", "1.0 | \n", "0.0 | \n", "OOOOO | \n", "1.0 | \n", "1.0 | \n", "Neutron-1 | \n", "(g,n) | \n", "[0.649513, 0.646051, 0.638933, 0.6280979999999... | \n", "1.0 | \n", "173 | \n", "-99 | \n", "
| 8 | \n", "Ca-41 | \n", "K-40 | \n", "[-3.961511696224067e-07, -3.946922481026845e-0... | \n", "2378 | \n", "1.0 | \n", "0.0 | \n", "OOOOO | \n", "1.0 | \n", "1.0 | \n", "H-1 | \n", "(g,p) | \n", "[0.384493, 0.382496, 0.37839, 0.372138, 0.3616... | \n", "1.0 | \n", "188 | \n", "-99 | \n", "
| 9 | \n", "Ca-40 | \n", "K-40 | \n", "[-8.978445128969501e-07, -8.964874624130155e-0... | \n", "2361 | \n", "1.0 | \n", "1.0 | \n", "Neutron-1 | \n", "1.0 | \n", "1.0 | \n", "H-1 | \n", "(n,p) | \n", "[174814000000.0, 174580000000.0, 174095000000.... | \n", "1.0 | \n", "187 | \n", "0 | \n", "
| 10 | \n", "Ca-40 | \n", "K-40 | \n", "[-8.978445128969501e-07, -8.964874624130155e-0... | \n", "2372 | \n", "1.0 | \n", "0.0 | \n", "OOOOO | \n", "1.0 | \n", "0.0 | \n", "OOOOO | \n", "(+,g) | \n", "[1.4743299999999998e-09, 1.4707300000000002e-0... | \n", "1.0 | \n", "187 | \n", "-99 | \n", "
| 11 | \n", "Sc-44 | \n", "K-40 | \n", "[7.622855538733467e-11, 7.659825776401773e-11,... | \n", "2617 | \n", "1.0 | \n", "0.0 | \n", "OOOOO | \n", "1.0 | \n", "1.0 | \n", "He-4 | \n", "(g,a) | \n", "[0.017265400000000004, 0.017176900000000002, 0... | \n", "1.0 | \n", "205 | \n", "-99 | \n", "
| 12 | \n", "Sc-43 | \n", "K-40 | \n", "[-7.159866986497739e-10, -7.186013702470423e-1... | \n", "2597 | \n", "1.0 | \n", "1.0 | \n", "Neutron-1 | \n", "1.0 | \n", "1.0 | \n", "He-4 | \n", "(n,a) | \n", "[1237960000000.0, 1237010000000.0, 12350500000... | \n", "1.0 | \n", "204 | \n", "0 | \n", "
| 13 | \n", "Ca-43 | \n", "K-40 | \n", "[5.498019721674256e-10, 5.434887868763542e-10,... | \n", "2408 | \n", "1.0 | \n", "1.0 | \n", "H-1 | \n", "1.0 | \n", "1.0 | \n", "He-4 | \n", "(p,a) | \n", "[13309100.0, 13281300.0, 13223900.0, 13135700.... | \n", "1.0 | \n", "190 | \n", "1 | \n", "