{ "cells": [ { "cell_type": "code", "execution_count": 1, "id": "de48c1db-2a54-450d-a01f-a754ee24d65a", "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Populating the interactive namespace from numpy and matplotlib\n" ] } ], "source": [ "%pylab ipympl \n", "\n", "import multizone_plot as mzp\n", "from multizone import mppnp_reader" ] }, { "cell_type": "code", "execution_count": 2, "id": "e4b3a841-26a5-4d89-a49c-ce20238831c2", "metadata": {}, "outputs": [], "source": [ "mixing_cases = []\n", "\n", "for case in [\"MLT\", \"PPM\", \"PPM3\", \"PPM10\", \"PPM50\"]:\n", " for ing in [\"0.00E+00\",\"7.95E+01\",\"7.95E+02\",\"7.95E+03\"]:\n", " res = mppnp_reader(initialpath = \"/data/niagara_project/projects/ocmerger_issa2025/CONDITIONS/initial_abund.dat\",\n", " surfpath = f\"/data/niagara_project/projects/ocmerger_issa2025/RUNS/{case}_RUNS/hif{ing}/H5_surf\",)\n", " \n", " mixing_cases.append(res)\n", " \n", "for ing in [\"gosh\", \"gosh_stronger\", \"partial_merger\", \"partial_merger_stronger\"]:\n", " res = mppnp_reader(initialpath = \"/data/niagara_project/projects/ocmerger_issa2025/CONDITIONS/initial_abund.dat\",\n", " surfpath = f\"/data/niagara_project/projects/ocmerger_issa2025/RUNS/GOSH_RUNS/{ing}/H5_surf\",)\n", " mixing_cases.append(res)" ] }, { "cell_type": "code", "execution_count": 13, "id": "490de96e-6530-492c-8eb0-1f20ef046f8e", "metadata": {}, "outputs": [], "source": [ "def bar_OP(ifig, objs, isotopes, cycle):\n", " '''Plot the mass fractions against the solar mass fractions.\n", " INPUTS:\n", " objs - the mppnp object you want to plot\n", " isotopes - the isotopes you want to plot\n", " cycle - the cycle you want to plot for\n", " label - the label for the data\n", " lines - true/False, whether to connect isotopes with the same Z with a line (use with separated = False)\n", " separated - True/False, whether to plot the isotopes separate from each other.\n", " If True, shows shaded bands of max/min values instead of individual points.\n", " '''\n", " \n", " plt.close(ifig); plt.figure(ifig, figsize=(15,6))\n", " \n", " if not isinstance(objs, list): objs = [objs]\n", " \n", " jmax = len(objs) - 1\n", " ymin_glo, ymax_glo = 0, 0\n", "\n", " xpos = np.linspace(1, len(isotopes), len(isotopes))\n", " all_Xi_Xsol = []\n", "\n", " # Collect data and display averages\n", " for j, obj in enumerate(objs):\n", " Xi_surf = obj.get('surf', cycle, isotopes)\n", " Xi_solar = obj.get('initial', np.nan, isotopes)\n", " Xi_Xsol = np.log10(Xi_surf/Xi_solar)\n", " all_Xi_Xsol.append(Xi_Xsol)\n", "\n", "\n", " # Process data for shaded regions\n", " all_Xi_Xsol = np.array(all_Xi_Xsol)\n", " min_Xi_Xsol = np.min(all_Xi_Xsol, axis=0)\n", " max_Xi_Xsol = np.max(all_Xi_Xsol, axis=0)\n", "\n", " # Create individual shaded regions\n", " for i in range(len(isotopes)):\n", " x_points = [xpos[i] - 0.4, xpos[i] + 0.4]\n", " y_min = [min_Xi_Xsol[i], min_Xi_Xsol[i]]\n", " y_max = [max_Xi_Xsol[i], max_Xi_Xsol[i]]\n", "\n", " plt.fill_between(x_points, y_min, y_max, alpha=0.3, color='darkmagenta', edgecolor=None,zorder=5)\n", " plt.plot(x_points, y_min, 'darkmagenta', linewidth=1.5,zorder=5)\n", " plt.plot(x_points, y_max, 'darkmagenta', linewidth=1.5,zorder=5)\n", " \n", " print(isotopes[i], round(y_max[0] - y_min[0],2))\n", " \n", " # Set labels and limits\n", " plt.ylabel(r'$\\mathrm{OP}=\\log_{10}(X_i / X_{i,\\mathrm{ini}})$', fontsize=14)\n", "\n", " ymin, ymax = min(min_Xi_Xsol), max(max_Xi_Xsol)\n", " ymin, ymax = objs[0].round_to_nearest(np.array([ymin, ymax]), 0.5)\n", " xmin, xmax = -0.5, len(isotopes)+1\n", "\n", " # Finalize plot\n", " ax = plt.gca()\n", " ax = mzp.plot_ticks(ax, ymin, ymax, xmin, xmax, 0.25, 0.5, noxlabel=True)\n", " ax.tick_params(axis='y', labelsize=14)\n", " \n", " ymin, ymax = ax.get_ylim()\n", " \n", " # Add isotope labels\n", " yshift = 0.3\n", " for idx, isotope in enumerate(isotopes, 1):\n", "\n", " ele, A = isotope.split('-')\n", " iso = fr'$^{{{A}}}\\mathrm{{{ele}}}$'\n", "\n", " text_y = ymax-yshift*1.2 if idx % 2 == 1 else ymin+yshift*0.4\n", " if idx%2 == 1: plt.axvline(idx, color='lightgrey', lw=0.5,zorder=1)\n", " \n", " plt.text(idx-0.1, text_y, iso, ha='center', fontsize=14)\n", " \n", " if 0 < ymax and 0 > ymin: plt.axhline(0, color='grey', lw=3, zorder=1)\n", "\n", " plt.tight_layout()" ] }, { "cell_type": "code", "execution_count": 4, "id": "2c9c520e-0eba-44d4-84df-2fa03a86b4d8", "metadata": {}, "outputs": [], "source": [ "lightoddZ = ['P-31', 'Cl-35', 'Cl-37', 'K-39', 'K-40', 'K-41', 'Sc-45']" ] }, { "cell_type": "code", "execution_count": 8, "id": "1d946688-28cf-4217-af77-6d03eb95305e", "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "P-31 0.58\n", "Cl-35 1.76\n", "Cl-37 0.81\n", "K-39 2.42\n", "K-40 3.37\n", "K-41 2.13\n", "Sc-45 1.68\n" ] }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "c7e938182a034bd891d9596ea4b130bc", "version_major": 2, "version_minor": 0 }, "image/png": "iVBORw0KGgoAAAANSUhEUgAAAlgAAAGQCAYAAAByNR6YAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAA9hAAAPYQGoP6dpAABThElEQVR4nO3deVxV1d4/8M85TCIISoKijCmoIEoKmldlskDUcsrxlwqO+ZCUclPxqoiKaM4KlshNVLJrT3abUUwZFJXInG5FkSIiagrVOYEy798fPZzrkRn2GeB83q8Xr9x7r73Wd5+zYX9be+21JYIgCCAiIiIi0Ug1HQARERFRe8MEi4iIiEhkTLCIiIiIRMYEi4iIiEhkTLCIiIiIRMYEi4iIiEhkTLCIiIiIRMYEi4iIiEhkTLCIiIiIRMYEi4iIiEhkTLCIiIiIRMYEi4iIiEhkTLCIiIiIRMYEi4iIiEhkTLCIiIiIRMYEqw5btmyBRCKBRCLBxYsXm7xfdXU19u7dCzc3NxgbG8PS0hIzZszAzZs3VRgtERERaRsmWE/5z3/+g4iICJiYmDR730WLFiE0NBSCICA0NBSjR4/Gxx9/DE9PT+Tk5KggWiIiItJGEkEQBE0HoS0qKirw/PPPw8DAAE5OTkhMTMSFCxfw/PPPN7pvSkoK/Pz84OXlhVOnTsHQ0BAAkJSUhDFjxsDf3x8nT55U9SEQERGRFmAP1hOioqLw/fff47333oOenl6z9j1w4AAAYMOGDYrkCgACAwPh4+OD5ORk3L59W9R4iYiISDsxwfo/3333HaKiohAREQEXF5dm75+amgoTExMMHz681raAgAAAQFpaWqvjJCIiIu2nr+kAtEFZWRlmz54Nd3d3LF++vNn7l5SU4N69e+jfv3+dPV9OTk4AUO84LEEQUFhYCENDQ0gkEsV6IyMjGBkZNTseIiIiap6ysjKUlZUplgVBQHl5Obp27ap0bW4qJlgA1q5di5ycHFy6dKnZtwYBQCaTAQDMzc3r3G5mZqZU7mlyuRxWVla11q9cuRLh4eHNjoeIiIiaJzo6Gps3b661/o8//qj3+t4QnU+wLly4gG3btmHdunXo37+/RmL4888/61y/efPmOr9sIiIiUo8///yTCVZzVVZWYs6cORgwYABWrlzZ4npqPviGeqieLPe0Tp06AQDy8/MVvV1tze3bt2FnZ6fpMEjDeB4QwPOA/qstnwtyuRy2traKa3Rz6XSCVVxcrBgX9eSTf08aNmwYAODf//43JkyYUGcZExMTWFtbIzc3F1VVVbVuM9a0UTMW62k193bNzMzabILVqVOnNhs7iYfnAQE8D+i/2sO50JLxV4COJ1hGRkaYN29endvS09ORk5ODl19+GZaWlnBwcGiwLm9vb/zrX/9CRkYGvLy8lLbVzH/19HoiIiJqn3Q6wTI2NkZ8fHyd24KCgpCTk4Pw8HCliUYLCwtRWFiIrl27omvXror1CxcuxL/+9S+sWbOm1kSjqamp8Pf3h729vWoPiIiIiLQC58FqppiYGPTr1w8xMTFK6319fTF//nykp6dj0KBBWLFiBWbPno0JEybAwsICe/fu1VDEREREpG5MsES0f/9+7N69GwCwe/dufPXVV5g4cSK++eYbODs7azg6IiIiUhcmWPVISEiAIAi13kO4bt06CIKAdevW1dpHKpUiNDQU//nPf1BaWorCwkL861//Qq9evdQUddPt3LkTrq6uMDU1RefOneHn54fMzEzF9o8//hgvvvgiLCwsIJFIcOvWLc0FS6Jq7Lt3cHCARCKp9bN161YNRk3qsHjxYkgkklo99Lt374a9vT06dOiAESNG4OrVqxqKkFShru993bp1tf4GeHh4aDDKtocJlo6yt7fHjh07cPXqVZw/fx69e/dGQEAAioqKAPw1O72XlxfWr1+v4UhJbI1991lZWbh3757i5+jRowCASZMmaTJsUrEvvvgCFy5cQI8ePZTWHz16FCtWrMCGDRtw6dIlxflSM/0MtW31fe8AMHDgQKW/BTUPbFETCaRxMplMACDIZDKNx5Camqq0/vr16wIAITc3t8H9b926pcLoSJXq++5rzJw5U/Dy8mpSXY2dB7m5uQIAYc6cOc0Nk1To/v37go2NjXDt2jXB3t5e2Lt3r2Kbh4eH8MYbbyiWKyoqhGeeeUZ455136q2Pfw/ahoa+94iICGHw4MGtbqMtnwutvTazB4tQXl6OuLg4dOnSBW5ubs3a99atW5BIJEq3lQwNDWFra4uZM2fi2rVrKoqaxNDYdy+TyfDvf/8bwcHBDdZz6dIlzJs3Dz4+PjAxMYGxsTF69eqFWbNm4dSpU6oKn0QSHByM0NDQWudAeXk5Ll++jBdeeEGxTl9fHz4+Prhw4YJS2Zq/BaNHj66zjd27d0MqlcLOzg4//fST+AdBzVbf917jxx9/hLW1NXr37o3g4GDcv3+/znIlJSXYtGkTBg0aBFNTUxgZGcHGxgYjR47Eli1bcOPGDVUehtbS6WkadN3Zs2cRGBiIx48fo3v37jh16hQsLCxaVJe9vT2CgoIA/DWB68WLF/HBBx/g448/xunTpzF8+HARI6fWaup3/8EHH0BPTw9Tpkyps57q6mr8/e9/x86dO6Gvr49hw4Zh0qRJMDAwwM2bN/Hll18iMTER69evx5o1a1R9WNQCMTExKCkpQVhYWK1thYWFqKqqQrdu3ZTWW1lZNeuiuXbtWmzYsAF9+/ZFcnIybG1tWx03tU5D3zsADB06FAkJCejbty8KCgqwdu1a+Pn54fLlyzAyMlKU+/PPPzFixAhcu3YNvXv3xquvvopnnnkGhYWF+Oabb/DOO+9g0KBBWjkWWdWYYOkwDw8PXLlyBUVFRThw4ACmTp2KzMxMpfm9msre3r7WwP/Vq1cjKioK//jHP5CamipO0CSKpn737733HqZOnQoTE5M661m9ejV27twJd3d3fPTRR9DX11ea7+3x48eIiYlRjO8i7ZKdnY0NGzYgMzMTUqn4NzQEQcCSJUsQGxsLDw8PJCUltejvC4mrKd97YGCg4t9ubm4YPHgw7Ozs8MUXX2Dy5MmKbbt27cK1a9cwf/58xMXF1Zr1/Ny5c7r7nYt7x5JaQhvGYAmCIPTu3Vt4++23ldY1NgarZkxNXWN07t+/LwAQOnbsqIpwSUR1fff/+c9/BADC2bNn69wnJydH0NPTE5555hnh/v37giDUP96itLRUEASOwdI2Bw8eFCQSiaCnp6f4ASBIpVJh4MCBQllZmaCnpyd8/vnnSvtNnjxZmD17ttK6mu82ICBAuHXrllBeXi7MnDlTACD4+fkJcrlcnYdGDWjse69P3759ha1btyqtCwwMFAAIly9frnOf+v4mpKWlCePHjxesrKwEQ0NDwcbGRpg4cWK9f280obXXZvZgkYIgCCgrKxO93pa+x4nUp67v/r333oOTkxNGjBhR5z4JCQmoqqrCokWLat1CetqTtxRIe0yYMKHWo/cBAQEICgpCcHAwDA0N8dxzz+H06dMYN24cAKCyshKpqanYuHFjvfWWlpZiwoQJirkAP/jgA54DWqSx770uv//+O/Ly8mq9Nu6ZZ54BAPz8889wd3dvUvu7d+/G0qVLYWxsjIkTJ8LOzg4FBQU4d+4cPvroo3r/5rQ1TLB01IoVK/Dyyy/DxsYGv/32G/bt24c7d+4oun5/++033L59WzHO4ocffsAff/wBOzu7Jo/T2rdvHwBgyJAhqjkIapHGvnvgr4toYmIi3nzzzXrrycjIAAD4+fmpOmRSkc6dO6Nz585K6wwMDBQDmwFg6dKlmDdvHgYPHoxBgwZh27Zt0NfXx8yZM+usUy6XY9asWcjKysLcuXMRFxcHPT09VR8KNUNTvve33noLL730Euzs7HDnzh2sWrUKPXv2xJgxY5T2mzJlChITEzF//nx888038Pf3x+DBgxWJ19OuXr2KZcuWwdraGhkZGUoJmyAIuHfvnqjHqklMsHTU3bt3MX36dDx48AAWFhbw9PTE2bNn0a9fPwDAZ599pvR/MmPHjgUAHDx4UDGY/Ul5eXmKMVglJSXIzMzE2bNn0aFDB0RFRan8eKjpGvvuAeDLL79EYWEhZs+eXW89NU8U2djYqDxm0pyZM2fi4cOHWLVqFX799Vd4eHjg5MmTMDMzq7N8zdOFw4YNwz//+U91hkoiys/Px/Tp01FYWIhu3brB29sbR44cQceOHZXKvfzyy9i+fTsiIiKwfft2bN++HQDQq1cvjB49Gq+88orSuMz9+/ejuroaGzdurNUbJpFI6pyPq80S834ltUzNfV5nZ2ehX79+QkxMjKZDarKacRdP/hgYGAg2NjbCzJkzhWvXrmk6RFKRvn37CgCE7OxsxTrOg6W7ar5bFxcXoVu3bgIAITIyUtNhkZrI5XLhww8/FN58801hxIgRgoGBgQBAMDIyEj799FNFucGDBwsAhDt37mgw2obFxMQI/fr1E5ydnTkPVnuRlZWFH374ASEhIZoOpdm8vLwgCAIEQUB5eTny8/Px/vvvN3teLWo7unfvDgAoKCjQcCSkTWxtbXHs2DHY2NggIiICERERmg6J1KBTp06YMmUKdu7cibNnz+Lhw4f4n//5H5SVlWHevHkoLy8H8NfcehKJBNbW1hqOuH4hISH44YcfkJWV1ap6mGARUYvUzG12+vRpDUdC2sbBwQFpaWmws7PD+vXrsXr1ak2HRGpmbm6OmJgY9OzZE4WFhbh+/TqAv8Z/Ce1srFV9mGARUYsEBQVBT08PcXFxePjwYYNlVfF0Kmm3Z599FqmpqbC3t0dUVBTCw8M1HRKpmUQiqTVmq+ahp+TkZE2EpFZMsIioRXr37o3ly5ejsLAQgYGByM3NrVWmtLQUO3bsqDUJLekGR0dHpKWlwdHREZs3b8by5cs1HRKJbP/+/fXeSvvkk0/wyy+/oHPnzujfvz8A4LXXXoOenh5Wr16NvLw8pfKCIODu3bsqj1ld+BQhEbXYxo0bUVpaip07d6JPnz4YNmwYPD09YWBggNzcXHz99dcoKipqcM4kat/s7e2RlpYGX19fbN26FVVVVYonzajtS0pKwmuvvYbevXtj+PDh6NGjB0pKSnD58mWcPXsWUqkU+/btU8yD5ubmhl27diE0NBSurq6YMGEC7O3tcf/+faSnp2Ps2LHYtWuXZg9KJEywiKjFpFIpduzYgZkzZ+Kdd97BmTNnkJWVherqalhbWyMgIADBwcFKLwsm3WNra6tIsnbs2IGqqqp2cxHVdVu2bMHw4cNx6tQppKenK8ZW9ezZE3PmzMErr7yimKS2xuuvv47+/ftj+/btSEpKQnFxMaysrDB06FBMnTpVE4ehEhJBEARNB6Hr5HI5zM3NIZPJ6p1bRtvl5eUpzXVCuonnAQE8D+i/2vK50NprM8dgEREREYmMCRYRERGRyJhgEREREYlMpxOs0tJSLFu2DF5eXujRowc6dOiA7t27Y/jw4Th48CAqKiqaVE9qaiokEkm9PwkJCao9ECIiItIqOv0UYXFxMd555x0MGTIEY8eOhaWlJX7//XckJSVh7ty5+Ne//oWkpCRIpU3LQ729veHj41Nrvbu7u7iBExERkVbT6QTLwsICMpkMhoaGSusrKyvx4osvIjk5GUlJSRg7dmyT6vPx8eGEikRERKTbtwilUmmt5AoA9PX1MXHiRADAL7/8ou6wiIiIqI3T6R6s+lRXV+PEiRMAoJjevylycnKwa9cuPH78GDY2NvDz80PPnj1VFSYRERFpKSZYAMrLy7Fp0yYIgoCioiKcPn0a2dnZCA4OxqhRo5pcz9GjR3H06FHFsr6+PpYsWYKtW7dCT09PFaETERGRFmKChb8SrMjISMWyRCLB3//+d0RHRzdpf0tLS2zevBnjxo2Dg4MDSkpKcOHCBaxcuRI7d+6ERCJp0ru35HK50rKRkZHi/U1ERESkOmVlZSgrK1MsP31Nbi6dHoNVw9TUFIIgoKqqCvn5+YiNjUV8fDx8fHya9AG7urpixYoVcHV1hYmJCaysrDB+/HikpKTA0tISe/bswYMHDxqtx9bWFubm5oqfpiZ4RERE1DrR0dFK12BbW9tW1ccE6wlSqRQ2NjZYvHgx4uLikJGRgaioqBbX1717d4wfPx6VlZXIzMxstHx+fj5kMpniJzw8vMVtExERUdOFh4crXYPz8/NbVR9vEdbD398fwF+TiLZG165dAQAlJSWNljUzM2uzL3smIiJqy8QelsMerHrcvXsXAGBgYNCqemp6rhwcHFobEhEREbUROp1g/fDDD3j06FGt9Y8ePcKyZcsAAGPGjFGsLywsRHZ2NgoLC5XKX7p0qc76d+/ejZSUFDg5OcHT01PEyImIiEib6fQtwg8//BA7duzAiBEj4ODgADMzMxQUFCApKQlFRUUYOXIkli5dqigfExODyMhIREREKM3YPnnyZBgYGMDDwwM2NjYoKSnBxYsXcfnyZXTu3BmJiYmcpoGIiEiH6HSCNW7cONy9exfnz5/HhQsXUFxcDHNzcwwYMADTp0/H3Llzoa/f+Ee0ePFinDx5Eunp6SgqKoJUKoW9vT3efPNNhIWFwcbGRg1HQ0RERNpCIgiCoOkgdJ1cLoe5uTlkMlmbHeSel5cHe3t7TYdBGsbzgACeB/RfbflcaO21WafHYBERERGpAhMsIiIiIpExwSIiIiISGRMsIiIiIpExwSIiIiISGRMsIiIiIpExwSIiIiISGRMsIiIiIpExwSIiIiISGRMsLeLp6QkXFxfExsZqOhQiIiKdFBsbCxcXF3h6eraqHp1+F6G2ycrKarOvyiEi7SUIAioeVaitvcpHlSgvKVdbewYdDSCRSNTWHrVvISEhCAkJUbwqp6WYYBERtXMVjyqwx3SPpsNQmdDiUBiaGGo6DCIlvEVIREREJDL2YBERtXMGHQ0QWhyK3K9y1dLew4cPYWlpqZa2HMc4wqCjgVraImoOJlhERO2cRCKBoYkh9Duo50++npGe2trirUHSVrxFSERERCQyJlhEREREImOCRURERCQyJlhEREREImOCRURERCQynU6wSktLsWzZMnh5eaFHjx7o0KEDunfvjuHDh+PgwYOoqGj6zMfV1dXYu3cv3NzcYGxsDEtLS8yYMQM3b95U4REQERGRNtLpBKu4uBjvvPMOJBIJxo4di2XLlmHixIkoKCjA3LlzMW7cOFRXVzeprkWLFiE0NBSCICA0NBSjR4/Gxx9/DE9PT+Tk5Kj4SIiIiEib6PQ8WBYWFpDJZDA0VJ5HpbKyEi+++CKSk5ORlJSEsWPHNlhPSkoK4uPj4eXlhVOnTinqmzlzJsaMGYPXX38dJ0+eVNlxEBERkXbR6R4sqVRaK7kCAH19fUycOBEA8MsvvzRaz4EDBwAAGzZsUKovMDAQPj4+SE5Oxu3bt0WKmoiIiLSdTidY9amursaJEycAAP3792+0fGpqKkxMTDB8+PBa2wICAgAAaWlp4gZJREREWkunbxHWKC8vx6ZNmyAIAoqKinD69GlkZ2cjODgYo0aNanDfkpIS3Lt3D/3794eenl6t7U5OTgDAcVhEREQ6hAkW/kqwIiMjFcsSiQR///vfER0d3ei+MpkMAGBubl7ndjMzM6VyDZHL5UrLRkZGMDIyanQ/IiIiap2ysjKUlZUplp++JjcXbxECMDU1hSAIqKqqQn5+PmJjYxEfHw8fH59Wf8DNYWtrC3Nzc8VPUxI8IiIiar3o6Gila7CtrW2r6mOC9QSpVAobGxssXrwYcXFxyMjIQFRUVIP71PRc1ddDVZOg1dfD9aT8/HzIZDLFT3h4eDOPgIiIiFoiPDxc6Rqcn5/fqvp4i7Ae/v7+AP4awN4QExMTWFtbIzc3F1VVVbXGYdWMvaoZi9UQMzMzxS1FIiIiUh+xh+WwB6sed+/eBQAYGBg0Wtbb2xslJSXIyMiota1m/isvLy9xAyQiIiKtpdMJ1g8//IBHjx7VWv/o0SMsW7YMADBmzBjF+sLCQmRnZ6OwsFCp/MKFCwEAa9asQXl5uWJ9UlISUlNT4e/vD3t7e1UcAhEREWkhnb5F+OGHH2LHjh0YMWIEHBwcYGZmhoKCAiQlJaGoqAgjR47E0qVLFeVjYmIQGRmJiIgIrFu3TrHe19cX8+fPR3x8PAYNGoSxY8fi3r17OHbsGCwsLLB3714NHB0RERFpik4nWOPGjcPdu3dx/vx5XLhwAcXFxTA3N8eAAQMwffp0zJ07F/r6TfuI9u/fDzc3N8TFxWH37t0wNTXFxIkTERUVhV69eqn4SIiIiEibSARBEDQdhK6Ty+UwNzeHTCZrs4Pc8/LyeBuUeB5ouRuf31BLOw8ePICVlZVa2ur1Ev8HVpu15b8Jrb026/QYLCIiIiJVYIJFREREJDImWEREREQiY4JFREREJDImWEREREQiY4JFREREJDImWEREREQiY4JFREREJDImWEREREQiY4KlRTw9PeHi4oLY2FhNh0JERKSTYmNj4eLiAk9Pz1bVI/q7CFNSUnD69GlkZGTgzp07KCwsRMeOHWFpaQk3Nzd4e3tj3Lhx6N69u9hNt3lZWVlt9lU5RERE7UFISAhCQkIUr8ppKVESrJKSEuzZswcHDhxAXl4eal5v2KFDB1hYWODx48f4z3/+g2vXruH999+HgYEBXnrpJSxduhTDhw8XIwQiIiIirdHqW4TvvvsuevfujX/84x8wMzPDhg0bcPr0achkMjx69Ah37txBUVERKioqkJ2djUOHDmHq1KlITk6Gl5cXJk2ahNzcXDGOhYiIiEgrtDrBWrJkCV588UVcu3YNV65cwapVq+Dr64tOnToplZNIJHB2dsasWbNw5MgR/Prrr9i/fz+uXr2KI0eOtDYMIiIiIq3R6luE33//PZydnZu9n7GxMebPn4/g4GDcvn27tWEQERERaY1W92C1JLl6kp6eHhwdHVsbBhEREZHW4DQNRERERCITfZqGJy1fvhwREREwMTHB8uXLGyz79ttvqzIUIiLScYIgoOJRhabDUAmDjgaQSCSaDoOeoNIEKysrCxUVFYp/14cnBRERqVrFowrsMd2j6TBUIrQ4FIYmhpoOg56g0gQrJSWlzn8TERERtWcqTbC0XUFBAf73f/8XX331FbKzs3H//n1YWFhg+PDhWL58OYYOHdqkelJTU+Hr61vv9oMHDyIoKEikqImIqCUMOhogtDgUuV+1r7kXHcc4wqCjgabDoKeoNcG6cuUKzpw5gwcPHqC6ulppmybGYO3duxdbtmxBr1694O/vD0tLS+Tk5OCTTz7BJ598gqNHj2LatGlNrs/b2xs+Pj611ru7u4sXNBERtYhEIoGhiSH0O7SvvgXeGtROajvLdu/ejaVLl8LJyQnW1tZK4640NQZryJAhSE1Nhbe3t9L6s2fPYtSoUVi8eDEmTJgAIyOjJtXn4+ODdevWqSBSIiIiakvUlmBt3boVsbGxWLx4sbqabNSkSZPqXD9y5Ej4+voiOTkZ169fh4eHh5ojIyIiorZMbQlWSUkJ/P391dVcqxkY/HU/W1+/6R9RTk4Odu3ahcePH8PGxgZ+fn7o2bOnqkIkIiIiLaW2BCs4OBjHjx9vdD4sbXD79m18/fXXsLa2hpubW5P3O3r0KI4ePapY1tfXx5IlS7B161bo6empIlQiIiLSQmod6RcdHY3k5GS4ubkpeohqaMtEoxUVFZg1axbKysqwZcuWJiVGlpaW2Lx5M8aNGwcHBweUlJTgwoULWLlyJXbu3AmJRILt27c3Wo9cLldaNjIyavL4LyIiImq5srIylJWVKZafviY3l9oSrMuXL8Pd3R1VVVW4cuWK0jZtmWi0uroaQUFBSE9Px4IFCzBr1qwm7efq6gpXV1fFsomJCcaPH4+hQ4diwIAB2LNnD1asWAErK6sG67G1tVVajoiI4KB5IiIiNYiOjkZkZKRo9aktwdL2iUarq6sxd+5cHD16FK+++irefffdVtfZvXt3jB8/HvHx8cjMzMRLL73UYPn8/HyYmZkpltl7RUREpB7h4eFYtmyZYlkul9fq+GiO9jUZSAtVV1cjODgYhw8fxowZM5CQkACpVJz3YHft2hXAX4P8G2NmZqaUYBEREZF6iD0sR+df9vxkcjVt2jQcOXJE1AHpmZmZAAAHBwfR6iSipuMLfolIE3T6Zc81twUPHz6MKVOmIDExscHkqrCwEIWFhejatauiZwoALl26hMGDB9cqv3v3bqSkpMDJyQmenp4qOQYiahhf8EtEmqDTL3tev349Dh06BFNTUzg7O2Pjxo21ykyYMEHxqpuYmBhERkbWGnw+efJkGBgYwMPDAzY2NigpKcHFixdx+fJldO7cudHEjYiIiNoXnR6DdevWLQBAcXExoqKi6izj4ODQ6LsEFy9ejJMnTyI9PR1FRUWQSqWwt7fHm2++ibCwMNjY2IgcORE1FV/wS0SaIBEEQdB0ELpOLpfD3NwcMpmszQ5yz8vLg729vabDIA3T5vPgxuc3NB2CqHq91KvZ+6jrM3jw4EGj09KIRZs/B3VpyWegLtr8N6Exrb02i/OoHBEREREpMMEiIiIiEplWJFhSqRR+fn64dOmSpkMhIiIiajWtSLDee+89eHt7IzQ0VNOhEBEREbWaShOsJUuWoLS0FAAgk8nqLRcUFISIiAhkZGSoMhwiIiIitVDpNA0ymQylpaXo0KEDunTpAjs7OwwcOBADBgxQ/NfJyYkzERMREVG7otIE6/Dhw4p/Z2dn4+rVq7h27RquXr2KI0eO4Pbt2+jYsSNcXV0Vr5QhIiIiauvUNtGos7MznJ2dMWXKFMU6mUymSLqIiIiI2gtRxmAlJSW1aD9zc3N4eXnh9ddfFyMMIiIiIq0gSoI1fvx4xMfHi1GVTvP09ISLiwtiY2M1HQoREZFOio2NhYuLCzw9PVtVjyi3CHv27IlFixbh1q1bdb4wuS4///wznJ2dxWi+3cjKymqzr8ohIiJqD0JCQhASEqJ4VU5LidKDlZmZieeeew7R0dGYPXs2Kisr6y17/fp1TJ8+Ha6urmI0TURERKR1REmwrKyskJ6ejjFjxiAxMRGjR4+GXC5XKpOVlYXx48fD3d0dH374IQYNGiRG00RERERaR7SJRjt27IhPP/0Ur732Gs6cOYMRI0YgPz8f6enpCAgIwPPPP4/PP/8cw4cPx4kTJzgtAxEREbVbok7TIJVKsW/fPjg6OmLFihXo27cvSktLIQgCRo0ahTVr1sDLy0vMJomIiIi0jujzYH322Wf46KOPAACPHz+GRCJBVFQUwsPDxW6KiIiISCuJdovw2LFjGDhwICZOnIhLly5h6tSpOHz4MMzNzREZGYnExESxmiIiIiLSaqL0YPXt2xc5OTnQ09PDrFmzsGrVKsUUDIMGDUJgYCDmzJmD/Px89mQRERFRuydKD1Zubi7mz5+Pn376CQkJCUrzW7m4uODChQtwc3PD6tWrsXjxYgiCIEazRERERFpJlB6smzdvomfPnvVu79GjB86dO4dJkyZh//79KCgowLFjx2BsbCxG80RERERaRZQerIaSqxqmpqb46quvMGvWLHzxxRfw8fERo+lWKSgowK5du+Dv7w87OzsYGhqie/fumDx5crOnkaiursbevXvh5uYGY2NjWFpaYsaMGbh586aKoiciIiJtJUqCtW/fPhQUFDRaTl9fH4cOHUJ4eDi+/fZbMZpulb1792Lp0qW4efMm/P39ERYWhhEjRuDTTz/F3/72Nxw7dqzJdS1atAihoaEQBAGhoaEYPXo0Pv74Y3h6eiInJ0eFR0FERETaRpRbhK+//jqWLFmCQYMGYcKECXj55Zfh5uZWb/moqCg4ODiI0XSrDBkyBKmpqfD29lZaf/bsWYwaNQqLFy/GhAkTYGRk1GA9KSkpiI+Ph5eXF06dOgVDQ0MAwMyZMzFmzBi8/vrrOHnypMqOg4iIiLSLKD1YWVlZWLVqFcrLy7FmzRq4u7ujV69eCAsLQ1paGqqrq2vts2DBAjGabpVJkybVSq4AYOTIkfD19cXvv/+O69evN1rPgQMHAAAbNmxQJFcAEBgYCB8fHyQnJ+P27dviBU5ERERaTZQEa/DgwdiwYQOuXr2KmzdvYtu2bbCzs8OePXvg5+eHbt26ITg4GJ988gkePXokRpMqZ2BgAOCv25qNSU1NhYmJCYYPH15rW0BAAAAgLS1N3ACJiIhIa4k20WgNBwcHLF26FCkpKfj1119x8OBBjBw5Eh999BEmTZqErl274qWXXsJ7772HBw8eiN28KG7fvo2vv/4a1tbWDd7qBICSkhLcu3cPjo6O0NPTq7XdyckJADgOi4iISIeI/qqcJ1lYWGD27NmYPXs2ysrKcOrUKXz66af44osv8OWXX0IqleL555/HuXPnVBlGs1RUVGDWrFkoKyvDli1b6kyaniSTyQAA5ubmdW43MzNTKtcQuVyutGxkZNTo+C8iIiJqvbKyMpSVlSmWn74mN5foPVj1MTIywrhx43DgwAHcvXsXGRkZCAsLQ1FRkbpCaFR1dTWCgoKQnp6OBQsWYNasWWpt39bWFubm5oqf6OhotbZPRESkq6Kjo5Wuwba2tq2qT6U9WPWRSCQYNmwYhg0bhi1btmgihFqqq6sxd+5cHD16FK+++irefffdJu1X03NVXw9VTQZcXw/Xk/Lz8xU9XgDYe0VERKQm4eHhWLZsmWJZLpe3KslSaQ/WkiVLUFpaCqBpt8g0pbq6GsHBwTh06BBmzJiBhIQESKVN+2hMTExgbW2N3NxcVFVV1dpeM/aqZixWQ8zMzJR+mGARERGph5GRUa3rcGuoNMGSyWSKBKtLly5wcHDA+PHjsWbNGnz00Uf4+eefNf5ewprk6vDhw5g2bRqOHDnS6Lirp3l7e6OkpAQZGRm1ttXMf+Xl5SVKvERERKT9VJpgHT58GJ07dwYAZGdnY+vWrRgwYACuXr2Kv//97+jbty86deqEoUOHqjKMetXcFjx8+DCmTJmCxMTEBpOrwsJCZGdno7CwUGn9woULAQBr1qxBeXm5Yn1SUhJSU1Ph7+8Pe3t71RwEERERaR1RxmAlJSUhMDCwwTLOzs5wdnbGlClTFOtkMhmuXr2Ka9euiRFGs61fvx6HDh2CqakpnJ2dsXHjxlplJkyYAHd3dwBATEwMIiMjERERgXXr1inK+Pr6Yv78+YiPj8egQYMwduxY3Lt3D8eOHYOFhQX27t2rpiMiIiIibSBKgjV+/Hjs27cP8+fPb9Z+5ubm8PLy0tjts1u3bgEAiouLERUVVWcZBwcHRYLVkP3798PNzQ1xcXHYvXs3TE1NMXHiRERFRaFXr14iRk1ERETaTiKIMAjK0dERt2/fRnh4eJ29QHX5+eef4ezs3Nqm2wW5XA5zc3PIZLJWD6rTlLy8PN4GJa0+D258fkPTIYiq10vN/x83dX0GDx48gJWVlVra0ubPQV1a8hmoizb/TWhMa6/NoozByszMxHPPPYfo6GjMnj0blZWV9Za9fv06pk+fDldXVzGaJiIiItI6oiRYVlZWSE9Px5gxY5CYmIjRo0fXmgE1KysL48ePh7u7Oz788EMMGjRIjKaJiIiItI5oTxF27NgRn376KV577TWcOXMGI0aMQH5+PtLT0xEQEIDnn38en3/+OYYPH44TJ04gMzNTrKaJiIiItIqoM7lLpVLs27cPjo6OWLFiBfr27YvS0lIIgoBRo0ZhzZo1nA+KiIiI2j3RX5Xz2Wef4aOPPgIAPH78GBKJBFFRUQgPDxe7KSIiIiKtJNotwmPHjmHgwIGYOHEiLl26hKlTp+Lw4cMwNzdHZGQkEhMTxWqKiIiISKuJ0oPVt29f5OTkQE9PD7NmzcKqVasUUzAMGjQIgYGBmDNnDvLz89mTRURERO2eKD1Yubm5mD9/Pn766SckJCQozW/l4uKCCxcuwM3NDatXr8bixYs1/v5BIiIiIlUSpQfr5s2b6NmzZ73be/TogXPnzmHSpEnYv38/CgoKcOzYMRgbG4vRPBERETWBIAioeFShtvYqH1WivKS88YIiMOhoAIlEopa2mkKUBKuh5KqGqakpvvrqK8ybNw9HjhyBj48Pp2p4iqenJ/T09BASEoKQkBBNh0NERO1MxaMK7DHdo+kwVCK0OBSGJoatric2NhaxsbGoqqpqVT2iP0XYYGP6+jh06BBsbGywefNmdTbdJmRlZbXZV+UQERG1BzWdHDWvymkptSZYNaKiouDg4KCJpomIiHSWQUcDhBaHIverXLW09/DhQ1haWqq8HccxjjDoaKDydppDIwkWACxYsEBTTZOOUPdYA3XStrEGRNQ2SCQSGJoYQr+Dei7/ekZ6amlLjFuDYmv1UY8ePRobNmyAp6dns/ctKSnB3r170alTJ445ItFxrAEREWlKq6dpePjwIZ5//nn4+vri4MGDkMlkje5z8eJFvP7667C3t8eGDRvQrVu31oZBREREpDVa3YN16dIlHDp0CJGRkZg3bx4WLFiAPn36YPDgwejWrRs6d+6M0tJS/Pbbb/jpp5/w7bff4s8//4Senh6mT5+OjRs3ws7OToxjIVKi7rEG6qKNYw2IiEiZKDdG58yZg9mzZ+Orr77CwYMHkZqaWuercaRSKQYMGICJEydi/vz5sLa2FqN5ojqpe6yBuvDWIBGR9hPtyiORSDB27FiMHTsWAPDjjz/izp07KCoqgrGxMSwtLeHq6tqqRx6JiIiI2gKV/a99v3790K9fP1VVT0RERKS1RHkXIRERERH9l1oSrOLiYsTFxSE4OBiBgYEIDAxEcHAwDhw4gOLiYnWEUK/ExEQsWrQIHh4eMDIygkQiQUJCQrPqSE1NhUQiqfenufURERFR26by0b/Xrl1DQEAAKisr4ePjg2effRYA8ODBA6xatQoRERFITk5G//79VR1KnVavXo28vDx07doV1tbWyMvLa3Fd3t7e8PHxqbXe3d295QESERFRm6PyBCskJASjR49GfHw89PT0lLZVVlZi4cKFWLx4Mc6ePavqUOoUHx8PJycn2NvbY/PmzQgPD29xXT4+Pli3bp14wREREVGbpPIE69tvv0VcXFyt5Ar46+XPb731FgYNGqTqMOr1wgsvaKxtIiIiap9UnmB169YN3333Xb1PFH733XewsrJSdRhqkZOTg127duHx48ewsbGBn58fevbsqemwiIiISM1UnmAtXboU8+fPx3fffYdRo0YpXovz66+/4vTp03j33XexefNmVYehFkePHsXRo0cVy/r6+liyZAm2bt1aZw8eERERtU8qT7DeeOMNWFpaYteuXdizZw+qqqoAAHp6enjuuecQHx+PGTNmqDoMlbK0tMTmzZsxbtw4ODg4oKSkBBcuXMDKlSuxc+dOSCQSbN++vdF65HK50rKRkRGMjIxUFTYRERH9n7KyMpSVlSmWn74mN5dapmmYOXMmvvnmGzx69AgFBQUoKCjAo0eP8M0337T55AoAXF1dsWLFCri6usLExARWVlYYP348UlJSYGlpiT179uDBgweN1mNrawtzc3PFT3R0tBqiJyIioujoaKVrsK2tbavqU+tEowYGBrC2toa1tTUMDNr/y2q7d++O8ePHo7KyEpmZmY2Wz8/Ph0wmU/y05olGIiIiarrw8HCla3B+fn6r6tP4W3B///13fP7555g9e7amQ1GJrl27AgBKSkoaLWtmZgYzMzNVh0RERERPEXtYjsZflXP79m0EBwdrOgyVqem5cnBw0GwgREREpDYq78G6fft2g9vv3r2r6hBEU1hYiMLCQnTt2lXRMwUAly5dwuDBg2uV3717N1JSUuDk5ARPT091hkpEREQapPIEy8HBARKJpN7tgiA0uF3V4uPjce7cOQDA9evXFetSU1MBACNGjMD8+fMBADExMYiMjERERITSjO2TJ0+GgYEBPDw8YGNjg5KSEly8eBGXL19G586dkZiYyGkaiIiIdIjKE6wuXbpgw4YN8Pb2rnN7dnY2pk6dquow6nXu3DkcOnRIaV1GRgYyMjIUyzUJVn0WL16MkydPIj09HUVFRZBKpbC3t8ebb76JsLAw2NjYqCR2IiIi0k4qT7AGDx6M33//Ha6urnVur6yshCAIqg6jXgkJCUhISGhS2XXr1tX5rsEVK1ZgxYoV4gZGREREbZbKE6zFixc3+ASdnZ0dDh48qOowiIiIiNRG5QnWxIkTG9zepUsXzJkzR9VhEBEREamNxqdpICIiImpvRO/Bmjt3bqNlpFIpzMzM0KdPH4wbNw49e/YUOwwiIiIijRE9wUpISFBMu1DX4HWJRKK0fsmSJVi7di1Wr14tdihEREREGiH6LcIbN25g3LhxsLKywqZNm5CWlobs7GykpaVh06ZN6NatG15++WVkZmYiLi4OPXr0QEREBI4dOyZ2KEREREQaIXoP1rFjx5CZmYmrV6+iW7duivXOzs4YOXIkgoKC4O7ujpSUFCxfvhyBgYFwcXHBvn37MG3aNLHDISIiIlI70Xuw/vnPf2Lq1KlKydWTunfvjilTpuDAgQMAgJ49e2LcuHG4evWq2KEQERERaYToCdadO3cafRt1hw4dcOfOHcWynZ0dSktLxQ6FiIiISCNET7B69uyJTz75pN6EqbS0FJ988onSk4MPHjxAly5dxA6FiIiISCNET7DmzZuHGzduYMSIEfjss89QVFQEACgqKsJnn32GESNG4ObNm0rTOZw9exYDBw4UO5Q2x9PTEy4uLoiNjdV0KERERDopNjYWLi4u8PT0bFU9og9yX758OX788UckJiYqZnGXSqWorq4G8NfUDTNnzsTKlSsBAL/++ivGjh2L0aNHix1Km5OVlQUzMzNNh0FERKSzQkJCEBISArlcDnNz8xbXI3qCpaenh8OHDyMoKAhHjhzBtWvXIJfLYWZmhoEDB+L//b//h1GjRinKd+vWDTt37hQ7DCIiIiKNUdm7CP38/ODn56eq6omIiIi0Ft9FSERERCQylfVgZWRkICEhAVeuXFHcInR3d8ecOXMwYsQIVTVLREREpHEqSbCWLl2KPXv2KN45WPP+wUuXLuG9997DG2+8gR07dqiiaSIiIiKNE/0W4aFDh7B79244OTnh/fffx927d1FZWYl79+7h6NGjcHZ2xu7du3H48GGxmyYiIiLSCqInWO+88w5sbGyQmZmJGTNmoHv37pBIJOjWrRumT5+OixcvomfPnti3b5/YTRMRERFpBdETrO+//x6TJ0+ud+4Ic3NzTJ48Gd9//73YTRMRERFpBY08RSiRSDTRLBEREZFaiJ5gubq64vjx4yguLq5z+59//onjx4/D1dVV7KZbJDExEYsWLYKHhweMjIwgkUiQkJDQ7Hqqq6uxd+9euLm5wdjYGJaWlpgxYwZu3rwpftBERESk1URPsBYtWoQ7d+5g2LBhOH78OAoLCwEAhYWF+Oijj/C3v/0Nd+7cweLFi8VuukVWr16NuLg45OXlwdrausX1LFq0CKGhoRAEAaGhoRg9ejQ+/vhjeHp6IicnR8SIiYiISNuJPk1DcHAwLl++jJiYGEydOhVA7XcRLlmyBHPmzBG76RaJj4+Hk5MT7O3tsXnzZoSHhze7jpSUFMTHx8PLywunTp2CoaEhAGDmzJkYM2YMXn/9dZw8eVLs0ImIiEhLqWQerD179mDKlCm1Jhp97rnnMGfOHIwcOVIVzbbICy+80Oo6Dhw4AADYsGGDIrkCgMDAQPj4+CA5ORm3b9+GnZ1dq9siIiIi7aeymdxHjhypVYmUKqWmpsLExATDhw+vtS0gIACpqalIS0vDrFmzNBAdERERqZvKEixdUVJSgnv37qF///7Q09Ortd3JyQkAmjQOSy6XKy0bGRnByMhInECJiIioXmVlZSgrK1MsP31Nbq5WJ1hz585t0X4SiQT//Oc/W9u8xslkMgCod94vMzMzpXINsbW1VVqOiIjAunXrWhcgERERNSo6OhqRkZGi1dfqBKslUxoA7SfBElN+fr4iIQPA3isiIiI1CQ8Px7JlyxTLcrm8VsdHc7Q6wcrNzW1tFW1aTc9VfT1UNV2M9fVwPcnMzEwpwSIiIiL1EHtYTqsTLHt7ezHiaLNMTExgbW2N3NxcVFVV1RqHVTP2qmYsFhEREbV/GnlVTnvj7e2NkpISZGRk1NpWM/+Vl5eXusMiIiIiDWGC1QyFhYXIzs5WzE5fY+HChQCANWvWoLy8XLE+KSkJqamp8Pf31/mePiIiIl2i89M0xMfH49y5cwCA69evK9alpqYCAEaMGIH58+cDAGJiYhAZGVnr6T5fX1/Mnz8f8fHxGDRoEMaOHYt79+7h2LFjsLCwwN69e9V6TERERKRZOp9gnTt3DocOHVJal5GRoXS7rybBasj+/fvh5uaGuLg47N69G6amppg4cSKioqLQq1cv0eMmagpBEFDxqEJt7VU+qkR5SXnjBUVg0NEAEolELW0RETWXzidYCQkJTZ5qYt26dfXOSyWVShEaGorQ0FDxgiNqpYpHFdhjukfTYahEaHEoDE0MGy9IRKQBHINFREREJDKV9WBdu3YNV65cwezZs+tcJiLVM+hogNDiUOR+pZ756h4+fAhLS0uVt+M4xhEGHQ1U3g4RUUupLMH697//jfXr1ysSqqeXiUj1JBIJDE0Mod9BPaMB9Iz01NIWbw0SkbbjLUIiIiIikTHBIiIiIhIZEywiIiIikTHBIiIiIhIZEywiIiIikTHBIiIiIhIZEywt4unpCRcXF8TGxmo6FCIiIp0UGxsLFxcXeHp6tqoenX9VjjbJysqCmZmZpsMgIiLSWSEhIQgJCYFcLoe5uXmL62EPFhEREZHImGARERERiUxlCZa5uTns7OzqXSYiIiJqr1SWYL355pvIzc2td5mIiIioveItQiIiIiKRMcEiIiIiEhkTLCIiIiKRMcEiIiIiEhknGm2nBEFAxaMKtbVX+agS5SXlamnLoKMBJBKJWtoiIiJqCdESrAsXLuAf//gHsrKyIJFIMHToUERFRWHIkCFiNaEyWVlZiIiIwPnz51FRUQE3NzcsW7YMU6dObdL+CQkJCA4Ornd7SkoKfHx8RIq2aSoeVWCP6R61tqkuocWhMDQx1HQYRERE9RIlwbp+/TpGjRqF0tJSxbrTp0/j/Pnz+Oabb+Dq6ipGMyqRkpKCgIAAdOjQAdOnT0enTp1w/PhxTJs2Dfn5+QgLC2tyXePHj4e7u3ut9Q4ODuIFTERERFpPlARr8+bNKC0txT/+8Q8sWbIEwF8vS9ywYQO2bNmCw4cPi9GM6CorK7FgwQJIpVKkp6crkqO1a9diyJAhWLVqFV555RXY29s3qb4JEyYgKChIdQE3g0FHA4QWhyL3K/XMPfbw4UNYWlqqvB3HMY4w6Gig8naIiIhaQ5QE6+zZsxgxYgQ2bNigWBcZGYnU1FSkpaWJ0YRKnDlzBjdu3EBwcLBSz5O5uTlWrVqFoKAgHDp0CGvXrtVckC0kkUhgaGII/Q7qGWanZ6SnlrZ4a5CIiNoCUa6Iv/76K6ZPn15r/dChQ5GZmSlGEyqRmpoKAPD396+1LSAgAACalSBevnwZRUVFqKyshIODA1544QU888wzosRKREREbYcoCVZFRQVMTU1rrTcxMUFFhfqeZGuunJwcAICTk1Otbd27d4epqamiTFPs2aM8qNzY2BgRERFYsWJFk/aXy+VKy0ZGRjAyMmpy+0REVL+ap6srSys1HYqoykvK+XS1CMrKylBWVqZYfvqa3Fw6PU2DTCYD8NctwbqYmZkpyjTE0dERe/fuRUBAAGxsbPDbb7/hzJkzCA8Px8qVK9GxY0fF2LSG2NraKi1HRERg3bp1jR8IERE1ik9XU0Oio6MRGRkpWn2iJViJiYm4ePGi0rpffvkFADBmzJha5SUSCb788kuxmtcob29veHt7K5Z79uyJWbNmYdCgQfDw8MC6deuwePFi6Os3/HHn5+fDzMxMsczeKyIiIvUIDw/HsmXLFMtyubxWx0dziJZg/fLLL4qE6mknTpyotU4bujJreq7q66WSy+Xo0qVLi+t3dXXFiBEj8PXXX+PHH3+Em5tbg+XNzMyUEiwiIhJPzdPV7RGfrm49sYfliJJg5eaqZyoAsdWMvcrJycHgwYOVtt2/fx/FxcWtnii1a9euAICSkpJW1UNERK1T83Q1kTqIkmA1dZ4obePt7Y3o6GgkJyfXegry5MmTijItVVVVhW+//RZA2/2MiIiIqPlU9rLngoICfPvtt/j2229RUFCgqmZaZdSoUXj22Wdx9OhRXLlyRbFeJpNh06ZNMDQ0xOzZsxXr7927h+zs7Fq3FC9dulSr7qqqKqxcuRK//PILfH19YW1trbLjICIiIu0i6lOExcXF2LZtG957771aSVXPnj0xb948hIWF1Tmlgybo6+sjPj4eAQEB8PLyUnpVTl5eHrZt26b0mpvw8HAcOnQIBw8eVJqx3cPDAwMGDMCAAQPQs2dP/Pbbb0hLS8PPP/8MGxsbxMfHq//giIiISGNES7Bu3LiBwMBA3LhxA4IgoEePHorR9/n5+bhz5w7Wr1+Po0eP4sSJE3B0dBSr6Vbx9fXFuXPnEBERgWPHjile9rxlyxZMmzatSXWEhYXh4sWLOHXqFH777TcYGhqid+/eWL16NZYtW9aqgfJERETU9oiSYJWVlWHs2LH45ZdfMHPmTKxZswZ9+vRRKvPTTz9h48aNeP/99zFmzBhcuXJFa6YhGDJkCJKSkhotl5CQgISEhFrrt23bpoKoiIiIqK0SZQzWO++8g59//hkRERFITEyslVwBQJ8+fXDkyBFERkbip59+wrvvvitG00RERERaR5QE6/jx4+jdu3eTXoq8evVqODk54X//93/FaJqIiIhI64iSYP3www/w9/dv0uShEokE/v7++PHHH8VomoiIiEjriJJglZSU1Ps+v7qYmZlx4k0iIiJqt0RJsKysrOp9TU5dbty4AUtLSzGaJiIiItI6oiRYw4YNQ1JSEu7fv99o2fv37+PLL7/E8OHDxWiaiIiISOuIkmC99tprKC4uxsSJE1FYWFhvuaKiIkycOBGPHj3CwoULxWiaiIiISOuIMg+Wr68vFixYgAMHDqBfv35YtGgR/Pz8lCYaPX36NA4cOIDCwkLMmzcPfn5+YjRNREREpHVEm8l93759MDMzw86dOxEdHY3o6Gil7YIgQCqVYunSpXj77bfFapaIiIhI64iWYOnp6WHr1q1YuHAhEhIScOHCBcWYrO7du+Nvf/sbZs+eDWdnZ7GabHc8PT2hp6eHkJAQhISEaDocIiIinRMbG4vY2FhUVVW1qh5RX/YMAE5OToiKihK7Wp2QlZUFMzMzTYdBRESks2o6OeRyebOmoHqaKIPciYiIiOi/mGARERERiYwJFhEREZHImGARERERiYwJFhEREZHImGARERERiYwJFhEREZHImGARERERiUz0iUaJSHsIgoCKRxWoLK1US3tVZVVqaau8pBwGHQ0gkUhU3hYRUUswwcJfM6hHRETg/PnzqKiogJubG5YtW4apU6c2uY6ysjJs2bIFR44cQX5+PiwsLDBu3Dhs3LgRVlZWKoyeqH4Vjyqwx3SPpsNQidDiUBiaGGo6DCKiOul8gpWSkoKAgAB06NAB06dPR6dOnXD8+HFMmzYN+fn5CAsLa7SO6upqjB8/HidPnsTzzz+PyZMnIycnB/Hx8Th9+jQuXrwIS0tLNRwNERFR/dirrT46nWBVVlZiwYIFkEqlSE9Ph7u7OwBg7dq1GDJkCFatWoVXXnkF9vb2DdZz6NAhnDx5EjNmzMD777+v+ILfffddLF68GKtXr8b+/ftVfThEtRh0NEBocaja2su/nQ9bO1u1tGXQ0UAt7RC1J+zVVh+dTrDOnDmDGzduIDg4WJFcAYC5uTlWrVqFoKAgHDp0CGvXrm2wngMHDgAAoqOjlbLnRYsWYevWrXj//fexa9cuGBsbN1hPSUkJ9PT0Wn5AdSgtLRW1vvqUl5erpa2SkpJm76Ouz0BdWvIZqEultBIVqFBLWxWPmtcOz4P29/cA0O7fB21UUaKe309NeFTySNS/P609t3Q6wUpNTQUA+Pv719oWEBAAAEhLS2uwjtLSUmRmZqJPnz61erokEglefPFF7N+/H99++y1GjhzZYF179uxBhw4dmnEEjdP7SdyETdOqfqhq9j78DHScAKAC0MtpZ+fBlSrAAEAz7oi0t98FgL8PzSYAWKXpIFRj977dzfp9aExr/ydBpxOsnJwcAICTk1Otbd27d4epqamiTH1u3LiB6urqOut4su6cnJxGE6yysjKlZX19fejrt/Ar+r+LCtRzm119ytHsiwrpuArAZJOJpqNQiZJVJYD23BGhtkACnjP1qKysRGXlfy+aT1+Tm0unEyyZTAbgr1uCdTEzM1OUaU0dT5ZryM6dO5WWvb294evr2+h+deJFhYiIqMnOnj3b6F2r5tDpBEvbLF26FEZGRorlFvdeEdF/GfxfUt4ecZw/kWhGjhyJYcOGKZbLyspqdXw0h05fwWt6nerrXZLL5ejSpUur63iyXEPeeustRY9XawmCgMo31Hd/sKCgAD179lRLW/od9Zv1KO6tr26pLhgNcBjjoOkQ6nXnzh3Y2NhoOgyqh7p+FwoLC9G1a1e1tKXNvw/Utv8myOVyJlgt9eT4qMGDByttu3//PoqLizFkyJAG63j22WchlUrrHavV0Divp5mYmMDERMTbeqbiVdUY2WMZOlt1Vl+DzSD2gwOaJuo5IrIOHTpodXy6Tl2/C4aGhmpri+ebdmvLfxOqqlr3AIVOJ1je3t6Ijo5GcnIypk+frrTt5MmTijINMTY2xpAhQ3Dx4kXk5eUpPUkoCAJOnToFExMTeHh4iH8A1CB1T6inLto4oR4RESnT6QRr1KhRePbZZ3H06FGEhoYq5sKSyWTYtGkTDA0NMXv2bEX5e/fuQSaTwdraWumW38KFC3Hx4kWEh4crTTS6f/9+3Lx5EwsXLmx0DiwSHyfUIyIiTZFqOgBN0tfXR3x8PKqrq+Hl5YWFCxciLCwMAwcOxM8//4xNmzbBwcFBUT48PBz9+vXDv//9b6V65syZg4CAAHzwwQf429/+hpUrV+KVV17B//zP/8DR0REbN25U85ERERGRJul0DxYA+Pr64ty5c4iIiMCxY8cUL3vesmULpk2b1qQ6pFIpPv30U2zevBlHjhzBzp07YWFhgXnz5mHjxo18D6GGqPs1MerE18QQEWk3iSAIgqaD0HVyuRzm5uaQyWSiPUWobk+PPyPdxPNAu934/IZa2nnw4AGsrKzU0lavl3qppR1qmbb8N6G112advkVIREREpAo6f4uQiKi9U/cTtVVlVWpri0/VkrZigkVE1M615ydqAT5VS9qJtwiJiIiIRMYeLCKidk7dT9Tm386HrZ2t2trjU7WkjZhgERG1cxKJRK230PQ76vOWHek83iIkIiIiEhkTLCIiIiKRMcEiIiIiEhkTLC3i6ekJFxcXxMbGajoUIiIinRQbGwsXFxd4enq2qh4OctciWVlZbfZVOURERO1BSEgIQkJCFK/KaSn2YBERERGJjAkWERERkciYYBERERGJjAkWERERkciYYBERERGJjAkWERERkciYYBERERGJjAkWERERkciYYBERERGJTOcTLLlcjmXLlsHe3h5GRkZwcHDAW2+9heLi4mbVI5FI6v0JCgpSTfBERESklXT6VTklJSXw9vbGlStX4O/vjxkzZuDy5cvYtm0b0tLSkJ6ejg4dOjS5Pnt7+zqTKXd3d/GCJiIiIq2n0wnW22+/jStXrmDFihXYvHmzYv3KlSuxZcsW7Ny5E+Hh4U2uz8HBAevWrVNBpERERNSW6OwtQkEQEB8fD1NTU6xZs0Zp25o1a2Bqaor4+HgNRUdERERtmc72YOXk5ODu3bsICAiAiYmJ0jYTExMMHz4cJ0+eRH5+PmxtbZtU5x9//IG4uDgUFhbCwsICw4cPh5ubmyrCJyIiIi2m0wkWADg5OdW53cnJCSdPnkROTk6TE6yrV69i0aJFSutGjx6NQ4cOwcrKqtH95XK50rKRkRGMjIya1DYRERG1XFlZGcrKyhTLT1+Tm0tnbxHKZDIAgLm5eZ3bzczMlMo1JiwsDOfPn0dhYSHkcjnOnz+PwMBAnDhxAuPGjUNVVVWjddja2sLc3FzxEx0d3cSjISIiotaIjo5WugY3tXOlPm2+ByssLEwp42zMG2+8UW+vVWts27ZNaXnYsGH44osv4Ofnh7S0NHz66aeYNGlSg3Xk5+crEjsA7L0iIiJSk/DwcCxbtkyxLJfLW5VktfkEa//+/SgpKWly+VdeeQVOTk6Knqv6eqhqugbr6+FqCqlUigULFiAtLQ0ZGRmNJlhmZmZKCRYRERGph9jDctp8gtXcCUFr1PRi1YzFelpjY7SaqmvXrgDQrCSQiIiI2jadHYPl5OSEHj16ICMjo1byU1JSgoyMDDg6Orb6HmxmZiaAv+bIIiIiIt2gswmWRCLB/PnzUVxcjA0bNiht27BhA4qLi7FgwQKl9Y8ePUJ2djZu376ttP769euoqKio1cb58+exZcsWGBgYYMqUKeIfBBEREWmlNn+LsDWWL1+OTz/9FFu2bMHly5cxaNAgfPfdd0hOToanpyfefPNNpfLffPMNfH194e3tjdTUVMX67du348svv8SIESNga2sLAwMDfP/990hOToZEIkFsbCx69eql3oMjIiIijdHpBMvExARpaWlYt24djh8/jpSUFFhbWyMsLAwREREwNjZuUj3jx4/HH3/8gatXr+LUqVMoLy9H9+7dMX36dLz55psYMmSIio+EiIiItIlEEARB00HoOrlcDnNzc8hksjb7FGFeXh7s7e01HQZpGM8DAnge0H+15XOhtddmnR2DRbpp586dcHV1hampKTp37gw/Pz/FgwgAsG7dOkgkEqUfDw8PDUZMqtTY+SCXy/H666/D1tYWHTt2xKhRo5Cdna3BiEkdFi9eDIlEgpiYGMW6jz/+GC+++CIsLCwgkUhw69YtzQVIbQITLNIp9vb22LFjB65evYrz58+jd+/eCAgIQFFRkaLMwIEDce/ePcXPyZMnNRgxqVJj58P8+fNx7tw5HDt2DFeuXEHfvn3x4osvtnh6GNJ+X3zxBS5cuIAePXoorS8pKYGXlxfWr1+vociozRFI42QymQBAkMlkmg6lxW7duqXpEFqk5rNPTU0VBEEQIiIihMGDB6ukrdzcXAGAMGfOHJXUrw3a6nlQ48nz4dGjR4Kenp5w4sQJxfaqqirByspKiIuL02CU2q+tngf3798XbGxshGvXrgn29vbC3r17a5W5fv26AEDIzc1Vf4BtUFs9FwSh9ddm9mCRziovL0dcXBy6dOkCNzc3xfoff/wR1tbW6N27N4KDg3H//v0G67l06RLmzZsHJycnmJiYwNjYGL169cKsWbNw6tQpVR8GieTp86GyshJVVVVKD7tIpVIYGhoiIyNDad9bt25BIpFg9OjRdda9e/duSKVS2NnZ4aefflLpcVDLBQcHIzQ0VOnvQXPxXKAaTLBI55w9exampqYwNjbGzp07cerUKVhYWAAAhg4dioSEBCQnJyMmJgbff/89/Pz86nzfZXV1NZYtWwYPDw8cPnwYzz77LF577TW88cYbGDx4ML788kv4+/vXmmeNtEt950OnTp0wdOhQrF+/Hg8ePEBFRQW2bduGO3fu4N69e02uf+3atXjzzTfRp08fZGRkoE+fPio8GmqpmJgYlJSUICwsTGVt8FzQLTo9TQPpJg8PD1y5cgVFRUU4cOAApk6diszMTHTt2hWBgYGKcm5ubhg8eDDs7OzwxRdfYPLkyUr1rF69Gjt37oS7uzs++uijWnOdPX78GDExMUrju0j7NHQ+JCYmYs6cOejWrRv09PTg4+NTb8/E0wRBwJIlSxAbGwsPDw8kJSUpXp1F2iU7OxsbNmxAZmYmpFLx+x14Lugm9mCRzjE2Nkbv3r0xdOhQxMfHQyqV4uDBg3WWtbS0hIODA3Jzc5XW//LLL3j77bfxzDPP4MSJE3VOJGtsbIy33noLkZGRKjkOEkdD50Pv3r2RkZEBuVyOu3fv4uuvv8bvv/8OR0fHBuusqKjAq6++itjYWPj5+eHMmTO8oGqxixcv4uHDh+jduzf09fWhr6+PvLw8vPHGG3B3d29V3TwXdBd7sEjnCYJQ5y1AAPj999+Rl5dX612SCQkJqKqqwqJFi9CtW7cG6xfz7eykenWdD506dUKnTp1w8+ZNfPvtt1i3bl29+z9+/BivvPIKvvrqK0ycOBEffPABzwEtN2HChFrTsQQEBCAoKAjBwcEtrpfngm5jgkU6ZcWKFXj55ZdhY2OD3377Dfv27cOdO3cUt//eeustvPTSS7Czs8OdO3ewatUq9OzZE2PGjFGqp2aQs5+fn9qPgcTT2Plw4sQJSKVS9O7dGz/88APeeOMNjB07tt7bhHK5HP7+/jh37hzmzp2LuLg46OnpqfOQqAU6d+6Mzp07K60zMDBQPOwCAL/99htu376NGzduAAB++OEH/PHHH7Czs1OM4XwSzwVigqVFPD09oaenh5CQEISEhGg6nHbp7t27mD59Oh48eAALCwt4enri7Nmz6NevHwAgPz8f06dPR2FhIbp16wZvb28cOXIEHTt2VKqn5slCGxsbtR8Diaex8+H333/HqlWrUFBQACsrK7z66qsN9l5duHABADBs2DD885//VMchkJp89tlnSr1ZY8eOBQAcPHgQQUFBtcrzXGi7YmNjERsbi6qqqlbVw1flaAG+Kqft6devH7Kzs5Gdnd3kJ4Fu3boFR0dHzJkzBwkJCaoNUEN07TyoUfPduri44I8//sDdu3cRGRmJtWvXajo0jdDV8wDgufC0tnwu8FU5RBrQvXt3AEBBQYGGIyFtYmtri7S0NNjY2CAiIgIRERGaDok0hOcCMcEiaoHhw4cDAE6fPq3hSEjb9O7dG2lpabCzs8P69euxevVqTYdEGsJzQbcxwSJqgaCgIOjp6SEuLg4PHz5ssGx9TyhS+/Xss88iNTUV9vb2iIqKQnh4uKZDIg3huaC7mGARtUDv3r2xfPlyFBYWIjAwsNY8WQBQWlqKHTt2NDgomtovR0dHpKWlwdHREZs3b8by5cs1HRJpCM8F3cSnCIlaaOPGjSgtLcXOnTvRp08f+Pn5oX///jAwMEBubi6+/vprFBUVYePGjZoOlTTE3t4eaWlp8PX1xdatW1FVVYXt27drOizSAJ4LuocJFlELSaVS7NixAzNnzsQ777yD9PR0pKeno7q6GtbW1ggICEBwcDBeeOEFTYdKGlQz2NnX1xc7duxAVVUVdu3apemwSAN4LugWTtOgBThNA7UXPA8I4HlA/9WWzwVO00BERESkZZhgEREREYlMpxOsK1euYNWqVQgICIClpSUkEgl8fHxaXF9WVhbGjBmDzp07w8TEBM8//zw+/PBD8QImIiKiNkGnB7l/8skniI6OhqGhIZydnVFYWNjiulJSUhAQEIAOHTpg+vTp6NSpE44fP45p06YhPz8fYWFhIkZORERE2kyne7CmTJmCS5cuobi4GKdOnWpxPZWVlViwYAGkUinS09MRFxeH7du34+rVq3B2dsaqVauQl5cnYuRERESkzXQ6wXJ1dcWgQYNgYGDQqnrOnDmDGzduYObMmXB3d1esNzc3x6pVq1BeXo5Dhw61MloiIiJqK3Q6wRJLamoqAMDf37/WtoCAAABAWlqaOkMiIiIiDdLpMVhiycnJAQA4OTnV2ta9e3eYmpoqyjRELpcrLRsZGcHIyEicIImIiKheZWVlSu+Offqa3FxMsEQgk8kA/HVLsC5mZmaKMnWpmevV1tZWaf3KlSvbzItB//zzz1afjNT28TwggOcB/VdbOheio6OxefPmWutbOh97m0+wwsLClDLOxrzxxht19jRpo82bN9f5ZRMREZF2a/MJ1v79+1FSUtLk8q+88oroCVZNz1V9vVRyuRxdunSpd//GeriIiIhIMzp16tSi/dp8glVcXKzpEBQJW05ODgYPHqy07f79+yguLsaQIUPq3V8ikbTZdxASERFRbXyKUATe3t4AgOTk5FrbTp48qVSGiIiI2j8mWM1QUVGB7Oxs3LhxQ2n9qFGj8Oyzz+Lo0aO4cuWKYr1MJsOmTZtgaGiI2bNnqzlaIiIi0pQ2f4uwNbKzsxWDyB8/fqxYFxQUpCiTkJCg+HdBQQH69esHe3t73Lp1S7FeX18f8fHxCAgIgJeXl9KrcvLy8rBt2zY4ODio4YiIiIhIG0iElj5/2A6kpqbC19e3wTJPfjy3bt2Co6NjrQSrxjfffIOIiAicP38eFRUVcHNzw7JlyzBt2jSxQyciIiItptMJFhEREZEqcAwWERERkciYYBERERGJjAkWERERkciYYBERERGJjAkWERERkciYYBERERGJjAkWERERkciYYBERERGJjAkWERERkciYYBERERGJjAkWERERkciYYBERERGJjAkWERERkciYYBERERGJjAkWERERkciYYBERERGJjAkWERERkciYYBERERGJ7P8DscXWwCUV0XcAAAAASUVORK5CYII=", "text/html": [ "\n", "
\n", "
\n", " Figure\n", "
\n", " \n", "
\n", " " ], "text/plain": [ "Canvas(toolbar=Toolbar(toolitems=[('Home', 'Reset original view', 'home', 'home'), ('Back', 'Back to previous …" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "bar_OP(1,mixing_cases, lightoddZ, 11000)\n", "\n", "plt.savefig(\"../figures/lightoddZ_barplot.pdf\")" ] }, { "cell_type": "code", "execution_count": 6, "id": "c21961ff-d5bf-4ecf-9bcd-0c83db740eaa", "metadata": {}, "outputs": [ { "data": { "text/plain": [ "1.8214285714285714" ] }, "execution_count": 6, "metadata": {}, "output_type": "execute_result" } ], "source": [ "OPs = [0.58,1.76,0.81,2.42,3.37, 2.13, 1.68]\n", "\n", "np.average(OPs)" ] }, { "cell_type": "code", "execution_count": 15, "id": "089e2183-c14e-47ee-a75b-af2a0c4b5ee7", "metadata": {}, "outputs": [], "source": [ "stable_isotopes = [\n", " \"C-12\", \"C-13\",\n", " \"N-14\", \"N-15\",\n", " \"O-16\", \"O-17\", \"O-18\",\n", " \"F-19\",\n", " \"Ne-20\", \"Ne-21\", \"Ne-22\",\n", " \"Na-23\",\n", " \"Mg-24\", \"Mg-25\", \"Mg-26\",\n", " \"Al-27\",\n", " \"Si-28\", \"Si-29\", \"Si-30\",\n", " \"P-31\",\n", " \"S-32\", \"S-33\", \"S-34\", \"S-36\",\n", " \"Cl-35\", \"Cl-37\",\n", " \"Ar-36\", \"Ar-38\", \"Ar-40\",\n", " \"K-39\", \"K-40\", \"K-41\",\n", " \"Ca-40\", \"Ca-42\", \"Ca-43\", \"Ca-44\", \"Ca-46\", \"Ca-48\",\n", " \"Sc-45\",\n", " \"Ti-46\", \"Ti-47\", \"Ti-48\", \"Ti-49\", \"Ti-50\",\n", " \"V-51\",\n", " \"Cr-50\", \"Cr-52\", \"Cr-53\", \"Cr-54\",\n", " \"Mn-55\"\n", "]" ] }, { "cell_type": "code", "execution_count": 17, "id": "65f61a4b-f05c-401f-ab4f-10f9e1138cd0", "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "C-12 2.94\n", "C-13 3.35\n", "N-14 4.57\n", "N-15 3.58\n", "O-16 0.55\n", "O-17 4.02\n", "O-18 7.38\n", "F-19 8.56\n", "Ne-20 5.43\n", "Ne-21 6.76\n", "Ne-22 4.71\n", "Na-23 4.66\n", "Mg-24 0.23\n", "Mg-25 3.1\n", "Mg-26 2.5\n", "Al-27 1.32\n", "Si-28 0.44\n", "Si-29 0.65\n", "Si-30 1.53\n", "P-31 0.58\n", "S-32 0.72\n", "S-33 0.46\n", "S-34 0.36\n", "S-36 1.56\n", "Cl-35 1.76\n", "Cl-37 0.81\n", "Ar-36 1.81\n", "Ar-38 0.53\n", "Ar-40 1.76\n", "K-39 2.42\n", "K-40 3.37\n", "K-41 2.13\n", "Ca-40 2.2\n", "Ca-42 1.82\n", "Ca-43 2.35\n", "Ca-44 0.5\n", "Ca-46 1.53\n", "Ca-48 5.32\n", "Sc-45 1.68\n", "Ti-46 2.18\n", "Ti-47 1.98\n", "Ti-48 0.38\n", "Ti-49 1.3\n", "Ti-50 0.77\n", "V-51 0.87\n", "Cr-50 2.25\n", "Cr-52 0.4\n", "Cr-53 1.11\n", "Cr-54 1.27\n", "Mn-55 0.23\n" ] }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "6766370f940547d380bdf51da712f54a", "version_major": 2, "version_minor": 0 }, "image/png": "iVBORw0KGgoAAAANSUhEUgAABdwAAAJYCAYAAAB4syQkAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAA9hAAAPYQGoP6dpAADFnUlEQVR4nOzdfVxUZf7/8fcAAwoIamKaIniDlWa5Kpalglpa6mZm5s238rZco6i0X6ZroZmilZUWleUWptnNZnebumoFlqZGrVbb6maGSppt2i4EKAx4fn+0zDLczsCZG4bX8/HgUXPONdf5fJxzzpz5zDXXsRiGYQgAAAAAAAAAANRLgLcDAAAAAAAAAADAH1BwBwAAAAAAAADABBTcAQAAAAAAAAAwAQV3AAAAAAAAAABMQMEdAAAAAAAAAAATUHAHAAAAAAAAAMAEFNwBAAAAAAAAADABBXcAAAAAAAAAAExAwR0AAAAAAAAAABNQcAcAAAAAAAAAwAQU3AEAAAAAAAAAMAEFdwAAAAAAAAAATEDBHQAAAAAAAAAAE1BwBwAAAAAAAADABBTcAQAAAAAAAAAwAQV3AAAAAAAAAABMEOTtACCdPXtWx48fV7NmzWSxWLwdDgAAAAAAAAA0SoZh6Ndff9V5552ngADXx6tTcPcBx48fV3R0tLfDAAAAAAAAAABIysnJUfv27V1+HgV3H9CsWTNJv72IERERXo7Gdx09elQdOnTwdhim8Jdc/CUPiVx8kb/kIZGLL/KXPCRy8UX+kofkP7n4Sx4Sufgif8lDIhdf5C95SOTii/wlD4lcYK68vDxFR0fba7YuM+B1ubm5hiQjNzfX26G4zYYNG4wrr7zSaNGihSHJyM7Odli/ZMkSo3fv3kZ4eLjRunVrY+zYsZXaHD582HMB16C2XMr7wx/+YEgynnrqKYflvpCLM3kcOXLEGDt2rNG8eXMjNDTU6NOnj/HDDz/Y1zeEPPLy8owZM2YYbdu2NUJDQ42ePXsaf/7znyv148lcnNnfn3zySaNDhw5GSEiIccUVVxj79u1zun9fysWZXKvjS3mUV91xXRNP5eJMHrUd17Xx9nFfW46+eMxX5fHHHze6detmhIWFGZGRkcagQYOM3bt3O7Rx9jzg7VzK1JZTQ3qvd+b1KVPVOcHbedQWf0pKiiHJ4a93795V9uWNXJz593f1XObt18Qwqn//cPU93xdyqaiuuXkzF7NeD8Pw/mtSVS6unMfK88XXpK7XLr74urhy/i3j7TwqqiqvmJiYSnlJMh555BGH5/pSLlXlkZubayQlJRnt27c3mjZtagwePNjYv39/lc/3hVxq25+c+czvjTxqi7uunyF9MZfyXPkc6Qv7V2NX31otN02FRxQUFGjgwIF66KGHqly/fft23XnnndqzZ4/++te/6pdfftE111yjkpISD0dau9pyKfP+++9r165dOu+88zwUmWtqy+PUqVPq37+/mjdvrg8++EBfffWVHnzwQYWEhHg40prVlsc999yjzMxMvfHGG/r666914403avz48frqq688HOn/1La/r1+/XnPmzNGiRYv0xRdfqEuXLho2bJjy8vK8FnN1asuloRzbzsbp68d1bXk0lOO6JrXl6IvHfFViYmL0+OOP68svv9Snn35qP85PnTolqWGdB8rUllNDOR9ItedSxlfPCc7Ef8kll+jHH3+0/23ZssWLETuqLf6GeC6rbl9piMd6RQ0xt4YYc3Wqy8XZ85ivqC6Phni8SzW/P/jy+bc21eWVlZXlkNP69eslSddff703wqxVdXlMnz5dO3bs0Ouvv659+/bpggsu0FVXXaX8/HwvRVq7mvYnZ2sX3lBT3A3pmlFy7pj21WtGuJHJXwCgDhrDCPcyX3/9da2jwg3DML7//ntDkvHll1/al/naN3w15XLixAmjffv2xldffWXExMT45Aj3MtXl8f/+3/8zBg4cWONzG0Ie3bt3N1JTUx2WtWzZ0njppZcclnkzl4r7e58+fYy77rrLvt5msxnnnHOO8eyzzzrVny/l4ur68nwtj9qO65p4K5eKeThzXNfGl457w6ico7uO+ezsbEOSMWnSpPqEW62ya4HMzEzDMFw7D7iSi7vzKK9iThU1hPf6MlXlUtM5wdfyqBh/SkpKrSMqy/jCsVIx/rqcy7z5mtS0r9TlPd+X9q/65uaNXMx+PQzDe6+JK9cmtZ2Ty/jaa1KfaxdffF1cOf+W8ZVj3pX9beLEiVW+br7wnlJdHoWFhUZgYKDx17/+1d62tLTUaN26tfH8889X6scXrr+c3Z9qql14a1S4K8eBs58hfTWXunyO9JXjvjFjhDv8Um5uriSpZcuW1bb54osvNG3aNMXFxSksLExNmzZV586ddfPNN2vbtm2eCrVKU6ZMUXJysnr06FFtm8OHD8tischisWjYsGFVttm9e7csFosmT57spkir95e//EW9evXSmDFj1Lp1a8XHx+utt96q8TkZGRkaN26coqOjFRISopYtW6p///564okndObMGQ9F7ujyyy/Xu+++qxMnTsgwDP35z39WUVGREhISqn2Op/Mov78XFxdr7969uvLKK+3rg4KClJiYqF27djk8zxf3odqO3erW+1ouVcXp6nHdpk2bakdh7N+/394uNjbW1NjLq5iHs8e1r+VRk4o5unLMFxQUaMmSJerVq5fCw8MVEhKi9u3ba8CAAZo7d64OHTrkkRyKi4v1/PPPq0WLFurRo4dL5wFJKiws9Ik8yquYU1VqOl/4ymsjVZ+LM+cEyfu5VBf//v371bZtW3Xp0kVTpkzRiRMnauzHW9ddVcVfl2sUSZo6daosFovOOeccFRUVuS3miqrbV1w91svzVi4VmZFb2XvO1VdfXeU2VqxYoYCAAHXo0EH//Oc/fSLm8r744gvdd999XvlM4ux5yJlzsuS9XGrKoy7He9n5KjEx0SufE2t7XZw9/5a9f4wYMcLr74WS8/tbbm6u3n77bU2ZMsVhedn1Ytm1Y21/ns6jpKREpaWlatq0qX1ZQECAgoODtXPnToc8XMnF3Vx9P68oOTlZFotFr776ao3t8vLyFBoaqubNm+v06dP1CVmSa3E7Wx/y1rm4tlycPXbKeDMXmIebpsLnlJaW6t5779Xw4cOrvBPw2bNnde+99+qJJ55QUFCQBg8erGuvvVZWq1Xff/+9Nm7cqHXr1umhhx7SAw884PH4n376aRUUFGj27NlOP2fr1q366KOPNHjwYDdG5prs7Gw9++yzmjt3rubPn68PP/xQY8eOVUZGhgYOHOjQtqSkRElJSXr++ecVFhama665Rl26dFFubq62bt2qWbNm6bnnntPGjRvVpUsXj+axcuVKTZ06VW3btlVQUJBCQ0P11ltvqWPHjpXaeiOPivv78ePHVVpaqnPPPdehXevWrWu8qPaFfai2Y7e29WXKcuncubM7w61WVXG6elwHBQXpp59+0qZNm3TttddWWv+nP/1JAQHu/c67qjxcOa59JY+aVJWjs8d8fn6+rr32Wn311Vfq0qWLbrrpJp1zzjk6efKkPvvsMy1dulSdO3e274ft2rXT/v37FRkZaVr8n3zyia655hqdPn1abdq00bZt29SyZUuXzgO//vqrrr/+eh04cMBreTiTU0U1nQ9+/fVX9e/f3+nXxl1qysXZc4I3c6kp/ksvvVTp6em64IILdOzYMT344IMaPHiw9u7dW2mahrNnz2rWrFkev+6qKX5Xz2XSb8f8G2+8IYvFol9++UXvvPOOxo0bZ1q81alpXzl58mSd3vO9lUtF7sitogcffFCLFi3SBRdcoK1btyo6OtpnYvb2ZxJnzkPOnpO9mUttebhyvFfMo1+/frr++us9+jmxtnycPf+Wf/+IjY312nuhs3mV9+qrryowMFBjx451WJ6SkqL//Oc/at68uX3Zk08+qdzcXKWkpFTZl9nXLTXl0axZM1166aV66KGHtH79erVo0UIrVqzQDz/8oB9//NEhD0kOuXg6jzKuvJ9XZ9y4cXrvvff04osvasKECdW2e/XVV3X69GlNmjTJ4UsJd8ft6/Wh2nJx5djxdi4wmanj7VEnTCnzP2fPnjWmT59uxMXFGf/6178c1pX9pGbu3LmGJKNnz57Gd999V6mPwsJC45FHHjHmzJljevzlVZXL/v37jdatWzssq25KmbKflcXGxhoBAQFGnz59jLNnzzq027Vrl9t/+l/da2K1Wo3+/fs7LLv22muN//u//7M/LntN7r33XkOSER8fX+kGRiUlJcaDDz5oSDI6d+7stv28ujyWLl1qdOvWzdi8ebOxb98+Y9GiRUbz5s2Nb775xqHd4cOHPZ5HVfv7sWPHDEnGZ5995tB25syZxtChQx2WVbcPlf/5mSf2oepycWV9VblUfC09kUtVcTp7XJfPY+DAgUZkZKQxatQowzAcfxJos9mMc8891xg6dKgREhJixMTEeCQPw3DuuK4pj/K5eCKPmlSXo7PH/KxZswxJxvTp0yudew3jt5+uVneTLLMUFhYaBw8eNHbv3m1MmzbN6NSpk/Hzzz+7dB546KGHvJ5HedXlVF5t7/W+klN1uThzTig7TryZizOvRZl//etfRpMmTYw333yz0rrbb7/dpesus342X1P8zp7Lylu6dKkhyZg1a5YREBBgXHXVVfWKzxm17SuuHOvleSOXiszKrfw18bBhw+zLz549ayQlJRmSjD59+lS773oj5jLlP5Ns37690np3fiZx9trE2fOAt3JxJg9XjveKnxMrTsng7s+Jrlwzlqnu/Fv+/aOqz86efH93Na/4+Hhj6tSpVa6r+JqU3WzVE5zJ4+DBg8bll19uSDICAwONIUOGGFdffbVx9dVXV+qvfC6ezKMm1e1PNdVhsrOzjY4dOxoBAQHGkSNHqu27b9++hiQjKyvL7LCrjbu2z5CG4d1zcVXK5+LqseNruTR29a3Vev+M4IPKLmIlGbt27XL6eaWlpcbKlSuNiy66yGjSpInRqlUrY/z48cahQ4dqfB4F99+cPXvW+MMf/mDExsYaR48erbT+8OHDxsGDB43AwEDjnHPOMU6cOFHjts6cOWNW2FWqKpeXXnrJsFgsRmBgoP1PkhEQEGBccskl9nYVP1xMmjTJkGS89tprDtvwZsE9OjramDZtmsOyOXPmGAMGDLA/Pnz4sPHPf/7TCAgIMFq2bFnjazJx4kRDkvHAAw+YGn+ZqvIoLCw0rFarwzx8hmEYV155pZGUlOSw7KOPPvJoHtXt70VFRUZgYKDxl7/8xaH9mDFjjFtuucVhWXX7kLMF9+3btxsjR440zjnnHCM4ONjo0qWL8cc//tEoKCgwJRdn11eXS8ULEXfnUl2czh7XFfOYMWOGERQUZPz0008Or8nbb79tf62qKlTbbDZjyZIlRqdOnYyQkBCjc+fOxpIlS4xDhw45dT6o6d/bmeO6pjwM438fLtydR11ydOWYT0xMNCQZe/fudWqbnpj7vEuXLsYjjzzi0nngmmuu8bk8yivLqYwz7/Wu5uQpZbk4c04oO058KZeKr0VFF1xwgfHoo486LKvLdZe79rHy8Tt7Livvd7/7nREUFGScOHHCGDJkiBEQEFDl/KgZGRmGJCMlJcXYuXOncdVVVxmRkZF1KqTUtq+4cqx7Oxd35VZVwb24uNh+vTV48GAjLy+v3vGaGbNhVD42apprt+zYKCoqMlauXGkMHTrUaN++vREcHGxERUUZo0ePNv72t7+Zmkt1qjoPeDMXZ/Jw9niv6nxVXS7ueE2czacqVZ1/y79/uDKX8/bt241Ro0YZrVu3NoKDg4327dsbo0ePNj755BOX8ynjSl5///vfDUnVbs/VgruZ7ymu5JGXl2e/9r300kuNmTNn1piLJ/OoTVX7U21zuJd9wbNgwYIq+yx7XS+++GJ3hGwYRuW4nfkMWZfzlzvfGyvm4so+56u5NGbM4W6yv//970pJSVFYWJjLz50xY4aSk5NlGIaSk5N19dVX66233lJ8fLwOHjzohmj9h2EYSkpK0saNG/XRRx9V+3PR9PR0lZaWasaMGZV+7lmRN+5cf9111+mrr77Svn377H/nnXee7r//fr355pvVPu+hhx5SSEiI5s+fL5vN5sGIq3f55Zfru+++c1j27bffKiYmxmHZmjVrdPbsWd122201viZlP3l68cUXzQ+2GjabTTabTYGBgQ7LAwMDdfbsWYdlGzZs8FgeNe3vwcHB+t3vfqcPP/zQvqykpESZmZnq169ftX26ug89++yzSkxM1M6dOzVixAglJyerffv2Wrx4sa666ioVFxfXOxdn1teUy/Llyz2WS01x1vW4njp1qkpKSrR27VqH5S+++KJatmyp6667rtrnzZs3T5KUlJSkq6++Wk888YTuvvvueuUhOX9cezuPmtSUoyvHfIsWLST9lr+vMAxDRUVFLp0HzjnnHEm+lUd5ZTmV/b8z5wNfzaksF1fOCb6US/nXoqJ///vfOnLkSKV7MfjSdVf5+F09l/3jH//Q3r17NXToUJ177rm65ZZbdPbsWb300kvVbu/TTz9VYmKiLBaLbrvttjpN2VLbvlKX93xv5eKJ3CTp9OnTuu6667R+/XqNHj1amzZtUrNmzeodr9kx1+XY+OWXX3T33XerqKhIw4cP1z333KPExERt2rRJl19+ubKyskzLpTpVnQe8mYszeTh7vHv7NXE2n4qqO//W5f1jxYoVSkxM1LZt23TVVVdp9uzZGjx4sL788ssa9wsz83rxxRcVFxen/v3713l77uJKHs2aNVPr1q31/fff6/PPP69yakVfVN3+VJvJkycrICBA6enpMgyj0vqy95hp06aZEWYlFeP2RH3IHe+NFXNxZZ/zxVxQT/Wr9/uX4uJio1evXsall15q3HTTTS6NcP/oo4/sP78vKiqyL9+0aZMhqcafhTaGEe6nTp0y9u7da7z55puGJGPjxo3G3r17jVOnThmG8dtPNZs3b2588sknxo8//mj/K/9vefjwYfuIxA8++MBbqdSaS0W1TSlTNpqnbDqT8m3dOcK9tjx2795tBAYGGo899phx8OBB49lnnzWCgoKMnTt3OuRR9pps27at1m2ed955hqRqv6F2Rx4DBgwwLrnkEuOTTz4xDh06ZDzxxBNGQEBApRGwl112mcfyqG1/f+WVV4wmTZoYa9euNb755htjypQpxrnnnlvpHFHdPrRw4UJ7m6r2oW+++cYICgoyLrnkEuPkyZMOfaamphqSjMcee8yUXJw5tmvKpbbjwaxcnI2zTG1TypTlcdFFFxndu3e3j1D48ccfjaCgIOPOO+80DMOoNDL8gw8+sP+MsPzo/OPHjxvnnntureeD2vJw5riuKQ/D+O24d3ceNaktR2eP+RdeeMGQZDRr1syYPXu2sWXLlkr7UFX/Jmadj++77z5jx44dxuHDh42//e1vxvTp042QkBDjH//4h2EYzp8H3n33Xa/m4UpOzr7Xu5qTO9SWS0XVTSnjrVxqi//ee+81tm/fbmRnZxuffPKJMWDAAKNLly6VfhVUl+suM/ax2uJ39lxWpmwKqVdffdUwDMP49ddfjbCwMKNDhw5GaWmpQ9uy0WKSjBdffLHOOVSn4r7i7LHui7lUVJfcyl8T9+vXz+jfv78hyZg6dapRUlLikzEbRuVjw5kRyGfOnKk0ZaFh/DZyNDw83LjyyitNzcXZ85iv5VIxD2eP96rOV7Xl4u7XxDAq5+Ps+bf8+8ett95a6/vHvn37jICAAOO8886rNIr57NmzxrFjx+qdS015GcZvv25s3bq1sWTJkmqf580R7lWpmMfmzZuNLVu2GIcOHTL+8pe/GJ06dTKuvfbaKp/rCyPca9ufnKldlOVx9dVXV/meXzaNZEhISLU1D7PjdvazWV3OX2a/Nzp7TJep7nOkL+QCR0wpY6KUlBQjJCTE+Oabb+xTGjhbcJ8wYYIhqcp5lsoOnOrmw2oMBfeXXnrJfiIo//fSSy8ZhmFUuU6SkZGRYe/j8OHDxgUXXGBIMg4cOOCdRIzac6nI2YL7L7/8YjRv3txo3bq18euvvxqG4d6CuzN5vPXWW8aFF15oNGnSxLj44ouNt99+u1Ierrwml156qSHJ2LNnj8fyOHbsmHHTTTcZbdq0MZo2bWr06NHDePnllyv107lzZ4/l4cz+/uSTTxrR0dFGcHCwcfnllxv79u2r1E91+1CrVq1q3IeSk5MNScbHH39cqc/S0lIjKirK6N27tym5OJNrdblERETUejyYlYuzcZZxtuD++OOPG5Lsx07ZlGVl00tULFRPnjzZkGS89dZblfpesmRJrecDZ/Ko7biuKY/du3cbhw8fdnseNaktR2eP+cOHDxvLly83wsPDHfrp3LmzkZSUZHz77bdV/puYdT6+6aab7D9fb9OmjfH73/++0rzBzpwHDMMw5s+f77U8XMnJ2fd6wzBcem3cwZnXp7zqCu6G4Z1caot/3LhxRtu2bQ2r1Wq0b9/e+L//+78qP9jV5brLjH3MmX9/Z85lhvHbgJqoqCijWbNmxunTpx22IcnYsmWLQ/uyD6+9evWqc/w1qer9w9lj3ddyqaguuZW/Ji7769evn0firWvMhlH52HBlyo+q/P73vzeCg4ON4uLiOvdRMRdnz2O+lktVr4kzx3tV56v65GLGa2IYlfNx9vxrGK69f8ycOdOjRbeqXqd33nnHCAgIqPJLjDK+XnBfv369ERsba1itVqNdu3bGnDlzHM635flCwb22/cmZz/xl7f/85z8bkoyJEyc6bKNsGskbb7zRY3E7+9msLucvs98bXTmmDaP6z5G+kAscUXA3yRdffGEEBQXZv411teDetm1bIywsrMqRGGWjLKv6wG8YjaPgbgZfKbibobobRJUVsVJSUgzD8NwNL+vKFwruZvFkwd0sdd2Hym5488c//tFISUmp9HfeeecZYWFhXs9lzpw5DS6Xinn861//MqxWqzFhwgTDMAzj/PPPN373u9/Z21csVP/ud78zJFV5U6Dt27d77HxQXR633Xabcfjw4QaTR03KLmLz8vKMN954w7j77ruN/v37G1ar1ZBkNGnSxHj33Xft7T0997krDh8+7Bd5GIbjhwtnc/JFFT8kNdRcvFVwN1NZAWHcuHEOy7du3VplAaHsw+uMGTM8GaZT/CmXMuWvibt162b/FWH5X+v5oroWqffu3WtMmDDBiI6Otp8Hyv8dP37cnWFXyV9yqWvB3dfyqCgvL89IS0ur9f2jd+/ehqQai92+wNcK7vXhCwV3M5TlUfalbtOmTY3//Oc/9vW///3vq/xS1xfUp0jta++N/pSLv6hvrTZIUFFRkW655Rb17NlT9913n8vPLygo0I8//qiLLrqo0ryxkhQXFydJzONugjZt2ujAgQM6duyYzj//fG+HY7rk5GQ9/fTTWr58uW6//XZvh+OUstckJyen1tckJydHktS2bVtPhOaSqKgoHTp0qMHnkZycrBUrVtS4D/3yyy+SpMWLF3syNJdNmTJFr7zySoPOJSoqSr///e/1/vvv64MPPtA///lPPfXUU9W2z8vLU0BAgFq1alVpXW1z+blTWR6vvfaaBg4c2GDzqEqzZs00duxYjR07VpKUm5urefPm6ZlnntG0adN07NgxBQcHeznK2vlLHuX5U04NNRd/uO7605/+JEm6/vrrHZYPGTJE7dq107vvvqtffvlFLVu2dFjva+cqyb9yqUp0dLTeffddDRo0SCkpKSotLdXChQu9HVaV6nJsfPrppxo8eLAkaejQoYqLi1N4eLgsFoveeecdffnll9XeZ8Gd/CUXf8mjombNmmnEiBH2Oeure//Izc2VxWLxyc8naBisVqtuvvlmPf7441q/fr1mzpypEydOaPPmzerQoYOuvPJKb4dYSX2uU3ztvdGfcsFvuGmqpAcffFAHDx7USy+9VGXBvDa5ubmSpMjIyCrXR0REOLSrTl5ensOft9/cfdEVV1whSQ43M/InTZs21cKFC5Wfn++zHzAquvzyyyXV/pocOHBAx48fV7t27Zy6caan9e7dW1LDz6Np06a65557atyHys5JeXl5Mn77pVOVf97WpEmTWo+HhpDLtGnT9Ouvv2ry5Mlq0qSJ/u///q/athERETp79qxOnjxZad1PP/3kzjBrNW3aNOXl5enee+9t0HnUJjIyUk8//bRiYmJ08uRJff31194OqU78JY/y/CmnhpJLQ7/uysnJ0datWyVJ48aNk8Visf8FBgbq2LFjKioq0rp16yo912KxeDrcGvlTLjXp0qWLtm/frg4dOuihhx7S/PnzvR1SlepybCxevFhFRUX64IMP9N5772n58uVauHChFixYoDZt2rgr1Fr5Sy7+kkdtqnv/aN68uQzD0I8//ujlCNGQld0UtewL3rVr16qkpERTpkxRQIDvlQ/rc53ia++N/pRLQ1VUVFSpLlsfvnfEeNiuXbv02GOPaf78+brooou8Gkt0dLQiIyPtf6mpqV6NxxdNnjxZgYGBev755/Xzzz/X2LahfmExadIkde/eXS+88IK+++47b4dTq1tuuUUBAQF64YUXanxNykYgT5061VOhueT666/3izwkacyYMTXuQ5deeqkkaffu3Z4OzWW1HQ8NIZdhw4apTZs2OnbsmK677jq1aNGi2raXXHKJJGnnzp2V1n366adui9EZw4YNU7t27XTixIkGnYczLBaLwsLCvB1GvflLHuX5U04NIZeGft2Vnp6us2fPqn///ho3bpymTZvm8Ddp0iRJ/yss+DJ/yqU2nTp1UmZmpmJiYrR48WLNnTvX2yFVUpdj49ChQ2rZsqX69+/vsL6wsFB/+9vf3BZrbfwlF3/JwxlVvX/07dtXkuxfzAF10a1bN1122WX64osv9NVXX+mll16SxWLRlClTvB1alRr6dUp5/pRLQ5WamupQk63vAMtGXXAvKSnRpEmTdPHFF+v++++vcz9lI9urG8Fe9q1IdSPgy+Tk5Cg3N9f+54sXl97WpUsX3XfffTp58qSuueYaZWdnV2pz5swZPf7441qwYIHnAzRBYGCglixZIpvN1iByOP/883XXXXfp1KlT+v3vf19pVMXZs2e1aNEirVu3Tp07d9a9997rpUhr1rlzZ7/IQ6p9H7r99tsVFBSkO++8U0ePHq20/j//+Y/27t3rgUhr5w+5lF04vf3227V+kVo2avyhhx7S6dOn7ctPnDihFStWuDXO2gQGBuqdd97RqlWrGnQeZV555RVlZWVVue6dd97R/v371bx5c69/GV+bVatW6csvv6xyXUPKo7xVq1b5xWsjNfxcunTpohkzZjTI6y7DMOyFgjVr1mjZsmVavXq1w196err69eunr776Sp9//rm3Q66WP+XirI4dO2r79u3q2LGjli5dWqdpP92p4meSsukGy6t4bMTExOjf//63vvnmG3ub0tJS3XvvvbUWV9zJX3Kpy+dEX8yjjKvvH3/4wx8UGBio+fPn68iRIw7tDcPQ8ePH3R4z/EPZKPfbb79d+/fv15VXXmmf0sjX1OX85av8KZeGau7cuQ412apeA1c06jnc8/Pz7fOqVzdvZr9+/SRJb7/9tq677roq24SFhalt27bKzs5WaWlppWlpyrZRNpd7dSIiIuzTI6B6Dz/8sM6cOaMnnnhC559/vgYPHqyLLrpIVqtV2dnZ+uCDD3Tq1Ck9/PDD3g61zq699lr1799fO3bs8HYoTnnkkUeUm5urF198UXFxcRoxYoQ6d+6svLw8bd26VQcPHlRcXJw2bdrk0/u4v+Qh1bwPXXTRRXrmmWc0c+ZMnX/++Ro+fLg6d+6sX3/9Vd9//722b9+uyZMn67nnnvNC5JX5Qy4XX3yxUxeqV155pSZOnKj169erR48euu6661RUVKQ33nhDl156qf7yl7949eecffr0UVRUVK25+HoekpSZmak//vGP6tKli6644gqdd955Kigo0N69e/XJJ58oICBAzzzzjEJCQrwaZ202b96sd999t8HnUd7mzZv1hz/8wS9y8odc7r33XoWEhDS4666PPvpI2dnZSkhIUKdOnSoVoMpMmTJFu3bt0p/+9Cf16dPHw1E6x59ycUVMTIy2b9+uQYMG6dFHH1VpaamWL1/u7bDsyn8mGTx4cK3Hxp133qmtW7eqf//+uvHGG9WkSRNlZmbq2LFjSkxMVGZmJrmYmMf555+vfv36KT4+vsHlITm+f1xyySXq2rVrje8fPXr00JNPPqnk5GR1795d1113nWJiYnTixAl9/PHHGjFihJ588kmv5YOGY9y4cbr77rvtv1QtK8D7KlfPX77Mn3JpiEJCQsy9Jq/XLVsbuMLCQmPatGlV/sXFxRmSjGuvvdaYNm2asXfv3hr7Gj9+vCHJ2L59e6V1iYmJhqRq7zJc3zvfNhYV//2ysrKMqVOnGl26dDGaNm1qhISEGLGxscbEiRONbdu2eSlK5xw+fNh+p/Jhw4ZV2Wbnzp2GJJ+9m7lhVH5Ntm3bZowdO9Y477zzDKvVajRv3tzo16+fsXz5cqOwsNBLUTqnfC4NJY/q9qGyXGrbhz777DNj/Pjx9jxbtWpl9OrVy7j//vuN/fv3eyIFu6pyKf+aNJRcantNKgoJCTFiYmIcltlsNmPRokVGx44djeDgYKNTp07GkiVLjD179hiSjLvuustN0f9PTeenqnLx1Txq8uGHHxqPPPKIcdVVVxkdO3Y0mjRpYjRp0sTo3LmzMWnSJOPzzz93aF/2b+Jr5+MDBw4Yc+fObfB5lDl8+LBx4MABl14bX1R2nPhTLs5ed/nKPjZhwgRDkvHSSy8ZhlH9eTg3N9do2rSpERkZaRQWFhoZGRmGJCMlJcVzwdbCn3KpyJlr4h9++MH+2czb7x1VycrKMm688UanPpO8+eabRq9evYzQ0FCjVatWxo033mgcOnTImDRpkiHJyM7O9k4S/+UvuZSdr2JjYxtsHuXfP6Kjo51+/8jIyDBGjhxptGzZ0ggODjbat29vjBkzxti5c6eHM6haxfNXTEyMUVNZylfeU6pSPhd/yaPMlClTDElGy5YtjTNnznghKtc5e/5qCO+N/pRLQ1bfWq3FMHzgzng+aPLkyVqzZo127dqlyy67zL785MmTOnnypFq1aqVWrVrZl2dkZGjw4MEaOHCgtm3bZh8xv3nzZg0fPlxDhw7Vli1bqtxWXl6eIiMjlZub6/OjZr3pyJEjPvtTJlf5Sy7+kodELr7IX/KQzMll9erVuvXWW+0j+r2lvrn4Sx6+hFx8j7/kIflPLv6Sh0Quvshf8pDIxRf5Sx4Sufgif8lDIheYq7612kY9h3tdPP3007rwwgv19NNPOywfNGiQpk+fro8//li9evXSnDlzdMstt+i6665Ty5Yt9dRTT3kpYgBAQ3LixAlV/C782LFjevjhhxUYGKiRI0d6KTLX+EseAAAAAAC4olHP4W62VatWqUePHnr++ee1YsUKhYeHa/To0Vq8eLE6d+7s7fAAAA3A0qVLtXHjRg0YMECtW7fW0aNH9f777+vXX3/VggUL6n23dE/xlzwAAAAAAHAFBfdqpKenKz09vdLyBQsWVHtH4ICAACUnJys5Odm9wQEA/NbVV1+tf/zjH9q4caP+/e9/q0mTJrr44ot1++23a+LEid4Oz2n+kgcAAAAAAK6g4A7A4wzDkK3Q5pa+raFWWSwWt/QNeMLVV1+tq6++2tth1Ju/5AEAAAAAgCsouAPwOFuhTSvDV7ql7+T8ZAWHBbulbwAAAAAAAKAm3DQVAAAAAAAAAAATMMIdgMdZQ61Kzk9W9qZsU/vtOLyjrKFWU/sEAAAAAAAAnEXBHYDHWSwWBYcFK6iJuacgppIBAAAAAACANzGljA+Jj49Xt27dlJaW5u1QAAAAAAAAAKDRSEtLU7du3RQfH1+vfhjh7kOysrIUERHh7TAAAAAAAAAAoFFJSkpSUlKS8vLyFBkZWed+GOEOAAAAAAAAAIAJKLgDAAAAAAAAAGACCu4AAAAAAAAAAJiAgjsAAAAAAAAAACag4A4AAAAAAAAAgAkadcH9zJkzmjVrlgYOHKjzzjtPTZo0UZs2bXTFFVfopZdeks1mc6qfzMxMWSyWav/S09PdmwgAAAAAAAAAwOuCvB2AN+Xn5+vZZ59V3759NWLECEVFRenf//63Nm/erKlTp+q1117T5s2bFRDg3PcSCQkJSkxMrLS8Z8+e5gYOAAAAAAAAAPA5jbrg3rJlS+Xm5io4ONhheUlJia666ipt3bpVmzdv1ogRI5zqLzExUQsWLHBDpAAAAAAAAAAAX9eop5QJCAioVGyXpKCgII0ePVqS9N1333k6LAAAAAAAAABAA9SoR7hX5+zZs/rrX/8qSbroooucft7Bgwf15JNP6vTp02rfvr0GDx6sdu3auStMAAAAAAAAAIAPoeAuqbi4WEuWLJFhGDp16pQ+/PBDHThwQFOmTNGQIUOc7mf9+vVav369/XFQUJDuvPNOPfroowoMDHRH6AAAAAAAAAAAH0HBXb8V3BcuXGh/bLFYdO+99yo1NdWp50dFRWnp0qUaOXKkYmNjVVBQoF27dun+++/XE088IYvFouXLl9faT15ensPjkJAQhYSEuJYMAAAAAAAAAMApRUVFKioqsj+uWKN1VaOew71MeHi4DMNQaWmpcnJylJaWptWrVysxMdGpf+Du3btrzpw56t69u8LCwtS6dWuNGjVKGRkZioqK0sqVK/Wvf/2r1n6io6MVGRlp/3O24A8AAAAAAAAAcF1qaqpDTTY6Orpe/VFwLycgIEDt27fXzJkz9fzzz2vnzp1avHhxnftr06aNRo0apZKSEu3Zs6fW9jk5OcrNzbX/zZ07t87bBgAAAAAAAADUbO7cuQ412ZycnHr1x5Qy1Rg6dKgkKTMzs179tGrVSpJUUFBQa9uIiAhFRETUa3sAAAAAAAAAAOeYPa03I9yrcfz4cUmS1WqtVz9lI9tjY2PrGxIAAAAAAAAAwIc16hHu//jHPxQbG6vQ0FCH5YWFhZo1a5Ykafjw4fblJ0+e1MmTJ9WqVSv7yHVJ+uKLL9S7d+9K/a9YsUIZGRmKi4tTfHy8m7IA4C2GYchWaHNL39ZQqywWi1v6BgAAAAAAgHs06oL7G2+8occff1z9+/dXbGysIiIidOzYMW3evFmnTp3SgAEDdM8999jbP/3001q4cKFSUlK0YMEC+/IxY8bIarWqT58+at++vQoKCrR7927t3btXzZs317p16xQYGOiFDAG4k63QppXhK93Sd3J+soLDgt3SNwAAAAAAANyjURfcR44cqePHj+vTTz/Vrl27lJ+fr8jISF188cUaP368pk6dqqCg2v+JZs6cqS1btujjjz/WqVOnFBAQoJiYGN19992aPXu22rdv74FsAAAAAAAAAADe1KgL7n369FGfPn2cbr9gwQKHke1l5syZozlz5pgYGYCGwBpqVXJ+srI3ZZvab8fhHWUNrd/9IwAAAAAAAOB5jbrgDgD1YbFYFBwWrKAm5p5KmUoGAAAAAACgYQrwdgAAAAAAAAAAAPgDCu4AAAAAAAAAAJiAgjsAAAAAAAAAACZgDncAfskwDNkKbU63LyksUXFBsVNtraFWWSyWuoYGAAAAAAAAP0XB3YfEx8crMDBQSUlJSkpK8nY4QINmK7RpZfhKt/SdnJ/MjU0BAAAAAAD8SFpamtLS0lRaWlqvfii4+5CsrCxFRER4OwwAAAAAcBm/MAQAAA1Z2SDovLw8RUZG1rkfCu4A/JI11Krk/GRlb8p2qv3PP/+sqKioWtt1HN5R1lBrfcMDAADwO/zCEAAAgII7AD9lsVgUHBasoCbOneYCQwKdassHPQAAAAAAAFSHgjsAAAAAoN74hSEAAAAFdwAAAACACfiFIQAAgBTg7QAAAAAAAAAAAPAHjb7gfubMGc2aNUsDBw7UeeedpyZNmqhNmza64oor9NJLL8lmsznd19mzZ/XUU0+pR48eatq0qaKiojRhwgR9//33bswAAAAAAAAAAOALGv2UMvn5+Xr22WfVt29fjRgxQlFRUfr3v/+tzZs3a+rUqXrttde0efNmBQTU/t3EjBkztHr1anXv3l3Jyck6fvy43njjDW3dulW7d+9WXFycBzIC4G8Mw5Ct0Pkv/0oKS1RcUOxUW2uoVRaLpa6hAQAAAAAAoJxGX3Bv2bKlcnNzFRzsOC9gSUmJrrrqKm3dulWbN2/WiBEjauwnIyNDq1ev1sCBA7Vt2zZ7fxMnTtTw4cN1xx13aMuWLW7LA4D/shXatDJ8pVv6Ts5PZl5UAAAAAAAAkzT6KWUCAgIqFdslKSgoSKNHj5Ykfffdd7X288ILL0iSFi1a5NDfNddco8TERG3dulVHjx41KWoAAAAAAAAAgK9p9CPcq3P27Fn99a9/lSRddNFFtbbPzMxUWFiYrrjiikrrhg0bpszMTG3fvl0333yz6bEC8G/WUKuS85OVvSnbqfY///yzoqKiam3XcXhHWUOt9Q0PAAAAAAAA/0XB/b+Ki4u1ZMkSGYahU6dO6cMPP9SBAwc0ZcoUDRkypMbnFhQU6Mcff9RFF12kwMDASuvL5m4/ePCgW2IH4N8sFouCw4IV1MS5U3ZgSKBTbZlKBgAAAAAAwFwU3P+ruLhYCxcutD+2WCy69957lZqaWutzc3NzJUmRkZFVro+IiHBoV528vDyHxyEhIQoJCal1+wAAAAAAAAAA1xUVFamoqMj+uGKN1lWNfg73MuHh4TIMQ6WlpcrJyVFaWppWr16txMTEev8jOys6OlqRkZH2P2eK/QAAAAAAAACAuklNTXWoyUZHR9erP0a4VxAQEKD27dtr5syZatWqlW688UYtXrxYy5Ytq/Y5ZSPbqxvBXlawr24EfJmcnBz7aHhJjG4HAAAAAMBDDMOQrdDmlr6toVZZLBa39A0AqJ+5c+dq1qxZ9sd5eXn1KrpTcK/B0KFDJf12Q9SahIWFqW3btsrOzlZpaWmledzL5m4vm8u9OhEREQ4FdzQcrl6YlRSWqLig2Km2XJgBAAAAgPvZCm1aGb7SLX0n5ydzDyUA8FFmT+tNwb0Gx48flyRZrdZa2yYkJOi1117Tzp07NXDgQId1W7ZskaRKy+E/uDADAAAAAAAA0OgL7v/4xz8UGxur0NBQh+WFhYX2nxIMHz7cvvzkyZM6efKkWrVqpVatWtmX33bbbXrttdf0wAMPaNu2bQoO/q1AunnzZmVmZmro0KGKiYnxQEYA4Dp/+vmsP+UCAAAAz7GGWpWcn6zsTdmm9ttxeEdZQ2sfyAcA8A+NvuD+xhtv6PHHH1f//v0VGxuriIgIHTt2TJs3b9apU6c0YMAA3XPPPfb2Tz/9tBYuXKiUlBQtWLDAvnzQoEGaPn26Vq9erV69emnEiBH68ccf9frrr6tly5Z66qmnvJAdPMXVC7Off/5ZUVFRtbbjwgye4k+/0vCnXAAAAOA5FotFwWHBCmpibqmE60cAaFwafcF95MiROn78uD799FPt2rVL+fn5ioyM1MUXX6zx48dr6tSpCgpy7p9p1apV6tGjh55//nmtWLFC4eHhGj16tBYvXqzOnTu7ORN4k6sXZoEhgU615cIM/oR7HQAAAAAAAH/X6Avuffr0UZ8+fZxuv2DBAoeR7eUFBAQoOTlZycnJJkWH+nLn1BISRT74D0/8fNZTI8/5KTAAAAAAAPCWRl9wh39zZ4FP8uz0EsxLDXfyp5/P+lMuAAAAAACgYaHgDjQQzEuNho57HQAAAAAAAH9HwR1+zV1TS0gU+QBXca8DAAAAAADg7yi4w2s8cQNFd00tIXm+yMe81AAAAAAAAIBvo+AOr2GKFNcwLzUAAAAAAADg2wK8HQD+Jz4+Xt26dVNaWpq3QwEAAAAAAACARiMtLU3dunVTfHx8vfphhLsPycrKUkREhLfD8BhuoAgAAAAAAADAFyQlJSkpKUl5eXmKjIyscz8U3OE13EARAAAAAAAAgD9hShkAAAAAAAAAAExAwR0AAAAAAAAAABNQcAcAAAAAAAAAwATM4Q4AAAAAaBAMw5Ct0OaWvq2hVlksFrf0DQAAGo9GXXA/duyY/vznP2vTpk06cOCATpw4oZYtW+qKK67Qfffdp0svvdSpfjIzMzVo0KBq17/00kuaPHmySVEDAAAAQONkK7RpZfhKt/SdnJ+s4LBgt/QNAAAaj0ZdcH/qqae0bNkyde7cWUOHDlVUVJQOHjyod955R++8847Wr1+vcePGOd1fQkKCEhMTKy3v2bOneUEDAAAAAAAAAHxSoy649+3bV5mZmUpISHBY/sknn2jIkCGaOXOmrrvuOoWEhDjVX2JiohYsWOCGSAEAAAAA1lCrkvOTlb0p29R+Ow7vKGuo1dQ+AQBA49SoC+7XX399lcsHDBigQYMGaevWrfr666/Vp08fD0cGAGjsmKMWAIDKLBaLgsOCFdTE3I+yTCUDAADM0qgL7jWxWn8b3RAU5Pw/0cGDB/Xkk0/q9OnTat++vQYPHqx27dq5K0QAgB9jjloAAAAAABoeCu5VOHr0qD744AO1bdtWPXr0cPp569ev1/r16+2Pg4KCdOedd+rRRx9VYGCgO0IFAAAAAAAAAPgICu4V2Gw23XzzzSoqKtKyZcucKpRHRUVp6dKlGjlypGJjY1VQUKBdu3bp/vvv1xNPPCGLxaLly5fX2k9eXp7D45CQEKfnjwcA+BfmqAUAAPXl6hR1JYUlKi4odqotU9QBAPxFUVGRioqK7I8r1mhdRcG9nLNnz2ry5Mn6+OOPdeutt+rmm2926nndu3dX9+7d7Y/DwsI0atQoXXrppbr44ou1cuVKzZkzR61bt66xn+joaIfHKSkp3IQVABop5qgFAAD1xRR1AADULjU1VQsXLjStvwDTemrgzp49q6lTp2r9+vW66aab9Nxzz9W7zzZt2mjUqFEqKSnRnj17am2fk5Oj3Nxc+9/cuXPrHQMAAAAAAAAAoGpz5851qMnm5OTUqz9GuOu3YvuUKVP08ssva8KECUpPT1dAgDnfRbRq1UqSVFBQUGvbiIgIRUREmLJdAAAAAJBcn1bEVUwt4rtcnaLu559/VlRUVK3tmKIOAOBPzJ7Wu9EX3MsX28eNG6e1a9eaeoPTspHtsbGxpvUJAAAAAM5y57QiElOL+DJXp6gLDAl0qi2vNwAA1WvUU8qUTSPz8ssva+zYsVq3bl2NxfaTJ0/qwIEDOnnypMPyL774osr2K1asUEZGhuLi4hQfH29q7AAAAAAAAAAA39KoR7g/9NBDWrNmjcLDw9W1a1c9/PDDldpcd9116tmzpyTp6aef1sKFCyvdzHTMmDGyWq3q06eP2rdvr4KCAu3evVt79+5V8+bNay3kAwAAAIC7uDqtiCuYWgQAAMBRoy64Hz58WJKUn5+vxYsXV9kmNjbWXnCvzsyZM7VlyxZ9/PHHOnXqlAICAhQTE6O7775bs2fPVvv27U2OHAAAAACc4+q0Iq5gahEAAABHjbrgnp6ervT0dKfbL1iwwGFke5k5c+Zozpw55gUGAAAAAAAAAGhwGvUc7gAAAAAAAAAAmIWCOwAAAAAAAAAAJqDgDgAAAAAAAACACSi4AwAAAAAAAABggkZ901QAABozwzBkK7S59JySwhIVFxQ71dYaapXFYqlLaAAAAKijulzjuYJrPACoGQV3HxIfH6/AwEAlJSUpKSnJ2+EAAPycrdCmleEr3dZ/cn6ygsOC3dY/AAAAKuMaDwDqJi0tTWlpaSotLa1XPxTcfUhWVpYiIiK8HQYAAAAAAAAANCplg6Dz8vIUGRlZ534ouAMA0EhZQ61Kzk9W9qZsp5/z888/KyoqqtZ2HYd3lDXUWp/wAAAAUAd1ucZzFtd4AFA7Cu4AADRSFotFwWHBCmri/OVAYEigU+35mTEAoKFydf5rV+5vIjH/NdyvLtd4zuIaDwBqR8EdAAAAAID/Yv5rAABQHwHeDgAAAAAAAAAAAH/ACHcAAAAAAP7L1fmvnb2/icT81wAANAaNfoT7sWPH9OSTT2ro0KHq0KGDgoOD1aZNG40ZM0Z79uxxqa+zZ8/qqaeeUo8ePdS0aVNFRUVpwoQJ+v77790UPQAAAADATOXnv3bmr+z+Js78BYcFM387AAB+rtEX3J966indc889+v777zV06FDNnj1b/fv317vvvqvLL79cr7/+utN9zZgxQ8nJyTIMQ8nJybr66qv11ltvKT4+XgcPHnRjFgAAAAAAAAAAb2v0U8r07dtXmZmZSkhIcFj+ySefaMiQIZo5c6auu+46hYSE1NhPRkaGVq9erYEDB2rbtm0KDv7tJjgTJ07U8OHDdccdd2jLli1uywMAAAAAAABwJ8MwZCu0ua1/a6iVXwKhwWv0Bffrr7++yuUDBgzQoEGDtHXrVn399dfq06dPjf288MILkqRFixbZi+2SdM011ygxMVFbt27V0aNH1aFDB/OCBwAAAAAAADzEVmjTyvCVbus/OT9ZwWHBtTcEfFijn1KmJlbrbzezCQqq/XuJzMxMhYWF6Yorrqi0btiwYZKk7du3mxsgAAAAAACAFxiGoeKCYqf/SgpLnG5rGIa30wOAOmv0I9yrc/ToUX3wwQdq27atevToUWPbgoIC/fjjj7rooosUGBhYaX1cXJwkMY87AAAAAADwC+4c6cwoZ99lDbUqOT9Z2ZuyTe+74/COsoZaTe8X8DQK7lWw2Wy6+eabVVRUpGXLllVZRC8vNzdXkhQZGVnl+oiICId21cnLy3N4HBISUuvc8QAAAAAAAIAnWCwWBYcFK6iJ+SVFvmSBtxQVFamoqMj+uGKN1lUU3Cs4e/asJk+erI8//li33nqrbr75Zo9tOzo62uFxSkqKFixY4LHtAwAAAAAAOMPVkc4///yzoqKiam3HKGcAnpaamqqFCxea1h8F93LOnj2rqVOnav369brpppv03HPPOfW8spHt1Y1gL/tWpLoR8GVycnLso+ElMbodAAAAAAD4JFdHOgeGBDrVllHOADxt7ty5mjVrlv1xXl5epYHRrqDg/l9nz57VlClT9PLLL2vChAlKT09XQIBz95QNCwtT27ZtlZ2drdLS0kpT0JTN3V42l3t1IiIiHAruAAAAAAAAAAD3MXtab+cqyn6ufLF93LhxWrt2ba3ztleUkJCggoIC7dy5s9K6LVu2SJIGDhxoSrwAAAAAAAAAAN/T6AvuZdPIvPzyyxo7dqzWrVtXY7H95MmTOnDggE6ePOmw/LbbbpMkPfDAAyouLrYv37x5szIzMzV06FDFxMS4JwkAAAAAAAAAgNc1+illHnroIa1Zs0bh4eHq2rWrHn744UptrrvuOvXs2VOS9PTTT2vhwoWVbmg6aNAgTZ8+XatXr1avXr00YsQI/fjjj3r99dfVsmVLPfXUUx7KCAAAAAAAAADgDY2+4H748GFJUn5+vhYvXlxlm9jYWHvBvSarVq1Sjx499Pzzz2vFihUKDw/X6NGjtXjxYnXu3NnEqAEAAAAADZlhGLIV2tzStzXUKovF4pa+AQBAzRp9wT09PV3p6elOt1+wYIHDyPbyAgIClJycrOTkZHOCAwAAAAD4JVuhTSvDV7ql7+T8ZAWHBbulbwAAULNGX3AHAAAAAABA41SXX5uUFJaouKC49obiFydAY0TBHQAAAAAAD7OGWpWcn6zsTdmm9ttxeEdZQ62m9gn4M3f+2kTiFydAY0TBHQAAAAAAD7NYLAoOC1ZQE3M/llPYAwDAuyi4AwAAAICXuDqVAdMYAIC56vJrk59//llRUVG1tuMXJ0DjRMEdAAAAALyEG2cCjQtfsvmeuvzaJDAk0Kn2nIOBxomCuw+Jj49XYGCgkpKSlJSU5O1wAAAAAACAifiSDQB8V1pamtLS0lRaWlqvfii4+5CsrCxFRER4OwwAAAAAHuLqVAZMYwAAAOAeZYOg8/LyFBkZWed+KLgDAAAAjQRTGfgeV6cyYBoDoGHjSzYA8H8U3AEAAIBGgqkMAMC7+JINAPxfgLcDAAAAAAAAAADAHzDCHQAAAGgk/GUqA3dOjSMxPQ4AAADqjoI7AAAA0Ej4y1QG7pwaR2J6HAAAANRdo59SZt26dZoxY4b69OmjkJAQWSwWpaenu9RHZmamLBZLtX+u9gcAAAAAAAAAaHga/Qj3+fPn68iRI2rVqpXatm2rI0eO1LmvhIQEJSYmVlres2fPugcIAAAAwIG7psaRPD89DgAAAPxLoy+4r169WnFxcYqJidHSpUs1d+7cOveVmJioBQsWmBccAAAAgErcNTWO5PnpcQA4x533buC+DQAAMzX6gvuVV17p7RAAAAAAAEAN3HnvBu7bAAAwU6MvuJvp4MGDevLJJ3X69Gm1b99egwcPVrt27bwdFgAAAAAAAADAAyi4m2j9+vVav369/XFQUJDuvPNOPfroowoMDPRiZAAAAAAANFzuuncD920AAJiNgrsJoqKitHTpUo0cOVKxsbEqKCjQrl27dP/99+uJJ56QxWLR8uXLa+0nLy/P4XFISIhCQkLcFTYAAAAAAA2Cu+7dwFQyAICioiIVFRXZH1es0bqKgrsJunfvru7du9sfh4WFadSoUbr00kt18cUXa+XKlZozZ45at25dYz/R0dEOj1NSUrgJKwAAAAAAANAAuXrDZ4mbPntDamqqFi5caFp/FNzdqE2bNho1apRWr16tPXv26Pe//32N7XNychQREWF/zOh2AAAAAAAAoGFy5w2fJW76bJa5c+dq1qxZ9sd5eXmVBka7goK7m7Vq1UqSVFBQUGvbiIgIh4I7AAAAAAAAAMB9zJ7Wm4K7m+3Zs0eSFBsb691AAAAAAAAAAHiMqzd8lrjpsz+g4O6CkydP6uTJk2rVqpV95LokffHFF+rdu3el9itWrFBGRobi4uIUHx/vyVABAAAAAAAAeJGrN3yWuOmzP2j0BffVq1drx44dkqSvv/7aviwzM1OS1L9/f02fPl2S9PTTT2vhwoWVbmY6ZswYWa1W9enTR+3bt1dBQYF2796tvXv3qnnz5lq3bp0CAwM9mhcAAAAAAAAAwLMafcF9x44dWrNmjcOynTt3aufOnfbHZQX36sycOVNbtmzRxx9/rFOnTikgIEAxMTG6++67NXv2bLVv394tsQMAAAAAAAAAfEejL7inp6crPT3dqbYLFixwGNleZs6cOZozZ465gQEAAAAAAAAAGpRGX3AHAADuZRiGbIU2t/RtDbXKYrG4pW8AAAAAAFxFwR0AALiVrdCmleEr3dJ3cn4yNwsCAAAAAPiMAG8HAAAAAAAAAACAP2CEOwAAcCtrqFXJ+cnK3pRtar8dh3eUNdRqap8AAAAAANQHBXcAAOBWFotFwWHBCmpi7mUHU8kAAAAAAHwNU8r4kPj4eHXr1k1paWneDgUAAAAAAAAAGo20tDR169ZN8fHx9eqHEe4+JCsrSxEREd4OAwAAAAAAAAAalaSkJCUlJSkvL0+RkZF17ocR7gAAAAAAAAAAmICCOwAAAAAAAAAAJqDgDgAAAAAAAACACZjDHQAAAAAAAECjYhiGbIU2t/RtDbXKYrG4pW/4PgruAAAAAAAAABoVW6FNK8NXuqXv5PxkBYcFu6Vv+L5GP6XMunXrNGPGDPXp00chISGyWCxKT093uZ+zZ8/qqaeeUo8ePdS0aVNFRUVpwoQJ+v77780PGgAAAAAAAADgcxr9CPf58+fryJEjatWqldq2basjR47UqZ8ZM2Zo9erV6t69u5KTk3X8+HG98cYb2rp1q3bv3q24uDiTIwcAAAAAAABQF9ZQq5Lzk5W9KdvUfjsO7yhrqNXUPtGwNPqC++rVqxUXF6eYmBgtXbpUc+fOdbmPjIwMrV69WgMHDtS2bdsUHPzbT0YmTpyo4cOH64477tCWLVvMDh0AAAB+wp1ziErMIwoAAFCRxWJRcFiwgpqYWx5lKhk0+oL7lVdeWe8+XnjhBUnSokWL7MV2SbrmmmuUmJiorVu36ujRo+rQoUO9twUAAAD/4845RCXmEQUAAAA8pdHP4W6GzMxMhYWF6Yorrqi0btiwYZKk7du3ezosAAAAAAAAAIAHNfoR7vVVUFCgH3/8URdddJECAwMrrS+bu/3gwYOeDg0AAAANhLvmEJWYRxQAgMbC1SnqSgpLVFxQ7FRbpqcDnEfBvZ5yc3MlSZGRkVWuj4iIcGhXk7y8PIfHISEhCgkJqWeEAAAA8HXumkNUYh5RAAAaC3dOUcf0dPBnRUVFKioqsj+uWKN1FVPK+JDo6GhFRkba/1JTU70dEgAAAAAAAAD4rdTUVIeabHR0dL36Y4R7PZWNbK9uBHvZNyLVjYAvLycnxz4iXhKj2wEAAAAAAOAUV6eo+/nnnxUVFVVrO6ang7+bO3euZs2aZX+cl5dXr6I7Bfd6CgsLU9u2bZWdna3S0tJK87iXzd1eNpd7TSIiIhwK7gAAAAAAAIAzXJ2iLjAk0Km2TCUDf2f2tN5MKWOChIQEFRQUaOfOnZXWbdmyRZI0cOBAT4cFAAAAAAAAAPAgCu4uOHnypA4cOKCTJ086LL/tttskSQ888ICKi/93d+fNmzcrMzNTQ4cOVUxMjEdjBQAAAAAAAAB4VqOfUmb16tXasWOHJOnrr7+2L8vMzJQk9e/fX9OnT5ckPf3001q4cKFSUlK0YMECex+DBg3S9OnTtXr1avXq1UsjRozQjz/+qNdff10tW7bUU0895dGcAAAAAG8xDEO2Qptb+raGWmWxWNzSNwAAAGCGRl9w37Fjh9asWeOwbOfOnQ7Tw5QV3GuyatUq9ejRQ88//7xWrFih8PBwjR49WosXL1bnzp1NjxsAAADwRbZCm1aGr3RL38n5ycwjCwAAAJ/W6Avu6enpSk9Pd6rtggULHEa2lxcQEKDk5GQlJyebFxwAAAAAAAAAoMFo9AV3AAAAAOaxhlqVnJ+s7E3ZpvbbcXhHWUOtpvYJAAAAmI2COwAAAADTWCwWBYcFK6iJuR81mEoGAAAADUGAtwMAAAAAAAAAAMAfUHAHAAAAAAAAAMAEFNwBAAAAAAAAADABc7gDAADAdIZhyFZoc+k5JYUlKi4odqqtNdQqi8VSl9AAAAAAwG1ML7hnZGToww8/1M6dO/XDDz/o5MmTCg0NVVRUlHr06KGEhASNHDlSbdq0MXvTDV58fLwCAwOVlJSkpKQkb4cDAABQZ7ZCm1aGr3Rb/8n5ydxEEwAAAIBp0tLSlJaWptLS0nr1Y0rBvaCgQCtXrtQLL7ygI0eOyDAMSVKTJk3UsmVLnT59Wn//+9/11Vdf6ZVXXpHVatXvf/973XPPPbriiivMCMEvZGVlKSIiwtthAAAAAAAAAECjUjYIOi8vT5GRkXXup94F9+eee04LFy7UTz/9pIsvvliLFi1Sv3791KdPHzVr1szezjAMHTx4UHv27NHWrVv17rvv6u2339aoUaO0fPlydezYsb6hAAAAwEdYQ61Kzk9W9qZsp5/z888/KyoqqtZ2HYd3lDXUWp/wAAAAAMAt6l1wv/POOzVhwgTdd999uuiii6ptZ7FY1LVrV3Xt2lU333yzTp8+rVdeeUWpqalau3atHnzwwfqGAgAAAB9hsVgUHBasoCbOX24GhgQ61Z6pZAAAAID/qcv9k5zFvZNcV++C+zfffKOuXbu6/LymTZtq+vTpmjJlio4ePVrfMAAAAAAAAACg0XHn/ZO4d5Lr6l1wr0uxvbzAwECmkwEAAAAAAIDfYgQy0HiYctNUAAAAAAAAAFVjBDLcqS73T3IG906qG7cW3O+77z6lpKQoLCxM9913X41tH3nkEXeGUqOsrCylpKTo008/lc1mU48ePTRr1izdeOONTj0/PT1dU6ZMqXZ9RkaGEhMTTYoWAACgfhhhBQAAAPiPutw/yRl8kVM3bi24Z2VlyWaz2f+/Ot78UJaRkaFhw4apSZMmGj9+vJo1a6YNGzZo3LhxysnJ0ezZs53ua9SoUerZs2el5bGxseYFDAAAUE+MsAIAAPAsRiADjYdbC+4ZGRlV/r+vKCkp0a233qqAgAB9/PHH9mL5gw8+qL59+2revHm64YYbFBMT41R/1113nSZPnuy+gAE3c3XEY0lhiYoLip1uz6hHAAAAAEBjxAhkoPFo1HO4f/TRRzp06JCmTJniMDI9MjJS8+bN0+TJk7VmzRo9+OCD3gsS8CB3jniUGPUIAL6CEVYAALMwTRkAAI48WnDft2+fPvroI/3rX//S2bNnHdZ5Yw73zMxMSdLQoUMrrRs2bJgkafv27U73t3fvXp06dUolJSWKjY3VlVdeqXPOOceUWAEAAMzCCCsAgFmYpgwNXdmXRiVnSpx+TmlRqVPtiwuK+eIIaIQ8VnBfsWKF7rnnHsXFxalt27YOJxtvnXgOHjwoSYqLi6u0rk2bNgoPD7e3ccbKlY4XGU2bNlVKSormzJnj1PPz8vIcHoeEhCgkJMTp7QP15eqIx59//llRUVFOtWXUIwAAAOqrLoUxZ1AUAxovfukNoKioSEVFRfbHFWu0rvJYwf3RRx9VWlqaZs6c6alN1io3N1fSb1PIVCUiIsLepiYdO3bUU089pWHDhql9+/b65Zdf9NFHH2nu3Lm6//77FRoaqjvvvLPWfqKjox0ep6SkaMGCBbUnApjE1RGPgSGBTrflAgMAADQ0TJXhexhN7XuYpgwA0NClpqZq4cKFpvXnsYJ7QUFBlVO3+IOEhAQlJCTYH7dr104333yzevXqpT59+mjBggWaOXOmgoJq/ufOyclRRESE/TGj2wEAAADvobgL1I5pytDQlX1p5IqcozmK7hBde8P/9g/At82dO1ezZs2yP87Ly6s0MNoVHiu4T5kyRRs2bNB9993nqU3Wqmxke3Wj2PPy8tSiRYs699+9e3f1799fH3zwgfbv368ePXrU2D4iIsKh4A4AAAAA+J+6FMZc6RtA41P2pZErgkKD+FIIPoUp1+rH7Gm9PXrT1NTUVG3dulU9evSQ1ep4MeONm6aWzd1+8OBB9e7d22HdiRMnlJ+fr759+9ZrG61atZL02wh/AAAAAA0HU2X4nroUxgAA8Hf8Ks+3eKzgvnfvXvXs2VOlpaXat2+fwzpvfUuSkJBg/xJg/PjxDuu2bNlib1NXpaWl+vzzzyVJMTExdQ8UAAAAVWKObbgTU2UAAADAVR4ruGdkZHhqU04bMmSIOnXqpPXr1ys5OVk9e/aU9NsUM0uWLFFwcLBuueUWe/sff/xRubm5atu2rcONVr/44otKI+RLS0t1//3367vvvtOgQYPUtm1bj+QEAADQmDCaBwAAAI0dU675Fo9OKeNrgoKCtHr1ag0bNkwDBw7U+PHj1axZM23YsEFHjhzRY489ptjYWHv7uXPnas2aNXrppZc0efJk+/I+ffro4osv1sUXX6x27drpl19+0fbt2/Xtt9+qffv2Wr16teeTAwAAAAAAAOD3mHLNt7i14H7fffcpJSVFYWFhtd4s1RtzuEvSoEGDtGPHDqWkpOj111+XzWZTjx49tGzZMo0bN86pPmbPnq3du3dr27Zt+uWXXxQcHKwuXbpo/vz5mjVrVr1uvAoAAIDqMcc2AAAAAF/i1oJ7VlaWbDab/f+r4+25Mfv27avNmzfX2i49PV3p6emVlj/22GNuiAoAAAC1YY5tAAAAAL7ErQX38vO2++Ic7gAAAAAAAAAAmCXA2wEAAAAAAAAAAOAPKLgDAAAAAAAAAGACCu4AAAAAAAAAAJjArXO4AwDgjwzDkK3Q5nT7ksISFRcUO9XWGmr1+s3EAQAAAABA3fhEwT0gIECJiYl69NFH1bt3b2+H4zXx8fEKDAxUUlKSkpKSvB0OAKAatkKbVoavdEvfyfnJCg4LdkvfAAAAAACgamlpaUpLS1NpaWm9+vGJgvuLL76oI0eOKDk5WTt37vR2OF6TlZWliIgIb4cBAAAAAAAAoJ7Kfh1dcqbE6eeUFpU61b64oJhfSJusbBB0Xl6eIiMj69yPWwvud955px599FE1adJEubm51QY6efJkSVJKSoo7wwEAwBTWUKuS85OVvSnbqfY///yzoqKiam3XcXhHWUOt9Q0PAAAAAOAD3PnraIlfSPsqtxbcc3NzdebMGTVp0kQtWrRQhw4ddMkll+jiiy+2/zcuLo5vYgAADYrFYlFwWLCCmjj3NhoYEuhUWy6UAAAAAABo2NxacH/55Zft/3/gwAF9+eWX+uqrr/Tll19q7dq1Onr0qEJDQ9W9e3ft2bPHnaEAAAAAANCouDqVAdMYAA0bx7zvKft1tCtyjuYoukO00/3D93hsDveuXbuqa9euGjt2rH1Zbm6uvQgPAAAAAADMw43egcaFY973lP062hVBoUH8WzdwphTcN2/erGuuucbl50VGRmrgwIEaOHCgGWEAAAAAAADAT5SN2HYHRmwDcBdTCu6jRo3SM888o+nTp5vRnVdkZWUpJSVFn376qWw2m3r06KFZs2bpxhtvdLqPoqIiLVu2TGvXrlVOTo5atmypkSNH6uGHH1br1q3dGD0AAADgG1z9Obuz+Dk74DpXpzJgGgP4GkZsu4ZjHvANphTc27VrpxkzZujw4cN6+OGHnXrOt99+q65du5qx+XrLyMjQsGHD1KRJE40fP17NmjXThg0bNG7cOOXk5Gj27Nm19nH27FmNGjVKW7Zs0WWXXaYxY8bo4MGDWr16tT788EPt3r1bUVFRHsgGAAAA8B6KI4DvcHUqA6YxcD/m2IY7ccwDvsGUgvuePXs0fPhwpaam6ujRo3rxxRcVFFR1119//bUWL16sDRs2yGZzz8+CXFFSUqJbb71VAQEB+vjjj9WzZ09J0oMPPqi+fftq3rx5uuGGGxQTE1NjP2vWrNGWLVs0YcIEvfLKK/Y3ueeee04zZ87U/PnztWrVKnenAwAAAABoAPg1SOPkiS8l3bVvSY77lye+PCgbsZ29Kbu+oTvoOLwjI7Z9nKvTCZUUlqi4oNiptpwj4W6mFNxbt26tjz/+WOPGjdO6det0/PhxvfXWW4qIiLC3ycrK0sMPP6z3339fhmEoPj7ejE3X20cffaRDhw5pypQp9mK79Nv88vPmzdPkyZO1Zs0aPfjggzX288ILL0iSUlNTHQ7aGTNm6NFHH9Urr7yiJ598Uk2bNq22j4KCAgUGBtYvoQbozJkzTrUrLi52qm1BQUGdt+GK+mzHl3LxRB713Y6z/Pk1cWU7vp6LJ/JwZTvO8uf9y5Vt+Houzjpz5ky9nu9L6pML+5dr23CWL70mkufPX4ZhaPpP7plqstgolq3gfx++uWZxzzZc4c33endz9/5lK7Bp9bmr6xRbbab/NF3WMNeLib50/qoYh2EYKiksUf5/8p16/ulfTys/uPa2//nXfxQUGuTwOd6duZQ/h5mtsKBQNtncum9J/9u/PLkPl8jcLw9sstVrbnhfPlZc4Ut5SJ4/R7p6XnFWVecVV/jTZ5WGqr7//qYU3CUpNDRU7777ru644w4999xz6t+/vzZu3Kjs7GwtXrxYH3zwgQzDUP/+/TV//nwNHTrUrE3XS2ZmpiRVGc+wYcMkSdu3b6+xjzNnzmjPnj06//zzK42Et1gsuuqqq7Rq1Sp9/vnnGjBgQLX9rFy5Uk2aNHExg4Yv8J/mfslQ+o9St2/DU9vxl214ajv+vA1PbcdftuH27RiSbFLgQZO3sa9Uskoqd13WEF+TStvxxL/Xf7fhFhVeE3/SEI8TyQvHigf3L396D/YEv/j38uA50i+ORw9y+/5VLIUpzPRtSNKKFSskT80S4anromIpbIl7/r0K5hU4/Hu5/ZifZ2r3diueWfHbv5cb9y2p3P7lwX3YX84rkv/k4hfnSA+eV9Cw1PcLJdMK7pIUEBCgZ555Rh07dtScOXN0wQUX6MyZMzIMQ0OGDNEDDzyggQMHmrnJejt48KAkKS4urtK6Nm3aKDw83N6mOocOHdLZs2er7KN83wcPHqyx4F5UVOTwOCgoqNqpeQC3KCsomP/LQ6lYfl20QiNj48LMJZ749/Kn18QTxV13ne/Ln+vd+JpIHn5d/Gn/gu9p4OdIh+3ANdb//tu5qW+P4RzpGovcn5M7963/9u/27TDbC/67f5n+ZV5cKfsXKikpKVFJyf8+HFWs0brK9Grue++9pzfffFOSdPr0aVksFi1evFhz5841e1OmyM3NlfTbFDJViYiIsLepTx/l21XniSeecHickJCgQYMG1fgcwFR8GAMA72vgxTfO9QAaPE8NQvFE4dWfUNx1nqf2LfZhuFPZ/mV25bL8Pst5Bf/1ySef1DrDiStM221ff/11LVmyRH//+99lsVh04403auTIkUpOTtbChQsVHR2tm266yazN+aV77rlHISEh9seMbgcAH8WFmWs88e/liREw7hx5Lvnfr4A8NbrOExhhBXfy4DnSbfxtP2YQims8dV1EcReA2Tiv4L8GDBigfv362R8XFRVVGhjtClMquhdccIEOHjyowMBA3XzzzZo3b566du0qSerVq5euueYaTZo0STk5OT430r1sVHp1o8/z8vLUokWLevdRvl11/t//+38ON5ptLA5vOuxUu5MnT6pVq1a1tosdHlvnbbiiPtvxpVzKb8MwDJXc5fxQnmPHjqldu3ZOt6940xB35uLqNnz1NanLdnw9F0/k4cp2nFXddpzxww8/qH379nV6ri+9JlL9Xxd3c+f+5akbkJWdi49sOeLU806dOqVzzjmn1nYxw2Ls52FXz/euqM8NoupyrJTd7MrZfy9nlf/3KtMQz8P13U5jO+alKq6NPLR/Oas+7yme0tD3L1uBTauXuO98f9ddd9Xphqae0BD2L2f5+vWXs3hNfuNLr4nkP7n4Uh6Sf1+zuMKfjvuGKi8vz/sF9+zsbE2fPl3333+/Onbs6LCuW7du2rVrl4YPH6758+fr6NGjeuaZZ+r8Qcxs5edX7927t8O6EydOKD8/X3379q2xj06dOikgIKDaud5rmie+vLCwMIWFuW8kha9y9kaxwcHBTrWt6t/QHTejrc92fCmXStsId/65uadz1bx18zpv2+25uLANn35NXNyOr+fiiTxc2Y6z6nN+btKkSZ2f70uviVT/18Xd3Ll/Fau4znE5IzQsVMFh/x1iEy6dan7KqecVFhcqvHntJ+9K52sXzveeUpdjpbigWM+d+5xb4knOT/7fa6KGeR6uuB3DMGQrtCnIyY8BgUagU22tssoaavX4Nb7Zr4lU4bj34P7lrPq8p3iKp97r3cUINZScn+x0+5yjOYruEO10e28cK85qCPuXs3z9+stZvCb/e66Z6vtv6i+5+FIeknc/P/oSfzruG6rS0vrdjNiUgvv3339f4yjX8847Tzt27ND111+vVatW6dixY3r99dfVtGlTMzZfLwkJCUpNTdXWrVs1fvx4h3Vbtmyxt6lJ06ZN1bdvX+3evVtHjhxRTEyMfZ1hGNq2bZvCwsLUp08f8xMAAAAeYQ21Kjk/Wdmbsk3vu+PwjrKG+uZoR/gXW6FNK8NXuqXvuhaQAV9jsVhc2peDQoPY9wEAgJ0pBXdnppQIDw/Xpk2bNG3aNK1du1aJiYnas2ePGZuvlyFDhqhTp05av369kpOT1bNnT0m/TQ+zZMkSBQcH65ZbbrG3//HHH5Wbm6u2bds6TBFz2223affu3Zo7d65eeeUV+4iFVatW6fvvv9dtt93mE18wAACAuikrwAQ1Mf8eKxRq6q7sixB39Y3Gjf0LAAAArjLlE+MzzzyjUaNG1Vp4DwoK0po1a9S+fXstXbrUjE3XW1BQkFavXq1hw4Zp4MCBGj9+vJo1a6YNGzboyJEjeuyxxxQbG2tvP3fuXK1Zs0YvvfSSJk+ebF8+adIkvf7663r11VeVnZ2thIQEfffdd3rrrbfUsWNHPfzww55PDgAAwM+5OhK1sXO1gOzKVBn+WEBm/wIAmKVsWreSM+beR6e4oNinp6oCGiNTCu533HGH7rzzTvXq1UvXXXedrr32WvXo0aPa9osXL3YoYnvboEGDtGPHDqWkpOj111+XzWZTjx49tGzZMo0bN86pPgICAvTuu+9q6dKlWrt2rZ544gm1bNlS06ZN08MPP6yoqCg3ZwEAAADUjKky4E6uFpNKi0qdaksxCYA/YFo3oPEwpeCelZWld955R++9954eeOABPfjgg4qNjbUX3wcMGKCAgACH59x6661mbNo0ffv21ebNm2ttl56ervT09CrXhYSEKCUlRSkpKSZH55+4IAcAAEBduOs6UuJasj4oJgEAAJhUcO/du7d69+6tRYsW6fDhw3r77bf13nvvaeXKlXryySfVsmVLjRw5UqNGjdLQoUMVGhpqxmbRwHFB3njxUzoAAFAf7ryOlLiWBACYz1/uC+Kuz/MSn+nhP0y/61dsbKzuuece3XPPPfrll1/0/vvv65133tGbb76pNWvWqEmTJhoyZIhGjx6tkSNHqnXr1maHAMDH8WULAACA/+EeAQBQPX+5LwhfegO1M73gXl7Lli11yy236JZbblFRUZG2bdumd999V++//742btyogIAAXXbZZdqxY4c7w4CP4oIcAAAAdeHO68iy/uE67hEAAADg5oJ7eSEhIRo5cqRGjhwpwzC0e/du+7zvaJy4IG+8/OWndEBDV5efg3I/DQC+gOtIAAC8w52f58v6Bxo6jxXcy7NYLOrXr5/69eunZcuWeSMEAF7kLz+lAxo6fg4KAAAAwBV8ngdqF+DOzu+8806dOXNGkpSbm+vOTfmF+Ph4devWTWlpad4OBQAAAAAAwKsMw1BxQbFKzpSY+ldcUCzDMLydHgAfk5aWpm7duik+Pr5e/bh1hHtubq7OnDmjJk2aqEWLFurQoYMuueQSXXzxxfb/xsXF8XPz/8rKylJERIS3wwAANBJ1+Tko99MAAACAp7jzF5n8GhNARUlJSUpKSlJeXp4iIyPr3I9bC+4vv/yy/f8PHDigL7/8Ul999ZW+/PJLrV27VkePHlVoaKi6d++uPXv2uDMUAABQQV1+Dso8yAAAAAAAVM+UgvvmzZt1zTXX1Nima9eu6tq1q8aOHWtflpubay/CAwAAAL7I1RsMc3NhAADM4c4bdPJrTADuYkrBfdSoUXrmmWc0ffp0l54XGRmpgQMHauDAgWaEAQAAAJiOn7MDAOAd3KCz8WLAAxoyUwru7dq104wZM3T48GE9/PDDTj3n22+/VdeuXc3YPAAAAAAAAAA/wYAHNGSmFNz37Nmj4cOHKzU1VUePHtWLL76ooKCqu/7666+1ePFibdiwQTabzYzNAwAAAG7j6s/ZubkwAAAA0HiZUnBv3bq1Pv74Y40bN07r1q3T8ePH9dZbbykiIsLeJisrSw8//LDef/99GYah+Ph4MzZdb3l5eVqwYIE2bNigEydOqG3btho7dqxSUlIUHh7udD81/RRl0qRJSk9PNyFaAAAAeJqrP2fn5sIAAAD1w4AHNGSmFNwlKTQ0VO+++67uuOMOPffcc+rfv782btyo7OxsLV68WB988IEMw1D//v01f/58DR061KxN11lBQYESEhK0b98+DR06VBMmTNDevXv12GOPafv27fr444/VpEkTp/uLiYnR5MmTKy3v2bOneUEDAIBKmOMRAAAA8B8MeEBDZlrBXZICAgL0zDPPqGPHjpozZ44uuOACnTlzRoZhaMiQIXrggQd86gapjzzyiPbt26c5c+Zo6dKl9uX333+/li1bpieeeEJz5851ur/Y2FgtWLDADZECAICaMMcjAAAAAMAXBJjd4Xvvvac333xTknT69GlJ0uLFi7Vt2zafKrYbhqHVq1crPDxcDzzwgMO6Bx54QOHh4Vq9erWXogMAAAAAAAAANDSmjXB//fXXtWTJEv3973+XxWLRjTfeqJEjRyo5OVkLFy5UdHS0brrpJrM2V28HDx7U8ePHNWzYMIWFhTmsCwsL0xVXXKEtW7YoJydH0dHOzQH1n//8R88//7xOnjypli1b6oorrlCPHj3cET4AACiHOR7R0Lk6LZIrmBoJAAAA8BxTCu4XXHCBDh48qMDAQN18882aN2+eunbtKknq1auXrrnmGk2aNEk5OTkuTdHiTgcPHpQkxcXFVbk+Li5OW7Zs0cGDB50uuH/55ZeaMWOGw7Krr75aa9asUevWrWt9fl5ensPjkJAQhYSEOLVtVI0PrwDQODDHIxo6d06LJDE1EgAAAFCdoqIiFRUV2R9XrNG6ypSCe3Z2tqZPn677779fHTt2dFjXrVs37dq1S8OHD9f8+fN19OhRPfPMM14vUubm5kqSIiMjq1wfERHh0K42s2fP1pgxY9S1a1cFBwfr73//uxYtWqTNmzdr5MiR2rVrlwIDA2vso2JhPyUlhTnh64kPrwAAAAAAAACqk5qaqoULF5rWnykF9++//17t2rWrdv15552nHTt26Prrr9eqVat07Ngxvf7662ratGm9tz179myHbyBqc9ddd1U7qr0+HnvsMYfH/fr10/vvv6/Bgwdr+/btevfdd3X99dfX2EdOTo690C+J0e0AAACNhKvTItWlfwAAAACVzZ07V7NmzbI/zsvLc3rGk6qYUnCvqdheJjw8XJs2bdK0adO0du1aJSYmas+ePfXe9qpVq1RQUOB0+xtuuEFxcXH2ke3VjWAv++lAdSPgnREQEKBbb71V27dv186dO2stuEdERDgU3FF/fHgF0FC5a0ospsMCfJOr0yIBAAAAMIfZ03qbdtNUpzYWFKQ1a9aoffv2Wrp0qSl95ufn1+l5ZaPcy+Zyr6i2Od6d1apVK0ly6UsBmIcPrwAaKndOicV0WAAAAAAAuIdHC+5lFi9erNjYWG9s2i4uLk7nnXeedu7cqYKCAoWFhdnXFRQUaOfOnerYsWO9fj4gyT6K39v5AgAAAAAAAADcyysFd0m69dZbvbVpSb+NfJ4+fboeeughLVq0yGHE/aJFi5Sfn6958+Y5PKewsFBHjx5VaGioOnToYF/+9ddf64ILLpDV6ji9yKeffqply5bJarVq7Nix7k0IAOBX3DklFtNhAQAAAADgHvUuuF999dVatGiR4uPjXX5uQUGBnnrqKTVr1kxJSUn1DcVl9913n959910tW7ZMe/fuVa9evfS3v/1NW7duVXx8vO6++26H9p999pkGDRqkhIQEZWZm2pcvX75cGzduVP/+/RUdHS2r1apvvvlGW7dulcViUVpamjp37uzZ5AAADRpTYgEAAAAA0PDUu+D+888/67LLLtPAgQN1yy236Prrr6/1RqO7d+/WunXr9Nprr+n06dNas2ZNfcOok7CwMG3fvl0LFizQhg0blJGRobZt22r27NlKSUlR06ZNnepn1KhR+s9//qMvv/xS27ZtU3Fxsdq0aaPx48fr7rvvVt++fd2cCQAAAAAAAADA2+pdcP/iiy+0Zs0aLVy4UNOmTdOtt96q888/X71799a5556r5s2b68yZM/rll1/0z3/+U59//rl+/fVXBQYGavz48Xr44YcdpmfxtMjISD3xxBN64oknam2bmJgowzAqLR89erRGjx7tjvAAAAAAAAAAAA2EKXO4T5o0Sbfccos2bdqkl156SZmZmVq3bl2ldgEBAbr44os1evRoTZ8+XW3btjVj8wAAAG5nGIZshTaVnCkxve/igmJZQ62yWCym9w0AAAAA8BzTbppqsVg0YsQIjRgxQpK0f/9+/fDDDzp16pSaNm2qqKgode/evdbpZgAAAHyRrdCmleEr3dZ/cn4y8/YDAAAAQANnWsG9ogsvvFAXXnihu7oHAAAAAAAAAMCnuK3gDsBc7prKgGkMAMA51lCrkvOT3do/AAAAAKBh80jBPT8/X+vXr9euXbt04sQJSVKbNm10+eWXa8KECQoPD/dEGECD5s6pDJjGAABqZ7FYOFcCAAAAAGoU4O4NfPXVV4qLi9Mf//hH5efnq1OnTurUqZPy8/M1b948de3aVX//+9/dHUaDEB8fr27duiktLc3boQAAAAAAAABAo5GWlqZu3bopPj6+Xv24fYR7UlKSrr76aq1evVqBgYEO60pKSnTbbbdp5syZ+uSTT9wdis/LyspSRESEt8OAj3LnVAZMYwAAAAAAAIDGLCkpSUlJScrLy1NkZGSd+3F7wf3zzz/X888/X6nYLklBQUH6f//v/6lXr17uDgNo8JjKAAAAAAAAAPBtbp9S5txzz9Xf/va3atf/7W9/U+vWrd0dBgAAAAAAAAAAbuX2Ee733HOPpk+frr/97W8aMmSIzj33XEnSTz/9pA8//FDPPfecli5d6u4wAAAAAAAAAABwK7cX3O+66y5FRUXpySef1MqVK1VaWipJCgwM1O9+9zutXr1aEyZMcHcYAAAAAAAAAAC4ldsL7pI0ceJETZw4UTabTSdPnpQktWrVSlYrN2oEAAAAAAAAAPgHt8/hXp7ValXbtm3Vtm1bnyi279u3T/PmzdOwYcMUFRUli8WixMTEOveXlZWl4cOHq3nz5goLC9Nll12mN954w7yAAQAAAAAAAAA+y6MF96r8+9//1ssvv+yVbb/zzjtKTU1VZmam2rRpU6++MjIydMUVV2jHjh268cYb9Yc//EEnTpzQuHHjtHz5cpMiBgAAAAAAAAD4Kq8X3I8ePaopU6Z4Zdtjx47VF198ofz8fG3btq3O/ZSUlOjWW29VQECAPv74Yz3//PNavny5vvzyS3Xt2lXz5s3TkSNHTIwcAAAAAAAAAOBr3D6H+9GjR2tcf/z4cXeHUK3u3bub0s9HH32kQ4cOacqUKerZs6d9eWRkpObNm6fJkydrzZo1evDBB03ZHgAAAAAAAADA97i94B4bGyuLxVLtesMwalzfEGRmZkqShg4dWmndsGHDJEnbt2/3ZEgAAAAAAAAAAA9ze8G9RYsWWrRokRISEqpcf+DAAd14443uDsOtDh48KEmKi4urtK5NmzYKDw+3t6lJXl6ew+OQkBCFhISYEyQAAAAAAAAAwEFRUZGKiorsjyvWaF3l9oJ779699e9//7va6VtKSkpkGIa7w3Cr3NxcSb9NIVOViIgIe5uaREdHOzxOSUnRggUL6h0fAAAAAAAAAKCy1NRULVy40LT+3F5wnzlzpgoKCqpd36FDB7300kt17n/27NkO30DU5q677qpyJLovyMnJUUREhP0xo9sBAAAAAAAAwH3mzp2rWbNm2R/n5eVVGhjtCrcX3EePHl3j+hYtWmjSpEl17n/VqlU1FvQruuGGG0wvuJeNbK9uFHteXp5atGhRaz8REREOBXcAAAAAAAAAgPuYPa232wvu7pafn+/tEOwF/IMHD6p3794O606cOKH8/Hz17dvXG6EBAAAAAAAAADzE9IL71KlTa20TEBCgiIgInX/++Ro5cqTatWtndhgelZCQoNTUVG3dulXjx493WLdlyxZ7GwAAAAAAAACA/zK94J6eni6LxSJJVd4M1WKxOCy/88479eCDD2r+/Plmh2I6m82mQ4cOyWq1qnPnzvblQ4YMUadOnbR+/XolJyerZ8+ekn6bYmbJkiUKDg7WLbfc4qWoAQAAAAAAAACeYHrB/dChQ7r77rv12Wef6a677tIVV1yhc889Vz/99JN27typlStXqm/fvvrjH/+oL7/8Ug8//LBSUlIUFxencePGmR1OjQ4cOKClS5dKkk6fPm1fNnnyZHub9PR0+/8fO3ZMF154oWJiYnT48GH78qCgIK1evVrDhg3TwIEDNX78eDVr1kwbNmzQkSNH9Nhjjyk2NtYDGQEAAAAAAAAAvMX0gvvrr7+uPXv26Msvv9S5555rX961a1cNGDBAkydPVs+ePZWRkaH77rtP11xzjbp166ZnnnnG4wX3EydOaM2aNQ7LfvrpJ4dl5QvuNRk0aJB27NihlJQUvf7667LZbOrRo4eWLVvm8bwAAAAAAAAAAJ5nesH9T3/6k2688UaHYnt5bdq00dixY/XCCy/ovvvuU7t27TRy5Eht3LjR7FBqlZiYWOW0N9WJjY2tsX3fvn21efNmM0IDAAAAAAAAADQwAWZ3+MMPPygkJKTGNk2aNNEPP/xgf9yhQwedOXPG7FAAAAAAAAAAAPAY0wvu7dq10zvvvFNtAf3MmTN655131K5dO/uyf/3rX2rRooXZoQAAAAAAAAAA4DGmF9ynTZumQ4cOqX///nrvvfd06tQpSdKpU6f03nvvqX///vr+++81depU+3M++eQTXXLJJWaHAgAAAAAAAACAx5g+h/t9992n/fv3a926dRo9erQkKSAgQGfPnpUkGYahiRMn6v7775f0201KR4wYoauvvtrsUAAAAAAAAAAA8BjTC+6BgYF6+eWXNXnyZK1du1ZfffWV8vLyFBERoUsuuUT/93//pyFDhtjbn3vuuXriiSfMDgMAAAAAAAAAAI8yveBeZvDgwRo8eLC7uvdL8fHxCgwMVFJSkpKSkrwdDgAAAAAAAAA0CmlpaUpLS1NpaWm9+nFbwR2uy8rKUkREhLfDAAAAAAAAAIBGpWwQdF5eniIjI+vcj9sK7jt37lR6err27dtnn1KmZ8+emjRpkvr37++uzQIAAAAAAAAA4BVuKbjfc889WrlypQzDkCRZLBYZhqEvvvhCL774ou666y49/vjj7tg0AAAAAAAAAABeEWB2h2vWrNGKFSsUFxenV155RcePH1dJSYl+/PFHrV+/Xl27dtWKFSv08ssvm71pAAAAAAAAAAC8xvSC+7PPPqv27dtrz549mjBhgtq0aSOLxaJzzz1X48eP1+7du9WuXTs988wzZm8aAAAAAAAAAACvMb3g/s0332jMmDHVTiwfGRmpMWPG6JtvvjF70wAAAAAAAAAAeI3pBXdnWCwWb2y2kn379mnevHkaNmyYoqKiZLFYlJiYWKe+YmNjZbFYqvyra58AAAAAAAAAgIbD9Jumdu/eXRs2bNCiRYsUHh5eaf2vv/6qDRs2qHv37mZv2mXvvPOOUlNTFRwcrK5du+rkyZP16i8yMlJ33313peWxsbH16hcAAAAAAAAA4PtML7jPmDFD06ZNU79+/bRgwQIlJCSoVatWOnnypDIzM7Vw4UL98MMPeuihh8zetMvGjh2ra6+9Vj169NCpU6fUtm3bevXXvHlzLViwwJzgAAAAAAAAAAANiukF9ylTpmjv3r16+umndeONN0qSAgICdPbsWUmSYRi68847NWnSJLM37TJfGGUPAAAAAAAAAPAPphfcJWnlypUaO3as0tPTtW/fPuXl5SkiIkK/+93vNGnSJA0YMMAdm/W6oqIipaen6/jx44qIiFB8fLwuvfRSb4cFAAAAAAAAAPAAtxTcJWnAgAF+W1ivzokTJzRlyhSHZfHx8Xr11VfVuXPnWp+fl5fn8DgkJEQhISGmxggAAAAAAAAA+E1RUZGKiorsjyvWaF0VUN+A8JspU6boww8/1E8//aSCggLt3btXN998s7KysjRkyBD9+uuvtfYRHR2tyMhI+19qaqoHIgcAAL7EMAwVFxSr5EyJU3+lRaVOtSsuKJZhGN5ODwAAAAB8SmpqqkNNNjo6ul791XuE+9SpU+v0PIvFoj/96U/13bxmz57t8A1Ebe666y7FxcXVe7sVpaSkODzu2bOnXn75ZUnS2rVr9cILL2jWrFk19pGTk6OIiAj7Y0a3AwDQ+NgKbVoZvtItfSfnJys4LNgtfQMAAABAQzR37lyHum1eXl69iu71Lrinp6fX6XlmFdxXrVqlgoICp9vfcMMNbim4V2fGjBlau3atdu7cWWvBPSIiwqHgDgAAAAAAAABwH7On9a53wT07O9uMOOosPz/fq9uvTatWrSTJpS8FAABA42UNtSo5P9np9jlHcxTdwbnRF9ZQa13DAgAAAAA4od4F95iYGDPi8Ft79uyRJMXGxno3EAAA0CBYLBaXpn0JCg1imhgAAAAA8BHcNNUFNptNBw4c0KFDhxyWHzhwQIWFhZXaHzhwQHPmzJEkTZw40SMxAgAAAAAAAAC8o94j3BuyAwcOaOnSpZKk06dP25dNnjzZ3qb8HPXHjh3ThRdeqJiYGB0+fNi+/LXXXtPjjz+ugQMHKiYmRmFhYfr222+1adMm2Ww2zZ07VwMHDvRESvASwzBkK7Sp5EyJU+1Li0qdaltcUCxrqFUWi6W+IQIAAAAAAABws0ZdcD9x4oTWrFnjsOynn35yWObMTWEHDRqk/fv3a+/evfrkk09UWFioVq1aafjw4br99ts1dOhQs0OHj7EV2rQyfKVb+k7OT2aqAAAAAAAAAKABaNQF98TERBmG4XT72NjYKtsnJCQoISHBzNAAAAAAAAAAAA1Moy64A2axhlqVnJ/sdPucozmK7hDtdN8AAAAAAAAAfB8Fd8AEFovFpWlfgkKDmCYGAAAAAAAA8DMB7ur4q6++0ssvv1ztYwAAAAAAAAAA/InbCu5vv/22pkyZUu1jAAAAAAAAAAD8CVPKAAD8imEYshXaVHKmxNR+iwuKZQ21ymKxmNovAAAAAADwHxTcfUh8fLwCAwOVlJSkpKQkb4cDAA2SrdCmleEr3dJ3cn4y918AAAAAAMAPpaWlKS0tTaWlpfXqh4K7D8nKylJERIS3wwAAAAAAAACARqVsEHReXp4iIyPr3A8FdwCAX7GGWpWcn+y2vgEAAAAAAKpDwR0A4FcsFgvTvgAAAAAAAK+g4A4A8AhXb2ZaWlTqVFtuZgoAAAAAAHwFBXcAgEdwM1MAAAAAAODvArwdAAAAAAAAAAAA/qDRjnC32Wx677339N577+mzzz5TTk6OLBaLunXrpsmTJ+u2225TYGCgS31mZWUpJSVFn376qWw2m3r06KFZs2bpxhtvdFMWANBwuHoz05yjOYruEO103wAAAAAAAN7WaAvuhw4d0g033KDw8HANGTJE1157rXJzc/WXv/xFt99+uzZt2qT33nvP6TmBMzIyNGzYMDVp0kTjx49Xs2bNtGHDBo0bN045OTmaPXu2mzMCAN/m6s1Mg0KDmCYGAAAAAAA0KG4ruEdGRqpDhw7VPva2Zs2aKS0tTZMmTVJYWJh9+fLly5WYmKj3339fb775psaOHVtrXyUlJbr11lsVEBCgjz/+WD179pQkPfjgg+rbt6/mzZunG264QTExMe5KBwAAAAAAAADgZW6bw/3uu+9WdnZ2tY+9rV27drr99tsdiu2SFBYWplmzZkmStm/f7lRfH330kQ4dOqSJEyfai+3Sb18yzJs3T8XFxVqzZo1psQMAAAAAAAAAfA83Ta2C1frbXMBBQc79ACAzM1OSNHTo0Errhg0bJsn54j0AAAAAAAAAoGFqtHO41+TFF1+UVHUBvSoHDx6UJMXFxVVa16ZNG4WHh9vb1CQvL8/hcUhIiEJCQpyKAQAAAAAAAADgmqKiIhUVFdkfV6zRuooR7hU8//zz2rx5swYPHqzhw4c79Zzc3FxJv00hU5WIiAh7m5pER0crMjLS/peamup84AAAAAAAAAAAl6SmpjrUZKOjo+vVX4Mf4T579myHbyBqc9ddd1U5El2S3n//fd1xxx2KiYnRunXrzArRaTk5OYqIiLA/ZnQ7AAAAAAAAALjP3Llz7ff0lH4b4V6fonuDL7ivWrVKBQUFTre/4YYbqiy4b9q0STfccIPOPfdcffTRR2rbtq3TfZaNbK9uFHteXp5atGhRaz8REREOBXcAAAAAAAAAgPuYPa23aVPK7Nq1S4MHD1azZs0UERGhq666Sp999plZ3VcrPz9fhmE4/ZeYmFipj40bN+r6669Xq1atlJGRoU6dOrkUQ1kBv6p52k+cOKH8/PxqR9UDAAAAAAAAAPyDKQX3r7/+WkOGDFFmZqYKCgqUn5+vDz/8UIMGDdI333xjxibcZuPGjRozZoxatmypjIwMdenSxeU+EhISJElbt26ttG7Lli0ObQAAAAAAAAAA/smUgvvSpUt15swZ/fGPf9SJEyd04sQJPfDAAzp9+rSWLVtmxibcYvPmzRozZoxatGihjIyMWkeh22w2HThwQIcOHXJYPmTIEHXq1Enr16/Xvn377Mtzc3O1ZMkSBQcH65ZbbnFHCgAAAAAAAAAAH2HKHO6ffPKJ+vfvr0WLFtmXLVy4UJmZmdq+fbsZmzDdgQMHNHr0aBUVFSkxMVGvvvpqpTaxsbGaPHmy/fGxY8d04YUXKiYmRocPH7YvDwoK0urVqzVs2DANHDhQ48ePV7NmzbRhwwYdOXJEjz32mGJjY92fFAAAAAAAAADAa0wpuP/0008aP358peWXXnqp9uzZY8YmTHfixAkVFRVJkl577bUq2yQkJDgU3GsyaNAg7dixQykpKXr99ddls9nUo0cPLVu2TOPGjTMrbAAAAAAAAACAjzKl4G6z2RQeHl5peVhYmGw2mxmbMF1iYqIMw3DpObGxsTU+p2/fvtq8eXN9QwMAAAAAAAAANECmzOEOAAAAAAAAAEBjZ8oId0lat26ddu/e7bDsu+++kyQNHz68UnuLxaKNGzeatXkAAAAAAAAAALzKtIL7d999Zy+wV/TXv/610jKLxWLWpgEAAAAAAAAA8DpTCu7Z2dlmdAMAAAAAAAAAQINlSsE9JibGjG4AAAAAAAAAAGiw3HbT1GPHjunzzz/X559/rmPHjrlrM34lPj5e3bp1U1pamrdDAQAAAAAAAIBGIy0tTd26dVN8fHy9+jFtDndJys/P12OPPaYXX3yxUpG9Xbt2mjZtmmbPnq3w8HAzN+s3srKyFBER4e0wAAAAAAAAAKBRSUpKUlJSkvLy8hQZGVnnfkwruB86dEjXXHONDh06JMMwdN555yk6OlqSlJOTox9++EEPPfSQ1q9fr7/+9a/q2LGjWZsGAAAAAAAAAMDrTJlSpqioSCNGjNB3332nCRMmaP/+/frhhx+0a9cu7dq1Sz/88IP279+viRMn6uDBgxo+fLiKiorM2DQAAAAAAAAAAD7BlBHuzz77rL799lulpKQoJSWlyjbnn3++1q5dq65duyolJUXPPfec7rrrLjM2DwB+zTAM2QptKjlT4lT70qJSp9oWFxTLGmqVxWKpb4gAAABAg+fqdbezuO4GgMbFlIL7hg0b1KVLFz344IO1tp0/f77WrVunP//5zxTcAcAJtkKbVoavdEvfyfnJCg4LdkvfAAAAQEPCdTcAwAymTCnzj3/8Q0OHDnXq21qLxaKhQ4dq//79ZmwaAAAAAAAAAACfYMoI94KCApfu3BoREaGCggIzNl1nNptN7733nt577z199tlnysnJkcViUbdu3TR58mTddtttCgwMdLq/2NhYHTlypMp1CQkJyszMNClyAI2NNdSq5Pxkp9vnHM1RdIdop/sGAAAA4Pp1t6t9AwAaB1MK7q1bt9Z3333ndPtDhw4pKirKjE3X2aFDh3TDDTcoPDxcQ4YM0bXXXqvc3Fz95S9/0e23365Nmzbpvffec2mOtcjISN19992VlsfGxpoXOIBGx2KxuPTz06DQIH6uCgAAALjI1etuAACqYkrBvV+/ftq8ebNOnDihNm3a1Nj2xIkT2rhxo0aMGGHGpuusWbNmSktL06RJkxQWFmZfvnz5ciUmJur999/Xm2++qbFjxzrdZ/PmzbVgwQI3RAsAAAAAAAAA8HWmzOH+hz/8Qfn5+Ro9erROnjxZbbtTp05p9OjRKiws1G233WbGpuusXbt2uv322x2K7ZIUFhamWbNmSZK2b9/ujdAAAAAAAAAAAA2QKSPcBw0apFtvvVUvvPCCLrzwQs2YMUODBw9WdPRvcwjn5OToww8/1AsvvKCTJ09q2rRpGjx4sBmbdgur9be51YKCXPvnKSoqUnp6uo4fP66IiAjFx8fr0ksvdUeIAAAAAAAAAAAfY0rBXZKeeeYZRURE6IknnlBqaqpSU1Md1huGoYCAAN1zzz165JFHzNqsW7z44ouSpKFDh7r0vBMnTmjKlCkOy+Lj4/Xqq6+qc+fOtT4/Ly/P4XFISIhCQkJcigEAAAAAAAAA4JyioiIVFRXZH1es0brKlCllJCkwMFCPPvqo9u/fr/vvv18JCQk6//zzdf755yshIUHz5s3TP/7xDy1fvlyBgYFmbdZ0zz//vDZv3qzBgwdr+PDhTj9vypQp+vDDD/XTTz+poKBAe/fu1c0336ysrCwNGTJEv/76a619REdHKzIy0v5X8UsLAAAAAAAAAIB5UlNTHWqyZbO21JVpI9zLxMXFafHixWZ3W63Zs2c7fANRm7vuuktxcXFVrnv//fd1xx13KCYmRuvWrXMpjpSUFIfHPXv21MsvvyxJWrt2rV544QX73PDVycnJUUREhP0xo9sBAAAAAAAAwH3mzp3rULfNy8urV9Hd9IK7p61atUoFBQVOt7/hhhuqLLhv2rRJN9xwg84991x99NFHatu2rSnxzZgxQ2vXrtXOnTtrLbhHREQ4FNwBAAAAAAAAAO5j9rTeDb7gnp+fX+8+Nm7cqDFjxqhVq1bKyMhQp06dTIjsN61atZIkl74UAAAAAAAAAAA0PKbN4d5QlRXbW7ZsqYyMDHXp0sXU/vfs2SNJio2NNbVfAAAAAAAAAIBvadQF982bN2vMmDFq0aKFMjIyqp3bvYzNZtOBAwd06NAhh+UHDhxQYWFhpfYHDhzQnDlzJEkTJ040L3AAAAAAAAAAgM9p8FPK1NWBAwc0evRoFRUVKTExUa+++mqlNrGxsZo8ebL98bFjx3ThhRcqJiZGhw8fti9/7bXX9Pjjj2vgwIGKiYlRWFiYvv32W23atEk2m01z587VwIEDPZAVAAAAAAAAAMBbGm3B/cSJEyoqKpL0W8G8KgkJCQ4F9+oMGjRI+/fv1969e/XJJ5+osLBQrVq10vDhw3X77bdr6NChZoYOAAAAAAAAAPBBjbbgnpiYKMMwXHpObGxslc9JSEhQQkKCWaEBAAAAAAAAABqgRj2HOwAAAAAAAAAAZqHgDgAAAAAAAACACSi4AwAAAAAAAABgAgruAAAAAAAAAACYgII7AAAAAAAAAAAmoODuQ+Lj49WtWzelpaV5OxQAAAAAAAAAaDTS0tLUrVs3xcfH16ufIJPigQmysrIUERHh7TAAAAAAAAAAoFFJSkpSUlKS8vLyFBkZWed+GOEOAAAAAAAAAIAJKLgDAAAAAAAAAGACCu4AAAAAAAAAAJiAgjsAAAAAAAAAACag4A4AAAAAAAAAgAkadcH9lVde0ejRo9W5c2c1a9ZM4eHh6t69u+655x4dO3bM5f6ysrI0fPhwNW/eXGFhYbrsssv0xhtvuCFyAAAAAAAAAICvCfJ2AN702muv6f+3d5/xUZV5/8e/k06bhCIiEBNIIgRkBSGCiBC6uiuL99IWlaYuShQE3FUQDUWJa2NRUbFQdBddmm1BKQpIEYgaxRuIdMUouqJmUjCE5Po/8E7+TNqUzGRmks/79ZoHc86Zi9+Xk+vMmV9Ozhw+fFg9evTQRRddJGOMPvvsMy1cuFDLli3Tjh071LFjR6fG2rJliwYPHqyIiAiNGjVKjRo10po1azRy5EidPHlS06dP93IaAAAAAAAAAIAv1emG+6pVqxQREVFu+csvv6xbb71Vs2fP1qpVqxyOc+7cOd12220KCgrShx9+qM6dO0uSHnzwQV1xxRWaOXOmhg0bppiYGE9HAAAAAAAAAAD4iTp9S5mKmu2SNHz4cEnSkSNHnBrngw8+0NGjRzV69OjSZrskRUZGaubMmTp79qyWL19e7XoBAAAAAAAAAP6rTjfcK7Nu3TpJ0qWXXurU9lu3bpUkDRo0qNy6wYMHS5K2bdvmmeIAAAAAAAAAAH6pTt9SpsTKlSt14MAB5efna//+/dqwYYPatGmjuXPnOvX6w4cPS5ISEhLKrWvRooUaNmxYuk1VbDab3fPw8HCFh4c7VQMAAAAAAAAAwDUFBQUqKCgofV62R+sqGu76reG+Zs2a0ufdunXT66+/rjZt2jj1+uzsbEm/3UKmIlartXSbqkRHR9s9T01N1ezZs52qAQAAAAAAAADgmrS0NM2ZM8dj4wV8w3369Ol2v4FwZMqUKeWuRF+9erUk6ZdfflFGRobuv/9+de3aVWvXrlW/fv08Wm9VTp48KavVWvqcq9sBAAAAAAAAwHtmzJihadOmlT632WzlLox2RcA33BcvXqy8vDyntx82bFiFt36RpKioKPXt21fvvfee2rVrpzFjxuj48eMKDQ2tcsySK9sru4rdZrOpcePGDmuzWq12DXcAAAAAAAAAgPd4+rbeAf+lqbm5uTLGOP1ITk52OKbValWPHj2UlZWlI0eOONy+pIFf0X3aT506pdzc3Eqb/AAAAAAAAACA2iHgG+7e8u2330qSw6vbJalPnz6SpI0bN5Zbt2HDBrttAAAAAAAAAAC1U51tuOfk5OjLL7+scN2SJUu0d+9eJSQkKD4+vnR5YWGhMjMzdfToUbvt+/fvr7Zt22rFihX67LPPSpdnZ2dr/vz5CgsL05gxY7ySAwAAAAAAAADgHwL+Hu7uOn36tBITE9WtWze1b99erVq10s8//6z09HR9+umnslqtWr58ud1rsrKylJiYqJiYGJ04caJ0eUhIiF566SUNHjxYvXv31qhRo9SoUSOtWbNGX331lR5//HHFxsbWbEAAAAAAAAAAQI2qsw33Cy64QA888IC2bt2qTZs26fTp0woLC1NsbKymTp2qadOmqXXr1k6P17dvX+3YsUOpqan697//rcLCQnXq1El///vfNXLkSC8mAQAAAAAAAAD4gzrbcG/QoIHmzJnj0mtiY2NljKl0/RVXXKF33323uqUBAAAAAAAAAAJQnb2HOwAAAAAAAAAAnkTDHQAAAAAAAAAAD6DhDgAAAAAAAACAB9BwBwAAAAAAAADAA2i4AwAAAAAAAADgATTc/UhSUpI6dOigRYsW+boUAAAAAAAAAKgzFi1apA4dOigpKala44R4qB54QHp6uqxWq6/LAAAAAAAAAIA6JSUlRSkpKbLZbIqMjHR7HK5wBwAAAAAAAADAA2i4AwAAAAAAAADgATTcAQAAAAAAAADwABruAAAAAAAAAAB4AA13AAAAAAAAAAA8oE433P/1r3/phhtuUFxcnBo1aqSGDRuqY8eOmjp1qrKyslwaKzY2VhaLpcJHcnKydwIAAAAAAAAAAPxGiK8L8KXXX39dhw8fVo8ePXTRRRfJGKPPPvtMCxcu1LJly7Rjxw517NjR6fEiIyN19913l1seGxvruaIBAAAAAAAAAH6pTjfcV61apYiIiHLLX375Zd16662aPXu2Vq1a5fR4UVFRmj17tgcrBAAAAAAAAAAEijp9S5mKmu2SNHz4cEnSkSNHarIcAAAAAAAAAEAAq9NXuFdm3bp1kqRLL73UpdcVFBRo2bJl+vbbb2W1WpWUlKTu3bt7o0QAAAAAAAAAgJ+h4S5p5cqVOnDggPLz87V//35t2LBBbdq00dy5c10a59SpUxo/frzdsqSkJL322muKi4tz+HqbzWb3PDw8XOHh4S7VAAAAAAAAAABwTkFBgQoKCkqfl+3RuqpO31KmxMqVKzVnzhw99thjWr9+vbp06aJNmzapTZs2To8xfvx4vf/++/r++++Vl5enjIwM3XzzzUpPT1f//v2Vk5PjcIzo6GhFRkaWPtLS0qoTCwAAAAAAAABQhbS0NLuebHR0dLXGC/gr3KdPn273GwhHpkyZooSEBLtlq1evliT98ssvysjI0P3336+uXbtq7dq16tevn1Pjpqam2j3v3LmzXnnlFUnSq6++qhdffFHTpk2rcoyTJ0/KarWWPufqdgAAAAAAAADwnhkzZtj1bW02W7Wa7gHfcF+8eLHy8vKc3n7YsGHlGu4loqKi1LdvX7333ntq166dxowZo+PHjys0NNTt+iZOnKhXX31VO3fudNhwt1qtdg13AAAAAAAAAID3ePq23gF/S5nc3FwZY5x+JCcnOxzTarWqR48eysrK0pEjR6pVX7NmzSTJpV8KAAAAAAAAAAACT8A33L3l22+/laRqXd0uSXv27JEkxcbGVrckAAAAAAAAAIAfq7MN95ycHH355ZcVrluyZIn27t2rhIQExcfHly4vLCxUZmamjh49ard9Zmam8vPzy42TmZmpe++9V5I0evRoD1YPAAAAAAAAAPA3AX8Pd3edPn1aiYmJ6tatm9q3b69WrVrp559/Vnp6uj799FNZrVYtX77c7jVZWVlKTExUTEyMTpw4Ubr89ddf15NPPqnevXsrJiZGDRo00KFDh7R+/XoVFhZqxowZ6t27dw0nBAAAAAAAAADUpDrbcL/gggv0wAMPaOvWrdq0aZNOnz6tsLAwxcbGaurUqZo2bZpat27t1Fh9+/bVwYMHlZGRoe3btys/P1/NmjXTddddp0mTJmnQoEFeTgMAAAAAAAAA8LU623Bv0KCB5syZ49JrYmNjZYwpt7xPnz7q06ePp0oDAAAAAAAAAASgOnsPdwAAAAAAAAAAPImGOwAAAAAAAAAAHkDDHQAAAAAAAAAAD6DhDgAAAAAAAACAB9BwBwAAAAAAAADAA2i4+5GkpCR16NBBixYt8nUpAAAAAAAAAFBnLFq0SB06dFBSUlK1xgnxUD3wgPT0dFmtVl+XAQAAAAAAAAB1SkpKilJSUmSz2RQZGen2OFzhDgAAAAAAAACAB9BwBwAAAAAAAADAA7ilDABAxhgV5hfq3K/nPDru2byzCq0fKovF4tFxAQAAAAAA/BENdwCACvML9VTDp7wy9uTcyQprEOaVsQEAAAAAAPwJt5QBAAAAAAAAAMADuML9PMeOHdPvfvc75eXlaeLEiXr++edden16erpSU1O1a9cuFRYWqlOnTpo2bZpGjBjhpYoBwDNC64dqcu5kr40NAAAAAABQF9Bw/z/FxcUaN26c26/fsmWLBg8erIiICI0aNUqNGjXSmjVrNHLkSJ08eVLTp0/3XLEA4GEWi4XbvgAAAAAAAFQTt5T5PwsWLNBHH32khx56yOXXnjt3TrfddpuCgoL04Ycf6oUXXtATTzyhzz//XJdccolmzpypr776ygtVAwAAAAAAAAD8BQ13SZmZmZo1a5ZmzJihzp07u/z6Dz74QEePHtXo0aPtXh8ZGamZM2fq7NmzWr58uecKBgAAAAAAAAD4nTrfcC8qKtLYsWOVkJCgWbNmuTXG1q1bJUmDBg0qt27w4MGSpG3btrldIwAAAAAAAADA/9X5e7inpaXp008/1e7duxUW5t79iw8fPixJSkhIKLeuRYsWatiwYek2VbHZbHbPw8PDFR4e7lZNAAAAAAAAAICqFRQUqKCgoPR52R6tq+r0Fe6ff/655s6dq7/+9a/q2rWr2+NkZ2dL+u0WMhWxWq2l21QlOjpakZGRpY+0tDS3awIAAAAAAAAAVC0tLc2uJxsdHV2t8QL+Cvfp06fb/QbCkSlTpighIUFnz57V2LFjFR8fr9TUVC9W6LyTJ0/KarWWPufqdgAAAAAAAADwnhkzZmjatGmlz202W7Wa7gHfcF+8eLHy8vKc3n7YsGFKSEhQWlqavvjiC+3atavaje2SK9sru4rdZrOpcePGDsexWq12DXcAAAAAAAAAgPd4+rbeAX9LmdzcXBljnH4kJydLkjIyMlRcXKwePXrIYrGUPvr27Svpt0a+xWLR0KFDHdZQcu/2iu7TfurUKeXm5lZ4f3cAAAAAAAAAQO0R8Fe4u2vgwIFq1qxZueXfffed1q9fr/bt2+uqq65Sly5dHI7Vp08fpaWlaePGjRo1apTdug0bNpRuAwAAAAAAAACovepswz0lJaXC5Vu3btX69evVp08fPf/883brCgsLdfToUYWGhiouLq50ef/+/dW2bVutWLFCkydPVufOnSX9douZ+fPnKywsTGPGjPFaFgAAAAAAAACA79XZhrs7srKylJiYqJiYGJ04caJ0eUhIiF566SUNHjxYvXv31qhRo9SoUSOtWbNGX331lR5//HHFxsb6rG6gLjLGqDC/UOd+PefU9kUFRU5tezbvrELrh8pisVS3RAAAAAAAANQyNNw9pG/fvtqxY4dSU1P173//W4WFherUqZP+/ve/a+TIkb4uD6hzCvML9VTDp7wy9uTcyQprEOaVsQEAAAAAABC4aLiXkZycLGNMhetiY2MrXSdJV1xxhd59911vlQYAAAAAAAAA8GM03AHUSqH1QzU5d7LT25/8+qSiL452emwAAAAAAACgLBruAGoli8Xi0m1fQuqHcJsYAAAAAAAAVEuQrwsAAAAAAAAAAKA2oOEOAAAAAAAAAIAH0HAHAAAAAAAAAMADaLj7kaSkJHXo0EGLFi3ydSkAAAAAAAAAUGcsWrRIHTp0UFJSUrXG4UtT/Uh6erqsVquvywAAAAAAAACAOiUlJUUpKSmy2WyKjIx0exyucAcAAAAAAAAAwANouAMAAAAAAAAA4AE03AEAAAAAAAAA8AAa7gAAAAAAAAAAeAANdwAAAAAAAAAAPICG+3mOHTumhg0bymKx6Pbbb3fptbGxsbJYLBU+kpOTvVMwAAAAAAAAAMBvhPi6AH9RXFyscePGVWuMyMhI3X333eWWx8bGVmtcAAAAAAAAAID/o+H+fxYsWKCPPvpIjz32mKZOnerWGFFRUZo9e7ZnCwMAAAAAAAAABARuKSMpMzNTs2bN0owZM9S5c2dflwMAAAAAAAAACEB1/gr3oqIijR07VgkJCZo1a5Z27drl9lgFBQVatmyZvv32W1mtViUlJal79+4erBYAAAAAAAAA4K/qfMM9LS1Nn376qXbv3q2wsLBqjXXq1CmNHz/ebllSUpJee+01xcXFOXy9zWazex4eHq7w8PBq1QQAAAAAAAAAqFhBQYEKCgpKn5ft0bqqTt9S5vPPP9fcuXP117/+VV27dq3WWOPHj9f777+v77//Xnl5ecrIyNDNN9+s9PR09e/fXzk5OQ7HiI6OVmRkZOkjLS2tWjUBAAAAAAAAACqXlpZm15ONjo6u1ngBf4X79OnT7X4D4ciUKVOUkJCgs2fPauzYsYqPj1dqamq16yg7RufOnfXKK69Ikl599VW9+OKLmjZtWpVjnDx5UlartfQ5V7cDAAAAAAAAgPfMmDHDrm9rs9mq1XQP+Ib74sWLlZeX5/T2w4YNU0JCgtLS0vTFF19o165dXm1sT5w4Ua+++qp27tzpsOFutVrtGu4AAAAAAAAAAO/x9G29A/6WMrm5uTLGOP1ITk6WJGVkZKi4uFg9evSQxWIpffTt21fSb418i8WioUOHVqu+Zs2aSZJLvxQAAAAAAAAAAASegL/C3V0DBw4sbYaf77vvvtP69evVvn17XXXVVerSpUu1/p09e/ZIkmJjY6s1DgAAAAAAAADAv9XZhntKSkqFy7du3ar169erT58+ev755+3WFRYW6ujRowoNDVVcXFzp8szMTF188cWqX7++3faZmZm69957JUmjR4/2cAIAAAAAAAAAgD+psw13d2RlZSkxMVExMTE6ceJE6fLXX39dTz75pHr37q2YmBg1aNBAhw4d0vr161VYWKgZM2aod+/eviscAAAAAAAAAOB1NNw9oG/fvjp48KAyMjK0fft25efnq1mzZrruuus0adIkDRo0yNclAgAAAAAAAAC8jIZ7GcnJyTLGVLguNja2wnV9+vRRnz59vF0aAAAAAAAAAMCPBfm6AAAAAAAAAAAAagMa7gAAAAAAAAAAeAANdwAAAAAAAAAAPICGOwAAAAAAAAAAHkDDHQAAAAAAAAAAD6Dh7keSkpLUoUMHLVq0yNelAAAAAAAAAECdsWjRInXo0EFJSUnVGifEQ/XAA9LT02W1Wn1dBgAAAAAAAADUKSkpKUpJSZHNZlNkZKTb43CFOwAAAAAAAAAAHkDDHQAAAAAAAAAAD6DhDgAAAAAAAACAB9BwBwAAAAAAAADAA2i4AwAAAAAAAADgAXW64T579mxZLJZKHydOnHBpvEOHDmnEiBFq1qyZ6tWrp8suu0zPPfecjDHeCQAAAAAAAAAA8Bshvi7AH4wdO1axsbHllkdFRTk9xoEDB9SzZ0+dOXNGI0aMUMuWLbVu3TpNmjRJBw4c0NNPP+25ggEAAAAAAAAAfoeGu6Rx48YpOTm5WmPccccdys7O1vr163XttddKkubNm6cBAwbomWee0ejRo3XllVd6oFoAAAAAAAAAgD+q07eU8ZRDhw7pww8/VN++fUub7ZIUFhamefPmSZJefPFFX5UHAAAAAAAAAKgBXOEu6cMPP9SePXsUFBSkhIQEDRgwQA0bNnT69Vu3bpUkDRo0qNy6Xr16qUGDBtq2bZunygUAAAAAAAAA+CEa7pJSU1PtnkdFRWnhwoUaM2aMU68/fPiwJCkhIaHcuuDgYLVp00YHDhzQuXPnFBJS+X+5zWazex4eHq7w8HCnagAAAAAAAAAAuKagoEAFBQWlz8v2aF1Vp28pc9lll2nJkiU6duyYzpw5o+PHj+vpp5+WxWLRuHHj9Pbbbzs1TnZ2tiQpMjKywvVWq1XFxcXKycmpcpzo6GhFRkaWPtLS0lwLBAAAAAAAAABwWlpaml1PNjo6ulrjBfwV7tOnT7f7DYQjU6ZMKb0S/YYbbrBbFxsbqzvvvFOJiYkaOHCgZs2apSFDhni03qqcPHlSVqu19DlXtwMAAAAAAACA98yYMUPTpk0rfW6z2arVdA/4hvvixYuVl5fn9PbDhg2r8NYv5+vfv7/i4uL0xRdfyGaz2TXBK1JyZXvJle5l2Ww2WSwWNWrUqMpxrFarw38LAAAAAAAAAOAZnr6td8A33HNzc70ybrNmzXTkyBHl5+c7bIKXNPBL7uV+vqKiIh0/flxt2rSp8v7tAAAAAAAAAIDAVqfv4V6ZvLw87d+/Xw0aNFCzZs0cbt+nTx9J0saNG8ut27Fjh/Ly8kq3AQAAAAAAAADUTnW24Z6Tk6NDhw6VW37mzBnddtttysnJ0YgRI8pdlZ6ZmanMzEy7Ze3atVPv3r21ZcsWvfvuu6XLz549qwceeECSdOutt3ohBQAAAAAAAADAX9TZe5ycPn1a7du3V1JSkhITE9WiRQt9//332rx5s7755ht16tRJjz32WLnXJSYmSpKMMXbLn332WV111VUaOnSoRo4cqYsuukjr1q3T/v37deedd6pnz541kgsAAAAAAAAA4Bt1tuHepEkTTZo0SXv37tX69ev1888/q169ekpMTNTkyZN15513ql69ek6P17FjR+3Zs0ezZs3SunXrlJeXp0suuUSLFi3SHXfc4cUkAAAAAAAAAAB/UGcb7larVc8884zLryt7Zfv52rVrp1WrVlWnLAABxBijwvxCnfv1nEfHPZt3VqH1Q2WxWDw6LgAAAAAAALyrzjbcAaC6CvML9VTDp7wy9uTcyQprEOaVsQEAAAAAAOAddfZLUwEAAAAAAAAA8CSucAcAN4XWD9Xk3MleGxsAAAAAAACBhYY7ALjJYrFw2xcAAAAAAACU4pYyAAAAAAAAAAB4AA13P5KUlKQOHTpo0aJFvi4FAAAAAAAAAOqMRYsWqUOHDkpKSqrWONxSxo+kp6fLarX6ugwAAAAAAAAAqFNSUlKUkpIim82myMhIt8fhCncAAAAAAAAAADyAhjsAAAAAAAAAAB5Awx0AAAAAAAAAAA+g4Q4AAAAAAAAAgAfQcAcAAAAAAAAAwAPqdMN99uzZslgslT5OnDjh9FjJycmVjhMbG+u1DAAAAAAAAAAA/xDi6wL8wdixYytsikdFRbk8VmpqqkfGAQAAAAAAAAAEFhruksaNG6fk5GSPjDV79myPjAMAAAAAAAAACCx1+pYyAAAAAAAAAAB4Cle4S/rwww+1Z88eBQUFKSEhQQMGDFDDhg3dGmvFihU6ceKE6tevr86dO6t3794KCuL3GgAAAAAAAABQ29FwV/n7rkdFRWnhwoUaM2aMy2PdeOONds8vueQS/etf/1K3bt0cvtZms9k9Dw8PV3h4uMs1AAAAAAAAAAAcKygoUEFBQenzsj1aV9XpS68vu+wyLVmyRMeOHdOZM2d0/PhxPf3007JYLBo3bpzefvttp8f64x//qP/85z/KyspSfn6+Dhw4oClTpujo0aMaOHCgvv76a4djREdHKzIysvSRlpZWnXgAAAAAAAAAgCqkpaXZ9WSjo6OrNV7AX+E+ffp0u99AODJlyhQlJCRIkm644Qa7dbGxsbrzzjuVmJiogQMHatasWRoyZIhT406dOtXueWJiov7xj3/IarVq3rx5evzxx/XUU09VOcbJkydltVpLn3N1OwAAAAAAAAB4z4wZMzRt2rTS5zabrVpN94BvuC9evFh5eXlObz9s2LDShntl+vfvr7i4OH3xxRey2Wx2TXBXTZw4UfPmzdPOnTsdbmu1Wqv1bwEAAAAAAAAAnOfp23oH/C1lcnNzZYxx+pGcnOzUuM2aNZMk5efnV6u+pk2bymKxuPRLAbhv7dq1GjhwoJo0aSKLxaITJ07YrV+wYIE6duyohg0bKioqSv369dOePXt8U2wVHOWYPXu2LBaL3cOZ7wmoaY5yxMbGlsthsVj02GOP+aZgJzjKZLPZdOeddyo6Olr169dX//79lZmZ6ZNa09LS1K1bNzVq1EgXXnihRowYYVevoyz+xFGWQJjbjjIEyryujKN8gTTfHWXxp3nuLEdzJJCOB46yBMLxQHKuzq+//lojRoxQ48aN1aBBAyUlJSkrK8tHFdtzVH8gzHlHGXJycnT77berZcuWatCggbp06aLVq1f7sGLnOMoViMcwSbrjjjtksVj0zDPPlC7z92NXRTU7eo/xVxVlcWW9P6mo1kCd7+erbB/483tJZQJ9HzlzXr9w4ULFxMQoIiJCvXr10ueff+6jau0Fcu1lOcri7+eMjuoP9M+PtV3AN9y9IS8vT/v371eDBg1KG+/u2rt3r4wxio2N9UxxqFJeXp569+6tuXPnVrg+JiZGTz75pD7//HPt2rVL8fHxGjx4sE6fPl3DlVbNUQ7pt+8g+O6770ofGzZsqMEKneMoR3p6ul2GFStWSJL+53/+pybLdImjTLfeeqt27Nihf//73/rss8/Uvn17DRw4ULm5uTVcqbRt2zbddddd2rNnj9577z399NNPuvbaa3Xu3DlJzv2c+QtHWQJhbjvKIAXGvK6Mo3yBNN8dZfGnee4sR3MkkI4HjrIEwvFAclzn6dOn1atXL0VFRWnz5s3at2+fHnzwQb+55aCj+gNhzjvKMHXqVG3dulUrV67UF198oREjRmjUqFHat2+fjyuvmqNcgXgM+89//qOPPvpILVu2tFvuz8euymp25nzA31SWxdn1/qSyWgN1vpeoLJe/v5dUpLbso6rO61esWKF7771X8+bN0yeffFJ6nK7ulzR6SiDXXlZVWQLhnNHR58NA/vxY65k6ymazmS+//LLc8vz8fPPnP//ZSDLjx48vt/7gwYPm4MGDdsuOHTtmTp8+XW7bb775xnTs2NFIMsuXL6+0luzsbCPJZGdnu5Gk7jhx4oTT237xxRdGkjl+/HiV25X832/durWa1bnG2SyV5UhNTTVdu3b1QmWuqW6OskaPHm169+7tgcpc58rPlzEVZ8rPzzfBwcHmvffeK11WVFRkmjdvbl544QVPlepQZVmOHTtmJJnPP//cbrmz+6emVbVPKstSwldzuzIVZSmbwV/mtSPOzhVH+8iT8/348eNGkhk7dqzTr3Flzp+fxZvz3J0cxrh+/DKm8jni6+OBJ7M4u94bPJHjr3/9q8/eE8/nbBZH/8+BMOfLZujYsaNJS0uz26ZJkyZm6dKlrpTrca7+fJ2fy1/OVUo4k+XUqVOmdevWZt++fSYmJsY8/fTT5bbxt2OXMzWXcPR+WdNczeJK1prmShZ/ne/GOJ4nVeXy1nuJt85ZfLGPvJHF0Xl9t27dzJQpU0qfFxYWmqZNm5rnnnvOpRrK8sT7o69q9wRXs5TlT58hT5w44bD+QPn8GKiq26uts1e4nz59Wu3bt1f37t01btw43XfffRo/frwuueQSvfbaa+rUqVOFf/KamJioxMREu2Xbtm1Tq1atNGjQIE2cOFH33XefRo4cqXbt2mn//v268cYbdfPNN9dUNDjp7NmzeuGFF9S4cWN16tSp0u0++eQT3XLLLUpISFCDBg1Ur149xcXF6eabb9amTZtqsGJ7Bw8e1EUXXaT4+HiNHz9ep06dKrfNiRMnSv+0aPDgwRWOs3v3blksFo0bN87LFVctOztbb7zxhsaPH1/ldlu2bNHIkSMVHR2t8PBwNWnSRL169dKCBQv066+/1lC1FTt37pyKiopUr1690mVBQUEKCwsr9z0O5++byh6//PKLR+vLzs6WJDVp0sSl1/njz1FVWaqa2/6UpaIMrs7rFi1aVHpF3MGDB0u388VfWVW1j5yd75I0YcIEWSwWNW3a1KUvSfek87O4Ms/z8vI0f/58XX755WrYsKHCw8PVunVrXX311ZoxY4aOHj1aozlKOPv+V5GKjl1hYWGKjo7W6NGja/wqM0dZHK33l31UUZ3vvPOOLr/8cv3pT39S8+bNlZSUpLVr11b4el/ncPT/7Oyc9+U5V0UZevbsqbfeekunTp2SMUarVq1SQUGB+vTpU+VY/nDcKlE2lzvnKtdcc02FYy9cuFBBQUG6+OKL9eWXX3otw/jx4zV58mSXj1fnq+ksrtTszPmZL+eGoyyu7h9/zeLOfPeXz4lV5XLmvcTRZ5KyD19lcWYf+VOWys7rz549q4yMDA0YMKB025CQECUnJ+ujjz7yiyzVrb0sX84VZz5fSf7bH3JUf236/FjbBPyXprqrSZMmmjRpkvbu3av169fr559/Vr169ZSYmKjJkyfrzjvvtDsRrcrll1+u4cOH65NPPlF6erpyc3MVFRWlq666ShMmTNDIkSO9nAau2L59u6699lqdOXNGLVq00KZNmyo8wS0uLtY999yjBQsWKCQkRP369dOQIUMUGhqqY8eOad26dfrnP/+puXPn6oEHHqjRDN27d9eyZcvUvn17ZWVl6cEHH1S/fv2UkZFR6Z8Hbty4UR988IH69etXo7U667XXXlNwcLCGDx9e4fpz584pJSVFL7zwgho0aKBrr71W8fHxys7O1saNGzVt2jQ9//zzWrduneLj42u4+t80atRI3bt319y5c7VixQo1btxYCxcu1DfffKPvvvuuwtfExcXppptuqnBdRESEx2orKirSPffco+uuu06tW7d2exx/+DmqLIuzc7uEL7NUlMHVeR0SEqLvv/9e69ev15AhQ8qtf/nllxUU5Jvfqzv6eXM030vk5ORo5cqVslgs+umnn/Tmm2/W+HtqZfvK0TzPyclRr169tG/fPsXHx+umm25S06ZN9eOPP2rv3r165JFHFBcXp7i4uNLXtGrVSgcPHlRkZKRXsrg6R6py/rErNzdXu3fv1muvvaa1a9fq/fff11VXXeXJ0stxlMWZrO7so5rMcfz4cT333HOaMWOGZs2apffff1/Dhw/Xli1b1Lt3b7/I4ezPlKM578tzrqoyPPXUU5owYYIuuugihYSEqH79+lq7dq3atGlT6Xj+cNySqs7l6rlKRR588EHNmzdP7du318aNGxUdHe2VHM8884zy8vI0ffp0r4wveT6LKzU7er/09ecRR1lcyervWVyZ777O4kouZ95LUlNTy73uH//4h7KzsytcJ3nnnMUT+8hfslR1Xn/69GkVFRXpwgsvtHtN8+bN7X5B7qssnqi9hK/nijOfr/y5P+So/tr0+bFW8uTl9nAPt5RxjqduKZOfn28OHz5sdu/ebW655RbTtm1b89///rfcdjNmzDCSTOfOnc2RI0cqHOfRRx819957r0s5jPH8rVh++OEHExERYVavXm23vORPymJjY01QUJDp1q2bKS4uttvmo48+cutP6IzxbI6kpCQzYcKEStffc889RpJJSkoy33zzjd26c+fOmQcffNBIMnFxcW7NJU/cUsYYYw4fPmx69uxpJJng4GDTv39/c80115hrrrnGbruSfTN48GCXa3WkbJbi4mJz6623moSEBPPDDz84naVsrd76OapMRfukqizOzG1/yOJof5RwNK979+5tIiMjzR//+Mdyry0sLDQXXnihGTRokAkPDzcxMTGeiuJwrjiTz9F8L/Hiiy8aSWbatGkmKCjIDBw4sMLtvHV7icqyODPP586daySZW2+9tdzPmDG/3UKg7C3q3OXs8cuZOeLs8aCiY9f9999vJJk+ffq4GqGUp7I4k9Wb+8gTOUJDQ02vXr3sth8yZIi58cYbayyHMVVncfacytGcd/Wcy5NzvqoMjzzyiOnQoYN59913zWeffWbmzZtnoqKizP79+yv9d5w9blWHMz9fVeWqzrlKcXGxSUlJMZJMt27dKtzfnspy8OBB07x5c7vjkbu3lPF2lpIcrtTszPulNz+PVMbZLK5k9fcsxrg232s6S2XzxJlczr6XlBUTE2O80S6qThZ3jskl49Rkloqcf16flZVlJJm9e/fabXPHHXeYQYMGVTmON7I4ylGd2v1lrpSo6POVP/SHKlJRlso+Hzpa7+vPj4Gqur1aGu5+gIa7c7xxD3djjImPjzePPvqo3bLDhw+b4OBg07RpU3Pq1KkqX//rr786XVcJTzfcjTGmffv25rHHHrNbdv6Hi7FjxxpJ5vXXX7fbxh8a7v/7v/9rJJnt27dXuP7LL780QUFBpkmTJlXuj9GjRxtJ5oEHHnCqrvN5quFewmazme+//94YY0z37t3NHXfcYbe+phruxcXF5vbbbzexsbHm66+/rnB7Vz6kuvNztG3bNvOHP/zBNG3a1ISFhZn4+Hhz//33m7y8PKdzOJvlfBXNbXezFBQUmKeeesoMGjTItG7d2oSFhZkLLrjA3HDDDebTTz91WEtJFlczOJrXEydONCEhIaU/ayXeeOON0mwVnTAVFhaa+fPnm7Zt25rw8HATFxdn5s+fb44ePerweFDVXHEmn6P5fr4ePXqYkJAQc+rUKdO/f38TFBRU4b/vjYa7M1mqmufXXnutkWQyMjKcrqkm7+FuTMVzpDoN91OnThlJpn79+m7VY4xnszha784+cpYnckRHR5tbbrnFbv29995rrr76artl3sxhjGtZKvp/djTn3Tnn8ub3NpRkyM/PN6GhoXb3OjfGmAEDBpiUlJRKX+/scWvLli1GkklNTTU7d+40AwcONJGRkU41Utz5+apo37h6rnL27NnSc61+/foZm83mch1lVZVl6dKlxmKxmODg4NKHJBMUFGQuu+wyu21dPXZ5OktJDmdrduY9xp25Ud3zFVeyuLJ//D2LK/PdF1kqmyfO7ANn30vKctTY9fQ5iyf3ka+zVKbkvL6goMAEBwebd955x279n/70JzNmzJgqx/BGFmdyuFO7O3OlOu+NrmapjKf6Q97K4qh+b3x+PD9Lenq6GTBggGnYsKGxWq1m6NChfvddcJ7CPdyBajLGlLu/5rJly1RUVKSJEyeW+3OpsvzhG95//vlnffXVV1XeZ2vu3LkKDw/XrFmzVFhYWHPFOWHJkiVKSEhQr169Kly/fPlyFRcX6y9/+UuV+6PkT7eWLFnilTpd0ahRIzVv3lzHjh3Txx9/XOGfbHmbMUYpKSlat26dPvjgA4/8uberP0fPPfeckpOTtXPnTv3+97/X5MmT1bp1az388MMaOHCgzp4969S/606Wiua2u1l++ukn3X333SooKNB1112nqVOnKjk5WevXr1fPnj2Vnp7u8QzOzOsJEybo3LlzevXVV+2WL1myRE2aNNHQoUMrfd3MmTMlSSkpKbrmmmu0YMEC3X333Q5zVMbZfI7me4kDBw5o9+7dGjRokC688EKNGTNGxcXFWrp0qds1OsvZLFXN86ZNm0qSDh065PV63eVojrjL2/dErYijLBWt98d9dH6dPXv21JEjR+zWHzp0SDExMXbL/ClHRf/Pjua8v51zlWQoLCxUYWGhgoOD7dYHBweruLi4wte6c9zatWuXkpOTZbFY9Je//MVrt5+paN+4cq5y5swZDR06VCtWrNANN9yg9evXq1GjRl6ptcTQoUO1b98+ffbZZ6WPli1b6r777tPq1avdHtebWZyp2dn3GHfmhifOV5zN4sr+8fcsrsx3X2dxJZfk/HuJr3lyH/mj88/rw8LC1KVLF73//vul68+dO6etW7fqyiuv9GGVFXO39uq8v3vrvdGZz1ee7g95Mouj+r35+VGS0tPT1bt3b4WFhWnixInq1q2b3nzzTQ0YMMDn36fnl6rZ8IcHcIW7c5z5beXp06dNRkaGWb16tZFk1q1bZzIyMszp06eNMcb87W9/Mzt27DAnTpwwn376qbn11ltNeHi4OXDggN04ycnJRpLZvHmzT7I4ynHPPfeYbdu2mePHj5vt27ebq6++2sTHx5e7Yrjs1Twlt2U5/0/zvHmFu6Mcxvx2pW3z5s3N/PnzKx2nZH9s2rTJYU0tW7Y0kpy6evh8zl6h4CjTu+++azZs2GCOHj1q3nnnHdO2bVszZMiQcuOU7Ju4uDiTmppa7vHRRx+5VH9FWe644w4TFRVltm/fbr777rvSR0FBgVNZytbq6s/R/v37TUhIiLnsssvMjz/+aDdmWlqakWQef/xxhzmcyeLs3HY3y6+//lruVkbG/HblZsOGDc2AAQMqzVGSxVEGd+f1pZdeajp27Fi6/rvvvjMhISHmrrvuMsaYclcobN68ufTPIc8f+9tvvzUXXnih21e4O8pnjHPzvcS0adOMJPPaa68ZY4zJyckxDRo0MBdffLEpKiqq8P/EU1fzOMrizDx/6623jCTTqFEjM336dLNhw4Zy86Asb15h5WiOuHs8OF/Jrb369u3rUv2ezuLs8cCdfVSTOXbv3m2Cg4PN448/bg4fPmyee+45ExISYnbu3FljOarK4sz/syvv8a6cc3lqzjvKcPXVV5vLLrvMbN++3Rw9etQsWLDABAUFlbvCsoQrx62Sq8UkmSVLljido7IsruRy9VzlyiuvNL169TKSzIQJE8y5c+dcqrc6Wcoqe4sJV49d3spSVY6yNTvzfmmMe3OjuucrrmZxdn0gZHF2vvsiiyvzpGwuZ99LKhqnqnZRTVwV7u4+qmicms7i6Lz+X//6l4mIiDCvvvqq2b9/vxk/fry58MILHfaEauIKd0/V7s5cqc57oztZvNkf8kQWR/XX1OfH87OU/evwm2++2e7cpzbhljK1AA135zjz5rx06dLSA8H5j6VLlxpjjLnppptK/4yvRYsW5vrrry93/zFjfvszHEkmMzPT0zGMMY6zOMoxcuRIc9FFF5nQ0FDTunVrc+ONN1Z5m4WSA+tPP/1koqKiTPPmzU1OTo4xxrsNd0c5jDHmzTffNEFBQRWehJZwZX90797dSDJ79uxxOocxzp/8Ocq0YsUKExsba0JDQ02rVq3Mvffea86cOVNunJJ9U9ljwYIFLtVfUZbKxt6yZYtTWcrW6urP0eTJk40k8+GHH5arsaioyFxwwQWma9euDnM4k8XZue2NOXH99debsLAwc/bs2SqzOMrg7rx+8sknjSSze/duY8xv97eU/v/tJcqeMI0bN85IMmvXri039vz5891uuDvKZ4xz892Y3/7U/4ILLjBWq9Vu/tx0001GktmwYYPd9p5uuDvK4uw8f+KJJ0zDhg3txoiLizMpKSnm0KFD5bb35odXR3PE1ePB+b8svOeee8zVV19tJJmIiAiza9cul+r3dBZnjwfGuL6PajKHMcasXbvWJCYmmoiICPO73/3OvPHGGzWao6osztTv6ff4Ep6a844yZGVlmZtuusm0aNHC1KtXz3Tq1Mm88sorFY7v6nGr5MPr5Zdf7nSGqrK4ksvdc5Urr7zS5Vqrm6Wssg04V49d3sriSmPXmfdLYzz/ecSZ8xVjvNNwD4Qszs53X2SpTpPaGOffS8qOI/lXw92VY3LZcWo6izPn9f/4xz9MdHS0CQsLMz179jSfffaZw3+zJhrunqrdnblSnfdGd7J4sz/kiSyO6q+pz48lWXr37l1pzmnTprmV05/RcK8FaLg7x937obrD1w13T6noSsSSg2lqaqoxpmbu4V5d/tRw95Sauoe7J7j7c3TFFVcYSeb++++v8Cr+li1bmgYNGtRYjupkMcaYjIwM8+c//9lER0eb0NDQch+Uv/322xrJUjbDDz/8YEJDQ81f/vIXY4wx7dq1M126dCndvuwJU5cuXYykCr+gbdu2bW433D1p1apVRlK5e45u3LjRSDIjRoywW+7N+zlXl81mMytXrjR333236dWrV+nPTkREhHnrrbfstq3pe7i7o6JfFpac5I8ePdrs27evWuPX9LHYGNf2kbNqSw5jvJ/Flw13T3L1uFXyAXXixIku/1s1fR7ZoUOH0r8gnDNnjkf/jdqSxRs53P08Up3zFWPI4ogvsvjiPcUfGu6eQpaqeStHdZrU7rw3GkOWylT382NJlqlTp5Yb+/Dhw0b67a/Gapvq9mpDBL+RlJSk4OBgpaSkKCUlxdfl1GktWrRQZmamsrKy1K5dO1+X41GTJ0/WM888oyeeeEKTJk3ydTlOKdkfJ0+edLg/Tp48KUm66KKLaqK0OsuZn6OffvpJkvTwww/XZGkucybLrl271K9fP0nSoEGDlJCQoIYNG8pisejNN9/U559/7pV7YTvjggsu0PXXX6/XX39dw4cP15dffqmnn3660u1tNpuCgoLUrFmzcusc3ZOwprz88suSpDFjxtgt79+/v1q1aqW33npLP/30k5o0aeKL8lzSqFEjDR8+XMOHD5ckZWdna+bMmXr22Wd1yy23KCsrS2FhYT6u0nWDBw/We++95+syPKK27KNAzVFbzrncPW75y3G3KtHR0XrrrbfUt29fpaamqqioSHPmzPF1WW4JpCzuzA1/PV8hi39mAbypOu/v/vbeWJuySK5/fixhtVrLLQsJ+a2tXFRU5PE6fWXRokVatGhRtTPxpal+JD09XQcOHKDZ7geuuuoqSbL7MpDaol69epozZ45yc3P99gNGWT179pTkeH9kZmbq22+/VatWrTzyBaGonDM/RyVvyDabTea3v6iq8OFrzmR5+OGHVVBQoM2bN+vtt9/WE088oTlz5mj27Nlq0aJFDVdc3i233CKbzaZx48YpIiJCN954Y6XbWq1WFRcX68cffyy37vvvv/dmmU45efKkNm7cKEnq06ePLBZL6SM4OFhZWVkqKCjQP//5Tx9X6p7IyEg988wziomJ0Y8//qgvvvjC1yWhjNqyjwIlR20456rOccsXXzLsjvj4eG3btk0XX3yx5s6dq1mzZvm6JLcFShZ35oa/nq+QxT+zAN5Unfd3f3tvrE1ZSrjy+bGuSUlJ0YEDB9z+QusSNNyBCowbN07BwcF64YUX9N///rfKbQPxaoSxY8eqY8eOevHFF8t9a70/GjNmjIKCgvTiiy9WuT9KrqSeMGFCTZVWpzn6Oerevbskaffu3TVdmsscZTl69KiaNGmiXr162S3Pz8/Xp59+WlNlVmrw4MFq1aqVsrKyNHToUDVu3LjSbS+77DJJ0s6dO8ut27Vrl9dqdNayZctUXFysXr166ZZbbin3GDt2rKT/fzVpILJYLGrQoIGvy0AVass+CoQcteGcqy4ctySpbdu22rp1q2JiYvTwww9rxowZvi7JbYGQxZ254a/nK2TxzyyAN9WG9/cStSlLCVc+P8I9NNyBCsTHx+tvf/ubfvzxR1177bU6fvx4uW1+/fVXPfnkk5o9e3bNF1hNwcHBmj9/vgoLCwOi/nbt2mnKlCk6ffq0rr/+en333Xd264uLizVv3jz985//VFxcnO655x4fVVq3OPo5mjRpkkJCQnTXXXfp66+/Lrf+l19+UUZGRg1U6pijLDExMfr555+1f//+0mVFRUW65557HJ501YTg4GC9+eabeuONN5SWllbltiVXL8ydO1dnzpwpXX7q1CktXLjQq3U6YozR0qVLZbFYtHz5cr300kvlHsuWLdOVV16pffv26eOPP/ZpvVVZvHhxpVdFvPnmmzp48KCioqJ06aWX1nBlKFFb9lGg5wj0c67adNxyRps2bbRt2za1adNGjzzyiP72t7/5uiS3+XsWd+aGv56vkMU/swDeFOjv7+erTVlKuPL5Ee7hHu5AJR566CH9+uuvWrBggdq1a6d+/frp0ksvVWhoqI4fP67Nmzfr9OnTeuihh3xdqluGDBmiXr16aceOHb4uxSmPPvqosrOztWTJEiUkJOj3v/+94uLiZLPZtHHjRh0+fFgJCQlav359hfcWg3dU9XN06aWX6tlnn9Udd9yhdu3a6brrrlNcXJxycnJ07Ngxbdu2TePGjdPzzz/vg8rLqyrLXXfdpY0bN6pXr14aMWKEIiIitHXrVmVlZSk5OVlbt26t+YLL6Natm7p16+ZwuwEDBmj06NFasWKFOnXqpKFDh6qgoEArV65U9+7d9c477ygoyDe/j//ggw90/Phx9enTR23btq10u/Hjx+ujjz7Syy+/7FRmX3j33Xd1++23Kz4+XldddZVatmypvLw8ZWRkaPv27QoKCtKzzz6r8PBwX5daZ9WWfVQbcgTyOVdtOm45KyYmRtu2bVPfvn312GOPqaioSE888YSvy3KLv2dxdW748/kKWfwzC+BNgfz+XlZtylLC2c+PcJNnvrsV1VHdb76tK3zxLeDGGJOenm4mTJhg4uPjTb169Ux4eLiJjY01o0ePNps2bXJrzJrKUvbbqMvauXOnkeTWt7Ib45t9smnTJjN8+HDTsmVLExoaaqKiosyVV15pnnjiCZOfn+/2uDWdxdG+qQ5PZ6nuz9HevXvNqFGjSvdZs2bNzOWXX27uu+8+c/DgwUr/XW/sk+pkWb16tbn88stN/fr1TbNmzcyIESPM0aNHzdixY40kc/z48Ur/XW9+y7wjZb9l3hhjCgsLzbx580ybNm1MWFiYadu2rZk/f77Zs2ePkWSmTJlS6XjenCt//vOfjSSzdOnSKrfLzs429erVM5GRkSY/P7/0/8SV45i353xmZqZ59NFHzcCBA02bNm1MRESEiYiIMHFxcWbs2LHm448/Lvcad3IYU7PHL28eu4yp2Szu7CNn1ZYcxtRsFmfPufxpzrt73NqyZYuRZFJTU13+N/3lPPKbb74xCQkJDt83qlJbsng7hyufR6pzvmIMWVxRU1l88ZkrJibGVNUuCoRzlhJkqVpN5HB2rlTnvdEYslSmup8fq8ri7vwJBNXt1VqM8YNvrKvjbDabIiMjlZ2dzZW5Vfjqq68UExPj6zI8orZkqS05JLL4o9qSQwqcLC+99JJuu+220r9MqEigZHGktuSQyOKPaksOqfZkqS05JLL4o9qSQyKLP6otOSSy+KPakkMiCzyrur1a7uEu6fjx47rtttsUExOj8PBwXXjhherbt69WrVrl0jjp6em67rrrFBUVpQYNGqhHjx5auXKll6oGAMA9p06dUtnft2dlZemhhx5ScHCw/vCHP/ioMgAAAAAAAludv4f7pk2bNHToUEnS9ddfr7Zt2+rnn3/Wvn37tHnzZg0fPtypcbZs2aLBgwcrIiJCo0aNUqNGjbRmzRqNHDlSJ0+e1PTp072YAgAA5z3yyCNat26drr76ajVv3lxff/21/vOf/ygnJ0ezZ89WdHS0r0sEAAAAACAg1emG+9dff61hw4apVatW2rx5sy6++GK79efOnXNqnHPnzum2225TUFCQPvzwQ3Xu3FmS9OCDD+qKK67QzJkzNWzYMP4cBADgF6655hodOHBA69at088//6yIiAj97ne/06RJkzR69GhflwcAAAAAQMCq07eUmT9/vmw2m55//vlyzXZJCglx7vcRH3zwgY4eParRo0eXNtslKTIyUjNnztTZs2e1fPlyT5UNAEC1XHPNNdq4caO+//57nT17VjabTTt27KDZDgAAAABANdXZK9yNMVq1apWaNm2qfv366ZNPPtG2bdtUXFyszp07q1+/fgoKcu73EVu3bpUkDRo0qNy6wYMHS5K2bdvmsdoBAAAAAAAAAP6nzjbcjx8/rp9++kndunXTxIkT9cILL9it79Kli95++221bt3a4ViHDx+WJCUkJJRb16JFCzVs2LB0m4qUfHGdzWZzJUKdk5OTU2v+j2pLltqSQyKLP6otOSSy+KPakkMiiz+qLTmk2pOltuSQyOKPaksOiSz+qLbkkMjij2pLDoks8KyS//+Snq2r6mzD/YcffpAkZWRkKDMzU0uXLtUf//hHZWdna/78+XrxxRc1bNgw7d692+FY2dnZkn67hUxFrFZr6TYVycnJkSS+pA4AAAAAAAAA/EBOTk6l/d6qBHzDffr06SooKHB6+ylTpighIUHFxcWSpKKiIs2bN0/jxo2TJDVu3FgvvPCC9u3bpz179mjHjh3q1auXN0ov1ahRowqX33fffZoxY4ZX/20AAAAAAAAAqKvS0tL0yCOPlFteWc/WkYBvuC9evFh5eXlObz9s2DAlJCTY/XZiyJAh5ba7/vrrtWfPHn388ccOG+4lY1V2FbvNZlPjxo0rfb3VatUPP/ygsLAwWSyW0uXh4eEKDw+v8t8GAAAAAAAAALhn9uzZdhc9G2N09uxZWa1Wt8YL+IZ7bm6uW6+Li4tTcHCwioqKFBUVVW59ybIzZ844HKvk3u2HDx9W165d7dadOnVKubm5uuKKKyp9vcVi0QUXXOB88QAAAAAAAACAavP0Rc9BHhspwERERKhnz56SpAMHDpRbX7IsNjbW4Vh9+vSRJG3cuLHcug0bNthtAwAAAAAAAAConSzG3a9brQVee+01jR49Wv3799e6detKf5ORmZmprl27Kjg4WF999VXp7WAKCwt19OhRhYaGKi4urnScc+fOqV27dsrKytLu3bvVuXNnSb/dYuaKK67QiRMn9OWXXzrVvAcAAAAAAAAABKY63XA3xmjEiBFavXq12rVrp8GDBys7O1tr1qxRfn6+XnnlFd14442l2584cUJt2rRRTEyMTpw4YTfWli1bNHjwYEVERGjUqFFq1KiR1qxZo6+++kqPP/64pk+fXsPpAAAAAAAAAAA1qU433KXfrk5/+umn9fLLL+vIkSMKDw9Xjx49NHPmzHK3gamq4S5Je/fuVWpqqnbt2qXCwkJ16tRJ06ZN08iRI2soDQAAAAAAAADAV+p8wx0AAAAAAAAAAE+os1+aCgAAAAAAAACAJ9FwBwAAAAAAAADAA2i4AwAAAAAAAADgATTcAQAAAAAAAADwABruAAAAAAAAAAB4AA13AAAAAAAAAAA8gIY7AAAAAAAAAAAeQMMdAAAAAAAAAAAPoOEOAAAAAAAAAIAH0HAHAAAAAAAAAMADaLgDAAAAAAAAAOABNNwBAAAAAAAAAPAAGu4AAAAAAAAAAHgADXcAAAAAAAAAADyAhjsAAAAAAAAAAB5Awx0AAAAAAAAAAA+g4Q4AAAAAAAAAgAfQcAcAAAAAAAAAwAP+Hy7fOQQ/H9wvAAAAAElFTkSuQmCC", "text/html": [ "\n", "
\n", "
\n", " Figure\n", "
\n", " \n", "
\n", " " ], "text/plain": [ "Canvas(toolbar=Toolbar(toolitems=[('Home', 'Reset original view', 'home', 'home'), ('Back', 'Back to previous …" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "bar_OP(1,mixing_cases, stable_isotopes, 11000)" ] }, { "cell_type": "code", "execution_count": null, "id": "23449f58-bac2-4c2a-8c11-6b4ece4e0650", "metadata": {}, "outputs": [], "source": [] } ], "metadata": { "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.6.9" } }, "nbformat": 4, "nbformat_minor": 5 }