{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# Analysis of results of multi-zone MC simulations of reaction rate uncertainties for NOVA models (Python 3)" ] }, { "cell_type": "code", "execution_count": 2, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Populating the interactive namespace from numpy and matplotlib\n" ] } ], "source": [ "%pylab ipympl \n", "\n", "import os \n", "import sys\n", "import h5py\n", "\n", "from scipy import stats\n", "from scipy.stats import norm\n", "from scipy.stats import lognorm\n", "import matplotlib as mpl\n", "import numpy as np\n", "from matplotlib import pyplot as plt\n", "import pandas as pd\n", "\n", "from nugridpy import nugridse as nuse\n", "from nugridpy import utils\n", "from nugridpy import ppn\n", "from nugridpy import utils" ] }, { "cell_type": "code", "execution_count": 3, "metadata": {}, "outputs": [], "source": [ "mixing_case = 'MLT'" ] }, { "cell_type": "code", "execution_count": 9, "metadata": {}, "outputs": [], "source": [ "# a color-blind color set \n", "CB_color = ['#377eb8', '#ff7f00', '#4daf4a',\n", " '#f781bf', '#a65628', '#984ea3',\n", " '#999999', '#e41a1c', '#dede00']" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "def get_everything_you_need(mixing_case):\n", " # the initial abundances for NOVA models are the Asplund et al. (2009) solar abundances \n", " upper = \"/user/niagara_scratch_fherwig/wendi.user/jissa/multizone/\"\n", " mppnp_test_dir=upper+mixing_case+\"_MC_results/\"\n", " \n", " sol_ab=upper+\"../mixing_results/iniab2.0E-02GN93.ppn\"\n", " \n", " init_ab=sol_ab\n", " \n", " utils.solar(sol_ab,1.)\n", " sol_abu=utils.solar_elem_abund\n", " n_sol=len(sol_abu)\n", "\n", " # read in initial elemental abundances in the path init_ab\n", " utils.solar(init_ab,1.)\n", " init_abu=utils.solar_elem_abund\n", " n_init=len(init_abu)\n", " print (\"\\nn_init =\",n_init)\n", "\n", " # read in solar abundances in the path sol_ab\n", " utils.solar(sol_ab,1.)\n", " sol_abu=utils.solar_elem_abund\n", " n_sol=len(sol_abu)\n", " print (\"\\nn_sol =\",n_sol)\n", " \n", " # initial and solar abundances do not include Tc and Pm\n", " # here we include them with the abundances 1e-99\n", " \n", " n_el = n_sol + 2 # n_sol + the unstable Tc (Z=43) and Pm (Z=61)\n", " \n", " el_name=[\" \" for x in range(n_el)]\n", " z_el=np.linspace(0,0,n_el)\n", " \n", " el_name[0]='n'\n", " for i in range(n_el):\n", " z_el[i]=float(i) # Z=i in mppnp surf data output\n", " if (i>0):\n", " el_name[i]=utils.get_el_from_z(i)\n", " \n", " # el_abu_init = np.linspace(1e-99,1e-99,n_el)\n", " el_abu_sol = np.linspace(1e-99,1e-99,n_el)\n", " \n", " for i in range(n_el): \n", " for k in range(n_sol):\n", " z_sol=k+1\n", " if float(z_sol)==z_el[i] and z_sol != 43 and z_sol != 61: \n", " # el_abu_init[i] = init_abu[k]\n", " el_abu_sol[i] = sol_abu[k]\n", " \n", " # print (\"X_init =\",el_abu_init[1],\", X_init(Tc) =\", el_abu_init[43],\", X_init(Pm) =\", el_abu_init[61])\n", " print (\"X_sol =\",el_abu_sol[1],\", X_sol(Tc) =\", el_abu_sol[43],\", X_sol(Pm) =\", el_abu_sol[61])\n", "\n", " work_dir = mppnp_test_dir\n", "\n", " model = 11200\n", " \n", " mc = 0 \n", " file_name = mixing_case+\"_MC_\"+str(mc)+\"_OC\"\n", " suffix = \".0010001.surf.h5\"\n", " h5_file = work_dir+file_name+suffix\n", " \n", " print(\"Zero variation case:\", h5_file)\n", " with h5py.File(h5_file, 'r') as file:\n", " dset = file[\"/cycle\"+str(model).zfill(10)+\"/SE_DATASET\"]\n", " el_abu_0 = dset['elem_massf_decay'][0]\n", " iso_abu_0 = dset['iso_massf_decay'][0]\n", " \n", " n_el = len(el_abu_0)\n", " n_iso = len(iso_abu_0)\n", " \n", " print (\"Number of Elements: \", n_el, \"\\nNumber of Isotopes:\", n_iso)\n", " \n", " mc_runs = 1000 # the total number of MC runs\n", " el_abu = np.zeros((mc_runs,n_el),dtype=float) # this 2d array stores surface abundances from all mc_runs\n", " iso_abu = np.zeros((mc_runs,n_iso),dtype=float) # this 2d array stores surface abundances from all mc_runs\n", " \n", " print('Reading all MC runs')\n", " for mc in range(mc_runs):\n", " \n", " if mc % 100 == 0: print('Reading in run', mc)\n", " \n", " mc1 = mc+1\n", " file_name = mixing_case+\"_MC_\"+str(mc1)+\"_OC\"\n", " h5_file = work_dir+file_name+suffix\n", " # print (file_name+suffix)\n", " \n", " try:\n", " with h5py.File(h5_file, 'r') as file:\n", " dset = file[\"/cycle\"+str(model).zfill(10)+\"/SE_DATASET\"]\n", " el_abu[mc,:] = dset['elem_massf_decay'][0]\n", " iso_abu[mc,:] = dset['iso_massf_decay'][0]\n", " except:\n", " print(f\"Missing run {mc1}\")\n", " \n", " \n", " el_name=[\" \" for x in range(n_el)]\n", " z_el=np.linspace(0,0,n_el)\n", " el_name[0]='n'\n", " for i in range(n_el):\n", " z_el[i]=float(i) # Z=i in mppnp surf data output\n", " if (i>0):\n", " el_name[i]=utils.get_el_from_z(i)\n", "\n", " iso_z=np.linspace(0,0,n_iso)\n", " iso_a=np.linspace(0,0,n_iso)\n", " iso_name=[\" \" for x in range(n_iso)]\n", " \n", " mc = 0\n", " mc1 = mc+1 # this is important !!!\n", " file_name = mixing_case+\"_MC_\"+str(mc1)+\"_OC\"\n", " \n", " # Basically, my version of mppnp kills all the header information for some reason.... so run this to get that properly\n", " \n", " h5_file = upper+\"../mixing_results/\"+mixing_case+\"_RUNS/hif7.95E+03/my_test_hif.0010001.surf.h5\"\n", " file = h5py.File(h5_file, 'r')\n", " dseta = file[\"A\"]\n", " dsetz = file[\"Z\"]\n", " iso_a[:] = dseta[:]\n", " iso_z[:] = dsetz[:]\n", " file.close()\n", " \n", " iso_name[0] = 'n'\n", " iso_name[1] = 'H'\n", " \n", " isomers = ['ALm', 'KRm', 'CDm', 'LUm', 'TAm']\n", " start = n_iso - len(isomers)\n", " for isomer in isomers: \n", " i = isomers.index(isomer)\n", " iso_name[start+i] = isomer\n", " \n", " for i in range(2,n_iso-len(isomers)):\n", " iz = int(iso_z[i])\n", " iso_name[i] = utils.get_el_from_z(int(iso_z[i]))\n", " \n", " iso_full_name = []\n", " for i in range(n_iso):\n", " iso_full_name.append(iso_name[i]+\"-\"+str(int(iso_a[i])))\n", "\n", " # Read the mult_rtypes file and parse the data\n", " file_mult = open(mppnp_test_dir + \"reaction_factors_mult_rtypes.txt\",\"r\")\n", " \n", " data = file_mult.readlines()\n", " \n", " mult = [x.split() for x in data]\n", " # print(mult)\n", " n_mc = 1000 # int(mult[0][0]) # number of combinations of mult factors = mc_runs\n", " n_fac = int(mult[0][1]) # number of reactions with varied rates\n", " \n", " print (\"n_mc =\", n_mc, \"must be equal to mc_runs =\", n_mc,\n", " \"\\nn_fac =\", n_fac, \"must be equal to the number of varied reaction rates\")\n", " \n", " mc_fac = np.zeros((n_mc, n_fac), dtype=float)\n", " \n", " nn = 5 # maximum number of array elements per line in the data\n", " kk = n_fac // nn\n", " mm = n_fac % nn\n", " \n", " nl = n_mc \n", " # nl = 2\n", " \n", " print(nn, kk, mm, nl)\n", " \n", " k1 = 0\n", " for i in range(nl):\n", " for k in range(kk):\n", " k1 += 1\n", " for n in range(nn):\n", " m = k * nn + n\n", " mc_fac[i, m] = float(mult[k1][n].replace('D', 'E'))\n", " if mm > 0:\n", " k1 += 1\n", " for n in range(mm):\n", " m = kk * nn + n\n", " mc_fac[i, m] = float(mult[k1][n].replace('D', 'E'))\n", " \n", " print(\"k1 =\", k1, \"must be equal to\", (kk + (1 if mm > 0 else 0)) * n_mc)\n", "\n", " print(\"These should be equal\")\n", " # check that these factors are the same\n", " # the first number in the first raw of the list (the file reaction_factors_mult.txt)\n", " print (mult[1][0], mc_fac[0,0])\n", " # the last number in the last raw of the list\n", " print (mult[k1][mm-1], mc_fac[249,n_fac-1]) # the first number in the last raw of the list\n", "\n", " file_mult = open(mppnp_test_dir + \"reaction_factors_rtypes.txt\",\"r\")\n", " \n", " data = file_mult.readlines()\n", " fac = [x.split() for x in data]\n", " name = []\n", " mass = []\n", " rtypes = []\n", " varmax = []\n", " print(fac[-1])\n", " for k in range(len(fac)):\n", " if len(fac[k]) == 4:\n", " name.append(fac[k][0])\n", " mass.append(fac[k][1])\n", " rtypes.append(fac[k][2])\n", " varmax.append(float(fac[k][3]))\n", " if len(fac[k]) == 3:\n", " name.append(fac[k][0][0:2])\n", " mass.append(fac[k][0][2:])\n", " rtypes.append(fac[k][1])\n", " varmax.append(float(fac[k][2]))\n", " \n", " # print the first and last raws of the file reaction_factors.txt\n", " k = 0\n", " print (k, name[k], mass[k], rtypes[k], varmax[k])\n", " k = len(name)-1\n", " print (k, name[k], mass[k], rtypes[k], varmax[k])\n", "\n", " return (mc_runs, el_name, z_el, n_el, el_abu_0, el_abu, el_abu_sol,\n", " n_fac, n_iso, iso_name, iso_a, iso_abu, iso_abu_0,\n", " mc_fac, name, mass, rtypes, varmax)" ] }, { "cell_type": "code", "execution_count": 5, "metadata": { "scrolled": true }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "WARNING:\n", "This initial abundance file uses an element name that does\n", "not contain the mass number in the 3rd to 5th position.\n", "It is assumed that this is the proton and we will change\n", "the name to 'h 1' to be consistent with the notation used in\n", "iniab.dat files\n", "WARNING:\n", "This initial abundance file uses an element name that does\n", "not contain the mass number in the 3rd to 5th position.\n", "It is assumed that this is the proton and we will change\n", "the name to 'h 1' to be consistent with the notation used in\n", "iniab.dat files\n", "\n", "n_init = 83\n", "WARNING:\n", "This initial abundance file uses an element name that does\n", "not contain the mass number in the 3rd to 5th position.\n", "It is assumed that this is the proton and we will change\n", "the name to 'h 1' to be consistent with the notation used in\n", "iniab.dat files\n", "\n", "n_sol = 83\n", "X_sol = 0.706457139998516 , X_sol(Tc) = 1e-99 , X_sol(Pm) = 1e-99\n", "Zero variation case: /user/niagara_scratch_fherwig/wendi.user/jissa/multizone/MLT_MC_results/MLT_MC_0_OC.0010001.surf.h5\n", "Number of Elements: 85 \n", "Number of Isotopes: 1638\n", "Reading all MC runs\n", "Reading in run 0\n", "Reading in run 100\n", "Reading in run 200\n", "Reading in run 300\n", "Reading in run 400\n", "Reading in run 500\n", "Reading in run 600\n", "Reading in run 700\n", "Reading in run 800\n", "Reading in run 900\n", "n_mc = 1000 must be equal to mc_runs = 1000 \n", "n_fac = 1986 must be equal to the number of varied reaction rates\n", "5 397 1 1000\n", "k1 = 398000 must be equal to 398000\n", "These should be equal\n", "5.76199D-01 0.576199\n", "7.04132D+00 0.170795\n", "['PO210', '(g,a)', '10.00']\n", "0 SE 68 (g,n) 10.0\n", "1985 PO 210 (g,a) 10.0\n" ] } ], "source": [ "mc_runs, el_name, z_el, n_el, el_abu_0, el_abu, el_abu_sol, n_fac, n_iso, iso_name, iso_a, iso_abu, iso_abu_0, mc_fac, name, mass, rtypes, varmax = get_everything_you_need(mixing_case)" ] }, { "cell_type": "code", "execution_count": 7, "metadata": {}, "outputs": [], "source": [ "def get_sol_abu(isotopes): \n", "\n", " def get_sol(sol_ab=\"/user/niagara_scratch_fherwig/wendi.user/jissa/mixing_results/iniab2.0E-02GN93.ppn\"):\n", " '''\n", " grab the solar abundances and turn it into a dataframe\n", " '''\n", " \n", " f = open(sol_ab, 'r')\n", " \n", " sol_iso_z=[]\n", " sol_iso=[]\n", " sol_iso_name = []\n", " sol_iso_a = []\n", " sol_iso_abu=[]\n", " \n", " for line in f:\n", " n = len(line.split())\n", " if n == 3:\n", " sol_iso = line.split()[1]\n", " if sol_iso == 'PROT':\n", " sol_iso_name.append('h')\n", " sol_iso_a.append(1)\n", " sol_iso_z.append(int(line.split()[0]))\n", " sol_iso_abu.append(float(line.split()[2]))\n", " else:\n", " sol_iso_name.append(sol_iso[0:2])\n", " sol_iso_a.append(int(sol_iso[2:5]))\n", " sol_iso_z.append(int(line.split()[0]))\n", " sol_iso_abu.append(float(line.split()[2]))\n", " if n == 4:\n", " sol_iso_z.append(int(line.split()[0]))\n", " sol_iso_name.append(line.split()[1])\n", " sol_iso_a.append(int(line.split()[2]))\n", " sol_iso_abu.append(float(line.split()[3]))\n", " \n", " f.close()\n", " \n", " df_solar = pd.DataFrame()\n", " df_solar['Z'] = sol_iso_z\n", " df_solar['Element'] = sol_iso_name\n", " df_solar['sol_iso_a'] = sol_iso_a\n", " df_solar['sol_iso_abu'] = sol_iso_abu\n", " \n", " return df_solar\n", "\n", " df_solar = get_sol()\n", " \n", " if type(isotopes) == str:\n", " \n", " ele, num = isotopes.split('-')\n", " \n", " elemask = df_solar.Element == ele.lower()\n", " \n", " nummask = df_solar.sol_iso_a == int(num)\n", " \n", " mask = elemask & nummask\n", " \n", " abu = df_solar[mask].sol_iso_abu.to_numpy()[0]\n", " \n", " return abu\n", " \n", " else:\n", " res = []\n", " for iso in isotopes:\n", " ele, num = iso.split('-')\n", " \n", " elemask = df_solar.Element == ele.lower()\n", "\n", " nummask = df_solar.sol_iso_a == int(num)\n", "\n", " mask = elemask & nummask\n", " \n", " abu = df_solar[mask].sol_iso_abu.to_numpy()[0]\n", " res.append(abu)\n", " \n", " return np.array(res)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## List of template isotopic abundances" ] }, { "cell_type": "code", "execution_count": 10, "metadata": {}, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "198f1145918f45a8956a9f8ec2b35c2f", "version_major": 2, "version_minor": 0 }, "image/png": "iVBORw0KGgoAAAANSUhEUgAAA+gAAAJYCAYAAADxHswlAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzdd3hTZfsH8O85GW3TvSlCB7JkL5ElFESmBV5BC/xEhhtREAVBRUDwBRU3L+ILCq4XkC2yZJe9BIWyhVJG6QA6aJukSc7vjzShadM2aZM2bb+f6+pVc/LknCdtgr3zPPd9C5IkSSAiIiIiIiKiSiVW9gSIiIiIiIiIiAE6ERERERERkUtggE5ERERERETkAhigExEREREREbkABuhERERERERELoABOhEREREREZELYIBORERERERE5AIYoBMRERERERG5AAboRERERERERC6AAToRERERERGRC2CATkREREREROQCGKATERERERERuQAG6EREREREREQuQF7ZE3B1BoMBN2/ehLe3NwRBqOzpEBERERERkYuSJAlZWVmoXbs2RNH+9XAG6KW4efMm6tatW9nTICIiIiIioiri2rVrqFOnjt2PY4BeCm9vbwDGH7CPj08lz4aIiIiIiIhcVWZmJurWrWuOI+3FAL0Upm3tPj4+DNCJiIiIiIioVGVNj2aROCIiIiIiIiIXwACdiIiIiIiIyAUwQCciIiIiIiJyAQzQiYiIiIiIiFwAA3QiIiIiIiIiF8AAnYiIiIiIiMgFMEAnIiIiIiIicgEM0ImIiIiIiIhcAAN0IiIiIiIiIhfAAJ2IiIiIiIjIBTBAJyIiIiIiInIBDNCJiIiIiIiIXAADdCIiIiIiIiIXwACdiIiIiIiIyAUwQCciIiIiIiJyAQzQiYiIiIisEAQB0dHRdj0mMjISkZGRTpkPOd+oUaMgCAISEhIqeypmZXkduuI1yDYM0ImIiIiIbOSKAZyrWbp0KQRBgCAIGDJkSLHjvvnmG/O4UaNGWR2Tk5ODL7/8Et27d0dwcDAUCgUCAgLQpUsXzJ07F6mpqU56FtVLdHQ0BEGo7GmQDeSVPQEiIiIiqjzqPD02nUrCH/HJyMjVwtdDiV5NQ9GveRjcFbLKnl6Vs2PHjsqegsuQy+XYsGED0tLSEBQUVOT+7777DnK5HDqdzurj//rrLwwcOBBXr15FREQEBgwYgNDQUGRmZuLQoUOYOnUq5syZg5s3b8LT09Mhc54zZw6mTJmCBx54wCHnqyrOnj0LlUpV2dMgMEAnIiIiqrG2nUnGpJUnkZ6rQ10PLbxEHa4b5NgSfwsfbIjHvKdaoWeT0MqeZpXy4IMPVvYUXEbfvn2xYcMG/Pzzz5gwYYLFfX///TeOHz+OAQMG4Lfffivy2OvXr6NXr15IS0vDp59+ivHjx0Mms/zA6MSJExg3bhzy8vIcNuewsDCEhYU57HxVRePGjSt7CpSPW9yJiIiIaqBtZ5Lx0k/HECLew0t1kjEiLBX/Cr2LEWGpeKlOMkLEe3jxp2PYdia50ua4e/duCIKAGTNm4MCBA+jevTu8vb0RHByMsWPHIjc3FwCwceNGdOzYEZ6enggNDcXkyZOLrMrOmDEDgiBg9+7dRa5j2pK9dOnSEucTGRmJH374AQAQFRVl3p5dMHfX3hx00zmK+yo8p/3796N///4ICAiAu7s7GjdujOnTpyMnJ8fquaOjo5GcnIyRI0ciKCgIHh4e6NChg9WfAwBkZWVh+vTpaNq0KTw8PODn54fevXtj3759Nj8nk06dOqFx48ZYsmRJkfu+//57yGQyjBw50upj3333XaSkpOCdd97BxIkTiwTnANC6dWvs2bMHPj4+pc7l4sWLGD16NKKiouDm5oaAgAC0bNkSEyZMgCRJ5nHWUhhc7XUIABcuXMDkyZPRpk0bBAYGwt3dHQ0bNsSUKVNw7949i7GCIGDPnj3m/7aWVlBcDnpaWhomTJhg/rmFhITg6aefxunTp4uMNf3srly5gq+++gqNGzeGm5sbIiIiMHPmTBgMBovxBoMBixcvRvv27REQEAAPDw/UqVMHMTExxb4+awKuoBMRERHVMOo8PSatPIn6KjWeDLkNsVBqaqBShydDbmNNSiAmrTyJQ+/0rNTt7ocPH8ZHH32E3r1746WXXsKuXbvwzTffIDMzEzExMRg1ahQGDhyIjh07YuPGjfjkk0/g5eWF999/36HzmDBhApYuXYq//voL48ePh5+fHwCUqyjc9OnTrR7/5ptvkJKSYrHteOXKlRg2bBjc3NwQGxuLkJAQ/PHHH/jggw+wdetW7N69G+7u7hbnSU9PR5cuXeDr64sRI0YgJSUFK1asQO/evXH8+HE0a9bMPPbOnTvo2rUr4uPj0blzZ7z88svIzMzE+vXr0b17d6xcuRKDBg2y6/mNHj0ab7/9No4fP462bdsCALRaLX755Rf07t0btWvXLvKYnJwcLF++HB4eHnjrrbdKPL9cXno4c/PmTbRv3x7Z2dno378/YmNjkZ2djYsXL2LBggWYN2+eTedxldchAKxZswbfffcdunfvjujoaBgMBhw6dAgfffQR9uzZg7i4OCgUCgDG19jSpUtx9epVi9dbq1atSrxGamoqOnbsiH/++QfR0dEYOnQorly5glWrVmHjxo3YunUrunTpUuRxkyZNwp49e/DEE0+gd+/eWLduHWbMmAGtVosPP/zQPG7q1Kn4+OOP8eCDD2L48OHw9vbGjRs3sG/fPmzfvr3mFq2TqEQZGRkSACkjI6Oyp0JERETkEKuPX5Mi3v5d+vfX30nffvttsV///vo7KeLt36U1f16rlHnu2rVLAiABkNatW2c+rtVqpRYtWkiCIEhBQUHSkSNHzPdlZmZKISEhUkBAgKTVas3Hp0+fLgGQdu3aVeQ6S5YskQBIS5YssTgOQOrWrZvFsZEjR0oApCtXrlidc0REhBQREWHvU7Uwd+5cCYA0cOBASa/XS5Jk/JvU19dXcnNzk/766y/zWL1eL8XGxkoApA8++KDI/AFIY8eONZ9HkiRp8eLFEgDppZdeshg/fPhwCYC0aNEii+PJyclS3bp1peDgYCk3N7fU+Zt+nnPmzJGSkpIkuVwujR071nz/r7/+KgGQVq9eLR08eFACII0cOdJ8/+7duyUAUpcuXUr/Ydngq6++kgBIX3zxRZH7bt++bXHb2u/XFV+H169flzQaTZFzzJw5UwIg/fzzzxbHu3XrJpUU+lm7xujRoyUA0tSpUy2Ob9y4UQIg1a9f3+J1ZfrZRUVFSTdv3jQfT01Nlfz8/CRvb2+LOQcEBEi1a9eWsrOzi8yn8O+lKilv/Mgt7kREREQ1zB/xyajroUWg0npxLpNApQ513bXYerrytrkDQPfu3TFw4EDzbYVCgSFDhkCSJMTExODhhx823+ft7Y0nnngCd+7cwfXr1ytjuuWyZs0aTJ06FW3atMEvv/wCUTT+ub5+/XpkZGRgzJgxaNGihXm8KIr4+OOPIZfLrW6N9vT0xEcffWQ+DwCMHDkScrkcR48eNR9LS0vDihUr0KNHDzz//PMW5wgJCcGkSZOQmpqK7du32/V8atWqhX79+mHZsmVQq9UAjNvbg4ODERMTY/Uxt27dAgDUqVPHrmuVxsPDo8ixgIAAmx/vSq/DBx54AEqlssjxcePGAYDdv6fCtFotli1bhsDAQLz33nsW9/Xr1w+PP/44Ll26hP379xd57LRp0yzy+IOCgjBw4EBkZWXh/PnzFmOVSqXV9AV7fi/VDbe4ExEREdUwGbnGgnC28JLpkJGrdfKMSmZtK64pACjpvps3byIqKsqZUytVQkJCkcDZz8+vSNE0ADh27BhGjBiB2rVrY8OGDRaVyU+cOAEAVrf9hoeHo169erhw4QKysrLg7e1tvq9hw4bw8vKyGC+XyxEaGor09HTzsaNHj0Kv10Oj0WDGjBlFrnHx4kUAwLlz5/DEE0+U8qwtjRkzBr/99hvWrl2Lrl274o8//sD48ePNW7CdLSYmBlOnTsWrr76KHTt2oE+fPujWrRvq1atn13lc6XUoSRKWLFmCpUuX4vTp08jIyLDI8b5582a5zn/u3Dmo1Wp0797danX37t27Y9u2bTh58iQeffRRi/tMqQwFmT5sKfiaGzp0KBYsWIBmzZph6NCh6N69Ozp27Gj1g5SahAE6ERERUQ3j66HEdYNtfwbe08sR4VF0pa4iWSsCZsoZLuk+R1b3LquEhATMnDnT4lhERESRAP3atWuIiYmBIAjYsGFDkdzszMxMAEBoqPWq+mFhYbhw4QIyMzMtAvTiCqjJ5XLo9Xrz7Tt37gAwFqGztipqkp2dXex9xenfvz9CQ0Px/fff4/LlyzAYDBgzZkyx42vVqgUAuHHjht3XsiYyMhKHDh3CjBkzsGnTJvz6668AjJXLP/jgAzz11FM2nceVXoevv/465s+fj7p162LAgAEICwuDm5sbAGDmzJnQaDTlOr8tr7eC4woq6WdR8DX35ZdfIioqCkuWLMHs2bMxe/ZsuLu74+mnn8ann35qtTVfTcAAnYiIiKiG6dU0FFvib+G2Vl7iNvfbWjmuqZWY2Kzqt1ozbfG21nM7IyPDadeNjo62qBJuTVZWFp544gmkpKRg7dq1aN26dZExpqAnOdl6uoFpW7gtFc2tMT3uzTffxLx588p0juLI5XI8++yz+PTTTxEfH4/27dtbFKcr7OGHH4ZSqcSxY8eQmZlZ5udUULNmzbBq1Srk5eXh+PHj2Lx5M7766ivExsaidu3a6Ny5c7mvYQtHvA5TUlLwn//8By1atMDBgwctVrhv3bpV5AOhsnD26w0wvi7eeustvPXWW7h58yb27NmDJUuW4Mcff8StW7ewdevWMp+7KmMOOhEREVEN0695GPw85Nh11xeGYmJHgwTsuusLPw85+jar+n2h/f39AVhflTVtH7eFKV+24Epgeej1egwdOhR///03PvnkEwwYMMDqOFPQbq391LVr1/DPP/+gXr16Fqvn9nj44YchCAIOHjxYpseXZsyYMTAYDEhKSipx9RwAVCoVhg4ditzcXHz66acljtXpdEXad5VEoVCgQ4cOmDlzJr766itIkoTff//d5seXlyNeh5cvX4YkSejZs2eR7ed79+61+hh7X7eNGzeGu7s7jh49arWFn+l1WFoleFvVrl0bw4YNw5YtW1C/fn1s377d3L6upmGATkRERFTDuCtkmPdUK1zKccealEDc1lpuqrytlWNNSiAu5bhj3lOtKrXFmqOYCnj9+OOPFgHdwYMH8csvv9h8HlPxqmvXrjlkXhMmTMCmTZvw4osvYuLEicWOGzhwIHx9fbFkyRLEx8ebj0uShLfffhs6nc6ir7W9atWqhaeffhoHDhzAJ598YnXV//Dhw1aDNVs0btwYmzdvxtq1a/F///d/pY7/8MMPERwcjA8//BBfffWV1SD877//RnR0tNVt1gUdP37c6hjT6nDh1nTO5IjXYUREBADgwIEDFue4fv06pk6davUx9r5ulUolhg0bhrS0NMyZM8fivi1btmDr1q2oX79+mXceaDQaHDhwoMjx7Oxs3Lt3DwqFwqKwYU3CLe5ERERENVDPJqH4dkQ7TFp5Et9ed0dddy28ZDrc0xu3tft5yPHfEa3Qs0nV394OAB06dEDnzp2xc+dOdOzYEV27dsXVq1exfv16xMTEYO3atTadp0ePHpg3bx5efPFFDB48GJ6enoiIiMCIESPsntORI0cwf/58eHh4IDg42GpxtkGDBqFVq1bw8fHBokWLMGzYMDzyyCOIjY1FcHAwtm/fjuPHj6N9+/aYNGmS3XMoaMGCBTh//jwmT56Mn376CR07doSfnx+uXbuGY8eO4eLFi0hKSrJaNMwWffr0sXlsnTp18Mcff2DQoEEYP348Pv/8czz22GMIDQ1FZmYmjhw5gqNHj8LHx6fUYnM//fQTvv32W3Tt2hUPPvggfHx8cObMGWzatAkBAQEYPXp0mZ5PWTjidRgWFobBgwdj9erVaNeuHR577DEkJyfj999/x2OPPYZ//vmnyGN69OiBVatWYfDgwejbty/c3d3RsmXLYivpAzD3VJ89ezYOHDiARx55BAkJCVi5ciVUKhWWLFlS5iA6NzcXnTt3RsOGDdG2bVuEh4fj3r17+P3333Hr1i289dZb5pz6moYBOhEREVEN9XiTUBx6pyc2n07C1tPJyMjVIsLDmHPet1lYtVg5L2j9+vWYOHEifv/9d5w6dQotW7bEhg0bcPPmTZsD9L59++Ljjz/GokWL8OmnnyIvLw/dunUrU4BuWo3Ozc3Fhx9+aHVMZGSkeRvxU089hVq1amHOnDlYs2YNcnJyEBkZiWnTpuHtt98u90pwQEAADhw4gPnz52PFihX45ZdfYDAYUKtWLbRs2RLTpk2r0MJdrVq1wpkzZ7Bo0SKsXbsW69evR3p6Ory8vPDQQw9h9uzZeOmllyyq3VszbNgwqNVq7N+/H0eOHIFGo0GdOnXwyiuvYNKkSQgPD6+gZ2TkiNfh0qVLERkZidWrV+Prr79GeHg4Jk6ciLfffhurVq0qMv6FF15AQkICli9fjo8++gg6nQ4jR44sMUAPDg7G4cOHMWvWLKxfvx579+6Fr68vBg0ahOnTp5dYR6A0pvZ/O3bswN69e5GSkgJ/f380atQIc+bMwdChQ8t87qpOkEqrWlHDZWZmwtfXFxkZGQ4pUEFERERERETVU3njx5q5sZ+IiIiIiIjIxTBAJyIiIiIiInIBDNCJiIiIiIiIXAADdCIiIiIiIiIXwACdiIiIiIiIyAUwQCciIiIiIiJyAQzQiYiIiIiIiFwAA3QiIiIiIiIiF8AAnYiIiIiIiMgFMEAnIiIiIiIicgEM0ImIiIgI2tPxSHtmBLSn4yt7KkRENRYDdCIiIiKCetMmaHbthnrz5sqeChFRjcUAnYiIiIiQu227xXdXsHv3bgiCgBkzZlT2VMokMjISkZGRlT0Nh4iOjoYgCJU9jXIRBAHR0dF2PaY6/Q6rmxkzZkAQBOzevbvM50hISIAgCBg1apTD5lVeDNCJiIiIajh9aip0Z84AAHTx8dCnpVXyjIgqxqhRoyAIAhISEip7KkQAaliAPnfuXAiCgAkTJlT2VIiIiIhchmb3nhJvE9VUO3bswI4dOyp7GlSD1JgA/ejRo/j222/RokWLyp4KERERkUvJ3bETkMmMN2QyqHfsrNwJEbmIBx98EA8++GBlT4NqkBoRoN+7dw//93//h0WLFsHf37+yp0NERERU4fRJSdCeOlX06++/odm1C9Dr8wfqod61C9q//7Y6Xp+UVCnz37dvH6Kjo+Ht7Q0/Pz8MHjwYly5dsjo2JSUFb7zxBurXrw83NzcEBQVh8ODBOH36dJGxphzje/fuYfz48ahduzbc3NzQokULrFq1yur5tVotPv/8czz88MPw9vaGl5cXmjRpgokTJ+Lu3btFxtt6btN268uXL2PevHlo2LAhPDw80KRJEyxfvtx87XfffReRkZFwd3dHixYtsNlKYb/jx49j3LhxaNasGXx9feHh4YHmzZtj7ty5yMvLK/bnkJ6ejnHjxqFu3bqQy+VYunSp1Z+ByYoVK+Dm5oaWLVsiqZTXRsGaAgcOHED37t3h7e2N4OBgjB07Frm5uQCAjRs3omPHjvD09ERoaCgmT54MnU5nca6S8o+XLl0KQRBKnXtkZCR++OEHAEBUVBQEQSiSp25vDrrpHMV9FZ7T/v370b9/fwQEBMDd3R2NGzfG9OnTkZOTY/Xc0dHRSE5OxsiRIxEUFAQPDw906NCh2DzsrKwsTJ8+HU2bNoWHhwf8/PzQu3dv7Nu3z+bnVPBnvWTJEjRv3hweHh6IiorCV199BQCQJAmffvopGjVqBHd3dzRo0AA//vij1fOlpaVhwoQJiIqKgpubG0JCQvD0009bfX8CwLVr1zBs2DAEBATAy8sL3bp1Q1xcXIlzjouLQ0xMDIKCguDm5oYGDRrgvffes/pzdTXyyp5ARXj11VfRv39/9OzZE7Nnzy5xrEajgUajMd/OzMx09vSIiIiInO7Oy69Ae+y49TsLFf+S7t1Dat/+Vocq27VD8Pq1jp5eiQ4dOoQ5c+agT58+eO211xAfH4+1a9di7969OHToEOrVq2ce+88//yA6OhrXr19Hr169MGjQIKSkpGD16tXYunUrduzYgUceecTi/Hl5eejVqxfu3r2LwYMHIycnB8uXL8fTTz+NLVu2oFevXuaxubm5ePzxx7F//340aNAAo0ePhpubGy5evIhvv/0Wzz77rMWCkD3nNpk4cSIOHz6MmJgYyGQyLF++HMOHD4e/vz++/vprnDlzBv3794darcb//vc/DBw4EGfPnrVY6V20aBE2bNiArl27ol+/fsjJycHu3bsxdepUHD16FKtXry5yXY1Ggx49euDevXsYMGAA5HI5QkNDi/29fP311xg/fjweffRR/Pbbb/D19bXp93n48GF89NFH6N27N1566SXs2rUL33zzDTIzMxETE4NRo0Zh4MCB6NixIzZu3IhPPvkEXl5eeP/99206v60mTJiApUuX4q+//sL48ePh5+cHAOUqCjd9+nSrx7/55hukpKRApVKZj61cuRLDhg2Dm5sbYmNjERISgj/++AMffPABtm7dit27d8Pd3d3iPOnp6ejSpQt8fX0xYsQIpKSkYMWKFejduzeOHz+OZs2amcfeuXMHXbt2RXx8PDp37oyXX34ZmZmZWL9+Pbp3746VK1di0KBBNj+3L774Art378bAgQPRo0cPrF69GuPHj4dKpcKJEyewevVqPPHEE3jsscewfPlyjBw5EpGRkejatav5HKmpqejYsaP5fTp06FBcuXIFq1atwsaNG7F161Z06dLFPD4pKQkdO3bEjRs30Lt3b7Rp0wZnz57F448/ju7duxf7s3711Vfh5+eHmJgYhISE4NixY/jwww+xa9cu7Nq1C0ql0ubnXeGkam7ZsmVSs2bNpNzcXEmSJKlbt27S+PHjix0/ffp0CUCRr4yMjAqaMREREVHpDAaDpM/Otvkra8lS6Xp4pHT9gbrS9dp17P96oK50PTxSylq61OZrGgyGcj3HXbt2mf8WW7hwocV9CxculABITzzxhMXxTp06STKZTNqyZYvF8fPnz0ve3t5S8+bNLY5HRERIAKSBAwdKGo3GfHz79u0SAKl3794W4998800JgDRixAhJp9NZ3Jeeni5lZWWV+dwjR46UAEgNGzaUUlJSzMcPHz4sAZD8/PykLl26SPfu3TPft2LFCgmA9Nprr1mc6+rVq0XmZzAYpDFjxkgApH379ln9OfTu3VvKycmRCuvWrZtUMHR45513JADSv/71L/Pf2aUp+Ptct26d+bhWq5VatGghCYIgBQUFSUeOHDHfl5mZKYWEhEgBAQGSVqs1Hzf9zb5r164i11myZIkEQFqyZInFcQBSt27dLI6ZfuZXrlyxOueIiAgpIiLCpudXnLlz55pfB3q9XpIkScrIyJB8fX0lNzc36a+//jKP1ev1UmxsrARA+uCDD4rMH4A0duxY83kkSZIWL14sAZBeeukli/HDhw+XAEiLFi2yOJ6cnCzVrVtXCg4Otul3Z/pZBwQESP/884/5eGJioqRUKiVfX98ir9lDhw5JAKSYmBiLc40ePVoCIE2dOtXi+MaNGyUAUv369S2em+n3M3v2bIvx3377rfnnUfA1EB8fL8nlcqlly5ZSWlqaxWPmzJkjAZDmzZtnPnblyhUJgDRy5MhSfw62ysjIKFf8WK0D9MTERCkkJMTiRV9agK5Wq6WMjAzz17Vr1xigExERkcvRZ2eXLdCuwC99dna5nqMpoGvYsKHFH+2SZAxkGjRoIAmCYA4M/vzzTwmANGbMGKvnmzhxogRAOnXqlPmYKTC9fPlykfERERFSQECA+XZeXp7k7e0t+fr6Snfu3Cl1/vacW5LuByM//PBDkfH16tWTAEh79uyxOK7T6SSFQiF17dq11PlIkiQdP35cAiDNmDHD6lwL/t1ckClA1+l00nPPPScBkF544YUiHwKUxPT77N69e5H7PvjgAwmANHr06CL3mT5UKPhzrCoB+urVqyVBEKQ2bdpYfLDy448/SgCkV155pchjrl69KsnlcqlevXpF5u/p6WnxIZAkGV+XcrlcatOmjflYamqqJJPJpB49elid11dffSUBkDZs2FDqczD9rGfOnFnkvh49epT4mg0PDzff1mg0kru7uxQYGChlW/m34fHHH5cASHFxcRbjQ0JCinyQYHr/F34NvP766xbnKPyY4OBgqW3btuZjrhigV+st7sePH0dKSgratGljPqbX6xEXF4f58+dDo9FAZiqIks/NzQ1ubm4VPVUiIiIiKkbnzp0hipalk0RRROfOnXHx4kX89ddf6NmzJw4dOgQASE5Otto7/dy5c+bvBbcC+/n5ISoqqsj4OnXq4ODBgxaPz8rKQs+ePW2ua2TruQtq1apVkWNhYWG4fPlykftkMhlCQkJw8+ZNi+NarRbz58/H8uXLce7cOdy7dw+SJJnvLzweANzd3dG8efMSn8/gwYOxfv16vPvuu6WmjhanuOdX2n03b960+rOsSAkJCUXyyP38/Kx2iTp27BhGjBiB2rVrY8OGDfD09DTfd+LECQCw2pc9PDwc9erVw4ULF5CVlQVvb2/zfQ0bNoSXl5fFeFMqQnp6uvnY0aNHodfrodForL4XLl68CMD4mn7iiSdKedZGZfm9HT582Hz73LlzUKvV6N69u8VWf5Pu3btj27ZtOHnyJB599FGcP38earUaPXr0KLLVv+D7vyDTvwGmdJbCFAqF+d8BV1WtA/THHnsMp06dsjg2evRoNG7cGG+//XaR4JyIiIioqhA8PBB28XyZHitptUif+i7Uv/1W6lj3AQPgN+dDCGXI2RQ8PMoyvSKKy4M2Hc/IyABgzLkFjEXGNm7cWOz5srOzLW4Xlzstl8thMBjMt03XeeCBB2ycue3nLsjHx8fq+JLuK1z4bciQIdiwYQMaNmxozm9WKBRIT0/Hl19+aVFzySQkJARCoXoEhcXFxcHd3R39+vUrcVxJyvL8AFgtblfREhISMHPmTItjERERRQL0a9euISYmBoIgYMOGDahdu7bF/aY6V8W9tsPCwnDhwgVkZmZaBOjWfj6A8WekNxV6xP33wv79+7F///5in0/h90JJyvJ7K1jcz5bnXHCc6f0WEhJidby185ie94cffmj9SVQB1TpA9/b2tvh0FAA8PT0RGBhY5DgRERFRVSIIAgQrq1A2UamgiIqEWia7X73dGpkMinpRkOUXz6osycnJJR43BcGmIOHrr7/GuHHjHD4PUxGxGzduOPzcjnT06FFs2LABvXv3xsaNGy0WpQ4dOoQvv/zS6uNKC84BY1/wnj17ok+fPtiyZQs6derksHnbw7SjonB1d+B+YOcM0dHRFjsRrMnKysITTzyBlJQUrF27Fq1bty4yxvRaLe61fevWLYtx9jI97s0338S8efPKdA5Hs/c5m97XKSkpVsdbO4/psYU/2KhKakSbNSIiIiKylLtte8nBOQDo9cZxlWz//v1FVpsNBgMOHDgAQRDQsmVLADBXZy9u63h5NWrUCD4+Pjh69KjVdmqu4p9//gEA9O/fv8iO0b1795br3K1bt8bOnTuhVCrRp0+fEldnncmUYmDtwxLT9nFbmH4++tLeCzbS6/UYOnQo/v77b3zyyScYMGCA1XGmoN1ae7Rr167hn3/+Qb169cocZD788MMQBMFp74WyaNy4Mdzd3XH06FGr7c5MPwvTdvmGDRvC3d0dx44dg1qtthhrev8XZvo3wLTVvSqqcQH67t278cUXX1T2NIiIiIgqjT41FbozZywPmlZPC62i6uLjoU9Lq6CZWXfhwgUsWrTI4tiiRYtw4cIF9O/fH8HBwQCA9u3b45FHHsGyZcuwYsWKIucxGAzYs2dPmechl8vx0ksvISMjA+PHjy8S1GVkZODevXtlPr+jREREAECRXtfx8fGYM2dOuc/fsmVL7Ny5E25ubujTp49dPbUd5eGHHwYA/PjjjxYf3hw8eBC//PKLzecJCAgAYAyKHWHChAnYtGkTXnzxRUycOLHYcQMHDoSvry+WLFmC+Ph483FJkvD2229Dp9Nh1KhRZZ5HrVq18PTTT+PAgQP45JNPrK76Hz58uEL7giuVSgwbNgxpaWlFXodbtmzB1q1bUb9+fXTu3BmAsTbY008/jZSUFHz66acW4xcvXowLFy4UucbYsWMhl8vx2muvITExscj96enpdn2AUxmq9RZ3IiIiIipKs7tQkCqTQfDygteY0bj3/RJI9+5ZrK5rdu+BasjgCp7lfb1798brr7+OTZs2oWnTpoiPj8eGDRsQFBRUZLv2smXL0L17dwwdOhRffPEF2rRpAw8PDyQmJuLgwYNITU0tshpnjw8++ACHDh3CTz/9hEOHDqFv375wc3PD5cuXsWXLFuzbt89qwayK1L59e7Rv3x6//vorkpKS0KFDByQmJuK3335D//79sWrVqnJfo0WLFti5cycee+wx9O3bF5s2bcKjjz7qgNnbpkOHDujcuTN27tyJjh07omvXrrh69SrWr1+PmJgYrF271qbz9OjRA/PmzcOLL76IwYMHw9PTExERERgxYoTdczpy5Ajmz58PDw8PBAcHWy3ONmjQILRq1Qo+Pj5YtGgRhg0bhkceeQSxsbEIDg7G9u3bcfz4cbRv3x6TJk2yew4FLViwAOfPn8fkyZPx008/oWPHjvDz88O1a9dw7NgxXLx4EUlJSVYLtjnLRx99hD179mD27Nk4cOAAHnnkESQkJGDlypVQqVRYsmSJRUHIuXPnYseOHXjvvfewb98+tG7dGmfPnsWmTZvQq1cv/PHHHxbnb9asGRYsWIBXXnkFjRo1Qr9+/fDggw8iKysLly9fxp49ezBq1CgsXLiwwp6zvRigExEREdUw6p27AFEEJAmQJLj3ehx+c+dAFhQEz1EjkT5lKtSbtxhX0wUB6p07KzVA79ChA9577z289957+OqrryCTyTBo0CB8/PHHqFevnsXYqKgonDhxAp999hnWrVuHJUuWQCaTISwsDF27dsWQIUPKNRd3d3ds27YN8+fPx88//4xFixZBJpMhPDwcL7/8MiIjI8t1fkeQyWT4/fffMWXKFGzZsgVHjx5FgwYNMG/ePPTt29chAToANG/evEiQ3rVrV4ec2xbr16/HxIkT8fvvv+PUqVNo2bIlNmzYgJs3b9ocoPft2xcff/wxFi1ahE8//RR5eXno1q1bmQJ002p0bm5usUXKIiMjzR/gPPXUU6hVqxbmzJmDNWvWICcnB5GRkZg2bRrefvvtIpXL7RUQEIADBw5g/vz5WLFiBX755RcYDAbUqlULLVu2xLRp0xAUFFSua9grODgYhw8fxqxZs7B+/Xrs3bsXvr6+GDRoEKZPn16kTlhYWBgOHDiAyZMnY+vWrYiLi0Pbtm2xbds27Ny5s0iADgAvvPACWrVqhc8++wxxcXHYsGEDfH19ER4ejjfeeAMjR46sqKdbJoJUWpWDGi4zMxO+vr7IyMgoc5EGIiIiIlch6XRIatoc0r17EHx94Td3DlQDYoqMy/ltA9KnTIWUkQHB2xth8acgsAMOEVGJyhs/cgWdiIiIqAaR1GrII8IhCw83r5pboxoQA7dOHZE+ZSr0165Bys2FUKj/MhERORZX0EvBFXQiIiKqbiS93q7VcHvHExHVVOWNH2tcFXciIiKims7eYJvBORFRxWCATkREREREROQCGKATERERERERuQAG6EREREREREQugAE6ERERERERkQtggE5ERERERETkAhigExEREREREbkABuhERERERERELoABOhEREREREZELYIBORERERERE5AIYoBMRERERERG5AAboRERERERERC6AAToRERERERGRC2CATkREREREROQCGKATERERERERuQAG6EREREREREQugAE6ERERERERkQtggE5ERERERETkAhigExEREREREbkABuhERERERERELoABOhEREREREZELYIBORERERERE5AIYoBMRERERERG5AAboRERERERERC6AAToRERERERGRC2CATkREREREROQCGKATERERERERuQAG6EREREREREQugAE6kYvTno5H2jMjoD0dX9lTISIiIiIiJ2KATuTi1Js2QbNrN9SbN1f2VIiIiIiIyIkYoBO5uNxt2y2+ExERERFR9cQAnciF6VNToTtzBgCgi4+HPi2tkmdERERERETOIq/sCRCRddOmPIeIHD36Fji25INJuKoSMWvud5U2LyIiIiIicg6uoBO5oKkLZ2FZr9GQXddALxrfpjpRhHhDg2W9RuOdhbMqeYZERERERORoXEEnqmT6pCSLrevzVy3GwYgu6HLmPKJPHoXMYAAAyA0GdD9xBHFnHsMBVWN8Nn08xg153vw4WVAQZGFhFT5/IiIiIiJyDEGSJKmyJ+HKMjMz4evri4yMDPj4+FT2dKgaSh04CNpjx63eJwEQSrhdkLJdOwSvX+vg2RERERERka3KGz9yiztRJVPFxgJyOSAUDb0LH7EanAsCIJdDNTTWGdMjIiIiIqIKwgCdqJJ5Dh+G4DWrIQYEmPPNbaUXRYiBgQhesxqew4Y6aYZERERERFQRGKATuQBl2zYI2bYVlyPrwGBlJd0agyDgclRdhGzbCmXbNk6eIRERERERORsDdCIXIQsNxbzJzyGufSebxse174R5k8ZAFhLi5JkREREREVFFYIBO5EIapaXgUq3SV9ENgoiLYXXQODW5gmZGRERERETOxgCdyIWozl9EtxMHIZTSXEGQDIj+8xA8LlwyH9OejkfaMyOgPR3v7GkSEREREZETMEAnciEz3pyLBomJRVqrFfwOGKu5N0i8ihlvfWQ+pt60CZpdu6HevLkCZkpERERERI7GAJ3IhWh277G4rRNFZKtUWNdvILJVKugFsdjxudu2W3wnIiIiIqKqhQE6kQvJ2bTJ4vaVRhGYNns8fn2qK6bNHo/LjSMs7r/3008AAH1qKnRnzgAAdPHx0KelVcyEiYiIiIjIYQRJKiXZtYbLzMyEr68vMjIy4OPjU9nToWpM0ulw88EGgE4HyGTwn/8VVAMGFBmX89sG3B0/AdBqAQAr+3eAl7sn+q7eYR6zeXBPXFWJmDX3u4qaPhERERFRjVfe+JEr6EQuQnv2nDE4BxCweJHV4BwAVANiEHroAITAQABAl0OX4J5wD3rR+HbWiSLEGxos6zUa7yycVTGTJyIiIiKicpNX9gSIyCj7P/8BALj37AmPXo8XuV+flGSxdX11vw7ovOEAwm6nIfTObYj5m2HkBgO6nziCuDOP4YCqMT6bPh7jhjxvfpwsKAiysDAnPxsiIiIiIrIXt7iXglvcyRm0p+OROXcufKZMgbJZU2j//hupffsDgoCQP7ZC0eShIo9JHTgI2mPHbTq/BKC4TurKdu0QvH5t2SdPRERERERWcYs7URVUuCVa5lxjuzSPf/3LanAOAKrYWEAuB4TiQu/7rI4QBEAuh2pobFmnTURERERETsQAnagSFGyJptm3H5o9cYBCAZ+3Jhb7GM/hwxC8ZjXEgABzvrmt9KIIMTAQwWtWw3PY0HLNnYiIiIiInIMBOlEFK9wSLX2WsZCb5zP/B3lEREkPhbJtG4Rs24rLkXVgsGElHQAMgoDLUXURsm0rlG3blG/yRERERETkNAzQiSrQtCnPYcmsSRbHdKfjkSeXwXv86zadQxYainmTn0Nc+042jY9r3wnzJo2BLCTE7vkSEREREVHFYYBOVEGmLpyFZb1GQ3ZdY96ibqrQuKxfDKatXmjzuRqlpeBSrTowlLLV3SCIuBhWB41Tk8s6bSIiIiIiqiBss0bkBIVbos1ftRgHI7qgy5nziD55FDKDAYCxmJsE4Gr9xjinDLG5JZrq/EV0O3EOQv55iiNIBkT/eQg7vBs55HkREREREZHzsM1aKdhmjcqipJZohVuglaUlmj41FbdaWeaTl3SeWn+dgCwoqJRZExERERFRebDNGpELKqklWuEjZWmJptm9x+K2ThSRrVJhXb+BViu8Fx5PRERERESuhwE6kRM4uyWaeucuQBTNHwBcaRSBabPH49enumLV4N73BwoCIIpQ79xZ5udCREREREQVg1vcS8Et7lQe+uRk7B3yJB68cg2iDW81gyDgn3rheHTVmmKrrks6HZKaNod07x4EX1/4zZ0D1YCY++fIzMSt1m0hqdUQPD0hZWdD8PZGWPwpCDKZw54bERERERFZ4hZ3IhfmjJZokloNeUQ43Pv2QWjcbovgHABEHx+49+0DAPB4oj/c+/aBPCIcUm5u2Z8IERERERE5Hau4EzmZqSVaV1GEWELVdVtbooleXgjevKnE1XDVU0OQu3Ydcrf+gbA/jwFyOVfPiYiIiIhcHFfQiZzM2BLtoM0t0TwuXCr1nKUF225dukCsVQtSejrU23eUKzjXno5H2jMjoD0dX+ZzEBERERFR6RigEznZjDfnokFiotVq7QWz0gUADRKvYsZbH5X7moJMBtWQwQCAnJUry3Uu9aZN0OzaDfXmzeWeFxERERERFY8BOpGTFW5xZgrK93TqimyVCrpCVd4d1RJN9dQQAMaK7/rU1DKfJ3fbdovvRERERETkHAzQiZyscEs000r6z8Mex7TZ43GlUYTxgINboinq14eidWtAr0fu2nVlOoc+NRW6M2cAALr4eOjT0hwyNyIiIiIiKooBOpETSTqdMeA2GCD4+MDnvXcBAIKfLzY9OQq/xo5F9PY4+H+zAIKPD2AwQL1zFyS93iHXN62i56xcZfdjp015DktmTbI4tuSDSZg25TmHzI2IiIiIiCwxQCdyosIt0eSRxtVyeWSkxTjVgBiExu12eEs01YAYQKlE3pkzdhV5m7pwFpb1Gg3ZdQ30+VvwdaII8YYGy3qNxjsLZzlkfkREREREdB/brBE5UeGWaLqEqwCKBugAIAsKQuDiRZD0eoe1RBP9/eHRqxdyf/8dOStXQtmsaZEx+qQki63r81ctxsGILuhy5jyiTx6FLL/6vNxgQPcTRxB35jEcUDXGZ9PHY9yQ5y3mLwsLc8i8iYiIiIhqIkGSJKn0YTVXZmYmfH19kZGRAR8fn8qeDlVxdydPQc4vv8B7wnj4THqrQq6p3r4Dt0eOghgYiFrHj0JQKCzuTx04CNpjx60+VgIsqs8Xvl2Qsl07BK9f64gpExERERFVSeWNH7nFnagC6RMSAFhfQXcWt+huEIODYbh9G+pdu4rcr4qNBeRycxG7ggofsRqcCwIgl0M1NNYh8yUiIiIiqqkYoBNVIF1+gC6rwABdkMuh+tcgAPeLxWlPxyPtmRHQno6H5/BhCF6zGmJAgDnf3FZ6UYQYGIjgNavhOWyoo6dORERERFSjMEAnqiCSRgP9zZsAAHlUZIVeW/XUUwAA9bbt0N+5C/WmTdDs2g315s0AAGXbNgjZthWXI+vAYGUl3RqDIOByVF2EbNsKZds2Tps7EREREVFNwQCdqILorl0DJAmCpyfEwMAKvbaiyUNQNGsG5OUhd/165G7bDgDm7wAgCw3FvMnPIa59J5vOGde+E+ZNGgNZSIhT5kxEREREVNMwQCeqILorCQCM+eeCjavUjmTqiZ79v/9Bd+aMcU7x8RYV3BulJkORq0ZplSMNgoiLYXXQODXZWdMlIiIiIqpxGKATVRB9JeSfF+Txr0HQCwJ0Z85aHF/ywSRMm/IcJI0GfX9Yj85/Hy+2UruJIBkQ/echeFy45LwJExERERHVMAzQiSqIqUBcReefm7y3cgEOtG4LAOY8c50oQryhwR8PD8Sfj3bCQ5duFHmcVOg7YKzm3iDxKma89ZFzJ01EREREVIPIK3sCRDWFrgJbrOmTkiy2rs9ftRgHI7rAPzID+PMYRMkYbssNBvQ4fggdT52AT/Y95MlEKPSG++cRReS6u0M0SFCpc6EXBMik+6G6ZvceqIYMdvrzISIiIiKqCRigE1WQ+wF6hNOvdeflV6A9dtx8OxZALNYAMK6EF9zCLs/Lg09eHgBYBOcAoHVTYNrs8Riwdge67z2CTH8f+N/JMPY+FwSod+5kgE5ERERE5CDc4k5UAaS8POivXQdQMSvoqthYQC43BtKFFD5SbL65KCJs1mz8GjsWTw4dAQAICasD/28WQPDxAQwGqHfugqTXO3TuREREREQ1FQN0ogqgv3ED0OshuLtDDA11+vU8hw9D8JrVEAMCoBfte5tLAISAAASvWwvPYUMBAG6dOwMA8uLj4da5E0LjdsO9bx/II8Ih5eY6evpERERERDUSA3SiCqAzV3CPgGBnwFxWyrZtELJtKy5H1jEXhSuNAcClByMQumMblG3bmI/LgoMhf+ghAIBm337IgoIQuHgRgjdthOjl5YzpExERERHVOAzQiSqAOf88wvn55wXJQkMxb/JziGvfyabxcY90xrxJYyALCSlyn/ujXQAAmn37zMcEmcwxEyUiIiIiIgboRBVBdyUBQMXknxfWKC0Fl2rVgaGUlXuDIOJiWB00Tk22er/bo48CADRxeyFJktUxRERERERUdgzQiSqAPuEqgMoJ0FXnL6LbiYMQDIYSxwmSAdF/HoLHhUtW71c+0h5QKKC/fh36q1edMVUiIiIiohqNATpRBbifgx5Z4dee8eZcNEhMtKjWLhX6DhiruTdIvIoZb31k9Tyip6c5L12zd5/VMUREREREVHYM0ImcTNLroUtMBADIoyIr/Pqa3XssbutEEdkqFdb1G4hslQq6QlvfC48vyK2LMQ9dzQCdqNy0p+OR9swIaE/HV/ZUiIiIyEUwQCdyMn1SEqDVAgoFZLVrV/j11Tt3AaJo7ol+pVEEps0ej1+f6opps8fjSqP8wnWCAIgi1Dt3Fnsucx76/v3sf05UTupNm6DZtRvqzZsreypERETkIuSVPQGi6s6cfx4eXuFVzyWdzhhwGwwQfH3hN3cOogfEILrgoNixyPltA9KnTIWUkQH1zl2Q9Hqrc1W2agnBywtSejry4uOhbNGiop4KUbWTu227+bvPpLcqeTZERETkCqr1CvqcOXPw8MMPw9vbGyEhIRg0aBDOnz9f2dOiGqYy888ltRryiHC49+2D0LjdUA2IsTpONSAGoXG74d63D+QR4ZByc62OE+RyuHXqCIB56ETloU9Nhe7MGQCALj4e+rS0Sp4RERERuYJqHaDv2bMHr776Kg4dOoRt27YhLy8PvXr1QnZ2dmVPjWoQcw/0SgjQRS8vBG/ehMDFiyALCipxrCwoCIGLFyF400aIXl7FjjNvc2eATlQm06Y8hyWzJlkcW/LBJEyb8lwlzYiIiIhcRbUO0Lds2YJRo0ahadOmaNmyJZYuXYrExEQcP368sqdGNcj9AD2iUq5v77b60sa7PWosFKc5cqTYlXYism7qwllY1ms0ZNc10OcXaNSJIsQbGizrNRrvLJxVyTMkIiKiylSjctAzMjIAAAEBAZU8E6pJKnMF3Rnk9etDrBUKw61kaI4dh3t+wE5ElvRJSRZb1+evWoyDEV3Q5cx5RJ88CpnBAACQGwzofuII4s48hgOqxvhs+niMG/K8+XGyoCDIwsIqfP5ERERU8QRJkqTSh1V9BoMBAwYMQHp6OvbtK35rrkajgUajMd/OzMxE3bp1kZGRAR8fn4qYKlUjkiQhqX5DSGo1QvfGQV4vqrKn5BB3xr+B3FWr4DXuVfhOnVLZ0yFySakDB0F7zPqOLQmAUMLtgpTt2iF4/VoHz46IiIicITMzE76+vmWOH6v1FveCXn31VZw+fRrLly8vcdycOXPg6+tr/qpbt24FzZCqI0NyMiS1GpDJIKvzQGVPx2FMq+aavXsreSZErksVGwvI5eYWhwUVPmI1OBcEQC6HamisM6ZHRERELqhGBOjjxo3D77//jl27dqFOnToljp06dSoyMjLMX9euXaugWVJ1ZK7gXucBCEpl5U7Ggdy6dAYA5P19Cvo7dyt5NkSuyXP4MASvWQ0xIMCcb24rvShCDAxE8JrV8Bw21EkzJCIiIldTrQN0SZIwbtw4rF27Fjt37kRUVOnbi93c3ODj42PxRVRWuqv5PdCrSf65iaxWLcgbNgQkCdoDByp7OkQuS9m2DUK2bcXlyDowWFlJt8YgCLgcVRch27ZC2baNk2dIRERErqRaB+ivvvoqfv75Z/zvf/+Dt7c3bt26hVu3biGXlaepguiuJACofgE6cL+au5rt1ohKJAsNxbzJzyGufSebxse174R5k8ZAFhLi5JkRERGRq6nWAfo333yDjIwMREdHIywszPy1YsWKyp4a1RD6albBvSC3Lvl56PuYh05UmkZpKbhUqw4MpWx1NwgiLobVQePU5AqaGREREbmSat1mrYYUqCcXpkswbnGXVVIPdGdy69QRkMmgT7gKXWIi5OHhlT0lIpelOn8R3U6cg5DfWq04gmRA9J+HsMO7UQXNjIiIiFxJtV5BJ6pMkiRVux7oBYleXlC2MebHavbtr+TZELm2GW/ORYPExCKt1Qp+B4zV3BskXsWMtz6quMkRERGRy2CATuQkhjt3IGVlAYJQbVeX3dhujcgmmt17ihzLkxs3sellMugKbX23Np6IiIiqPwboRE5iKhAnCwuD4O5euZNxEnOAvm8/pFK27hLVZOqdu4ACQbjaTYEFY4cDAHLd3XClUX4ajCAAogj1zp2VMU0iIiKqZAzQiZzEVCBOVg23t5soW7eG4OkJw507yDtzFtrT8Uh7ZgS0p+Mre2pELkPS6YwBt8EAKBQAgKAXX8LH46cBCgW8s3PQZckv8P9mAQQfH8BggHrnLkh6fSXPnIiIiCoaA3QiJzH3QI+KrNyJOJGgUEDZoQMAYzV39aZN0OzaDfXmzZU8MyLXIanVkEeEw71Pb8DDuJvG/bEeENzdoWjyEABAe+IkVANiEBq3G+59+0AeEQ6JLUGJiIhqHAboRE5SnQvEFeRuzkPfh9xt2wHA/J2IjAUVgzdvgtfLLwOZWRD8fKFs3RoAoGzVCgCQd+IEAEAWFITAxYsQvGkjRC+vypoyERERVRIG6EROYspBr+4BujkP/eAh6M6cAQDo4uOhT0urzGkRuRRBJoN6xw4AgHu3bhDyC8SZAnXtyZNFxhMREVHNwwCdyEn0NWQFXd6oEXLclYBGY3F8yQeTMG3Kc5U0KyLXo9m5CwDg3qOH+ZiidSsAQN7fpyDl5VXGtIiIiMiFMEAncgJDejoMd+8CAGQR1bPFmsk7387GvjYPAwAMgrHLs04UId7QYFmv0Xhn4azKnB5RuTmi+KE+KQl58fGAIMAtupv5uLxePQg+PpDUauSdv+CI6RIREVEVxgCdyAlMBeLEkBCInp6VPBvH0SclQXvqlPnrs+njcVDZGFn+wQAAUZIAAHKDAd1PHEGXM+dxQNkYn00fb/E4fVJSZT4NIrs4ovihOr+vuaJVS8iCgszHBVGEsmVLAPfz0ImIiKjmklf2BIiqo/sF4iIqdyIOduflV6A9dtx8OxZALNZYHavQaPDhnBnm26mL749TtmuH4PVrnTVNIocqWPzQZ9JbZTqHqa95we3tJsrWraDZuxfakyfhOeKZsk+UiIiIqjyuoBM5QXUtEKeKjQXkciB/K3tJrI4QBEAuh2porMPnRuQM+tTUchc/lLRaaOL2AgDce3Qvcr8pD13LFXQiIqIajwE6VQpH5HS6Mr2pB3o1C9A9hw9D8JrVEAMCoBft++dDL4oQAwMRvGY1PIcNddIMiRxn2pTnsGTWJItjZSl+qD16DNK9exCDgqBo0aLI/aZWa7oLF2HIyirzfImIiKjqY4BOlcIROZ2uzLTFXVbNAnQAULZtg5BtW3E5so65KFxpDIKAy1F1EbJtK5Rt2zh5hkTlN3XhLCzrNRqy6xrzh1FlLX5o3t7ePRqClQ+2ZCEhkD3wACBJyPv7lEPmT0RERFUTA3SqFAVzOqsjXUL+CnpUZOVOxElkoaGYN/k5xLXvZNP4uPadMG/SGMhCQpw8M6oqXGkXTXHFD7ucOY/ok0chMxgAlL34oTq/vZqblfxzE3M/dG5zJyIiqtFYJI4qnLWczoJVjSuC9nQ8MufOhc+UKVA2a+rQcxuys2FISQEAyCOqV5G4ghqlpeBSrTroKooQ8wMYawyCiIthddA4NbkCZ0euzryLpmXLUt+Dzny/AiUXP5QKjbW3+KHu2jXoLlwAZDK4d3202DkoWrdC7u+/Q3vyZFmfBhEREVUDXEGnCuWonM7ycuYWe33+6rkYEADR19fh53cVqvMX0e3EQQglBOcAIEgGRP95CB4XLlXQzKgqsGcXjbNTYkoqflj4iL3FD9U7jNvble3aQvTzK3YOShaKIyIiIjBApwrkyJzO8nLmFntz/nk1Xj0HgBlvzkWDxESLgEUq9B0wBjQNEq9ixlsfVdzkyKXZWhn9/XfG4eVfJ+H0mhUAgNNrluPlXyfh/XfGOXQ+zix+aNrebq29WkGK5s0BmQyGW8nFbpUnIiKi6o8BOjmFs3M6yzU3B7RNKom5B3o1zT830ezeY3FbJ4rQizLjfUoldIUCncLjqfqxJa/c1l00r/3yFpb3GILrGS0Rcc2YHhGRmIxrGa2wvMcQvPbLmw6duzOKH0q5udDu3w+g9ABdVKmgaNQIAKA9cdK+yRMREVG1wQCdnOLOy68gtU8/81fs4jX4ZdpEfDhnBhQajcVYU07nL9MmInbxGovH3Xl5rEPnZe8W+7IUstJV0xZrhal37gJE0bwt+EqjCBzo1AoAsPfRtrjSKH8HgSAAomiuZE3VV2lb0W3dRfPaL2/hqLIHhh7ajZeO/2hxjpf+/AFDD+3GUeVjeO2Xt8o8V2vvbUcXP9QcOgRJrYZYqxbkDzUu9XwKU6E45qETERHVWAzQySmcmdNZVmXZYl+W3FfdlQQA1TtAl3Q6Y8BtMEDw8YH/NwsQvT0OMY/1BwAM8AxC9PY4+H+zAIKPD2AwQL1zFyS9vpJnTs5UMHWkPLtospLr4pUTS/BoyCoEXE81v1/1ogjf5Dto9/A6DEtajVPKTkW2u9v6oVpx7+1GaSlI8vUvUhyuMFuKH5q3tz/WA4INq/LmPPQ/mYdORERUU7GKOzmF5/BhUDRqhNujxyDv7l3zH+O20IsiFAEBCPz+uzL3zNYnJVlsXZ+/ajEORnQpNjiIO/MYDqiMwcG4Ic+bH5eb/8d77rbt8Jlk22qd3rTFvToH6Go15BHhkIWHw2/uHHMVfllEOID7uwhUA2Lg1qkj0qdMhf7aNUi5uRC8vCpt3uQ8hVNHbj/3AvL++st8vz2V0Qt+LKcXRfP7VWYwoNbfWfjo2nv4l+dyPPv3r7jq7wntKWPvcFlQkM3V4Qt+mFDwvR1w8jQG79xv/YPDAkzFD3d4N7J6vyRJUO/YAcAYoNvCFKDn/f03JL0egkxm0+OIiIio+hAkSSptoaBGy8zMhK+vLzIyMuDj41PZ06ly9MnJ2DvkSTx45RpEG15qBkHAP/XC8eiqNeXqmZ06cJBF26SCJKBIYTNbMk5r/XWi1HZwUm4ubtZvaBx/6i/IAgJsmm9VZC2AyDt7Fik9e0Hw80Pt+FOljqfqYdqU5xCRo0ff1TvMx061eQhNT5wzbtMqx/9m7Hm/Ktu1gyEnB7ozZyBv2hShf2yxOk6fmopbre5/+Gd6bxvS05H6r8HGtmhWrmnt2sX9u5D3z2WkdO0GKBQIiz8F0dOz5CcK43sk6aGmkLKzEbJjGxSNS98WT0RERK6lvPEjt7iTUzk6p9NW5d1iLwFFCkXZ0g5Od+2a8Zw+PhD9/e2YcdVjLdiWhRtX0KX0dBgyMkodT1VfcakjN5VBePX9mcjxcLO7MnpB9qTEuPfvV2oByPdeHYNFH4y3OLZo5uuY8dKzuP3sqCLBuU4Uka1SYV2/gchWqaAv9O9C4eKHpi32Ob/8AgBw69DBpuAcML5HFC1aGM/DPHQiIqIaiQE6OV2jtBRcqlUHhlL+SLclp9NW5W2bdNfHB0ebNLe7HZy5gntkhE05p9WN6OkJMX810fRhBVUf9uaVB2gNmDRuCm6GBpea011WBlGAGBiINT3bYMXp/Rb3Ff5QbeI3U7F88Bi43ZAs3tvu1w1ofSUV2uPHAUX+B3sFih9Omz0evz7VFdNmj8flxpEW18jdYrlKb9pin7vJmB7j3qO7Xc/nfh76SbseR0RERNUDc9DJ6VTnL6LbiXMQSslDLy2n016mtkl2bbEHcLl2Xaz611N4879f25yrLgsKgiws7H6BuGreA70ksvBwGNLSoL+aCDRrVtnToWJoT8cjc+5c+EyZUmKudkF3Xn7FInXEnrxym+cll0Oh09mUdmIQBFyJfAB7Bkbjhzb98e78/5hz1nWCAN8Lt3Hs6aeM7RulXPwZ+bjVDxMeO3YQosGAXLkCcskAhSRB8PKC1+vj8OiTTyI6LOz+RWPHImfVatx9Y6Kx+OG27RbpG6bcdn3+B1RupbRXK0yZX8k97wQLxREREdVEzEEvBXPQy69wvmdB9uR0lqa4gOOJDd9j2JI/EH14fwmPLn1upeW++n44G3dGj4H+5k14vTYOvlPetvcpVAt3xr2G3LXr4PPeu/B+5eXKng4VI/PjT5D15VfwnjDe5gKI2f9bhvSp7wB6fZnyykur92AQRCyJeRKNb91A5yMHSz1fml8AFj4zBGdDGyMyJxPTP5sDZaE2jmWZR0HKdu0QvH5tkePq3btx+/9GAAD8PvsUnrFPF/m3TqzzAGodOmjXbhp9UhJutWsPyGQIO3cGokpl82OJiIio8jEHnVxe4RxN05/1GV7eyFapoCu0Bb3weFuV1DYp3V1l9xZbe9vBqTdtgv7mTQCAPCrSzqtVH/L8PHR9fiV3ck0Fq5jbqjypI7a8/wTJgC4nj+NmcEiRGhDWBKXfwXvz/4tfpk3Eh3NmQFEoOC/umjaFy6W0enSPjob3GxMAABkfzMKHY4djyTTLD6QuK/Lw3ltjbLmamSwsDGKtUECvR96pU6U/gIiIiKoVBujkdOqduwBRNOd0atyVAACtmxzTZo/HlUb528EFARBFY3/tMigu4Kh78Dhi9u4o9Y9yewN4vShCDAxE8JrV8Bw21OK61bnFWmnMrdYSEx1yPlv7WpPtCrdEs1ZMrTim1JHLkXVsCqIBY+qIgKI7Ugp+R/79jRKvoPXJExBKWaG3dq9NH6rZoPB7uzje41+HonlzSOnpaHwlE7IUpcUHF7fdgrGi3xhM/WKCXdc3bXPXnjhZlukTERFRFcYAnZxK0umMAbfBAMHHB/7fLIBXHWMAF6I34NfYsYjeHgf/bxZA8PEx5nTu3AVJr7frOsUFHHlnzuLpfWeL9GEvLjiwlUEQcDmqLkK2bYWybRuL6wPGKu41lWkFXXfVMQF6cTsjqGymTXkOS2ZNsjhmS4eCguztznC+XgOL24UroxfeRVP/RqJNwbwzGAQBlyPvv7cLK1goL+/cOayPUkErl6PD33+hx/FDFv/WNL9yCV3OXsBBn874bOpIiwJ7+qSkYuegbNUKAJDHAJ2IiKjGYZE4cipJrYY8Ihyy8HD4zZ0DWVAQMmfNNt53LxuSJEEQBKgGxMCtU0ekT5kK/bVrkHJzIXh52XQNcw/mAseWfDAJmdocDNt/DlKhdl86UYTa3R3box9Hz93b4K5WQ15KAbvC/nqoKRa+/hSiQ0KsXv/Hbz7CVZUMs+Z+Z9d5qwNZuHFHhP76dYf0Pi+4M8LWXGmyburCWVjZa7RlMTVTh4JXx0K/cBb+/fI0m85l6s7QVRQhlvD+MQgiFBo1DIJg7ol+pVEEFrwwFMn+QdjTswnGLlqOBmevAIJg/DfB4vEC9G5uuNL+YUQdOQqZRmNR8NHWfHJbx8W174Rlo3sjuphWj4UL5fUrcJ9Mp7MYW7hQXuqP93cHFZfbDhRYQWerNSIiohqHATo5lejlheDNmyyCNENOtvE/dDpAowHc3QEYK6EHLl5kV1BXXMDhfeku2idcgiEjA4KvL6SsLGNRqxKCAwn3/4gv7Q/51mdO49XvDJj+zxUsM11fECCTJEgAxBtauwOe6kJWKxRQKgGtFvqkJMjr1CnzuaztjChLAcGaSJ+UZLF1ff6qxTgY0aXYlmildSgozJ7uDFE3r0OUJAi+vvCbOwfRA2IQXXBQ7Fjk/LYB6VOmAhkZ5pVyAcDuth3w47ARkFQqCAOH4dllP6HHsYPm92tqQCBC79wu9edxqU4EHryRWGI3B1Orx5a3M4odo4qNhfbkX1YL5dlct0ImKza3HQAULZoDggD99evQp6ZCFhxc7FgiIiKqXljFvRSs4u54N6IeBLRaAECtv09CFhho0+OsBRy/RXSxWr3ZFGgnhIbhgTupUOTpzG2TPJ98skjAkfPbBtwa/zrctLpSV9oK3n/XyxubevXDUxvXWVxf6+aGmROnIkHlgwFX99kU8FQnyV2jofvnHwT9ugJunW3bBl2YeWfC6h3mY5sH98RVlVgjdybYK3XgIIuV3oLs7VBgbaXXWncG03msnc+tRw/4f/5piR+w6G7dQnL7DoBejxylEt888iTkLZviYt0oZCvl8NTq0ODaFej+iscrR9ZCpdFAK5dDrjdAlEpYxRdF3PHyQWBmeqnv7UvhETjV/Qm89u8pxY7THv8Tt0ePQd7du0XSZ0qiF0UoAgIQ+P13VrfPF5Tc4zHozl9AwJLv4dHrcZuvQURERJWLVdypSpHy8szBOQDjyraN7rz8ClL79DN/xS5eU2z1ZtMf4ZHJSVDkGbedSvfuIevfc3Hn5bFFzq0aEIM6W7ZYPBYoPffV/14W/m/NiiLXN21t/WXaRMQuXmMxb2vXr27KWyhu6sJZWNZrNGTXNeaiW+at2L1G452Fsxw21+pKFRsLyOXm4owF2duhwBpr3RlKyitXDRxQ6u4H0csLisaN4N6nN+odPYx6PYNwWp6O84m3kXDhNs4n3sZpeTrq9QxCvSOHcLmusdq7UEJwDgCCwYCgQsF5ce/tBolXkav+p8TzmQrlXbGnUF4pue1FrmHOQ2c/dCIiopqEW9ypQkk5ORa3DfeybX6sPVtLrSpla6nub8uWRoVz1T1ycyErZsOJo7a2Vhfy8HBoAOhsaLXm7K3YNZXn8GFQNGrktJVec3eG/PMm1w7GR289bzWvHIIA9c6dUA0ZXOJ1C6fEjHv+bYwrYXynDVtsWsUv/H4srQ7FuE59SpwnYCyU9/Hk5zB8yR+IPry/1PFx7Tvhf6N7FZvbXpiydWvkrPiVeehEREQ1DAN0qlBSdk6h2/dsfmyFBRyl5KoDthecsuf61YnM1AvdhhX0wkW3YgHEYg2Aoq20ihTdWrzG/N8lFd2qqUwrvXuHPIkHr1wrMf/axNSh4NFVayArJpgs2J0BAAR/f7Q5cBi/KhT3BxXIK5cyMszdGUqrL2FPUcHCq/ilBd6m9+21hxrgq+cGI9k/EHt6NsXr361GVPx54/35rR5L+zABABqm37G5UN7FsDpoePeOzc9N0boVAEB78i9IBgMEO/vOExERUdXEAJ0qlKHQCrpkxwo6UDEBR2mFrO5OfhtCVpbNQbot169u5KYt7jasoFdE0a2azNQSbZgdK73LSlnpldRqyMLDjb/f7Gz4vP4ahILBeb7ydGewhT0fqgGAoFBgZ6eWuBf1KEaeqA03KKCBG0493A9Xgrzx2MmLdn2Y8OAlNZqdOGhTobzoPw/hdFDpK/MmisaNIbi7Q8rMhO7yFSjqP2jzY4mIiKjqYoBOFUrKsQzIDfdsz0E3cVbAUbgdnDWmgGPTs8PR4OJVeBf6wKGs169u5KZWazb0Qnf2zgiyryXaxbA6aJyaXOL5RC8veE+cgLvPvwjBxweq4cOKHVuW7gy2sPVDtexfVyL9zbeMq/1KJZ75aVUx85gIfVqaXR8m3Es6gwaFdokUt8W+QeJVHEw6a/PzE+RyKFo0h/bIUeRu+B0Zx4/BZ8oUKJs1tfkcREREVPVwzxxVqMI56PauoJuYAg5DKds+7Qk4gjdvQuDiRaUWspIFBWH3Uz3wa8/+Drt+dSMLrwsAMNy9C0NmZqnjTTsjLttbdCvK9qJbVZX2dDzSnhkB7en4Mp/D2BLN9pVejwuXSj1n9reLAACez46AaMOquCODc+D+h2ruffsgNG43VANirI7zfPophB47Ave+faCIioSUm1vsOU0fJgRv2mjTc3r98SctbutEscRCeeN7WY4vjalQnPqPP6DZtRvqzZvtejwRERFVPQzQqUIVzkE33LM9B70gZwQc9gQQqvMX0fXkYYdevzoRvbwg5rfP0yVes+kxpp0Rce1ta8sW174T5k0aU+3TBtSbNpU7OJvx5lw0SEy0uYr5jLc+KvF8mqPHoD16FFAq4TVmdJnnVR72fKgmDw21K/C29d8C0xZ708/w4kMRePfD8fj1qa5498PxuPiQcSeJBAD5ue32ULRuDQDIu3ABAJC7bbtdjyciIqKqhwE6VagiK+jZZVtBtxZwmM9Z4L9tDTgccf3yBDzVkT2F4kwcvTOiOjAFZeUJzqy2RPO4v9JbuJJD4fGF3Vu4EACgGvwkZKGhZZ5Xedm7Ku+sLfairy+2P9Iclzv0RvdTGgzeew3dT2lwuUNvbH+kOURfX8BgMOe220qZXygOajUAQBcfb9HxwBpH7LggIiKiysMcdKpQhkI56Pb0QS+ocABhEASIkoSUoGCocrKLVG/W7N5jU1Xmsl6/tOrRjr5+VSCPCEfeiRPQJZZeKM7EuDPinM07E3Z4NyrvNF2aPjUVujNnANwPzkpbLbamcEu0DD9vzHx/nLmY2usLfkbUpfydDlZaomlPxyNz7lz4TJkCwcMD6q1/AAC8XnqxnM+w6ipct2JkCb8Xe3PbTWbOn47RSgXctHnmY0s+mISrKhGz5n5n9THmHRctWzJfnYiIqAriCjpVKCnHMv/TUMYVdHPAkZ+vnBYaAAC4EhmGabPH40oj49ZSCEKZtpbae/0rjSIwbbZxa2tFXL8qkJtW0G0oFGdS0s6IgmrCzoRpU57DklmTLI4t+WASpk15zq7zFG6JBgANli3Hr7FjsafX0/g1diy67DkA1TP/l/8ACertOyxWegtus7/37X8BSYL74z2haNCg7E+wirO3boU9W+wBYOrCWVjWewwyVPfH60QR4g0NlvUajXcWzrL6OEfsuCAiIqLKwwCdKlThLe1SGXLQLao3+/jA/5sFqD/qeQBA9wcb49fYsYjeHgf/bxZA8PEp09ZSe68fvT3OIuBx5vWrCpmp1ZodW9ytba2WAGx8vG+RbdjFja8Opi6chWW9RkN2XQN9/nZ/W4Iza0wrvfKHHgIAKJo2haJ58yLj/ObOgbJLZ+Nj9HqL4n7moG/zFuSsWgUA8Hrl5bI9uWrEUVvs9UlJ0J46Zf76bPp4HFQ2Rpcz5xGYdf/3IDcY0P3EEXQ5cx4HlI3x2fTxFo/Tnj5dZMcFERERVS3c4k4VypSDLri7Q1KrYShDFXdrLdEy5sw1ntfL2zzOWT2Y7W3J5qwe0K7O1GpNZ8cKeuG+1gBwNTwMvwzvibDUBLQ5md+mShCsbsWuivRJSRaB1PxVi3Ewogu6nDmP6JNHzW3nTMFZ3JnHcEBlDM7GDXne/DhZUBBkYWFFzi96eSFo00ak9ukLAFANHwrBSqV8QRAQ8OUXSH6sJ6T0DGQv/QE+b0yw3GZ//jwAY/EyZfv2jvsh1HB3Xn4F2mPHzbdjAcRiDQAU+WBKodHgwzkzzLdTF68x//dtf38EFhi76N3pSAjQY+6chY6fNBERETkFA3SqUIb8AF0MDYH+aiKkMvRBN20tLbgaZcplF328LcY6oweztesXx1k9oKsC0wq6/vp1m55/4b7Wyg6PQLP1DzTp+hj29HoauZIv7ox5HoKvLwAJUkameWdCVf7ZOio4U7Zrh+D1a61eQ3f6NHRnzwHublANGlTsXGS1asFv9izcHfc6sr74EkvO7Ienhyf6Fhr3u7cBY2xsh0elU8XGQnvyL0CvN38wZVL4p1xcYUy9KEOSXxD8MjIgMxigE0Uo0+5izZNvQvPFF/h8wgQnzZ6IiIgciVvcqUKZVtBlIcbKz2Xtg144IDNkGbfKF7dC7egArjKrR1cVslq1AIUCyMuD/tatUscX7msNjQYAzIWu3KOjIfj4QMrIgP/nn8G9bx/II8JL7GtdFahiYwG53FzPoCBbgjMIAiCXQzU0tthrZP9vOQDAo19/iH5+Jc7HY9AguPfvD+h0aPPXdcgTc83b7AEg280dc5+bbNc2eyqZ5/BhCF6zGmJAgMXP2hZ6QUCGpxcWPzMaDW8mFtlx0eniSZzwqYN/T51qsR1en5TkjKdCRERE5cQVdKpQpgBdDA4GABiyy9YHvch581fiRW/vUkZSRRFkMsjr1oXu8mXoryZC/sADJY4vuDNBkiTk5beJUuQH6IKbGzz69kHOil+h2bW72uxM8Bw+DIpGjXB79Bjk3b1rDrBsoRdFKAICEPj9d1C2bWN1jCE7G7nr1uVfa6j18xTaZr/MT0J3Ty/Uu3EdEbeSLObkpteh07mLdm2zp9Ip27ZByLat2DvkSTx45RpEyVrVhaJkkgS/7Ht4+cfFpe+4+PHn+9crYccFERERVR4G6FShTEXiZKEhxttlXEEvzJC/xb0m5XhXBbKIcOguX4Yu8SrcOnUsdbwp2DYkJ8OQlgbIZFA0bmy+32PQQOSs+BW5v2+E76wPICgUTpt7RSpLcGYQBFyOqotHV62BLCSk2HG5v/8OKTsbsshIKDt0sDqm8Db7fxW4TyxU3FCm05Vpmz2VThYainmTn8OwJX8g+vB+ux9v844LmazEHRdERERUeZy6xV2tVkOTv02VCLjfZs0UUBjKkINu9bz5W9y5gu5aytJqDQC0p04bH1//QQgeHubjbp06QQwKguHuXWj27XPcREuay+l4pD0zAtr8FX1nMQVnce072TQ+rn0nzJs0psTgHABy8re3ew4fZrU4HFAx2+zJNo3SUnCpVh0YStnqLqFojYLS6EURYmAggteshucw67spiIiIqHI5NEDfvXs33njjDbRv3x5eXl7w9PSESqWCt7c32rdvjwkTJmD37t2OvCRVMaa+52KIcYs71BpIOl35z5sf6AsM0F2KLD9A1129atfj8k4bA3RFM8t2YIJcDo8n+gMActb95oAZlq5gD3BnszU4MwgiLobVQePU5BLH5V24AO2xY8YV06eGFDuuXDnQDPocSnX+IrqdOAjBhlQHtdINBhuL9RkEAZcj6yJk29Zi0yGIiIio8pU7QM/Ly8P8+fNRr1499OjRAz/99BP8/PzwzDPPYPLkyZg0aRKGDx8OPz8//Pzzz+jRoweioqIwf/585OXlOeI5UBUi5VoWiQPK1gu9yHnNK+jc4u5K5GXohQ4AefHG1WpTgbiCPAYOAACot2ypkAJx5h7g+d+dydbgTJAMiP7zEDwuXCpxXPb/lgEA3B/vWepKu2mb/eXIOvYFfVEM+hxpxptz0SAx0WKnglToO2DcyeCh1eBQ63Y2nTeufSfMe3tUqa8DIiIiqlzlzkGvX78+tFotRo4ciaeffhpt2pT8R9rx48excuVK/Pvf/8a8efOQkJBQ3ilQFSJl5xeJ8/MDlEpAq4UhO7vUytKlMeQH+VxBdy2mXuj2bnG/XyCuWZH7lO3aQVa7NvQ3b0K9azc8+hVuAuY4Fj3A4+OhT0srtu+9I8x4cy5u/WT931AJ97eXCwAaJF7Fo2+tK/ZckkaD3FWrAQCew4bZdH17c6Dj2nfCstG9EM2gz2E0u/dY3NaJItTu7tge/Th67t4Gd7Ua8gIf4GghwiCKEEv4UMe046Jp3nmnzZuIiIgco9wr6O+88w4SEhIwd+7cUoNzAGjbti3mzp2LhIQETJ06tbyXpyrGVMVdUHlA9PQ0HivnCrqk0ZhbcoksEudSZOF1AQCGO3fMhfxKY0hPh/7aNQCAommTIvcLomheRc9Zt95BMy1q2pTnsGTWJItjSz6YhGlTnnPaNQsHZ6aQ62yDRshWqaArtP1cvXOnxe2C+fK5W/+A4e5diLVqwS26m81zcPQ2e7KPeucuQBTN9QCuNIrAtNnj8etTXTFt9nhcaWT80AuCAEkA2p47ZfOOi8Znbzh7+kRERFRO5Q7QX3rpJbi5udn9OKVSiZdeeqm8l6cqxlTFXfD0NFdcN/UwLytDgQCfVdxdi+jtDTEgAACgT7xm02Py4o0r1rLwcIi+vlbHmLe579huc+Bvj6kLZ2FZr9GQXdeYc7J1ogjxhgbLeo12Wg/wwsGZ1k0JANjcp6NlcJbv3jffWj6+QL58zjLj9nbP2KchyG3fLOXobfZkO0mnM37oYjBA8PGB/zcLEL09Dr/GjsWeXk/j19ixiN4eB/9vFkDw8YEgAd45OVa3wxdk2nGRcl5bQc+EiIiIysqpVdyJCpL0ekhqNQBAUKkgeOWvoJezF7pkarGmUlX5ntjVkcych25boTjtqVMA7vc/t0bRrBnk9eoBag3Uf2wr1/z0SUnQnjpl/vps+ngcVDZGlzPnEX3yqLkHuNxgQPcTR9DlzHkcUBp7gBd8nD4pqVzzKBKczf8a7vnR1kfDX7AMzvIr2+suXIB67/2t6OZ8+Y2boInbCwB2V1a3Jwe6QeJVzHjrI7vOT8WT1GrII8Lh3rcPQuN2QzUgxuo41YAYhMbthqKFZRFFnSgiW6XCun4DobPyb+FrMbalOhAREVHlYR90qjAFC3qJKhVEL2O+eHl7oZvzz32Yf+6K5OHhyDtxEjob89BNBeIUTYsP0AVBgMeggcj67HPkrFsP1eAnyzy/wj3AYwHEwtjbu/BqpEKjcVoPcFNwJgsPh9/cOTCkpgJaLQRvb8jq1jWPUw2IgVunjkjp/wQM12/gzuuvIXTHdkCvv58vf/EiAMCt66PmVne2sjcHWrN7D1RDBpf1aVMBopcXgjdvsumDRllQEOSRUcg7HQ/JYIAA4FqbQHz97Bjc8gnDxeYBmPTREgD59QtEEeqdO/m7IiIicnEM0KnCmPLPIQiAu7t5Bd1Q3hz0/BV0U8BPrsXUak1vYyV3U4E4ZfPmJY7zGDgAWZ99Dk1cHPR37kIW4F+m+aliY6E9+Reg1wOSZUhucw9wmazcPcALB2eaPXEAAMVDjYv0L5cFBSF0106k9O4L/eXLONS3J862b47C5fJ+lzIwys55mLfZSxIgSbjSKAILXhiKZP8g7OnZBGMXLUeDs1eMz1sQGPQ5mK27gAruuBB9fbG9Xhhk7QLwlHoNZAYt9IFKpEYFIPjKHQgKBZCXB/XOXZD0eu40IiIicmEM0KnCWOSfCwJET2O+eHmLxJly2AW2WHNJ8ghj3rQtrdYMubnQXTLmNJe0xR0AFPXrQ9G0KfLi46HetAmez/xfmebnOXwYFI0a4fboMci7e9e8pd0WelGEIiAAgd9/55A2YwUDJ/NOgiZFC+UBxl0oAd8swK1+/RB5PRW5sgToRdE8f61Mjo9Gv4ULC2fh3y9Ps+n6FtvsfX3hN3cOogfEILrgoNixyPltA9KnTIWUkcGgr5IU3nHxrJXuAnmtziClV28gLw/KR7tAunsXUm4ua3UQERG5sArNQd+8eTMmTpyI1157DStXroQkWStnQ9WVlGPc4i6oVMbv3o4J0E2P5wq6azJtsbal1Zru7DnjimBwMGShoaWOL1zNvWAVc3u4Yg/wvDNnAVhu9S+cLz9/5X/xcy/jz6Dx1csWHy7IIOGRi5ftype3NwfavW8fyCPCK6QfPVky7bgIXLyo2NZ/iqZN4N63DwBAFhCA4E0b2emCiIjIxVXICrrBYEBsbCzy8vLw7LPPQqlUYvXq1fjPf/6DzZs3wyO/4BFVb4ac/BV0U4Ce32bNkF3OHPTMTOP5uILuksxF4q5fL3Wl1ZYCcQV5DByAzH/PgfbQIehv3bpfxbxlSyhtPId5ni7UA1ySJOTl55MrmjxkPm4tX96k8McKol5vd768vTnQgYsXcfW8Etnyc/eeMAHqzVuQ+9sGeL8xAYoGDSpgZkRERFRWFbKC/vnnn8Pf3x/r1q3Dk08+iSeeeAJLlixB9+7d8c4771TEFMgFmHLQxfwA3bSS47gVdAborkgWFgbI5YBWC/2tkntm21IgriB5nTpQtmsHSBJyN/x+v4p5/nd7uUoPcENKCgy3bwOiCEWjRubjqthY48/ShlX+YvPl5fIS8+XtDbYZnLs2ZbOmcO/TG5AkZH3xZWVPh4iIiEpRIQH68uXL8e677wIADh8+jM8++wwA8Pbbb2PVqlUVMQVyAVK2MUA3rZw7rA+6qc2at0+5zkPOIchkkNWpAwDQl9JqLe/0aQCAslkzm89v2uaevWrV/Srm8fHQp6XZPVdX6QFuWj2X16tnbqkGGPPlg9eshhgQYO7Pbiu9KEIMDETwmtXwHDbUofMl1+b9xgQAQO7635B36f5rtqwpIUREROQ8FRKgZ2Zmws/PDwBw8eJFbNiwAQDg7u4OnU5XEVMgF2BaQRdUxoDDvIJe3j7ophV0bnF3WfLI0gvFSXl5yDt3HgCgaG5HgB7zBAwCoCsUZCz5YBKmTXnOrnmW1AO8IGf3ADfnnxfY3m7iivny5NqUzZrBvXevIqvo5pSQzZsrcXZERERUUIUE6I8++ijWrzcWcXrmmWewa9cuAMDOnTvRsmXLipgCuYD7AXp+Dnp+m7Vy90FnFXeXZy4Ul1D8Crru0iVAozH2/bajd/d7qxfizybGgN4UsOpEEeINDZb1Go13Fs6y+VyFe4BLALI9VLgeVtvi/MWNd5T7+efWK7ib8uXj2ney6Xxx7Tth3qQxkDkhX56qBu+JbwCwXEUvb0oIEREROV6FBOgzZ87Ev//9b6xYscJcuX3r1q145ZVXMG/evIqYArmA+0Xi8re457dZM5R3BT3LWCSOVdxdl7lQXAkr6Kb+54qmTSAUs327cBXzz6aPx0FlYyRG1AMAiPn/vsgNBnQ/cQRdzpy3q4q5uQd4vjtB/pj24XjEdWkNAMj2Mn64BEEARNHYkswJ7q+gWw/QAdfJl6eqQdmsGdx7PQ4YDMj68ivoU1PLnRJCREREjlchVdwfeOABbNu2DW+//TamTJkCQRDQokULrF27Fk1K+AOUqhdTmzWx8Bb3cuegcwXd1cnD87e4l9BqTXvKmH+uaFr89nZrVcxjYaxOLsGyMJpCo7GrinnBHuAAAJkMTbfvwK/BwVDX3ofbKzfCzz8QPh9/4tQe4FLBXvBWtribGPPlz9mcL7/Du1GJ46j68574BtR/bEP22rXYei8JXQvct+SDSbiqEjFr7neVNj8iIiKqwD7odevWxf/+9z9cuXIFly9fxrp16xic1zBSfjs1c5E4bwetoJtz0FkkzlWZtqzrS1pBj88P0Etoj1ZSFfPCR+ytYm7qAS7WNm5n9xg0CLLgYACAMj8nXp+YCPdHuzi1B3jehQvGXvD+/hBr1Sp2XEn58gXz5p2dL09Vh7J5c1xpEA5RAuof/8dcaLCsKSFERETkeBUWoBMVzkEXPU1t1sqbg26q4s4VdFclD68LADDcvg2DlbZ6ksGAvHjjdtuSKrg7s4q56OWFgB+WwpCaCgDwGjPq/n1+fuZt+tpTp809wIM3bXR4e7+C29uFEorAFc5/14kislUqrOs3ENkqFXSFfj7Oypcn12UtJeS7xwYDAMJup0KWv/uirCkhRERE5HgO2eK+efNm9O3b1xGnomrMYG6zVqhIXHY2JIOh2Lzj0rAPuusTfXwg+vvDcPcu9InXIBbauq1PTISUlQW4uUHeoH6J5zJVMd875Ek8eOWaOe+8JKYq5o+uWlNiobSc5SuAvDwo27aFslUry+s2b4Hcq4nIO3UK7l0fBeCcHuDmAnFNS95hZM6XlyRAknClUQQWvDAUyf5B2NOzCcYuWo4GZ68Ydw0IAtQ7d0I1ZLDD50uuy3pKiFHhj37sTQkhIiIi53DICnpMTAzmzp3riFNRNSbl5gfoHqYAPT+gliTz6npZGO6ZVtBZJM6V3S8UV7SSu7lAXONGEBSK0s/lhCrmklaL7J9+AgB4Flg9N1G0aG6c69+nbLpmWZVWwR2wzJcXfHzg/80CRG+Pw6+xY7Gn19P4NXYsorfHwf+bBRB8fACDwZwvTzVHSSkhhdmbEkJERETO4ZAA/dlnn8U777yD2NhY5JQSaN29exdz5sxxxGWpijHloIumHHQPD3PFbMnKtmebzqnVAmqN8bxcQXdpplZr1grFaU+b8s9t73/u6CrmuZs2wZCcAjE0BB79+hW5X9HcGKBrT/1t8xztJUmSTRXcTfny7n37IDRuN1QDYqyOUw2IcWq+PLk2Z6aEEBERkXM4JED//vvv8eWXX2Lt2rXo1KkTEhISiow5f/48XnnlFdStWxfTpk1zxGWpijFVcTf3QRcE8yq6oYx56AXzmQUG6C6tpEJxeaYAvWnxBeIKM1YxP2hzFXOPC5dKHHfvuyUAAM8RIyAolUXuNxeKu5oIQ3q6zfO0h/7GDUiZmYBCUeJWf9HLC8GbNyFw8SLIgoJKPKcz8+XJ9ZlSQi5H1oHBhpV04H5KSMi2rVC2bePkGRIREVFBDisS99prr2Hbtm1ISkpCu3btsH37dgDA9u3b0b9/fzRt2hQ//PADhg8fjlOnnLtFlFzT/SruKvMx02q6VMZK7pKpQJxKBUFeIV0DqYzkEfmt1qwG6MYt7iUViCvMkVXMtSdPIu/PPwGlEp7P/J/VMaK/v0WhOGcwbW+X169v9UOCguzNf3dGvjxVDc5ICSEiIiLncGgV927duuH48eOIiopC37590ahRI/Tu3RvHjx/H+++/j8TERPz3v//FQw8V39uXqi9DoSruwP1V77L2QmcP9KrDtMVdX2iLuz452Vg5XRQhL6Hvd2GlVTHXF1otLDxeezoeac+MgPZ0PO59vxQA4BETY26tZo2yeQsAQJ6TPmQ0VbIvaXs7UVk4OiWEiIiInMOhS4537tzBjz/+iBs3bkCv1+PixYto2LAhjh49Cm8W8KrxTIXgRJWn+Zh5i3tZV9DzC8SJXnx9uTpzkbhr1yyq9ptWz+X160P08LD5fDZXMc+Xu2WrRRVz9aZN0OzajZz69ZH7228ALFurWaNo0Ry5v/+OvL+ck4d+v0AcP8QkxzKmhJyzOSVkh3ejCpoZERERFeSQAP38+fP44osv8NNPPyEnJwe9evXC0qVLcebMGUyaNAmPP/441q5di7CwMEdcjqqo+33Q7wdhppzYsvZC5wp61SELCzNWlNZqYbiVDFlt478H5vzzZrbnn1tUMff1hd/cOYgeEIPogoNixyJ75SqkT3zTWMV82zYYdDqI+akQuduMaTi569YX21qtMGcXirOlgjtRWcx4cy5u/WSZTy6haPV2U0rIo2+tq6CZERERUUEO2eLepEkT/PDDDxg2bBhOnz6NLVu2oFevXpgwYQI2b96MS5cuoV27djh06JAjLkdVkCRJBXLQC66gG//bUNYq7llcQa8qBLkcsjoPALBstaYtQ4E4W6uYez41BIE/LDXe0OmQu3wFAECfmgpdfjBsSE01jn1udKnXdWahOMO9e9AnGH8upfVAJ7JXcSkh12rXAYAiBeQKjyciIqKK4ZAAffr06bh69SoWLVqEJoVWfnr27IkjR44gICAA0dHR+O677xxxSapq1GrjVmQUykH3NK2glzUHPb9InA8D9KrAXCiuQB56WQrE2VPF3L1Hd3i/9SYAIGPWbHz86jAsmTXJYozaXYmP9q8r/br+/uZq9I4uFJd39pzxGrVCIQsMdOi5icwpIfmB+JVGEZg2ezxWD+oBANDJ84sICgIgisYdKkRERFThHBKgv//++wguobBSvXr1cOjQIfTt2xcvvvgixo0b54jLUhViKhAH5Pc/zyd6ly9ANz2O7aOqhvuF4owrxYaMDHPbNXtXje2pSu792jgo27WDdO8emp9Jhfya2qIv9LWgMPzS5zm8s3BWqecybXN3dKE4bm8nZ7FICfHxgf83CxC9PQ6/xo7FRxPeAdzcoMzTwee9dyH4+BhTQnbugqTXV/bUiYiIahyHVnEviaenJ9auXYv33nsPCxcurKjLkosw55+7u1sEVqbt7obssuag56+gswhhlSAr1GrNVLVcVqcORH9/h15Ln5QE7alT0J46hbyzZ7G6XgBylG5oceE8ehw/BFmBYlkRKbfQ5cx5HFA2xmfTx5sfpz11CvqkJIvzKlvkB+h/OzYPPe/MWQAM0MnxSkoJET094d71UfO40LjdcO/bB/KIcEi5uZU1ZSIiohrLIUXi5s2bhyeeeAKNGzcudezMmTPRunVrR1yWqhBr+edAwSJxXEGvCUwr6KYt7uYCcc1t395uqzsvvwLtsePm2wWz1MVCK4MKrQYfzplhvp26eI35v5Xt2iF4/dr7Y1uYCsU5awWdFdzJsUwpIcXtOnHv2wfqbduh3rIVPm9MQODiRZD0ert2qRAREZFjOGQF/eOPP0bTpk1Rr149vPbaa9iyZQs0Gk2x4wcNGuSIy1IVIuUYV2IK5p8DBdqslbUPeiZX0KsSU6s107Z2bX7+uT0F4mylio01Vo0XCteptl65uuggAZDLoRoaa3FY0cwYoOsTrsKQkeGQuUp6PXTnjDnoXEEnZygp2Hbv2RMQReSdPg3dtWuljiciIiLncUiAnpycjP3792PEiBE4ePAg+vfvj8DAQMTExODbb79FYmJi6Sehas20hb1gizWgwAp6ufugcwW9KjCtoBvS0pA2bDi0x44CABR2FIizlefwYQhesxpiQIBFvrkt9KIIMTAQwWtWw3PYUIv7ZAH+kNWtCwDIc1ChOF3CVWMaiLsb5FFRDjknka1kgYFQPtIeAKDesrWSZ0NERFSzOSRAFwQBHTp0wMyZM3Hs2DHcvHkTX331Fdzd3fH2228jKioKzZs3x5QpU7Bv3z4YCuR+Us0g5Zp6oFtucTe1WSt3H3RWca8SRB8fCH5+AABN3F7oE42rdUo7eqDbQ9m2DUK2bcXlyDpF2kgVxyAIuBxVFyHbtkLZto3VMff7oTtmm7up5ZuiUSMIcodkHhHZxaNPHwBA7pYtlTwTIiKims0pReJCQ0MxZswYrFy5Emlpadi+fTv69OmDDRs2oGvXrggKCsLQoUNx+PBhZ1yeXJCpSJxYeIt7fps1Q7lX0BmgVxXy/G3uAABJghgYCLFWLaddTxYainmTn0Nc+042jY9r3wnzJo2BLCSk2DGOLhTHCu5U2dz79AYAaI8chf727UqeDRERUc3lkAB98+bNxd4nl8vRvXt3fPLJJ4iPj8fly5cxa9YsZGVlYe/evY64PFUBUnb+CrqnZYBu3uJe1hx00wq6N7e4VxWy0FCL2/KGDSDYuLpdVo3SUnCpVh0YStnqbhBEXAyrg8apySWOU7RsAQDQ/u2YFXRWcKfKJq9Tx5hqYjBAvW1bZU+HiIioxnJIgB4TE4O5c+faNDYyMhKvvvoqNm7ciLfeessRl6cqwNxmrfAKund5V9BNVdy5gl4VTJvyHOKvXrA4dvZ2EqZNec6p11Wdv4huJw5CKCW9RpAMiP7zEDwuXCpx3P1CcQkOKRRnXkG3sxc8kSOZVtHVm5mHTkREVFkcEqA/++yzeOeddxAbG4uc/ECsOHfv3sWcOXMccVmqQgzFtVnzNLVZy4YkSfafNyvTeF6uoLu8qQtnYVmv0VBrFRbH70keWNZrNN5ZOMtp157x5lw0SEy0qNYuFfoOGKu5N0i8ihlvfVTi+RxZKM5w9y70N28CABQPscUaVR6PvsY8dPXevTCUsfUlERERlY9DAvTvv/8eX375JdauXYtOnTohISGhyJjz58/jlVdeQd26dTFt2jRHXJaqECk3v82ah2UVd1OROOh0QAmt+ayeU6sF1MbHsIq7a9EnJUF76pT567Pp43FQ2RhdzpxHo+tXLcY2uXoZXc6cxwFlY3w2fbzF4/RJSQ6Zj2b3HovbOlFEtkqFdf0GIlulgq7Q1vfC461xVKG4vLPG9mqyunUh+viU61xE5SFv1AiyyEhAo7HpPUBERESO57Bywa+99hpatGiBp59+Gu3atcPy5cvRs2dPbN++HZ9//jm2bt0KpVKJZ555Bm+88YajLktVhJS/gi4WWkEvuKJuuHcPMnd3m89pKFD5nX3QXcudl1+B9thx8+1YALFYA8ByxRoA5FotPpwzw3w7dfEa838r27VD8Pq15Z6PeucuQBQBSQIkCVcaRWDBC0OR7B+EPT2bYOyi5Whw9oqx97kgQL1zJ1RDBpd4TmWL5lBv2lTuQnH3C8Rx9ZwqlyAI8OjTG/cWfovcLVvg8UT/yp4SERFRjePQfj7dunXD8ePH8a9//Qt9+/ZFvXr1cOnSJQQHB+P999/H2LFjERQU5MhLUhVRbA66TAZBpYKUk2PMJ7fj9WGq4C54eLA1lYtRxcZCe/IvQK83BsUFFC4HZ7U8nCAAMhlUQ2PLPRdJp4N6507AYIDg6wu/uXMQPSAG0QUHxY5Fzm8bkD5lKqSMDKh37oKk10OQyYo9ryK/knt5C8Xlxccbz8cCceQC3Pv0wb2F30K9YyckrRaCUlnZUyIiIqpRHBrV3LlzBz/++CNu3LgBvV6PixcvomHDhjh69Ci8ucJZo92v4u5Z5D7BywtSTo7FirhN5zRXcOdry9V4Dh8GRaNGuD16DPLu3oWslOJsBelFEYqAAAR+/12xfcjtIanVkEeEQxYeDr+5cyAr5kMg1YAYuHXqiPQpU6G/dg1Sbi6EElInFM2Nldz1CQkwZGaWeXs6K7iTK1G2bQMxJASGlBRoDhyAe3R0ZU+JiIioRnFIDropvzw8PBzvvfceWrRogS1btuCzzz7DP//8g8cffxxJDsolparJYF5B9yhynylol+ys5G4w90Bn/rkrUrZtg5BtW3E5sg4MNrZRMwgCLkfVRci2rQ4JzgHj6yN48yYELl5UbHBuIgsKQuDiRQjetLHU15UswB+yOnUAlL1QnJSXh7wLxqr23OJOrkAQRbj36gUAyGU1dyIiogrnkAC9SZMm+OGHHzBs2DCcPn0aW7ZsQa9evTBhwgRs3rwZly5dQrt27XDo0CFHXM5u//nPfxAZGQl3d3c88sgjOHLkSKXMoyaTcvJz0FVFV9DL2gvdkJm/xZ0V3F2WLDQU8yY/h7j2nWwaH9e+E+ZNGgNZSIhD51HSVvXyjDdvcz9Vtjx03T//AFotBE9PyMLDy3QOIkfz6GMM0NV//AHJjt0vREREVH4OCdCnT5+Oq1evYtGiRWhSaJtmz549ceTIEQQEBCA6OhrfffedIy5psxUrVmDixImYPn06/vzzT7Rs2RK9e/dGSkpKhc6jpisuBx2AeRuxvb3QTTnoojcrX7uyRmkpuFSrDgxiyf/cGAQRF8PqoHFqcgXNrPyU+ZXc88qYh27e3v7QQxBK+fkQVRS3zp0heHvDkJIC7Z8nKns6RERENYpD/iJ8//33ERwcXOz99erVw6FDh9C3b1+8+OKLGDdunCMua5PPPvsML7zwAkaPHo0mTZpg4cKFUKlU+P777ytsDlQwB71ogC7mt1qTypyDzhV0V6Y6fxHdThyEUMpKnCAZEP3nIXhcuFRBMyu/8hSK056OR+bHnxjPw+3t5EIEpRLuj/UAAKi3bIH2dDzSnhkB7en4Sp4ZERFR9Vdhpa89PT2xdu1aTJ8+HR9++CHmz5/v9GtqtVocP34cU6dONR8TRRE9e/bEwYMHrT5Go9FAU6Afd2ZmJgDgwoUL8GKuc5l5ZmZCBHA1JQWGc+cs7nM3GKAAcOvyZeQVuq8kysuX4QYgS69Hqh2Po4r1zIDn4fXT0xbHJBirt5u+I/97g8SrCBv4Cc5Vkd+n4OEBLwD6K1dw7thxwKtoCkdxlD/9BLdr1wAAtwMDcauKPGeqGeQtmsNj3Xpk/vYbbmdmwm3Xblx/4AFoR4+q7KkRERG5tHv37NsVXFiF96aaOXMmWrduXSHXSktLg16vR2hoqMXx0NDQYgOAOXPmYObMmUWO63Q66HQ6p8yzRsjNBQDoFEoYCv0cDW7G3ufSvXt2/Yzl+S9+vYcHfzcuTHn4sMVtnShC7e6O7dGPo+fubXBXqyEvsLouHD6CvJ6PVfQ0y8bTE/rQEMiSU4Dz56Fr2cLmh3ocuP8hoTYyAnq+hsmF6Fq3hrtCAfHGTcj3xAEAZAcPQjfimUqeGRERkWsrb1xSKc2jBw0aVBmXtcnUqVMxceJE8+3MzEzUrVsXcrkccvbaLjNBrQYAyLw8IRb6OZpy0GVqtV0/Y1l+0C94efF348KUx45Dyq/iLkgSrjSKwIIXhiLZPwh7ejbB2EXL0eDsFfMY5bFjMPTpXZlTtouhYUPIklOg+OcfwMbK88Kdu5Bfvmy+LQYGQuBrmFyJjw/0bdpAfvgwZNevAwDk/1yGIisLkr9/JU+Oqgvx0iUoF38P7fNjYKhfv7KnQ0TkEOWNS8r9F2GTJk0wZcoUDB06FEql0qbHaDQa/O9//8Mnn3yCM2fOlHcKxQoKCoJMJkNysmXRqeTkZNSqVcvqY9zc3ODm5lbkeMOGDeFTxj7HNZ2k1eJm/idJDZo3h+jnZ3F/ZnhdZAHwc3ODf+PGNp/3jlyBXADBkZHwtuNxVHEknQ5Jx45BkiQIvr7wmzsH0QNiEF1wUOxY5Py2AelTpkLKyIDy2HFENGhgd+X1ypLVqRMy9+6D/61bCLDhdThtynOIyNGjb4Fje9f+iKsqEbPmVmwRTaKS/GzIQvdCx/Yu+y+uKER8+Clfq1R+mb9tQNbRowjo3Ak+TzxR2dMhInIIU4p0WZW7SNyoUaMwceJEhIaGYuTIkfjpp58QHx+PnPyq3QCQnZ2N06dPY+nSpXjmmWcQEhKCyZMnY9SoUeW9fImUSiXatm2LHTt2mI8ZDAbs2LEDHTt2dOq16T6pwGvBWhV3c5s1O/M17ldx9y7H7MiZJLUa8ohwuPftg9C43VANiLE6TjUgBqFxu+Hetw/kEeGQ8ndHVAX2FIqbunAWlvUaDdl1jbk3vAGAeEODZb1G452Fs5w5VSKbTV04C5+PGo+CpR11ogjxhgYr+rvea1WXp8f5Q0nYNXMd4jsPxK6Z63D+UBJ0efpynTcvJxNXf3gf8SO74tST7RE/siuu/vA+8nLK98cXGeVu227xvTgsVEhENUm5V9AnT56MV155Bd999x2WLl2Kn376CUL+H56m5X3TPnxJktCsWTPMnDkTY8aMqZAV6YkTJ2LkyJFo164d2rdvjy+++ALZ2dkYPXq0069NRob8Cu5QKCBY2WVhbrNmZx90VnF3faKXF4I3b7JpNVwWFITAxYsg6fVVZvUcABQtjHnn+itXYMjMhJj/75o+KQn6tDTzuPmrFuNgRBd0OXMe0SePQpQkAMZPSbufOIK4M4/hgKoxPps+HuOGPG9+nCwoCLKwsIp7QlTjFPdabX49CRAEIP+1KjcYXPK1euWvVGz/4Qy0OXo89M9m+CX8ieT9tbA9yQdxv15Az1FNEdUiyO7zXl/7OU7853f82WEQvCKeRP7Habh3UYY2A/6F1uNiUGfQBEc/nRpDn5oKXf4uSl18PPRpaZAFWf89qTdtgmbXbqhbtoSyWdOKnKZT3M7Jwoe7/ou/U/Yhz5ALheiBFiFd8G73FxGo4qIDUU0nSFL+/3kdJCEhAQcOHMC5c+dw+/ZtAEBgYCAaN26Mjh07IioqypGXs8n8+fPxySef4NatW2jVqhW++uorPPLIIzY9NjMzE76+vsjIyKiRW9y1p+OROXcufKZMKfP/FPMuXUJKt+4Q/HxRO/50kftzN/yOOy+/AuUj7RG8ZrXN503p1x95f/2NwB+Wwr2qFBWjaulW+w7Q37gBv48/Ru7mTfCZMgUZ774L7bHjVscXrF5v7XZBynbtELx+rYNnTHRf6sBBVfa1euWvVGxaeAqSTxrueJ5HzMrVCLlzGykBgdjw1GAEZDeCkBmEfi83R1TL4tvBFnZ97edYdEwGmfIezgWHAlo9hm5ch+X9BwFKGRqnJsOg9cTz7Qyo8683nPcEq6l3J72EKI0GfVff3+G4eXBPXHFT4sNPvi0yPvnx3tCdOQN506YI/WNLRU7V4WbuXIzfEhZCK9OglqEWvCVvZAlZuCXeglLvhoGRr+D9Hs9V9jSJnOrC2RNYvexrnHSrh3uSJ7yEbLTSXMbgYa+h4UMVU0zcmcobPzq8KlFkZCQiIyMdfdpyGTduXIX2Xq9OHPGptWmLu+hRdHs7AAjsg05VnKJFc+hv3EDOb79Bu28f1C1bQhUbC+3JvwC93rwCaVI4wLEa8AgCIJNBNTTWWdMmAoAq+1rV5enxx5LTSPc/jjxZFqI0CQi5Y1wYCLlzGxGai7iizIPC3wt/LBHw3CddIVeUvjsnLycTi47JcLWWEnsa9USuQom3l32HtmdO4Z969fHR0DE4WF+Lbuf/xKJjWrzXOxMKlQ9y0rOw87+bcf2aAXpJBpmgR526Inq82BcqP66KmkxdOBsr+47Au/P/A70oQmYw3E+fePU5SN/Mwr9fmWYeb89Ku6ubuXMxViV+iShEobO2M/yl+wUX7wp3sV+2HysTv4C0U8L0Hs+XcCaiquvTaaOwIq8P/i87Gq+LCriJcmgMOhwzhOOZH84jVvEl3py1tLKnWanKnYNO1Zut+WElkbKNgbfgab1HtHmLe7Z9W9wNWfk56F78w4cql7K5MQ897++/ARjfL57DhyF4zWqIAQHQi/b9U6sXRYiBgQhesxqew4Y6fL5EBVXWa7W8ecXnjyQhVXECIe4XIVPqIL9imW8uS9BDptQhxP0SUhUncOHoLZvOu+PbObgR6oGtTR9Bg9w7+O/pxRhyeCMAYMih3/Hf04vRIPcOtjZ9BDdCPbDjv3OxY8E6fDd1P65eDoJe6QXBWwm90gtXLwfhu6n7sXPBOoc//6pAn5QE7alT5q/Ppo/HQWUjc6qPLL/Fpil9osuZ8zjgZkyf0J46hS9feAqrJ75scc4lH0zCtClFV5iTryfg03dfw9svTMAfDz+Kt1+YgE/ffQ3J1xMq4qmW6nZOFtZfXYAoQxT66frBX/KHz61bePiX/8Hn1i34S/7op+uHKEMU1l9dgNs5WZU9ZSKH+3TaKORmPIb5Bjeky07h7I2VuHRxKc7eWIl02SnMN7ghO+MxfDptVGVPtVKxrw8Vy1GfWks5+e3QVB5W7xc984vE2Z2DbvyfF1fQqbKZCsVJ+VU7Te8XZds2CNm2FXuHPIkHr1wz552XxCAIuBxVF4+uWgNZSIhT501kUpGv1S1rl+Dg75vxyJkEtExMwrZ/LuBIkwh0fKIv+vzL9vowh7YeRqj3edwwhEHuoUStzGTziqxeFFErIxkJyia4kavAA97ncXDLITTpNLjU8+6/Wxvbu7TA6BtbMe7KNzjm8yDEtDwAgJiWB0l/Bkv/2oCvo8ZiWeNohO3TIDTFGwrfbNTxv4daWg/IDW7QeehxK/gOrt9V4szf3pAWrMNjYweZr1Pd8qqtufPyKxbpE7EAYrEGgDFdoiCFRoMP58ww305dvAZD8v/blFphWmlf9upY6BfOwr9fNq60L5j5Bn7MaIUh8fcw4vIh+OfcQ+30NGyp1wEDP9uDZ32/xNjpnzvradpk2ubPkSfmobO2M8T89bFaZ84i5NI/yKhdG5m1akGEiM76zvhZ+TOmbf4SCwa/V6lzJnKkC2dPQJveHVBehLRjM57OvofswED43LmLzAB/dD59FpmeuyHr3hfa9O64cPZEtdjuXhZcQSerpk15DktmTbI4Vtyn1qUxlLaC7m3/CrqUlwcpv7c6q7hTZft0/fdFjpneL7LQUHzxxkgk1Klr07ni2nfCvEljGJxThZOFhmLe5OcQ176TTeMlAKnB/tBfvwFby9m8//xTOL16NYJqSwjPMf6bH5F7D0G1JZxevRrTn3+qxMcXXJHNSNqJvBQBSvcsHAiqizpnE80rsjKDAXXPXcOBoLpQumchL0VARtJO82P1SUnFXuNmaBC6ZhzDwzl/4O/2QcjKtCxumpWpxN/tg9A+ewu6ZhzDzdBAhPlqES13x21DAhYE/YwPw77BgqCfcduQgGi5O2r5anHmtDty0rNwMy0JT877Cid+WgkA+PPHlXhy3le4mVb8nKoqVWwsIJcb0yAKsSV9wgDLugcWK+1K40r7L6+Ngm5vMhZv/QgP170GNx/jhyluPjq0bngL3+74FEnH87BgZuXWCjh1+w+E6cPgL/kjTxBw0jsQyitXAQCKy1dx0jsQeYIAf8kfYfownLpdtXPtiQr79YcFyFNexL82rULmAw/g65dfxaF6jeCZmYmDDzbC1y+/iswHHsCgjauQp7yIX39YUOZrVfUdSlxBpyKmLpyFlb1GW80PK/yptS2kXGMOulBcDnr+CjrUGkg6HQR56S/Lgi3ZTFvkiSrD1IWzsHLAS4hdfwAeWi2AAqs8Y19B3YnP48NtB+F3p/S2TAZBxMWwOmicmuzsaRNZ1SgtBZdq1UFXUYRoMBQ7TgIgkyR0OnQSqTEDoGjWDJ4jnoHHvwZBLObD2PeffwpBwXpkeraAPlMP/7RDAAD/1Exka+tB11iGwOxzeP/5p/DB4pVWz1FwRbZgxvtIrCyyIuuZm4NF779rcSx1028ASi5olxDgjVfufI+L9UPwX8zGuye/tvh/ofavAIzr/D5eavAlBlxah28CxsNw9x+88sBP6OMuQ193A+SiATqDiMv+V/GKeiVevfEsamc3wcR/L8MRlRteD/gL9e8YA/IGd25igPIvPDHfF62DM/Hdq68V+3OvajyHD4OiUSPcHj0GeXfvmj9AsZWI0lfaC3I7dx6q/EwG1S01ZD3O41Y/Lzy26jzijj2I5OsJCK0Tae/TcAi5PBdeCME5Tz+sC4mCe/Y9vHv9GgAg8noidnkEYktQOAalXIGnxhN58tuVMk8iZ/HJao5HDv2E1b37YUnvJ5HrrsLwZcsAAK0unMeHo1/D5kZtMGbravTevRWHOowo87Wq+g6lCllBT09Pxw8//IDJkydj7NixmDx5Mn744Qekp6dXxOWpBNbzwxqXnB+mvJ8fZstqhJTfZk30tB6gi173/5iztRe6IX+c4O4OQaGw6TFE5VXS+8Utv50kYHy/9PjzMBZNfx/9V2yF351M6ESxyB+ahQmSAdF/HoLHhUvOfSJExVCdv4huJw5CsCGQuhZaC+frhQFubsg7fRrpb0/BrTbtkD71HeSdOWsxdsvaJQgKlnDHrTkEpScChDsW9wfiLgSlJ+64NUdQsIQta5dYn185V2QhCIBcXqSgXcH39sAL65EueGPT1cHocvas9f8Xnj2LjVeHIF3wxoALvyFJuQTT89LRQXEL7ko3CAiGu9IN7UKT8XbtLPxd72f8HXoSjRqewQcdPoci/YbF9eXpN/BBh8/R1O0fjP7P11afe1VlSp+4HFkHBiu/t9LY8nuVABhE4GJwW4vj5w4MRFZeXeiGX0HnWgn478f/tvv6jiLLDsUNVTiWhTVAuPoe3t/5m8X903euR7j6HpaFNcBNVQRk2dxFRdVLsvwf7G3WHN8MGI4InRqTTx9A1PVEAEC9a1fx/+ydd3gc1dWH35ntu+pdlqxmyXLvNsbdxhiwTTc9oScQSA9JIIRAEpKQhCRfSCAF0wyE3rENuOCCe7ds2SqWrN779jLz/bHalWSVXdmSZex5n4dH7M7dO3e2ec895/x+PzuynVS3neeuuo2t48ZToy7q8vj+ZMUHQkNrKBn0DPrGjRu58cYbmTBhAuPGjSMqKorW1lZeeeUVHnroId5++20WLlw42MtQ6IUz7Q/z0Vc2wqfiLhh7yaBrtaDVgtOJZDYjRkQEXHeHgrtS3q5w9ujP50XtdDKyuCPQVp8S8PjKNjuXbwpAVmkJcx/6cGAXrqAQJHfe/G30r67ocl9v79XhNdXY17xHYkoW1nfexfLqa7iLirCsehXLqlfRTp2K6fZvYli2lB2ffIEmfSTNaXo+TZrLo/880iUrrSo089Jl81lesRV1yUh2fPJFj/3onTOy7qZGRCl4p1hJFFBHRRP94gtop07pcqzzZ9vXpX4Fe/zX35m+MrhNKQnk3XVbx1hNI1HRm5gXX0i5/CU1CQZ+yLM8evCf3bLyP5z9GN9Of4YJxTKV9VUMizn7nvKDha994paXvmDBrm0DOrdHFHCatPzwB09w/brVXZ5XbVENP1vyBHfaX+ei69YT/Vxk4AkHCXvbBKpGXU22pZmbqwoYcTwXSRAQZRlJFMk4nsvN40bzZmIWRdE3oTnxceBJFRS+RqRUVvDUPT9p/wwUMvx410A7+3guN+vUvJmYybO3fIuHX/hLl+PBZsXPB+eHQc+gP/jgg7z00kts3LiRZ555hieffJJnnnmGjRs38tJLL/Gd73xnsJeg0AeDlY3oTCAVdwCxvUw96Ax6m7dcWClvVzibnPHnpR1JELAYjXy49GosRiPuU5SzHZs2n/liFRROg8SCsi633aLY53s1saAMMTKSkG9/i7gtm4h5600My5eDWo1z3z6afvBDKidN4bLC44S1VnPQldlnhdZBVyayYCFD19ZrhZYvI1ucmhR0RlYSBIrTkolb93m34BzO/LPtzeCKlE2c5r9P19qKodSB7cBFyMcScdlk1pasYM6x471k5Y+zpmQFRqmYp3/926Aq1L5O+NonpABOATLdN0X6GluWGM9D3/kFMR5nj8/rvLwcNtbMobQqlcyEhrP6vHauzEhsSyajrIKbD+8korKK2IJCvxijKEnEFZ4gorKKmw/vJKOsgkRz0nn3HlDoQHI4aPnoI8q/931O3nEn5d/7Pi0ffYTkcAz10gaNIyNGYdMZWFJfjgjEFRT6v8MlUSS2oAARWFJfjk1n4EjGqC6PDyYrPpAaWkOJIAer7HKahISE0NDQgE6n63bMbrcTHR2NxdI//+uzyZkazX8dcO7bf1r9YR5RRBMV1WM2ojPNjz+BZeULhHz3QcIfebjHMdUXz8ZTWkrMRx+imza1xzGdsa/fQMMdd6KZOIG4NauDXrOCwplyup+XztnHgtHpPPetm6mJjCG+qZ4Hnn+TrGPF3uBAEDBcuZyo554dlPUrKPRF43cexPbpp8iShEDv71UZEESx1/eqp7aWumVX4qms7PE8nT8PPd3ujGr0RDR3/AmPzYXKoEE/Nhrj+Fgu/eItvr3yA2bv3hHwurbNuJj/3nst65fd0uuY0/+3UMBt0LP35ptpTk4mrLqa7A0b0bWZCa/pWU+iP9ffV4Xa14l//3opoz5rIbO0tO8NTMBiNBLaXn3XH86157Xu6mu6VF115lxbq8LZo23jRip+8ShyczOtyUk4TCZ0Fgth5RUIEREk/f73hC46P6qLPVVVeOrrAbjn0424wiO4pu4kyDDzlVVo2rV7AFw6HTtv/yYI8EFsGtqWZl5YvogPX3uReHsVme92VN8cv2MRxTHZ3PvjX/jve+Tfv+WdkQt59J/Pcsme7f5Kmg0zZvP7Bx/gxvwv+6WhdSacafw46CXuCxYs4Lvf/S6/+c1vSEzsKNeqqqri8ccfZ8GCBYO9BIUADLa9jq/EXeylxB06sutykEruklnxQFcYGk7n8+L74SWEhhLxpz+y4KorWdB5wE0PYP34E5offgS5pQX7xi+RPR4ElWpwLkJBoQdktxv7xo0gSYjh4Th++gNOuD/m2zyHqs2DBxUnbkonVf0rdH/+e5/vVVVcHKE/+iHNj/wCOukz+Ai2QktGRIwMQ33ih6hpA0JxHJtN08fzMc6QqIyN85cJ94YkCFTEJWAU+g66Oz7b1zOiuLQf/xamUHLNdTjaK7p81lk1WVmE1tUhtG929HW9vVaoqVR9Vqh9nTBXJZJVmtPlvp7aJ0Qg1GoN+Lr2FNCea8+r8aabcB48BB4PnHIt59paFc4ObRs3Uv7d79GQkU7xtddgi+xouzA0NZG+dSvyd79L8j//QeiiRUO40oGhc/vQU6cc69Ya6HAw9/mVAMxtv6/un08zG2iO7tqe0tigYk5jGOt+uIL59zzOP99dyY7UOb1WaG3JvYTtRq+G1ndX3OufRxUTgyrx3GsnGvQA/eWXX+aBBx4gLS2N0NBQwsLCaG1txWw2c/XVV/PKK68M9hIUgqC//WFbZszijbuWsCAIK6hAPejQqcQ9SC/0jh50pcRd4ezT38+L2WiiYGQKS1/5X699UMarrkQ362KaH34ET1kZss2mtHAonFVkux11agqqlBQinvoDqpgY7uFbPY71XHltwPfqmSh4e0QRlVYHS1z8MjuMXUkLcWhM6FwWLqrYx6+a7iG7/rtMyDmMECCQFmSZCTkHqZqdHvC8qvh4fv+DB7njfx8F/2/hvZdzVXlHFiguvwAAfVsrO+66g2lvvIXabj+jCjXnkaO0PvUUYQ8//LVUJAZ44JIraPrkC/9tGW+mfP2CS1m8aR16u72LVkeg19U3R39k54Kt/BsozvQzcDbXqjD4SA4HFb94lIaMdHKXL4dT2j1skZHkLl/OmE8/RfjFo4zcvAmxhwrkrxNnukklAx6VivKwGEKbWvxZ8dGbdhJqXscYoO6dpYOioTWUDHqAHhMTw9tvv43FYqGgoACz2UxISAhZWVmY+uhJVjj7BGuv018rqGB60Pvrhe5XcVcy6ApDRH8+L29dupS2abFcGUCkRBUTQ/TK55XsucKQIIaEELt2TVDvvWDfq76s9FcrriOjPxVaacP58pJkXpt6D7MO7GXJiQOoPS7cKg3VsanMn/ZvbvzqbbJLi7s8tjdBu1Elxew8tDfguQESyxq8n+1AGVxBoCAxmYnCYcDbK6k1d5S1h1fXYI2MZOv93yb1ww/6l5VPG87c9zoq1L7ulkEA9o1fgij62ycqU+J5+od3UxMZw+bFY3hg5Ztk5RZ3VBx1emxvrysQMNNOp3EnUlOY9/57ASv/BhLfZ+DI0uuJqgn+PdAUN5xxawNXKSp8fWj77DPk5maKr72mW3DuRxQpnjOH6Jdfoe3zzwm/6qqzusaBpouwZ2MTotyPTSpBoM1o4s3rb+but17tkhUPtdvwiCKCJHUTVDsfqlPOis0agMlkYtKkScyZM4dJkyZhMpmQJIlVq1adrSUoBCBYe53+WkHJVpv3cUZDr2N8vrmyOTg9ArmtvcRdyaArDBH9+bzMP7C7X9ZpSnCuMFT0970XVDAfH8//PfQttsyYFdScW2bM4u8P3ctx/XTuefu/TDq6jTG1VVy/cy9jaquYdHQb97z9X6KquwY6kiDg1uvJnzcXt16PfIrg262p04M6//gTxSze/VVQmfnrN65ljmY1Go3XNi72xIkuY2ILT+AIDeWPP/8u26ZdFNT5t8yYxVM/+F6XwOzrbhnUuX1CAKw6LfZrzXyv9S/8pvJRvtf6F8QldXw5cyqCoetvhUBChXkZmUGtYcuMWfzugZ8PScCrio+natZUvpg5N/Bg4IuZc6mcNUUJzs8z2tZvoDU5qUtZe0/YoqJoTUqi7Wv6eT8V3yaVNSG8X1aLKlkmwmLm/lUr0Zwinqdyu1H1EJwHg0cUEaOjiX3/PUy33HwaMww+g55B7wuXy8Vdd93F7bffPpTLUGjniZ88RfWrPZdRnYkVlGRtz6D31YPebxX3ti6PU1A42/T0eVGs0xQUeia7rjrIihNvVnpUbRXRB7aji4lhTKqRrO17UdW0EpfipGDWNHJLRGZ9ua3LZ23T1JmsuuWbyEYjwtW3cPsbq1i0dyfg/UyG5eYB0Gi18LtNe6jOK+Wm1W/z1rIbSchO4dEF04kymlA7akmr6upT3tNnGyCqtRXtn9W4791AVdP1flVin3VWbEEBFRPHsTxvLROOHgn4PMlARWQMEyu8Pzv/9cu7cTqqWNHJMuj/fnYFOm0i33nyxYDznSvIdjuq1BTcpWXQ1kbiww+T9e2e2yfq774Xx+ef+28XZ6f6hQo3Lx7TRVRTAjR2B1KQlX8TG+0DfWlBUxdVhqlcDFiW7xZFtIJEfXRZH6MUvo64W1txtCekRMlJSGshVrsDl6xCI3gw6nWYwzKRRC0Okwl3a+sQr3jgUMXHU/PDEOQPjGTurAj8gFPoj1NOX/RHQ2soGfQA/Te/+U2vx1wu12CfXqEf9GXt5NRoUHk8XfrDHJs2Y1xxfa+P8dEhEtdHiXv7F5YUZIDuz6Cfp8r6Cuc+p35e3KKIXa/vtZ8y2M+LgsL5iKPiKJcfKAqi4kRm4b4dvGOK4eJhHi6N/ByD1UJFkTfjpCq2cMmkD7kozERziwoB72fvy3kTOHr5LAzhbVhEJ0aNg8MrZiNq2pi/4ygCYP/8C377xWZWt5n5Vc2/STt4jPBjDjKTj3NSN5qla+9neUQ4txaXd1lTt8+2zYa6U3Y95IibsU8dx3D960QXVnWxzoopPMHF7z9DVI7336xAwZkA3PTFJ+xTx/D3x17j04Q2bswf3mWMyR7H2ykncT12Nd//7UfBPP1DjhgSQvgTj9Nww00IBgPGG2/ocZzsduPc5u39F8LCiPjjU32KaootLaRXlgVR7SAxf/8uGg1D95vB0WJk3t6tAQMLlSQxMf8Ym0bPOCvrUjh7qENNaMtKCW3Np8SsoZwItBoNokqF5PHgtLrQWytIDXGhM7ehTkke6iUPKBUmG5mRYsANNd+nuT9BeLB6FP3R0BpKBj1Af/LJJ1mxYgXh4eHdjnk8nsE+vUI/8PWHIcvdhBy2zZ7M8Jq6LlZQ9o0bgwvQLUGIxIV6e8mDzqC3jxOVDLrCEHHq56WvLE9/Pi8KCucjafqxZJVu6nJfbxUnmWWlLK50sDyzkHzdBP4XdiP3NfzRO6Dew2PxT3LP//6JBiseEZ677jq+df/dFL3/a7LLw0HWgeDAILVw0W//TOTBozQ/9FNkp5OL1v2eeYsKiYm0E37Im6UOP+Qg9bL9/NH4fXgrBd2xwi4/EI9ljeTv37yX+sgYPp01l78/+Rhqu63LteiqYfSzJ7uJE2kdDnQ5HaWZgfqqwdtfOf3TF7BePpPiBb9GvfE5r2heuziSqsJF8TW/oVSzjr8/djU/+JoE6dZVrwJguO46xIiIHsf0JFTYEz5RzV2XLyG1qq7rHPScbRtZepJVU0+e0TWcLs4DB1j40Y4um7bQ+2cgur4Bdf2guiArBEmrzcwHu1/H5tiMGjNuQjDo5nPtjNsIM/TvN6gh04S72k2e2YROpycuPBy1uiMUc7vdtLS0kGe2MzzKjSHz/PqNWysITMtpDrhRC+DQatC63EFrNtRFRBHb3BjA0aN/GlpDyaAH6OPHj+fWW29l+fLl3Y7Z7XZWrlw52EtQCIIu/WHh4Wgvnonjs44Ss+UJ6US+/t5pWUH5VdxNfZW4+zLowfagKyruCkPHqZ+XiKf+oFinKSj0wbcyMmnqdDtQxcnM41W8NvtGnsj8Fgt3bO0yV9xXB9EUWZEECLvKjdFuJ3P0eH7z6Ls9n3z0eNq2bMHz8SdkrztKlN5DVcskqGsvOa8Fzc4JTOIgbZ8XAAIC4NJq+GrCJOqTUph7ZC+SSoXo8XBs1GimHNzfTciMIG77kAGHVstni6/oMSsvAgs/20lEuZWx+cd7tAzaaxxHnKqB/92/ghUPPg6cu5ZBnqoqbGs/AyDkzjt6HddfocJJP/8FTT/8kf8+3/tqy8XzuGLDZ92e/x8sWHZa6z8TbGvX0vTd76Pv5PcM3qBCVqlQud3Ioogsy12Ci6Sy/pcBKwwsb+94A731jyQLbVhdyXjcIajUFRjVf2LT9n9hNz7CjRcHLzJWEFLOlnFz0en0hEbqcau/IjKsAo3ahcutoa41idDI6dAEW8bNRW06SfQgXt/Z5mSlAWN5XY/HTt2k0jtdbJ8ynVn79wScd8uMWSRVlhPX1NDnOJ+G1obQ7P4tfAgY9AD9W9/6FlIvOyUajYbHH398sJegEASn7lo3fff7AGjGjcN15AhSk/en1elYQQXTgy6a2nvQ++mDrqi4KwwF/c3yKNZpChc6vooTqV3U52R2Kv+95zaqI6PZvmg8337hdTKPFfsz0J4qkZOHQ0lJMnPXtnUdfd2CwDWb1wHw3IpvsmDEAUafKAl4/v8bP4oHNn+Cuk7g8KZFWDNUjOl0vLQ+EvYkYnLXIemgMCObeW++SfbxbWjW7kFsS8Dj1KESHNgn6Wi4fiHxf30RT1PTaZVhVg0fye++9QBVkZGsm7mQv/z+UdT27hvUk48cDmgZBFD3yVLg3LUMsrz+P3C70c68CM2Y0X2O7c8m5qnK8GUjJvL0N++gKjKSzMICRpZ4RftkQBDFs17JZH5+JS2//g3IMg6DCq3dA7L3PVCTPZKa7JFM+ugTWuNisUVEkHg8z/t6CzC8+eRZW6dCd97e8QaR1sewWjIpbbgZlyvKf0yjaSQqehORPMrbOyRuvPiWoOYss9hxoiEs+jiZqXvQaByQH0vCey1UXx9O3MhduFwHyRVn0FqZRpnNxsxBur6hIHxf129L3/dh2cSJJOTloXI4umxSOQlcDi8JIuWRMd1sMb/umkCDHqDff//9vR5TqVRKgH6O0HnXWpYknIcOAaBbuMAboDc3+8f2xwpK9njA7i3v69NmLaSfKu6tioq7wtAxGHZUCgrnK50rTlTh4WxeOJ8NGSpcTZ8T2uLEJWn5cE42i+KHM2XvfmhvYbrn47eZX1tKcn5+R193+9+mhASqM0bwf7qxPOF5BmdODtB7BnmOZzWO6akY15eQVrSFSm2Ev2zcI4oMP7Qbk8WBLSQU99JELBlqVDExTJ9zNdPnXN3jdXmW3cLOK68ipbIqqDJM8GZNt48bjWfmN/jxiUh0soBDiKRk+hKytn7QoyLx190ySHY6sbz2OgCmO3rPnvd73k7vKzE8nHXjRhAzbDqPHrOhFmV0MWOg5ATNoSYiRfVZrWSSPR5afv0bLC94hfyMt92K+903EGRw6fXkLF9K1dixRJR7s+Q6q41t932bxKNHGf/pGjR2O9GVZuXfjX4iORy0ffYZbes34G5tRR0WRujiSwi9/PJ++Ym32szorE9htWRSX7WMDNsR0uyfoJXsOEU9J/XjKHIuIyZxNTqeotV2ZVDl7lUtwzDGFzBhxC4slhFUVS4kfdMhInK/oi5mMsW6a4iK/pIJI75iv8dFVd2wM3k6zjkWHmlFEkCQO6wUZeDo0ss5fuklTFjzAfHtVouyAFOP5wTllLN491dd7utcobXsi9Vo3O4ux78OmkBDquKucG7h+0fAXVSM3NqKoNejm3kR5n/8E6mpudfxfSHbOvr0REPvNmu+TLgvMx4IxQddYagZDDsqBYXzkVMrTm6JieHUfFPd1dfg3Luv22Mzd+7slkGWgcjqap784xMdj3+/ewbZU1WFp74egIT6ExwLX070dDNpexpION6C2D6zSpIIaXLgUqnYf2s8+obxDKv/NGDQr4qP50c/eIwfvPdat+xNT9RFRvHT7/2cdffd2sPRRTj33UnDHXf2OyvvEUU0UVFEv/gC2qk9O7EMJbY1a5Dq6hDj4zBccfmAzXvq++qOUyqZPFWzqZ72CRFtFmLWfU7bX/92ViqZJKuVpge/i/0Lb6VH2GOPYrztNiq3vIcUrWPf4ntxtics7O1JBp3ZDLJM1dixNKSlMW39SoRGh1J11Q/aNm6k8Infkzv6JpyGq5DDBQRRRrummDF/WUbmE48SumhhUHO9vXMV6YIZuSyJJQ1/wCBZqNKmYxXDMEqtLGx+k5mtJra5L0cYXcA7u1Zxz4IHAs7bKGuZmXEAi2UENdXXAiJx+QUAxOXnk79wATXV1xKf8AETMg6ws3bgPi9Djex2k1rdjCiD3SDSNl9N7GdO7MM0xAxfi0rdRtPEChw7DMS95EBvkwhtb5H1z0HPWfGExoZeNYEOTxnGY0/+yzv+a6QJpAToCt1wHTwIgGb8eMSYWIAuGfT+IFvaM+KiCHp9r+PE/mbQ/SruSoCuoKCgcC4TTMWJ8aabcB48BB5PN5HS080gN97/HX/Qnwgk8l7HmrqF/aDxeJj930KgEIC6lYHLxh0mFy1RUf4S/N6QgG0Xz6E2vveNau3UKcRtWMfWFdcxorgsaHGkc90yyPLyKgBM3/wmgkYzYPMGel+pEhPRTJmCa/9+nLt3n3Elk/PIUVqfeoqwhx9GO25sj2M8tbU03HkXrkOHQacj6u//h+FKrwbTp78azxi5EWdFRzWhoz34FiUJrdWK02TCaTJx8oFojgrRjD2Pg3O3y8OJfbUUHarHbnGhN2nImBjDiKlxqDX9e43aNm5k9euHaRn3CG5JQFDZwOAGpxqrMILd4x4h/7WDLEUmdNGigPNZXesJqw1hat17FOjG86L6Fg7a4rBLAnpRZpKplrvdb7Co7n32hadgiVsPBA7Q46IL0WgcVFUuBES0ZjPhNV7BsvDqGrQWC06TicaGBaSkriQ2qrBfz8O5jGy302ZUY9Ma+PG3BO7aruNyajGnmRBVNjweE0U1C1kzrJq6H57kX/9wEGXusEUMpFvSlyZQY241tvc/ALUKXO6vhSbQ6fi79z2hKKJSqfr8z2QykZ2dzf3338+JEycGegkKZ4jTF6BPmogYGQGA1NSEHGQJX2f8AnFGI4LQe07At0MsBdGDLrvd/sy8kkFXUFBQOPcJ9EPIdOstxL7/HmJUFB6xfz9NPKKIGB1N7PvvYbrlZv/9xptuArXaG7yfDoIAanWfZeOy0MD4nEOBbb6ACTmHkIW+RYxU8fE8/bN72DJjVlBL3DJjFk//9O5zKjh3HjlK/Te+ifPIUZxHjuDcswc0Gky39VQ5cGYEel8Zll0BgG312qDG94V9zRocX27CvnZtj8dd+fnUXXk1rkOHEaOiiHnrTX9wDnCwfgJGQzkaTaP/Plml8vti69sTDxpNAwZDBQfqJp72Ws91ig/VsernX3H89ePEnKgjrbaZmBN1HH/9OKt+/hXFh+uDnktyOFjz9jEaNOPxGBoRDbuxiDm0SrlYxBxEw248hkbqtRNY8/YxJIcj4JxR1jomFFfyhupqbmj9Kc0NmXzbHsFjznC+bY+guSGTG1p/ypuqq5lQXEmUtWfhs1NJjG7CZkvG5YrCJQjYKrqqiVsranAJAi5XNDZbEsNimnqZ6euHGBLCwTnXsHpFHDdvH058eQsAa6L1vFgbzj/rPTzj3EW5p45btifTGK9u12Pwfn8XZg/n0d9+j7dWzOXR336Pwuyu9pNiYgLxWzZhvOrKbucO/c53vP/j9qCbNw91akqXCt9zkQEP0H/1q18xYcIEVCoVy5cv54c//CE//OEPWbZsGSqVikmTJvHAAw8wZswYXnrpJaZMmcKh9n5nhXMD50Hv66GdPAkx0us9i8vlD7b7g2QJrOAOnUTigsigd7Zi82XeFRQUFBS+3minTiFu3ecUJaciBRlUS4LAieGpxK37vFt5d+egXxL7F6RLotBj0H8qqdU7yCgv7Waf1vkveAP0jLISUqu3Bzz36LpaChOSkQJsVPgsg8bU1Qac82zSOZC1vPwKAIZlS4dkE8Gw1FsF4dy5E09D35sjvbF/7zq+euyXtKx6E4CWV97gq8d+yf696/xjHNu2U3f1tXjKy1GlpxP78Yfopk/rMk9RwQhsnhCiojfhranwYm9PUOjazIBEVPRmbJ4QigszTmu95zrFh+rYv/IIc7RuwkLrOGA8wlb9AQ4YjxAWWsccrZt9z+dQfCi4oLf6k89oFkYhijnUm45TE27HFe6BSAFXuIeacDv1puOIYg7NwiiqP/084JwZlQ1scY5jreUW3hINfD9xP8kxTzN89/dIjnma7yfu5y3RwGrLLWxxjiejqjHgnACowe0O4bgpgr+kTUJfXOrfkHSLIvriUv6SNonjpgg87tDzrs555iUXkb6/keoxViYWeV0Nak3hOFqdhNXr+ebmVJ573krVGDtpxWZvn3pYGJH/eo5L1n/Fuzd/ly2X3cS7N3+XS9Z/ReS/nkNot/GWzZaOmOUUNGNGo1u0CGQZVUoKsWtWn/M2zQMeoA8bNoz6+nqOHz/ORx99xF/+8hf+8pe/8PHHH5Obm0tNTQ1jxozhgw8+4MiRI2g0Gn7xi18M9DIUThPZ6cR19CgA2kmTEAwG0GoB/Eru/ZrP1h6gG/oO0H12abLZjBxAEMLXf45eh9C+NgUFBQWFrz+q+Hg++vYVrJ01P6jxa2fN5+N7r+g1+PMF/SfTkvoV9BenJfUY9J/KggO7uz3WrdeTP28ubr2+2zkXHAxsGaQ5UsT8AzuCEkdasH8n6iNFAec8GxzcvY9/3HQbZc//F4Cy//yHtrfeBsB0551DsiZ1SgqaceNAkrB//kW/H7/hiZ+j+bCVomgzYpN3I0RsqqUo2oLmw1bWP/FzrO+8S/1t30BubUU7fTqxH3+EOj2921zJjiaqd92ByVRIfMKH/ky6I9RbCWiyVhGf8CEmUyHVu+4g2XH+ZE99uF0eDq/KJT60kTcMO3k+uY1Xxo3k1UmTeGXcSJ5PbuMNw04SQps4vCoXt8sTcM4te51I7mPUxDajNaiJi4sjJi6WqKgoYuJiiYuLQ2tQUxPbjOQ+xpY9gTPo0TUu3nH9iF/E5lE57ydUj38e9fEKQo6ZUR2voHr881TO+wmPxubzjutHRFc7e53LU1WFMycHZ04OumKoqo5gv0NkXl4OCw7u6WahOC8vh/0OkcrqcHTF+B/rqaoK/ok+Rxlx7TV4hl/NxM01iLKMR4SrSpv45YZKHtxXiWe4mZ/crWXM9hqsoVHoLlvSa1YcvE458Vs2ob/i8oBZ8dAHvVl06zvvIJ3mZt3ZZMD3Zv785z/z4IMPkpHRfecvMzOTBx98kD/84Q/cddddZGVlcf/99/Pss88O9DIUThPXsWPgdCJGRqJKSUEQBMTICKSaWm8fenJyv+bz9aCLfSi4A11EUGSrtU9RFL+Cu1LerqCgoHDeMduwmfzokX6V9d7wiCL1MVHMNm4GHul1nCo+nsd//gPuf+F9Zu/eEfD8O6bP5N/3XMfGIDK+0/JkJAGQBURkykaPJn/p5ThNJkpmTGfkms9Izc1FQkAWZKYeD9wq9ttHfkf1pK4bA51FkXz4LYM++TDgnIPNP267i2q9majIUCKs3r7RCJv3b12Ykff/9izf+99LQ7I2w7KluI4cwbZmDaZbvfKEwah9b3ji55QkGnGn/JrRe1q7zDm69QMqZ61H/1oGTc//z3ueq64k8m9/RehFb2eOxYmjdSpVpTcQn/wJKanPY7MlIcQ1QyHEqbZSawihqvQGHOWTmKPaO3hPyhBxYnc1YbpaViY2sDn7UmwaLSm2NsLdTlqNJjaOnsqOTCfFefu5o8rDiT01ZM/qW8nc3qqlLqEevV5HZFRUt3ZKtVpNZFQUTY2N1CXUY2gY3stMHXxlm8Z9CYVUTnyOFvMIdlamsmLfJgDc+xx8dvElzIwqQZ70DPcdeoBt1VPpzVm7sxbGRGAiJ7mKLQC9WCh2dbeq+/u5baHYH0SdjhuvWcjW0hPAFlqNIq+MB7NBQ4jNw6xDtfz9EwP7Z19P0o8XErb4koBzBuuUo73oIrRTp+Lctw/zCy8S/sjDA3hlA8+AB+jl5eWo1b1Pq1arKSsr899OS0vDEUQ/iMLZwXngIODtP/d9yYkR7QF642lk0K3tveJ9eKAD3n/QRBEkyVvC3keA7vdAD1UCdAUFBYXzjVDRxvL9GwNnkCWJ5fs3UrUgqs9xAKJbTWVsXGAxN0GgIi4e0R3455HsdpNa3IYog9mg5k93fZ/VsxaQYmsjzO2kVa2ldNJClm3fxM9eeoYQm4vU4raAPyQdmzZ3ue0TR9ox/WIu3byhW7A+1JZB/7jtLhrj9ehCEzG0VnQ7fmziRBoT9Pzjtrv43utnP0jXL11K6x//hOOrbUgtLVj27aP84UegtRWXXu/3WW5btw5+93uSn3qKgjA3JYkGUjJfpdmSjbhLIl7M9dvytewcTdyhCuJ27gfAcv1Shv3fPxH6aEtIFBOo19uwudIpOfkAJlMeppB83JHeXlxnZQolJ29GltXIJhuJzu7OAV93qreX8GpCM5+PvYhsSxNLKsqJcXUIgdVr9HwRk8znYy9ClPdyx/aTAQN0qycfSQVh4eEgSbhqK3HXVSO7XQhqDerYBNRxwwgLD6fWUYtNygu4zlb1XFrH/Id9TUm8a25Ebynnh9Xe37PDq23ssG5jk2BkhSuJGWNeoaX+vl7nGgwBzK8zoYsWMv3113EC5tiR3Lc9Dq3DglNnoiAjA1vrLm689pKgFfd9BNKXEASBkAe/Q+Pd92J5ZRWhDz6AGBZ2BlcyuAx4ifvYsWP517/+RU1NTbdj1dXV/Otf/2Ls2A71y6KiIhISEgZ6GQqniU/BXTtpkv8+X0/H6Si5+zLogXrQBUHoEIoL0Icut3lL3BUPdAUFBYXzD121g+jyli4/UKRT/oL3B0x0WTO6ajuBSClrZELO4cBibrLMhJxDpJQF7imV7Xb0mSMpyQzjWz80UDtsC5dXHybE48KiUhPicXF59WFqh23hWz80UJIZhiErO6A4kX3jl94N6/ZN8pPZaTz25A946c6lVCbEdvyIFwQQRa8X+BBxcPc+GuP11I1PYtX8pRhKnF1E/pwqFU/ecR/144fRGK/n4O7uVnqDjSZzBOrskeBy0fT3Zyh74EE8Vu/vDGt0FK3Dk7FGR3k3hFpbqbjvPizPv8EI+S3y8mazsuabpBw/4a/mUEkSWTm5xO1sQhKgdqmOSqcL19GjfZYii4ILUev1Y5ZlNWbzWGqqr6Vevsg7b6MGWfZuDIkaNypcg/3UnHVOWvLZOGoC2ZYmbq4q7BKcA8S47NxcVUi2pYmNoyZQYs4POKfZ1IhWrYameizb1mHPPYDsdCBotMhOB/bcA1i2rYOmerRqNW3GwMmmrGElHPbYeN3cRKo7iUdyu7YsPJKbTqo7idfNTRz22MhKLO11rsEQwPza0+D9fs2cN4OUrGhiUiJIyYrmmsunM/PTT/odnAeL/tJLUWdlIbe1YXntdf/9nYUtzxUGPIP+9NNPc8UVV5CZmck111xDZmYmAIWFhXz44Ye4XC5efPFFAOx2Oy+//DJXXHHFQC9D4TTxC8R1DtAjIoDT60GXOqm4B0IMCcHT2oocwAvdn0FXStwVFBQUzjvEbV2r6iRRxKbXs3rRZSzb+DkGux2xU3Zd3O6C7/c9Z3JhGdmlxV3u681Td1RJMUmFZQRCDAkh/vPPqNvzH67Y/imfGgs46fwzw+oTCJdDsApm9onVhMmw3JlC6B+vJH76fX1memS32xtwd7IMmn/Vlfg68luPVND2l7+iGT8ed2kpckvLWbcM6uwvv/7pX6OekM4ROZs5uXldemoBVMD0EyfJMY7i0qh61j/9a8Y89jvvsV785QcDw9KltOXl0/rSS6DT0ZgxnNqrhqGJq0QU25AkHeG/1xBW5s1mh366Dj6FTDZyDRu7lSL77J1EGeLWOIhjHXWfeEXjeitF1gpmcMZ3u9/Xg65v6+Ri41KjEQO72nzdWBejxq7RsaQiD5XgxhRyHJOpAFF0IEk6LJYsLOZRLKkv55m0CayLUXN7gDlVsh3Z4sZWdAx1TDy6rLFEtJrJ3rCRvEsW0TwmBEfBUWyHd6PKGI1Kdgdcpy46l/81GLjRMY5paQdJXdOGLIIggSRCRtVh7r0qlD3Fk/hfwxGejOk7sPNpYWy75ibSy4qCtlAsHp7OnA/fPqdcGs4U2e3GlZMDQPjddxHTHieeDQRRJOQ799P8459gfn4lIXffhaDXdwhbTpzYq4Xi2WbAA/QFCxawfft2Hn/8cd5//31s7TvFer2exYsX88QTTzBlyhT/fZWVlQO9BIXTRGptxV3o9VzUTOqw9/Bl0OXTyaD7A/TAauu+DHogJXclg66goKBw/iKeFJDbI2cBqBmZxZHlyzCZTGwflc64T1eTeDyv3YIHxJOB51ys6VouLwkCHp2O4hnTSd+9B5XD0eVH86WavsvrfQgqFeNnPoAsQ3bFv8kpSaRIX49drCNMUjHLPozxqVVkjbmS8TMD+yTLdjvq1BRUKSlEPPUHVDExXY4bll5B21/+iis/n7iN62l98nd4ysqQbbY+tVsGks49tbcAbDvAnbzvXf8pY0WPh9/94Yku99VdfvZ7ag1Ll9L2t/9D43RRdvkw7NeWEanOx2ZLxu0OQa02Y1liJvQlQAqy9PhUApQiR2vbqGgzINs1CPqO7Li9PUDXtdusyXYNssVAdFhrj/N8nSmOCSfF2kqKJoe45LWoVLYur0F8/Go8MRsx1CwlxZpGUUx4wDk1dgdybTHqmHj0E2YgCAIJO/cQV3iClmHDaF24AP2EGdgP70YuLUAT1nPJfOeNp9Lyam60xHPR8B3Y8pMxHrQhSN7XTJTAcFCDKj+ahcYdGIsyKQ2pxtkedPa28aSKj+eZ+x/j2o+eZ8GubQGva8uMWXxw9beYfx4F5wDu/AJkux0hNBR1D3plg43x2mto+/PTeKqqsL77HqZv3IZt3XoAbOvWE/bTh876mnpiUAT8J0+ezMcff4wkSdTWelUv4+LiEPtZ2qFwdnEdzvFaEAwf3uVHgS+D7jkdFff2AF00GgKOFdqF5AJ5oSsZdAUFBYXzE9ntJqPZhiyDxwgltyZTmLYYl8v774PTZCLnG5dgO2kh9X/lqKyQ0WwPmEEeZ2nG0p4vF4FNU2ey6pZvIhuNCFffwu1vvMqivTvaS+gFxlmb+7XuCRc/wCj7N0nZ9Q8aGjYgYUXESHT0fCZc9D20+uD+vRJDQohdu6bXa1FnZ6POyMBdVITr4MGgxJEGAueRo7Q+9RRhDz/8teypVY8ehVunQe1woUuuoNk+koaGhbhcHfoFdemNtPxkNZn/PoloERClwFlOH5IooI6KJvrFF3pV/g/VxqEWJTwV0agyqn0dDDjakw06sxlZkvFURKMWJUI13bPtX3ckQWAKe0hI/MArvtaYSoFci0NwoJMjyRKymRlVQkLi+0yxx3NI6E16rQN9Ux0u2Y0uy5v5tFqtRB87BkB07jGsF83AYDCgyxyLe+dG9I0927d13ni6HIDq9iPF3SsoHE7GPOWtyEnHe666vwXeeJrQ0EphQjLz2nUPesNnoTix/vzbpHG2W2trxo/vU7NhsBC0WkLu+zYtT/yatn/9G93iS3Dn5gLgPnoUT319t43RoWBQHfasVitN7UFdSEgIIee459yFjtPffz6xy/1nlEH39aAHWeIOQWTQfSruSgZdQUFB4byicwZ5iymPsOlVpBifx25Nwu0JRa1qQ2+swBkrsq85nXmW7IAZZF/ZuIiMXatj65y5fHHxbKxqDU4JtGoNay9bgifMxNyvtqJ3Ok6rbFyrD2Xa/F8AZ2Yd29c5BUFAv2wp5n/8E9vqtRivueaslLZ3LgEN++lDaLKzabjrblxNTX0q7Z+KRxTRREX1GcgOBoIgYNOIhDrAuNNIdey1nCrD5HJFccJ4G45H3yb0eQtpRVXBlyKnJTP7vQ/7LEWWhAjSI1wUNJrwFCWgSmpA0LtwmEzIgCjLqHNNuJ0m0qOcSELg7PHXjRh7PcuiV7GvKYnVLfUsbSlhoUlGrRVwu2QOW47zd8nEMlcSyyJWUVH/o4BzWgUJVWgkTlFNc00NOrOFqHqvjVZUfT32qipaTSYiIiJQhUViNVt7nOdsbDzFVxxk1P7dwVko7tvNcZ0RuLbPsV83fGLUp8YaZxPjrbfQ+n//h+fkST574C4mdzr20m9+SolR5LdPvTBk64NBEIkD2LNnDwsXLiQyMpJx48Yxbtw4IiMjWbRoEXv3nn+2EecLvgBd06n/HDr3oDf3e05/iXsAmzXo8EKX2gL1oJvbxysZdAUFBYXzCV8GOXrl81z79y3sWXcRLeuT0J9sJLSuGP3JRlrWJ7Fn3UVc+/ctRK98ntg1q/0bvD3hC/r1V1xO2p6dhC27lvjyVhbtO8bS3QdZtO8Y8eWthC27lrQ9O4Py1B1KDMu8mTrHl1/6dV4GiwMHvuBXT99P8ao3AChe9T9+9fT9HBXriVv3OcVpyf3yly9KGx6Uv/xg0DLB+5M37IgVsVd/bZEa96X85pf3s2P6zKDm3TF9Jr/88c8C9gl71A4SNAKqjCpkiwF3biruvCRcJcNw6L1q0rpGO6qMKhI0Ah51797aZ4zLDofehLe+gfTycnjrG97brsCCi2fCDbZ3KXLYMJfV8nh8K9MnudBJkST9T0AnRTJ9kovH41tpK6ulyGHjBut7AecU8OAKjaCxsRGtRsuY1q5Z5zGtrWg1WhobG3GFRiDQ82vfWcxN7md0JIsEJeYmiwfJLCvuEuDLp/z1XhNklRWD6nD/FvI1wHWou9bV2UY0mdg1fgQAGTkn/eJ9blFErHDwxpK7+MW/fztk64NByKDv2rWLBQsWoNVquffeexk9ejQAx44d44033mDevHls2rSJGTNmDPSpFc4Q/67W5Eld7j8TFXfJ4utBD1zi7vNK92Xde0Nu82XQlQBdQUFB4Xyjc0b44b+/1q/xPXFq2fh1N1/FdX0IIp+tsvHTRTNuHKrhw/GUleH4cpM/YB9onvjr3ejyRzIlbBgxTd6y4JjGOqbUJfHZf/bzUfYb7P/pt7jjPx8y82BgdfYtM2bx1p2Xs2CIemqbF8jEHVehbXQTe+IENaNG9TjO5YpGIwhUxsb16D/fGZ8tn8qpC3h+Z8JJEk+mEhpbjXncSeQmE1JLCHhU2I3h6O2tmOLzEIxjiWo0UZK25/QuNBDH1yB9+CCivZFqXToWIQyTXE7CsU+Q1j6CeO1zkD044s3pIYUUF6iYP95Ja+tILLnDmbRlJxG5ZmSdhoNtl2DKLGPB+Hy2HdEyJaYg4Jxqj4HmkEj0Oj0h0VHotm7DI4p+Szx9SQUhkydDQyPWkEiMnp5L3KFDzK3g2tmYSp1BV1BYUrRkffB5wE2a0KNdNw8kwGo0onM40Hg8/nV3jG8JeP6vE7LNhuv4caCr1tVg01lfAOCf767ky9nXMmnHYcKtHW21akli4YHdbMm9hO3GUfz18R/w3RX3+o+fTWHLAQ/QH330UZKSkvjqq6+62ac98cQTzJ49m0cffZR169YN9KkVzgBPdTVSdTWIIprx47scOxMVd9nm60Hvj0hcoB50c5fxCgoKCgoKfdHfYPtcDc7BW65tWLYU87//g23NmkEJ0J/4691kto1gQvQkciwfdzlmcVSzLPpKDrW6id+2i0lHA2f5fD21oxu6W/CeLZyJ0DgpkoSN9SQcO95rgA4w0VXArN07AorD+Wz5CrMDVwSkLM7E/oKT7MZY9sdXIESbEaO9v2ece3TQCHqzmeGNsdgFJymXjuzP5QXH8TXIb91GqW40u+LupUUd6z8U7q7jotbVpL55K8JNr8OogX9f7ZP1zM6y05g/hiU1+4kQtlNR6k0CRZa18g3rWzQfCuGL+CnMzipgX6OeuT3M0zng0uriiWpspC0plE+FMP6el9fFEi81P4+/CrcyjxaiGhvR6hJx5uTg8jjZas/lc9t+Wh2thOnCWJSyiCVpS3j1x9eQ+nYNy7ZtCnhNa2fNp+TGeH4XF4fHbKPhhXcxb9yA22pGbQwhZNElRN+zAlWIgbnhcch4xZgFoCF1PP93zw+45fW/My4vB3N0CuF1J/0CmHMjzi8dAufRXHC7EWNiUA3r299+IOmsLwBwE3BTu7DlqWgcji7ClnUrO8adTWHLQcmg/+pXv+rR2zw+Pp5vf/vb/Pa3Q1s2oNAdn2iDOjsb8ZR+cTEyAjhDH/QgetA7ROKCVXFXMugKCgoKChcehqXeAN2+foNXEVmvH7C5Dxz4gsy2EdQkxXBdRgiP/rPJn9lziyKOsiZuuE/PsysPM3rbDoCAmWZBlliwfydfGUYP2Dr7i1Yt0TpVQ8JGiM/LR/B4CK2r89txtXb63broxAaS6mq7PL4vW76YvI3AXX2ef1j6tXyZ8WNGnriJKTVJ5EXVYdF6y9jt7aK36dUCxshQCka8xYK0vw7Idftx2ZE+fJBS3WjWRd6OLHSt425Rx7Iu8nYubVpFyocPIv7kGGgG7n0FoK+XMNujub52K6X6MWxULeSihlXeg/Ue3jd9j8nujVxfu5VPNGPR9WK72zng6ryNcAfdnQRMNisvPPHTLvfVbXwXADFFRe63szHJJsqFctaXruePu/5ImOEnxEZsQBKEPrPokiBgiYzggGo2DS9/RM3fnkRwmGkZloQz1IS2rRzHv35P/YvPEPeDR1DvP+xfX2OogcJR47j/aA2RmkQgB6cadoxLY2p+GVqnxzv+HK7m6S+dy9uFIFtjBoK+9AVO5ZwRthzoCUVRxO3u3WPQ4/Eoau7nIL2Vt0OnDHpzM7Is9+tDJVu9PXyCKQiRuPaAWw7Ug97mLRFSMugKCgoKChcimsmTUCUm4qmqwr5lK4Yll57RfJ0zkl8++yJhKdl8IkZ18zZXSxIL9+9i1C+LSa0o9z/+1J7angLZrNIS5n7y4Rmt80xQtwpI4+pxhBjRma3EFBUTWVbWYcfVHqDr5Goy/1vR5bGBbPl+fuk1Ac+vUumYeO11HPzgf6QX3cD88hE06qzY1W4iSQYOYGhtI2/Ea0y69iZUqsBl8/0i90NEeyO74u7FKspsMZRzUjyBR7ajEvSkSSOYZ0tkV9hS0mr/DLkfwcSBDUgSTCYWVJykVDeGDeF3MnrbyS7H4w/KbJh9J5e0vMyCipNsGpbS4zxnKugm4e0bb500n+tds/33NwlNbPNso1kwMOPQfoRAwZwsc9HB/Xwwfxk1f/wxdSNGcPTimbSqVEiShCiKhHk8jN2xE/70KBHGEGivAt0zJgVHah51zQeJCbcwCzCaKymeMA45IYxFmmFn3UJxsHEebFdwP8sCcaZbb/naCVsOeIA+a9Ysnn32WW699VZSU1O7HCstLeW5555j9uzZvTxaYahwtX9otBO7f2h8AToeD3JbG0JYWNDzSv3JoIe0Z9AVH3QFBQUFBYVeEUQR/dIrsLzwIvY1a844QO+ckfSGZNvwdSGfGqJonM4uwXlnZMBiNLJ+waUs3rQOvd2OutOPYcemzRhXXH9Gaz1djNvVtF2ppWUKxG2xkph7jLCqKgDi8vPJX7gAZA+TPn8bbWPHdQv4bPluRzYaEK6+ldvfWMWivTu8mxCiiH3jxqCuKzbmEiZdI3Pk4C/xFMwktHY6aqceh0mNEbCbdjLp2n8TG3PJwD8Bxz+lWpfOJ6ESh+RV4DGT4BpGqGyiTagnXzxMvi6ESfplLGhJJ/74JzDxJtwuDyf21VJ0qB67xYXepCFjYgwjpsah1vQvsyu3RRJBLttd32FhSQq64nXIgoggS8iCSGpxPgnJS8gNuZ9lfA/ZHNnjPF0CrsYmVHLwAZckiJiNIvtvvpl9KQ6KxDXtNm86MqQMlriX8HltGanlZV3XTs8bT6nlpYTVlZE3ZTIHs0dQqiuk2lSNS+VC49GQYEmgZsZkJoWFMXHnbnSAbvZsFv7yh2z/25O42iQsLh0yYGpzsuL2+0lf4P30nU/Zc+iUQe8h1hhsfPoCW1dcx4jisqD1BYrShzP33fcD6gsMNAMeoP/+979n3rx5jBo1imuvvZaRI709NHl5eXz00Ueo1Wr+8Ic/DPRpFc4AWZI6fAl7UFUUDAYEvR7ZbkdqakLsR4Du60EXguhBF03tPejB+qCHBr8OBQUFBQWF8wlDe4Bu+2IdEU4nglYb9GPdTif5O7+icM9ObJY2kiNDSFWpvPZPp2Mx1U5dYgxPP3Q/1ZHRbL9kPPe98D9G5BZ5S0QFIehAdjCwl02navcUQmb9A7ZAdH4exvYqv/DqGk6oXCw/9ioxu1r8QZgQHs7qUWkcnrMMl6DF5hYwCFp2z1+GXWVl2fGTyC0t/bLli41dzLxFc6kdv5a6ui9wuVpQ7bXBVxDhyRqc4ByQbM38MzqbQ9I7pHvSmO25hki5IwBuEprYptrGQdXb/CN6NL+xNVNyqI5NrxwkWdpKdsgOtKIZZ2MIJ45dzPa357LgzsmkT+jbM7pzdUbKyVqOOW9mvCRRpztCVNV+NO3BtSBLuKr202I5woTGEI6JN5PSsA9nTg7QXaDLF3Btv/Z60kpLg7fES01h9YpsNkauxy7YSfQkEiKHYMbMOs069LKem3d2DyAllYoTs2eRvnsPaoejS3Z9waFdrJ1oZH/sGhyig0QpkTA5DLPGzF7jXnKkHFo8Y5m2xQFAyPe+S8yEmaS/9Kl/jtpLL8OVm0uCpWPe8yk4l1pacJ84AZz9DLoPVXw8T//sHm556QsW7NoWcPyWGbN4464lQyJsOeAB+uTJk9m5cye//OUv+fjjj7G2W4AYjUYuv/xynnzyScaMGTPQp1U4A9xFxcitrQh6PZrsnkVJxMhIPFVV3j70Uyoj+sJX4n5qX3tP+DLoAX3QlQy6goKCgsIFjnb6dMTYWKS6Ohzbt6NfsCCoxxXu3cXn//wLURU1JNhcREkyTlHg4PB4xlTUovZI/SoBBUAQCP3pQyT94Pu83vn+m+/D+vEnND/8SL8D2YGmPmQylpYsPh31XW4LeZ6IUwRptQdLSP7YK2Jn14djNcUwduO7fCumlwD0x3fgqa+n+eFH+l2KrFLpSEy4hsSEawBwqg5Rx3Kk2tq+H3gGtOkj+VgsIN2dxjL7EuLzC4ku/Aq1w4Fbp6MhcwQRI5ewWv8FH+tLeNCRSu5LL3Bz+D8wCGaqtOlYxTCMUh2Xqv+OTX6BjS98H+6+m/SJsb2et3N1hreJYA2whni6V2eonU7iP3gKgLD2/+re93aZ9yTQpYqP57ePfI97X3yP2bt3BHwOdkyfycq7r6O64fdkeVK4yxzBWFsxWqkBp6jnqGEiL4U0MzU/B48gIMiy34963403UDcyi5IZ0xn/yWoS8vKg/RomFx5l1TwLGe4RzK1ZhqE5DjwiqCRsEbVsjVnN8ILtiLKMxxiCbk73SmLttKm4cnNx7NkzaM4MZwO3w0b5gbeob1iPS25DI4QSE72YWOtwAFQpKaiiooZsfdn1tRQmJDNPFBH7+J7zCVuOqhsaYcsBD9ABxo4dywcffIAkSdTVee0MYmNjld7zcxSXz/98/HgEjabHMUJEBFRV9VvJ3S8SF0QPutAukiL1IgoC3nIfv7e6IhKnoKCgoHCBIqhUGC6/DMurr2FbszaoAL1w7y52PPYIcyrq0TpdtAxLxBkaiqGtjYTKKswhJhojw4MuAZUBs9FAxicfo+1FFd141ZXoZl18WoHsQOLWGMlL1vJ27ELGTNjHwu1b/JlySRC45+N30LjdfDl1Jnvn3M1FR0qY0Ftw3o4qJmZAbPlU8V61bqm2btA2MJ6OzkauPMh1ecOZ8sWLaGw2WpKG4QwJQWs2k/3Z52Rs3oLusln8ZXQxT7rD+EfEU+TqxvO5NhuxthbBISHrIpDipnGZM48rIv/A+tcFho/5Sa/l7mfaLx5IoEuvMVMZGx+UoFtFXAIGjYUbzSH8pHE/BslClSYNqyoco6eF5U2fsKjJRE2FGpUsY9PpMDgctEVGUZeVCYDTZOLzb96Ocedebvj0A2+Ze2kFM+quZXLJMnCrkUNsCBo3skuN/mQGVxTfweIdPwKgJDWZlB60nLTTp2NZ9SrOvXt7vYZznYr9H3Ck9nEOuOwcNIdg9agwqjxMknZz6TrvBo124oQhXaMxr4D5B457q4X6wCdsuSE0+yytrCtnHKCXlpYGNa68vGu/UkpKz8IPCmcfpy9A76Pk5HS80GVZ7gimg8igi0Fk0DtbsPl80xUUFBQUFC5E9MuWYXn1NexrP0P+/e8Q1L3/rHM7nWz/zeNMO1lFXXoWhVOuwuHuyPTp1LVk7v+YP99/Nbe+vC6oEtDNM2bxv7uWsLoPyzIYuEC2v3QurzbZSsgzRXBZbjkxYQagIyAUZRnR7cYaFsbW+QspCWlhkb201/LqUznTaxJjYryBqCQhNTQMSr/rZksxl+aFM+PjL2nIyODkvLnYIjtK3A1NTaRt2cqMjzZyqRjFntHVvGpeQO1RJ8WRhZQNd+PUgNYFw8taWdsUyr6xC7hReoaiPTcxclbP1ZWd+8U9jU0I/egXlwURVXTfAl0XO7YzIacgKEG3CTkHsS818/P6XEp0Y9gdvqyb1dyMuk8whpRyIiYUly2GzLJS3px/KWuSRxPmcdGq0lBqDMOQkMnoYzmMO1GIKAtMO34Jnhg76qQGwpvL/O4ALSnDSf98H3qnm8poI5/MDe3ROk47fRoArpwj3k0sgyHo5+lcoGL/B7xT+XPeaDBiRUeiFEOIHEKjYOZ1p4vM41YSAFvM0JbtP/GTp6h+tef3Uo/Clg99eJZW1pUzDtDT0tJOSyrf4/Gc6akVBghfgN6TgruPDi/05qDnle12/26pEEQw7dtRl/roQZd8Cu86HYJugBVOFRQUFBQUvkboLp6JGBmJ1NiIc9dudLNn9Tr2wKb1TDxZTtGYSylJXA71asJd+Yw5/AG5E66lRTOSIxnfJa1uD4UJycxvL/HtDUkQKRg2nLS66qDXe7ZL2zuXV08FXtj+mv/YqdZwMmBsbeVXf+3QSaq7/FVg8P2PBbXa265QW4unpmZQAnSVuYzb1rbQkJHBsSuXwylVrbbISI5duZzRn3zKbWtLOJruZn+ZkQPT2rjkyFTG5kwA0QCSjXrdYT6Zto8p+aGYkrLI2vUOzHqo13P7+sULllyLqaE86H5xc0wyI7/4oM/nY1bldjJLu/5u7Mn2z2eJp66qo1Q3mvVRPVvNrU+4k0tvfpmxbSdofc2bZGqJMKJtqKFVo0XrcnLp8f2ktTVgvmsm9t+cQO+USGrZSdVFyYSEHmfE4a+IK6zDPbKVE6kzyczfAEBZ+k0URG3v8TpUycmI8XFINbU4Dx1CN3NmwOfoXMHtsPFW+eO83KQjzZPCbM/sbvoG2WX/AWBjxAZucdhQ64ZmA8KxaXOX277Ki9JhyUQ1N54zwpZnHKC/+OKLZ9XLTmFgkR0OXEdzAa8vYW+cjhe6L3sOBLUT6BeJM1t6tXPzWbApHugKCgoKChc6glqN/rIlWN98i7ZPP2RDyGc0NmxE9NiRVHqiohexcMxDGDRhHHvtVdJCx3Ay9mpUJivDI1vJ3HaA0MpcjAlpFM6OoaxJR2yhgWXb3gvsF9xeArp2kETNBoLBLq8eSFTx8d4AvboGxo8f8Pnn5jZitLnJnTe3W3DuRxQ5OXcO014+weSDNgRxJDfm3IQgGCDKiqD1IDtVxFhGcWPOlVRo32RbTTnjozYDvQfovut75t77mbR1Hcu2bQq43rWz5nNw7qU8F2CzQlXQ3drZo9FQdPFMsrZ+1W2TSVXgZteI5d2Ccx+yILIrcjnLDv4fogzi2NFMGOcisWYDskeNoHITOyyS65f9hLCwGF5cc4DLth9l3OG30X9DhxhmJ8JbeEFETgtZMWvQWT3YIkxUx88hqq2xx/MKgoB22nTsq1fj3LP3axWg5+9exdvNMmmedJa4l1AkFrFDtcOvjj+uZRhRrS4kAV4IVzF19yrGzL1vSNZq3/il9/0vyyDLNMRFElvTSNnwWP720Dd54Pk3yTpWPOTClmccoN95550DsAyFocJ17Bg4nYiRkaj6aDvwl7j3owfd339uMCAEoT8g+ETf3G6w26GHoF5qL3E/XzwhFRQUFBQUzgTDsmVY33wL88dvortETWJBLAnvW6i+TgXZr7Phy7cwDf8OSeUnOTz+cRLDnUxShaBrjsBz8rB3jpM5TBr7DUar3BSftJJYX9flHH15m29ozj+LV9s/vk7+x6r4eFw5OYMmFDczT6JlWFKXsvaesEVF0ZI4jFGVSZjjb0cV2UL4mPWYIo4jig4kSYeleRQtuXNIar6DKulVNqlbCaZT93iKkZER4UH1i1siIzg+PHB7ZORxD3L7m1MAnGo19/3ub0ihIVwalcA3PnwHaBekEyDymIfc7N5F7QBa1HG0nAgBPISuuIG7bvlWr2NLR96E+djfCGlqIuYdE7kzb2NU+UsAGMucCB8YASstVzkwRRwgyTyj17l006d5A/T2qo+vC+/UvINFhhQphVe0r3jV8aV2dXzBTHXNRgAaYkNp0Aq8W/MOv+LsB+iy241940aQJITwcCKe+gPhdXW0/OpxFsclceNND8BND5wTwpaKatsFjr//fPKkPishTqvEvR/959C1DN7nn95tTr+Cu5JBV1BQUFBQ2B6zD48RNM0yoevGkPW5mYhcM1mfm9EcnYlsTcFT+U+aM8aRqNYxQzBRr7XwhWE76kavPpC6sYzPjdtpthQy6quXuszvFkUsRiMfLr0ai9GI+5QN90fmrjhr13o6+Mqri5JTkIKs+JQEgRPDU4lb9/lZCc4BxHhvpthTMziq0WFtIThDg9PusZpCMMfdROiI3YxY9DjxyR+jUlnxeAyoVFbikz9mxKLHCR2xm0T3jeRaW7wPdNnh0Jvw1jeQXl4Ob33De9tlB8Ct9TDj0P6g+sUvOrgft67vdljZ7SbkmBtBBlnlfW0L5yegjmvCZWhm12Ujceq9gZWkFRFkCDnmBknCKUns8wi8bozmhbBEXjdGs88j4JQkDE1NUOMBAQxXX9X3kyVEU3+P1z4tdnMTCbuKuxw2tFlxmExUTs0kcdIqRDmi16m006YC4Ni7F7m/TgpDyBF7PRGeSLaot5AoJfIN5zdY4VrB5e7LWeFawYqS0QAcSHYQ4Ykkx14/JOuU7XbUqSnor7ic+C2bMF51Jai832ey1PGeNF51JfFbNqG/4nLUqSnINttZX+ugqLgrfH1wHvD6n/dV3g6nWeJuaQ/QgxRzE0QRwWhEtlq9YnA9qKf6etCVDLqCgoKCwoWOzdWKo/JF7CP1mA7aGXlwN5Yq76a4qtjCvIZPsTUaOZQ+nCPJc7jSJnJIX8Z+8QQjjud1mSvs0B5CjhxB8Dj99lcCcCI7nefuXUFtZCxfXjKKB1a+S/axE95suigOqbd5sKji4/nfLXcy7atNQZdX75u9gIVn0f/Yp+TuqR6cAN0uxRLS1hLU2Dp1CqFJeSRNeRGrJZOGhgW4XB3WWBpNI9HRm0ia8iIVtgcYVpoNx9cgffggor2Ral06FiEMk1xOwrFPkNY+gnjtcyS2VJFaXtblXL31i6eWl5LQ0re+gWy3UxehImSYB8MxED1gyjDwWMufkFUeBI8K8+QoonbUYc7QIxjtSKUCBTYn746ahk1vJMXa2i7+Fs5HSSP4wm7lD68+573ORI//demN+Og92Ce6qR43goQjJxi+aw8eUUQlSf5rK7x4JvVt2aRErSQ+eg/Qc9CvGTcOQa9Hbm7GfeIEmqysPs99rlDnMGBWtZEmpbHUvRTxlPxvfIW3+rYhKY42sRW1Y2j6z8WQEGLXrumSDRfE9v+Xum4GDZWwpQ8lQL/AcR0KMkD3Z9CDL3GX/Bn04D+IQkgIstWK1IuSu0/FXfFAV1BQUFC40Hlz/UNMMbeSHGunCQNNRbFora3eg/Ue1tv+QnrY61xUdACrw0a1qoG9FKDRa0lorfEHEh5RZMrBA+jtTn9Q4dIY+WJmOkVjFjDugA6Vx4ZHpeOLeZdTGLOJ5YfLh9zbvD+MbmymLirGf8294RFFaqNjGNWPisGBwG+1NkgZ9JK4Kcza/xqGpqY+y9wNjY00R2SRNmMlVksm1dXXcGrBrcsVRXX1NSQkfEjCjJdpK7kX+a3bKNWNZlfcvd2U0S9qXU3qm7dyRVt3/2+PVktbbCyRFRXdgvUr9q6Dm3/Q61rFkBCan/kDdf/7KxMOVuGMVJM3/FJcjdH+MWEzi5iz83XCj1vZfncarbMTeG3iHLLNzSypLiSmPbsPUK/R80VUEskFJwDQZ3Tvb4eu7gDp0mdwPIZt0xew7HgpJmvH71dfW8hz0xYws7aRFFsM6dJnOHNuBLq7AwgaDZpJE3Hu3IVz776vTYDe5tLhVpuZ7ZmN4JFx1ZbhrqtGdrsQVGoi2p28whMuxiOso9U1dCLP3b6nfLd7ES8fqu81JUC/gJFaW3EXFgJ9W6zBadqsWX096MGVuIP3y1aqrUXuxQtdavP+8PB5pisoKCgoKFyo6GqPMOqkg+MJ3yZa/XZHcN5Oc9UxHE3f5Kg4mhR3Hev0x9Amq/kqeiIrjpX6A1WVJKGyO2k2mUArYtWHoh55A3c+cpn3eDebsYfx1NcPubd5fzAJOubu2hLY/1iSuGznVg5cc+fZWVg7oi+DXjs4AbojKgGn1kjalq09qrgDIEmkbf2K/FnjUGstVFYtoPduWJGGhvmkpK5En1FJiWo06yJ7VkZfF3k7lzatYuy6Ajzt7gAi3uB18wP3o3Y6mf/cvzuWAciCwLhdBbhcLnJzczl+/Dg2mw2DwcCoUaMYM2YMGo2GxXNv5vMnHwXAcpFMSvpKbNZheDxhqFStGDIrsUwQCTkkEZ1Txs/v+yPZ5mZuri7sdmUxLjv3HfiK9MpyHBoN2pSeg7bO7gA+Ob9RvNDrc//sU491uV3316VAz+4A2mnTvAH6nj2Ybrm51znPJUzYiZISCK11YDm2DtnlRBUehaDTY2xqQutw4BEE3GIoCVICDnr+jT8ktH8OZM+51VKgBOgXMK7DOSDLqIYPRxUd3efY08mg+3rQ++NXLgTwQvf3oIcpAbqCgoKCwoVNVnMjVbYb2Bg3l6gpJ1i8e7tfgMstiozatZZw89v+8b7C2jt4m1O7gGUgwmIBC0TQBlV/p27z34GeA4mhLgHtLy2eWhJPEWCT8Iafvr+0/x1WW8Mmz+CItfWGapB70CfLX7J+5l1cvvU5sj/5lLyxI7FZ27xZTrUGgzGU7KP5RBUVYbxJjc2a3KWsvSdcrmhstmRMw4+xy7ysb2X0kMu5uHQlKlnGrtGidzmpzMrCHh4OQENKCtGlpeyYOoOxx44SZrUQV2LjT3/6A4W6YqqMVbhEFxqrhsR1iYxYM4IbrruBrKQkxhV68+5/HxbKZUeiSIirA00t2FRUFyXzydgGfnqohYyDIEoySxrKe912SM7xSrBvnnIRlTGRPNrDmL7cAU6lv+4AuunTMQPOPXv7nPdcYphsJqQmAdvh3ahi4tFnjUU0ejfsEo4cAaAlPBTr0X2kaI2Yw6uGcrld8W1UyUqArnCO4Pc/D5A9h44MutzSgixJQamy+3vQ+1PiburbC11qU1TcFRQUFBQuXDqX1yYUynxhnMBHEWaWD0sC8KtjqyWJULsNjygiSFK3gGSgbMa+DsE5QMKxnV1uS4KIzaBn9aLLWLbxcwx2O2Kn7Pqp4wcbf4l7XT2y242gHtif6CNMO7ht0Y+ojapi2ImDuEvyUYVFIugNyHYbbXVVHDTKVFxzHeN1e3B7uv7OCquuJnvDRvIuWURrQoL/fo87BI/OSpu9b2V0sxyJbDBSHSkjh6pJzHXyzrQ5bE4eTZjbSf6ly/nRC8+RUXyCdU+NZvafc9GZ4bOoD2k2ukj0JBJOOGbM7DXtJceTQ+mHpfzMNBGD3YEqPZ2bLn+Q/xU9SYMMLocGjSARHdnIrVMfQ733v5Cfz+3rPyVmdDouQeBoSBTHQyKxiSoMkofRrQ0sOnIUgL1TZ5ATn9BjgN7ZHcDd1Igo9R2kd0YSBdRR0b26A/jucxcV4WlsRBUVhdvl4cS+WooO1WO3uNCbNGRMjGHE1DjUmqH//MW5nQw74kYVE49hwowuotMRFd5gvDVrJKqYKLKO1FB5kXOoltoNIUCJ+1ChBOgXIM4jR2l96ilkp/cDognQfw4dGXRkGbmlBSGATQd0UnHvRwZdDJRBNys+6AoKCgoKFy6dy2tF4HJ+x+Xtx07t4VW53T0H3kEQKJD4urEsJguLcAyh3Y6rJHU4uxcuwBkSwqc33cCMLzeRfrIEGW959bLYs9v/K8bEeLN5koRUX4+qUxA8EGxInkFiVT6xxYcgLgFTpywngGQ14yg4SlzRQZrH64hUdRWUS8g9RlzhCVqGDesSoKtUZlo94agBWRKQm0KQWkzgEUElIYZbECLNeHQ6dixZTHTRDkYe8dr4pYzNJUaTgUUTSv5FMdjf0hDf2EDK+xq2jY/mxYvbSCGZ5c7ZRModvzubPE1sU21jZ/xOylbuYyRgvOZqFs++icWze95MstztovnhR7hy4+e8NuVnfJAwAqtaQ4qtjTC3k1a1lrJGCwazGZvRSOHoMVjtjl6fT587wFfX3EBG2ck+beP8z7EgcGJ4OnM/fAdVLwKEYmQk6qws3AUFOPfupTp+MhteycVh9SCG2JE1LoRKDUUH6tj6dj6X3DmW9AndRZXPJpPLDTS6QJ81tpsjVHhlJQDNw4ahzxyBZ2cNU8r0Q7HMnvElHJUSd4Whxr5mDY4vN0F74KydPCngYwStFsFkQrZYkJqb/Rn1vvBZpQVrswYgtAfePrX2bnMqGXQFBQUFhQuYvsprg8qKB4EkCBSlJTHnvY96DSS+Tvj8j0UZHDotrpl34krLJkRVjd3uQq+KwzX/+5hT89DsfBmdw3nWxe8ElQoxLhapugZPbe2AB+irY2ax/LP30MQkoJ8wvVsgJRpD0E+YAYf3UN6gZkzCUTSaRn+Ze1x+QfvffPIXLgBAo2nAYCznZMkkMixGPKXx4FYhmGygdYNTjackHipiUKXUMCVmG+7yUajdtdg1KkyF1dwrPotKL+OxC1SnGkg76mLkgUaefCiSFNJ7VAWPlCNZ6l7KZufHZJR4S9ID2aEZrr+O8l//lrj6OspqWkgLa2FhaR4aSxuSJCGKIhdt2uJ9rmbOo9IYSoKl76BNFR/PE99/nO+8/R9m794R8DXYMX0m/7rxPr4M8JnSTp+Gu6CAutVbWONUI4ZbUKfVI+hd/jGiXYOrMoY1/zrM0vvHkz6x7wqGwcRQF4YYHtllwwe8eg7hVd4MekvSMERTCGJYJPr64NwEzgo+m7VzLIOu+KBfgNjWrff+j8UCoohm/Pi+H9BOf73Qfb6B/QnQff3qcm8+6EoGXUFBQUHhAsZ06y3Evv8eYlQUniDazToTbCHujukz+c3PvnNeBOfQ1f84dfcuXh9eyPaIIiK0YYwQE4jQhrE9oojXhxeSunvXkPkf+57vQbFaq7CjddjRZY3pFpz7EAQBXeYYSmtTkVxqoqI3ARJas5nw9t748OoatBYLIBEVvRnJpaasOgFPUSKCyYZ6TAnq7ArU6TXev2NKEEw2PEWJaGzRtNm9vf2CqCIxx475IxP1b4Vj/siEQ9YAENrqJMRsY7Zndrfg3IeIyIojMaglqI4LDah4LhqNFI6fBcD9n7zFgoPb8TTUEV5Tw+JPVxNZUUna8eMAlI/MpF5rYFZjzyruXeZVu6iIjUfq5Tn1IQkCFbEJiJrA5d0+P/SWTTu8FQhpldikFhobG6mvr6exsRGb1IKQVokYbmHDK7m4XUMXYNa7whB13nZWyS0g1cUQX5JO1iEdapcLl0ZHa7g3yy/qDdS7woZsrafit1lTetAVhhJPXR3u3Fz/bdWIEYhBBtBiZCSeioqgldx9QXaw80NHZtxnp3Yqfh90xWZNQUFBQeECxVdeu3XFdYwoLgu6vLYxPIKoluY+x0uCQEVcAkb57Aang8mp/se/+eMrfY4fKvE7VXw8LnIGxWotsewkQkQUojEEl0fmcLOafKsBhySiEyVGGm1MiHCjMYUwtf4oOYfuYuLUlQgJH6Jd3zWbn1B8COfiakymQg7tu5cpUiFC+BhUw8vRlJzE5nT67ewMWi2kpuEhmQ2t3+cq1UpcQP6oq0mPaCOrvArJ5ULUGHAnZ9FYk09UQxEr9mjRzu27WjMzpxiAbaP1TA3iOSiYsYDxezaQXVhA3vQpyBkZjD6eR1JJKaLRiNblwhwaisltJaWhGp028JwjnduYmHMIIZBYnCwz4chB8ueHA1f0OVY7bToA4Y3FuCOKaKppRpJltBoNokqF5PHQ3NyMKLQQHuNGKhzNif11ZF80sFUXwWL36FA57LgbopjfFgHxe2nM3INxr9dejYQY5laOYHNYE5LdhsszdDZr3fD3oJ9bAbqSQb+AeOzhe3jptz/tct9Jl4XHHr4nqMf3V8n9dHrQfWOl3jLoPhV3JYOuoKCgoHABo4qP5+mf38mWGbOCGr/xojk0hoYHF0jkHGRq3f6BWOY5Q3+D7aEQvxPjvQGWp3bgFeTD21pQafUcbRb5R2kCn7ck4BL1hOtVuEQ9n7ck8I/SBI42i4iShqsbLsaRewtaXRmp5RuR2yMGSYTU8o1odWU4c2/h6oaLUUlqdNJu6qsqKTWZaImNxRofT0tsLKUmE/VVlejlPXgcIs5DhwGY9utrOJgYyfqx17F+0p2sH3sdBxMjif+e1yN8/r5W6MMST9fWRvTJkwBsGxvc78zNmQmUpKUBMDEvH7Va7S/djynyBvtVE8aj0+u5PHcve2ICR+gJ+wvILi3u0k4in/IXvO0mo0qKSdhfEHBOdUY6bmMYKsmFquQ4Wq2WuLg4YmJjiYqKIiY2lri4OLRaLU3mOpzhVRQdrAv8BAwSHkEL4igWaCuonv9jqsc/j7Opgsi13vdx6/gqquf/mAWaKlCN9o4/VxC9r9y5VuKuZNAvEB759295Z8ldPPrPZ/27mgCtgok3ltyF59+/5ff3P9bnHGJkBBC8F7rkV3HvR4l7e+At99aDbvZl0JUAXUFBQUHhwmasNYfChGTmiWIXBfJTkQSR6ogoFu/c2uV+n6hcZ3E5XyCxb2cKBLd/rzBADKbVWojDQV54BmsbE8g02lkU1UC0tqOE29pg5UilzPF6HTM92TRqDnLC0oT+5GJGH/wYQfKOFSUwHlRR9sVi7I4mYlwHSXRlU28oJN6tJjO8gVR1MVrJjlOt54RhNAccqZQ63Eyt+whB8qBKTydm+jxunj6v2zplu528p/5MVIuTuMIT1I7suXQ98WguAlAw3EBdWHABuq61iqNjR5NRXEzy4RyKZ17kL93XOLyCcJUTxhMeHo6jthZta2A7sJ/OXEHTm9v8tyVBwKPTUTxjOum796ByOLpUrPz04hsCzikIAq2J2USd2ENSQyOqSZO6tSWo1Woio6JoamzELBVgNY8M6jkYDIrD0vl2ppHKSf/AasmkoXIB6ZsOoWuqAKA87FLcjnIqJz3DfL7LfwvSh2yt3fCVuEtKgK4wyHS2YAH457sr2ZE6hzm5eSw4uMcfnAOMrChhTm4e242j+OvjP+C7K+71H1PFxKBKTPTf7ncG3db/AN3ngy4F8kFXROIUFBQUFC5wogvqmXGgBKGP4BxAkCUW7/6qy32BAonvXnbtoKxZoXd8VmuD0YMeb3Lwb/0UMo12ro9v9CUO/Vzy4VvcUF7e5b7r2v+eWnOhcrhZ+ub7/tvDOh3Txrtxr4jHKoZhlFpZ3PYOs0UTqzWXY7CUAqCfO6fXdQp6PV+NieGK/TUk7N/Va4A+rN0Obd1EEBzB/c4cWVVL4/DhtCTEE15dw8hNm7sct4aFYY6LQw1oNRqyqwJXMtg3fgmi6LUgBjZNncmqm29HNhkQrrqV299cxaK9O7ybYKKIfeNGjCuuDzhv47BhRJ2AYfX11PShGRAWHk6toxYrlUE8A4NDVNhUWsb+Fqslk+rqawCR+Lx8//GG+JHYqqeRkPAhqrEvEVnbd0LwbOKvlAnwHXq2UQL085DOFiwANwE34f0iPfVLVu108rs/POG/Xbey4wtXO20asR994L/tU24fzB50sd0HXe7BB132ePxzKhl0BQUFBYULHUttGFmlpV3u6y0rntDYgNT+//5A4pZvIhuNCFffwu1vvHpagYTCwOH3Qh+EDHpBVBp2NCyK6h6cA5RPnkREZSVCe6DZmeDcAWRkUeDotEvIj+nIjIe767iodTXX2d/nRLX3+nRz5/a51m0TRK7YD0n5xRxvbcYZFtHluKGpiciKCiQBto/To3cG93zpXA5Eg4aTF13ExI8+Ji6/AEkQ/BtTLoPBP1ZUqdDZerdZgw53ACQJMTycNZOTOXD1CPThlVgFEwadhZ23jcAR0srSA+XILS1BuwPURanJBKLLKxBcLmILCoguPIHa4cCt09GQOYK6kSNRq9Vo1Wrs1rygnoPBYEbicSStmYaqBbgEFSdlDcs6tWkcioglXXDT0DAfU+pKLkocurV2Q6XYrCmcJc7YgkUQQKXCeHNXL0mh3z3o7Sru/elB78MHvbNwnJJBV1BQUFC40Pn5nMU0vbvaf9stitj1etYvuJTFm9aht9tRd8oMiYAQHs6G7BRKlkdiMlZgVodgMpopuSqSjeJ4Lskr7VcgoTBwiAntGfQz7EF3HjlK61NPEfbww2jHjQVgp2osyRpHl7L2zpRNmUxbXCzT3ngLjc0WlPCgD0kQEPQiO265nabhw7sca1HHsi7ydi4texFjcxUyoJt1cZ/z5YyI4nhaC6NOWnEcfA/zuG8RX+RgzP5PyJ1yJVGNXrHjQxlqNKYE6ky9S2p1riodXn8SqyYEc3Q0Tr0erd3eZaypqYmwyioQQGpqxOgy48zx2ridWlUKHe4AqpQUIp76A/fG9OJHfiN46utpfvgRPGVlyDZbQLvgWr2IRxTRWSxc/O//onI5aUkahjMkBK3ZTPZnn5OxeQv5Sy6lMTISR8PQ9aCb4g9gtyaTo83gw+R0Fu7o2krTWNPE+zPnck1tMXG2ZEzx55C+RbsThqyUuCsMNqZbb0GTnU3DXXfjamrqUtIeCI8ooomKIvrFF9BOndLlWL8z6D6ROKMhwMgOhJB2H3Rz9x50yReg63QIunNIAVJBQUFBQWEIOLW8tmxKNP+4/W6qwxLZcvkovrfqRdL31vmz6WJiAnGfreWbvQUS9/Q/kFAYOHw2a1JdHbLbjaA+vZ/p9jVrcHy5CfvEif4A3YKeULU3CJElAbkpBKnFBB4RVBJiuIWmYcPZev+3Gf/a/4itqwvaHaA+NpbiWy6nKWJ4j2NkQaS4LpuRVGGLNvpbJnvDYojgwJhRjDq5n4U7bawzpTGs+G3iq47SdDKVxFJv+XRL1FLim2XKEht7natzVeklAa5F5XQy9/mVXe6r+/ALoHtVKXR3B+hz7piYfrkDyFYrreFhRDY14woxceCaW7FFdqjaG5qaSNuylTEff0LrvHnYOmXcetqgGUxktYW9wjTeSMwi29LMXdvWdVTyCAJ3b1tP0aTJvJGYRYRtGjPVRwd9TcHit1lTStwVzgana8FSlD6cue++36P3aX970H1K7P3JoIt9ZdDbheOU7LmCgoKCwoXOqeW1n04YRdsEPbfVvoSm2YXLqWHXRWPINdhZfvg4cksLstni32zvjf4GEgoDhxgd7bV98niQ6uq6ZWwD0WJ38YcdRSx740MygENvfMjqaVfyyMUZ6AUHZlcIUrMRd2ksDnUjTlMxktaF6NGgrYlDV5GCnFLHU9++icVf5rBs26aA51w7az6bFoxjgbrv95WpxJvFVg8LHAhJ6tFoxUk4NPmYbE0M060nocGbdU2q3kVoWwOSqMISdRlTC9XsGr6n17n6qio9lf5UlfoPD5I7QHxFGbr2DL8tJqZLcA5gi4zk2JXLGf3JJ0zZuZMTw5P8x3raoBloOlcmCKUWdkZM5jL7QS6rKyU5P7+jvUaWSc7P5759W/g8NoUd+slc3Ly7z8qEs4pS4q5wtlHFx/P0z+7hlpe+YMGubQHHb5kxizfuWsKCHoJzOI0Muq29xN3Qfx90qYcedKldIE7xQFdQUFBQuNA5tbz2271lxTm9rLgSnJ99BJUKMTYWqboaT21tvwKXP+0sYs8Hb7EwsZyMWq8uQUZNCSmHnuHez5IZ6bKQKwzH0uLBHL0bWfCg1WpRiSKS5KRNk4dZVhFSkU3NjGQsEWVddAx6QhIEzBGRVIWlgLVn9x0AZJnodhszOTGww3NW7RhUQghlmTPIPLaR9APb/WrroQ0NANRmZuCOBU2LjpG1Y3qdq3NVqbuxsd+l++ro6B6rSgebYZWVfuGoyPJyrFYrdrsdSZIQRRG9Xo/BYODk3LlMe/kVEqsrWfPycxzOOc4VX2wiBihetYq11aVMGD+KpXc+MKDr61yZMAZYySP+Y930rhwO5j2/ks6a/XV/XQr0XJlwVmn/njvXbNYUH/TznOz6WgoTkpHEvl9qSRApSExmVF3vQht+m7Wm5qDO7ReJM/UjQG8XicPuQHa5us5n9mXQFYE4BQUFBYULG195bfTK51H1EZxDR1Y8ds1qpQrtHEfl60Pvh1Dcn3YWoTnwHAsSt6IvsnU5pi+ysSBxK4kxlSzxtNIWmYtWryEuLo4Mt5vL1n5Ghtvt9dXWa2iLzMUpGINK7AiyzMxD+3DJfef7Qurq0FssoIa6uKiA8844oQYEymZ7s7++4L4zFePGo0pqAIT28b3jqyptCgnrFjz2hgw0hYQRt+7zsx6cA2gliaYk7wZNaG0d1poaJI8bURSRPG6am5upqammyWikJTGR4syR7DlZRWx8LTGN3krXmMYmYhJq2XOyiqd/dP+Ars94002gVnsrDE4haL0rtbrXyoSzhtAeH51jPehKgH6eY8wrYP6BHUFZsCzYvxNDfmGvY3wZdLm1Fdnds8iID9nphPYx/fJBD+koh+8sCgdKBl1BQUFBQaEzg1VeqzB0+PvQg7Raa7G70Bx4jkYhhr9N+AVCuQ1Pe1LGLYpQYedvE36BNXIk9rACdDo9UVGRqNVqEnKPEVd4goRjx1Gr1URFRaLT6cmorCSuvq5LYCWf8he8gVdqeSmx9XWEu3sXKYs9UQSALsGNQ9AEvKZ4swhGKydSRnEwexwi3my2D48g8NjiG6kxRYPR6h0fAFV8PFsmTsE5alTAsQDOUaPYMnFKjy2fZ4NWk56y1FRawkIRgJEOJzGxcURFRRETG+fdUNFoaWxsYN/4cTTMCmHyxZ+gtzd3mUdva2byxZ+gTXfx9I++M2DrM916C7Hvv4cYFeV/vwWLRxQRo6OJff89TLfcPGBrOh06bNaCr6w4GygB+nnOEz95iqzS0qC+ZLNKS3jioT/2OpcYHu7/f6mlpc/z+rLn0E8fdK0W2gXgJEvXPnSlB11BQUFBQUHhfMbvhd5HBt1TVYUzJwdnTg7/feiHiNUyW7UjmJObx4KDe/ziwGpJYuGB3czJzeMr3QhEXR0pVivh1dWEVVWRcPw4AHH5XtE1QRCINBn5+Uv/7nI+SRBw6/Xkz5uLR9M9wF6+fQMzWlYjyD0ng2KKvAG6mChjNDcEvKbIlmN41DVsEpzkZ2d7H9upNF0QBCaX5fGl4MSjriGy5Zj/sZ6qql6ft6SwYRRk2b0bF33gFkXyR9pJCh3W57jBpCXBSF5aCvXtbQ6xxVVkHHQzb+UHZBx0ozNriQiPQKvR4BlhwTbWwo/Vz+I8GNllg8Z5KIofq5/FPtaMNs3JmpefG7A1+ioTSocldtlA6QtJECgZNmzIKhO64e9BP7cy6EoP+nmOY9PmLrfdooggg0qWsOt0aFyuLhYsjk2be/U9FdRqhLAw5NZWpKZmVNHRvZ5XardYQ6tF6OHLvC9EkwnJ4eghg+4N0IXQsH7Np6CgoKCgoKDwdUCMD2y11rn/99b2+1bwNtC9/1fjcPC7PzzR5znDq2vQWiw4TSbGb/iS6OYm5Pa5RKAmeyRHli/DaTJROm0qC575J2q3GxlvwDWpOJ/UsWVc2riKXeHLaFHH+ueOcFQRW+IN0HdHjqWtwcm0ANc0G+Ar8P0aPbUXXpAkfveHx7s8vu7yZ4G+e5qNYxzo3pYCuhupJAn9QRnhRmef4waTslEROFUaLMkjIC+fESUNWF05mCqOkBoRzyjXIsyo2aFrwjmhnvdLvsEc6/EeN2i2HLuENcYV3GJ4jcKvduGc6vWhHwiBNlV8PGvnzCW1rDpoUcHS4QnMHaLKhG74etDPsRJ3JUA/z/FZsCDLIMsUZ6diajIzrLqOl+6+jks37STrWLG3F0QQsG/c2GuADl4ld09ra0Ald9naruDeD4s1H0JICDQ2Ip2i5O4L2EWlxF1BQUFBQUHhPMSfQe+jxL0vZfJg+n9lvPZXnbPSsYUnQIC0vXv9AXGb0cTLt95BeFoSMS6vorgjNJS9l1/BzE8/QRYEVLJMeIONevsjJPEPbqr9E9XaNCxiOCaphciSMupdJtAbqBp2NY6idYNyTYHU1gEOxIh8s7S023Mh0HUTwFdV+mrsRVzW62yDi8UYSYwczVhDFrAWqbEAD17VdG3+FoSjGwgFlgB8AMvxqtwHs0FTt3ajd54BEmgbWXGSyohEPKLY5+aHRxSpj4wiq+LkGZ9zoBCEc1PFXSlxP4/pbMEihIUR+a/nWLB+CymhEQD86pJrWbB+C5H/eg4hLAwkCfvGL/tUMvQLxQVQcvd5oIvG4C3W/OdoL2GXT/FC78igKyJxCgoKCgoKCucfvgBd6qPE/Uz7f50mEw1pqf6yZEkUGZZzhPGfrAbAZjBQlprGyisW8/bFC3gmbQIrk0fzdsIIViaP5ifX3k5TSCiiLFMfGYY6JJ4ydSYvxP6CV7iXAlssLRYXBbZYdldM986ZNJa5nrE4ItMH5ZqC6Wl2FXQNwjqX7rv1+m5l2q6CoetLNjh1LLJMoGZYOC69HpXLRViNt6pC7XIhiUKPgndDIdDmMGi55ssvEAPpXUkS1278HJtRNyDnHRB8Je6KD7rC2eJUCxafyqtf4E3tffmNV12JbtbFQVmwBOuFLlu8AXp/+s99CL14ofsz6EoPuoKCgoKCgsJ5SDAl7tDR/7t1xXWMKC4Lyj5MAiqGxVG1YBFT3n7X/xhRkogtKkKQZRqThrF56hSGCyPIMu/lV/98jINZ4zkw6WLa9Eb09gYWFRyiPDqESHMbDnUo6kt/xzuaej4qTcEmpJKsm02o2kObW8Uvy/8OwPakTBahJTlsXOBruvYmRpQWBXdNgkBRSjpzP3g7oKDbqJwTSIKAIMsIdC3dL5kxnXGfribxeJ6/wmDU4RMBzz9YGNTjCLOL5KZuI3SkG83hrscbrhKI3ACCRQhYst8ZjyiiiYoaUOu4BmMMYdauv9klvFlg31/a/4ZZLTQZem+RPeucozZrSoB+HuOzYOmm2tr+JhRUHS+/z4JF9nj6VHn1K7kHmUEX+mGx5qM3L3RFxV1BQUFBQUHhfMZnsybV1yO7XH3q+Kji43n6Z/dwy0tfBGWLJgIp5dWkvPa/btlXoT0Yjqqo5NqKyi7HJpdUMbXkMG4E1Mg0DBvGbx98mFce/SlJdRVsrtrDW8mjyTTZWRTVSrTWmwhS2+2MrT8JwHMx46mXLcwW4/u+/vh4nvrx/Xzzfx8GdU1bZszi1VuvYUGA4Fx2u5l8OBdRlnHp9eQsX0rV2LH+406Tif033Uji0aOM/3QNGrudSYdzA/4uHixipEwqh+0kYvg7NKfGEHq42h/sekSRupNjKX3UQ/jzrWQUVQS/mZE2nLnvvT+w6vTurhUPkiBgMxhYvegylm38HIPd3iW7LrvPoQJuQcmgKwwBPX6p+DPo3Y8F+hIKNoPuU2A/nQx6R4n7qSrure3HlRJ3BQUFBQUFhfMPMSrKW+HodiPV1aMa1reI18i6agoTkpknigFLjDsTjOa2DHgEkTdmLGfdZZfgUatQuT1QbaP1OOyYMpJFu44QcXQtmSPTuT6+EbHTxNEnSxBlCXNUFKGxRp63uLlYDhzsTlDtCeqaJEGkIDGZiao9QN92XbLdTmOYibxxU6hbvIAQXc8hUNXYsRRkZhO7fhMjy/L7rCodaDxVVXjqvX3mkQ2lOBNeIi9vDgVRmfyU//gz0SpJIiXvBD9tfZTl6Z+RerIKMYgM8JYZs3j3phsCbmb0lzHFeV16+H2VCSaTie2j0rtVJowtzhvQ858JgqLirnCuIHva/clV/X/5fRn0gD3oNl+Je/970P0Z9LZTe9DbM+hhSoCuoKCgoKCgcP4hiCKq2FhvsFZTHTBAN5UeYv6BcoQAwfmpSuiBkAQRdXQUJY/+gJzGahxlLXhcGlQaF6mmE/z5xrnMj3qBqosuZmJtATfacpGFhC5zxBQVA1CfkcGiqFb+YzXwmeTi4gDnnubcQdwBMeA1CbLEgv07qZ0XeGNCDAmh9qf383jMJFIcNm6uKuxRiEsCPk4bRemDk3mm/uBZbavsrGSfDfAupLMB2NDt9TPZrPzr948GPbdvM2N8ddkArthbmTAx77h/bccXLeTE3Dn+450rE8Z9ugat3c6E/ONDVpnQDb8PupJBVxhq3O27RD1k0APR3x508XRU3E3tPein+qD7e9CVAF1BQUFBQUHh/ERMiPcG6AH60AE8LRqyglQmDxYZgcLYJOZ9/iGJcXGs6WPs9oxpzDmxmym7t7Av/UYAwqqryd6wkZD2bHB9RjrRWjfJOge7HIHPb6qzkVVaH9Q1ZZWWYKmNJRiW3/od1v7nl7yfdR1vJmaypL7cr04PUK/R80VMMnmmCK4reJ/l9z0Z1LwDxRkr2feBdzNjF5v1PfvQny6y3Y5brUbjdtGYlNQlOO9M1dixNKSlkfXeB4S1tJ7VyoQ+8dusKQG6whDjy6BzRhn0lr7P4e9BPxMV99580M+BD7SCgoKCgoKCwiCgio/HRd9Waz5+Oesamt7e3OU+l1rNmiXLWLxpHXq7HXU/g4/a4TP53axLWBhEKfT7Yy9hzondxB/Pw1RfjyUmhoTcY8QVegXWZEGgIS0VgFC1B7MzcHLIeTAW6AjQ3aKIXa9n/YJLe7wmx6GYoK/t2fueRP7vL/kk7QqeSZtAiq2VMLeLVrWGUkMYGpeF6wre59mzHJyDV8lek51Nw113425qRJROT0W+p2oJ72bGSeZ+0n9bNY/HQW3tGurq1+FytaDRhBMbcylxcUsRRBGx3UO8aPasPudxmkxsXb4UscXF+HMhOKezzdq5VeJ+DnXpK5w12jPowplk0AOUuJ9JD7q/xF1RcVdQUFBQUFC4wPAJePVltebDvvFLEMUuom9v3LKMt2+Yx2NP/oDi7BSg3fuc7j7ZpyKLYImVSBCD+61VFqtnT+o4BGDEVztIrIon9UiJ/7g1JgWPxpusaXWLeDTNAec0FYrIQsdaC8eM4+dP/JHXrrmBnz/xRwrHjOu4JgFCCvsXzjz37Sf5V+MRlhZ/jNNVRoXYjNNVxtLij/lX45EhCc59+JTsi1OTutm+BYNbFLEYjeyb6FVoP/X1dmza3P1BfVBXt54tWy8m99hDlJYepaysmdLSo+Qee4gtWy+m9uXfoXM6aQ0LoyZ7ZMD5PB4PshREGcXZQrFZUzhnOMVmrT/4M+iBStytNuBMReI6etBlj8cfoCs+6AoKCgoKCgrnK36rtQABuux2Y9+40Tw8/AAARkpJREFUESQJMSwMT1srogyq+hzmfZiPrJH5Yn4cx+LCuGx7PjqXPWCAjgSJdXvIyL4iqLVqwvfx/OilTC85QnJODsWTrGibOvqca1LHMrssiwP6RiocWlJjNwJ393lNWSfzEGTwGOHkrUmUps1lqaUWLN6S/9Kb56A52UDa/ypQWSHrZF6/e5qX33wfy4MefXZRxcfz6I9+wvdee5vZu3cEHO/beBGBshEZPH/r9/F4PEw9tL9jkCCAIGDfuBHjiuuDWkdd3XoOHb4fi2UEjQ034nJF+Y9pNI1ERW7E+sKr6IAjY8fgliTUfXjYu91uXC4XOktdUOc/K3TqQZdlGeE0NkUGAyVAvwCR/TZrg5dBl9v9EMUz8EHvnEHv3I8uKgG6goKCgoKCwnmKz2otUA+6bLejTk1BlZKC6ZZbaLj9DsToaH72/KZugcarj9zJolUbupQ+99bXbSiTSA3bDdwTcK16w37GRi2nOWkUERXHUR14s8vxTYkmVi0M4YkcDTeaWzhk2N/LTB3XZBo5khybxJc3jGFhxhpSjM9jsyXhcYeiUrdhMFTgihX5T9R1LHo3l/FG1bnT0zxASE41lbFxSILQp4Wa77WzGAwM/+tfSLrqSuYAsixT/Z/fI9XVEfrQQ5iffx65pQX7xi+D2szweBwcOPhDbLYR1FRfy6lF1y5XFPJX49FVH8OpVlGQlYnY2kpkZGSPQa4sy7S2tiLIEi7bwPbBnxFip+dBkjoC9iFGKXG/EDmjDHoE4C03l53OXsedSQ+6YGrPoHfyQfcpuKPVIuh0/Z5TQUFBQUFBQeHrgKo9gy4F6EEXQ0KIXbuG6JXP4y72KqZrJ0/uMUBKsh7pclsSBNx6Pfnz5uLW67uVU6c37AtqrYJTy5j4MB6/+QYALs454J9LBhYWHSPJ0cpDkw2MiQ9DcGqDuqZLtq6jyTqe78sr2XziMqiyom8qhyorm09cxvfllTTbxnHJ1nXErll93rU/plaXMiHnsN+fvi9aDUb+cuedGK+60n+fIAhop031/r9BR/yWTeivuBx1agqyzRZwzuKTb6FS2WhsWIjklmirLKeu+AS1xUXUFZ+grbKctB27ADiWGoXa3IjdbqepqQm3L85ox+1209TUhN1ux9BYg11z7pS4C519Ac+hPnQlg36BIUtShzLkaYjECWFh3jIZWUZqaUEV27Nypj9AP50S99DuPui+cvfz7QtYQUFBQUFBQaEzqrjgStyhoxrSeeAAAJrJk3oed0KFpz0bK9DhVe00mSiZMb2LV7UkCAhFvWcSO/t1X583h3cnVxLjVGOOjCCkqbnjnEByYQH37dvC57EpvBsWwvUH5+DMyfFeZ0wMqsTuNnK+a3r24Xv57aPfpzxyFv8Xfxs2rQqD08OImmJuPvkej/3umS7jzyfGlh0hu7S4y329VTyE2aykNpZwKtppU7Gv/Qzn3n2E3n8/0SufD7oVYP+hVzBqk2kud2B2F5MSd4AEayXDP7NRdrkBc1sUsSdLkASBrVMiiKmqICIlg1abg9raWrRaLaIoIkkSTqcTURSJMBrwHKugPvMc6vdWnZJBP0dQAvQLjU67WqcjEieoVAjh4cjNzUhNTb0G6JLFl0E/E5G4jh50vwe6ouCuoKCgoKCgcB4jtpe4Sw0NyC4XgkYT8DHO/d4AXTtlcrdjstvN8GP1qGQZl15PzvKlVI0d2/HYTl7V4z9dg8ZuJzm3oddgrrNf91Jg6cerel2X2uFg3vMrmdfpvrqPvOO106YR+1HfquK+ILwrs4Fv9Pm4rztxZeVdbkuCgEeno3jGdNJ370HlcHQpfY8r6+5vrp06DQDn3n3+/upgNzP0koWK/BGEhe8kM7OMffoZ2N9OYNzxzWwZOZXsxjwAarLDOJGiI7we1CcLiBs/Dbvdjt1uR5Ikb2AeEYFer8eRsxeXBswh51ABd6fnQ5akftvXDRZKgH6BIXcu3ziNEnfw9qF7mpv77EOXbe0BuuE0Mug+H/QeM+hK/7mCgoKCgoLC+YsYGQkaDbhceGrrUCcN63O8p6EBT7sXunbixG7HZbudmugY6mMTaVo8H2cv7Yc+r+rI9ZuJrqtiRC993X35dZ9KjwGPIIBKhfHmm/p87IXM9THpWPBWGojApqkzWXXL7chGA8LVt3L7G6tYtHcHEoAA18emd5tDO34caLVIdXV4SktRp6YGfX5PWygadSN1Y8P4A//BLJh498CDAEzYW8iwGq/Q26GbUpjhtLJhgpXF+4CcveizxmCM6hCUkyxmHDl7cddXs3lqLePqLzndp2XAETqL2ikl7gpDRucM+mmWBImRkXhOnuxTyV1uz6Cfnkicrwfd4t3NEkWkVsUDXUFBQUFBQeH8RxBFVLGxeCorvVZrAQJ0X/ZcnZmJGB7e7bgYEsJvH/wOTbHp3FOe1/dcJhO/e/BHRNUV81kvbYWd/bpdTU2o+lEa7BFFNFFRRL/4AtqpU4J+3IWET51fBBxaDZvnzGbdxfOxqlU4JdCqVay9bAnuMB3zv9qGzunqUfxN0OvRjh+Pc98+nHv39StAL8tLw7LAwjPCQ2Rbmrnq5CHSy72bQKmV3ux+fkYmv8x8ku87n6atvIAjkwXGHWnEvWMjqvAoBJ0e2WHH09IIGi1HJgs0xghEFM8c0OfrjDhHA/RzqMZA4azQWbjhdDPo7UJxfWbQradf4t65z9w3j98DXVFwV1BQUFBQUDjP6bBaqw441tXef67tpf8cYLythhJDOPUafZ9z1Wv0lBrCmWDt+7w+v+6Tw1KC9uuWBIGTSanErftcCc77wKfOr7/iclL37ObwMD0jKw+zaM+XXLHzCxbt+ZKRlYc5PExP6p7dfYq/+YTinHv39msNoUmlvKD9DtmWZm6uKiT7+NFuY1qnTiTb0swL2u9woyOcfQklbJ3vwjM2G0GrQ3Y5EbQ6PGOz2Trfxb6EEuaXrqBJ2/d78KzSpcQ9sCDf2ULJoF9gdClx78OrsC/EiMBe6D5btNMRiUOv935gPB7ktjYICUFq82XQlQBdQUFBQUFB4fxGlRCPC/DU9G21Bp0F4rr3n/uIr2rGlG7hi5hkbq4q7DFDJwFfxCRjclqIq24OvMb4eN66aw4TN6axbNumgOPXzprPoYVJzIuLCzj2QsanZO/Lhv/tj8/3Ob4v8TfttGnwn//6NQOCJT8+HbMQypL6w4hAXEFhF8s3t0ZD7ahRLKkv55mQCVTFZrG0fiYbjJ/zaupJEpMTMWHCgoUqVRV6Wc9S61UMr57KF1H2fq1lUOkcC0nnTgZdCdAvNDpZrPVkwxEM/gx6J6XOU5FsZ2CzJggIISHILS1IFgsqOmXQFRV3BQUFBQUFhfMcv9VaACV3WZK8/eD0LBDnY/7cxbQc+4qVYy/lzYRMljSUE+PqCJTqNXq+iE4mzxTBvUfXMX/upUGt86KI7ZRHT8Qjin2WuntEkfqYKC6K3BHUvBc6/W1D7W28r1LBdfw4Ultbn5WondX5GxuTWNhwiIzakyBDbEFhF1E6QZYIra4hVIAFdplGYRjz9kcyLvkK8sPqOBxRhV2wY5SNXOq6lBGeTISSZGyCRPmwcycQFgTBG6RL0jlV4q4E6BcY/gz6aSi4+xAjfRn05t7PYfd6HJ5WBh2vUJynpcUfmCsZdAUFBQUFBYULBVV7ljmQ1Zq7qAi5tRX0OjSjRvU6bvriS1h3aAv35q7jjdGzeSZ0AinWVsI8LlpVGkqNYYRIZu49ug6D08r0xcEJeem1dpbv34gQoA9dkCSW79/I8UtO73ehwumhio9HlZKCp7QU54GD6OfN7XVsZ3X+X51y7NTib9HtYe7zKwE4dcaJSSkk33tHx2PtGjwV0UgtJtaEuVAlnDul5ECnAP3csVlTetAvNNoz6MJpeKD7ECMigN570H1943B6InHQIQbnU3JXMugKCgoKCgoKFwo+qzVPbd8l7n57tfETAtqx/eInv8bgtHHn+g3cWbCeBEqRtU0kUMqdBeu5c/0GDE4rv/jJr4Nep9wkEV3e0iWgkE75C96AI7qsGbn53AmCLhT8fej7+i5zN950k1efqocK21Pv6akGVwIkQaQkZjHuvCTcRfHev7mpONqMfGByUjjJRLi1rYdHDyHt1QeyfO68N5UM+gWG7PZl0M8gQPeXuPfcg+7rP0cUQac7rXMIpnYvdEt7Br1VyaArKCgoKCgoXBj4Stw91X1n0IMRiOvML378BHvWb2D9oa9YtK8MSQZRAJvJyeJL5gSdOfcRtqdrUCOJIja9ntWLLmPZxs8x2O2InbLrYXskuKdfp1A4Q7RTp2J7/4OAQnFd1Pkbm1D1I2D1CCItplB+Oe8+XKFZTHCDwa3CBhw2Oik0eLCMj8ITb2DUnr7f02cbQRS9FQJKibvCkOHxZdDPoMS9PYMu95pB96pICibT6fe5h7R7obd5A3S/D7oSoCsoKCgoKCic5wTbg+48cBDoWyDuVKYvvqTfgXhvjDxgRxYA2ZtVrRmZxZHlyzCZTGwflc64T1eTeDzPGwAJkHXgHBIIu0DQTpsGgHPffr99ca9j29X5D192FTH1VV36zntDEgQaYhL56c9/wYnIBBwNbk5UtqFyefBoVLQNC0UXrSZRstNsl0jJmDVg1zYg+GKicyhAV0rcLzQGJIPet4q7ZPUpuBtO+xw+L3TJ34Pu/av4oCsoKCgoKCic7/hs1qTGRmSns8cxss2G69gxgCGxLZPdblRVbQgySEY4cW8SOd9YjLNdINhpMpHzjUs4cW8SkhEEGdTVbV0dhRQGHc2obASTCbmtDXd+fsDxqvh4rJd+l5wxY4OaP2fMWCyXPsjR+GRSXGYWa+pJGqUhfKKJpFEaFmvqSXGZqdCHcPve3WTMzDzTSxpY2jcsFJs1hSFDHsAMeqAedMHYfwV3/znaA3RfuXxHD7qSQVdQUFBQUFA4vxEjI0GjAZcLT10d6qSkbmOcR46A240YF4dq2LCzvkbZbscRHw8eK7tuMBA+pZUUzfPYbEl43KGo1G0YDBVYh+nYqY9nxjs2HCojss3mT8QoDD6CWo128mQcX32Fc+++PsUEfSSq3Oh0sXgEAVUfWXSPIBCniyNK5eZ7Wzfz0rTp5MWmdBEg/CI2hVCrme9/tZn80fP4WWLUQF7emeOrKDiHbNaUDPqFhqvDZu108WXQZZsN2f7/7d17fFTVuf/x757J/UICuQABEm4SFAQFhKKgoBwVqZe2KipWqLeqcCrKTwu1CKdeUOTYU1FRaw/2WBV7UVArr4KCWC2oKFBRAgTCPSEBCQm5Z2b9/sjMTgYitwyzJ8zn/Xrllczee2bWsDI6T561nufIpUr+oPpkC8RJjRl0f2Bu7Cru/AcdAACc3izLalzm/j370O0Cceeec9JbClvClZSkXqtWaeHwePXfkqmBKyu1I6+9SitrVe0pUWllrXbktdfAlZXql5+phcPj1WvVKgr+OsAuFHeMfeh+bh1QxrbNx1zi7jJGGds2y60DWtd7uF5feUi3f/qh0nblq35/sdJ25ev2Tz/U6ysPaU3ucN04sqfi3OEVflphuMSdDHqE8WfQ1YIMupWc3HB/j0fe0lK5O3QIfA57D3oLAnTf8ijvYW3WyKADAIBI4MrMlGfXru9ttdZYIO74958Hm+V2a/LvVut/fnGeBv+jjS7qn6LMlFK53B55PW4VH0zR5nWH9PngYk3+3fEFhwg+f4Be42ujprpq6duFUt578laVyhWfKvX+oXTWNVJ0nDyHVir2u10Bj2HUUGfA/12+71Hf7VRNxUrdesltui0zWgP3pOm2wmql1Hp0MMatv3eL021ZMZpzdlddmp4Sipd7YvwZ9DBqs0aAHmn8bdZakEG3LEuu1FR59++X98CBIwJ0b4V/D/rJB+iuJhl04/XamXSrDQE6AAA4/bk7tFedvr8Xur9AnJMBut/kZ77QG6/9r9b8a646bKhRTI1UG1uloi7VajdpsiaPu9XpIUY0/++Ip6BAnlVvyrNsmvJL3Fpf0UVVnljFu/eo76rp6pnxK8X85DmVFG5U5yb3N5Lq4+JUMPg8dfv8C7lragKy6yV7Nuqy9BRddOHZeq+kVIv3HVRpbb1SY6I0Jj1F8zJSwy5zbvONizZrIbBt2zY98sgjWrZsmYqKipSVlaWbb75ZDz30kGJiYpwenmMa26ydfAZdUmOA3sw+9GDsQW8sElfR2LZN9EEHAACRwW611kyA7ikulmfXLsmyFN2/X6iH1qwbx90qEYiHJVdqqqJ69VL9pk3a/j9TtdDdTxviemhrSi/VuuMU46lW94ObdGbxFl313URF74uW1JgtP5TRXqvGj1NtYqK2Dz5P57yzWBmbNtjno/Y1bHmNc7t0bYd2urZDmO0zPwrLxRL3kMnLy5PX69WLL76onj17av369brjjjtUUVGhOXPmOD0859hF4lo29Y2V3EuPONcYoAchg15xyG61pujok+6rDgAA0JocrdVarW95e1SvM2hBi+MSM+Ac1W/apC93dtVLwyao2opR57hqJbu9Kvcka2lMF/3TDFdB4RI9sOM9Sb4l7ZZLSSMf0YBSl6oP1SuuPkrthgySt8MKuVf9XqbWq4wd1TIeT4uKUDvG3oNOBv2Uu/zyy3X55Zfbt7t3766NGzdq3rx5kR2gBzGDLjVfyd0foLtasgfd1wfdW35IXn8P9KQkR4qgAAAAhJorM1NS8xn0xgJxzi9vR+sQldkQgCZUSl0S63VxuwNKi6m3z++vjdKy75L1YcYluidxiWIS6xR3wCgmx6PEpBdkeUap3tNGUSpTavQHsnqu1ofuTupatE+xRWq91fldDbFFOLX/O20D9OYcPHhQ7dq1niUXp0JjkbiWZtBTJTXfCz0YGXQr8cgMusVfiAEAQIRwd/AtcS8uPuJcXRjtP0frsOW7AmVIOmv/Nl2bvk/WYcm6tJh6/aT9Af1NbTX+P6bpL3//L0nS8pSeSi4q1BntnlNclEeV9W6t+66NNlcPUsb5NSruckA9e/619W5D9S9xZw966OXn52vu3LnHzJ7X1NSopqbGvl1WVnaqhxZavgz64W/KE2UdJYPurQjCEvdkf5G4CnnLG+ag1b7xAQAATtD3tVkzHo9q162TRICO4/fHilzdEZOnlNoKpe4t0sFOnY64xmVJF7crV15ekaIqpLpUKfa2GO3IG6DNheUy9XWyoqIV2zVJOWd9q+TkfJUvzVbOlf1D/4KCJBzbrIVpOb3vN3XqVFmWddSvvLy8gPvs3r1bl19+ua677jrdcccdR338WbNmKSUlxf7q0qXLqXw5IWfqg5NBd9t70E9RBt1fJK5pBp0K7gAAIELYAfqBAzJNkkf1+fkyhw7Jio9XVG4vp4aHVmZVYifld+gqSUrbsUtZ5W00oKiTBu/J1oCiTsoqbyOX12rIpG/9RJJU0ilVyTEFOmPoIvW8PE/dRpeo5+V5OmPoO0qO2qrypdm65snlDr6qIHDTZq3FpkyZogkTJhz1mu7du9s/79mzRyNHjtT555+vl1566ZiPP23aNN1///327bKystMrSPf4M+gtm/qjZdBNZUPVdVdLMui+Puim/BA90AEAQMSxUlMbiuPW1MhTXKwo3+dRf4G46P79Wvx5DpGjPDpK2zrkaOCOb9RrY6lc7Tvpu7hKVbvrFOeJ1jklnVSzv14bEjap364NkqRznl+oPd4q/fvlW5WcVSTFF0lVUvmeNPW7/X+Vc2Vfh19VEPj6oBtv+GTQW927OiMjQxkZGcd17e7duzVy5EgNHDhQ8+fPl8t17AUDsbGxij2NK4XbGfSWFok7ngx6YsvbrMnjkXffvoZjySxxBwAAkcGyLLkzM+XZuVOevU0C9K/WSmJ5O06My1Wp2rRekt6XSjZpRad8VcTW2ecTa2OU+12m+n+2RS7j1beZHdWpZw/lSMqZ/blj4z7V7DZr3vDJoLe6Je7Ha/fu3RoxYoSys7M1Z84clZSUqKioSEVFRU4PzVn+DHpLi8QdLYNu70GPP+nHbxrce3xzxh50AAAQSZprtVa3hgruOHGd4/I0OvVsGcsld2WpPNX7As5XxNTqq8yd8mz9SJK0+qy2DozSASxxD52lS5cqPz9f+fn56ty5c8A5Y4xDowoDQcugp0pqPoPuDUYG3eWSlZgoU1FhB+hUcQcAAJHESkuXJO1/8X15PyiXy1TL2tCw/JgAHSdiQrRLKVHxKm/fUW2Kdqvtzp0qTEkJuCZ1zx5FlxbKuGOUe2aWQyMNMV+RuHBqs3baZtAnTJggY0yzX5EseG3WfEvcSw8e8W/q34NuxZ/8HnSpsRe6p7Cw4TnJoAMAgAjx3YLlqihoKJT7Xfr72jxqunZ1flQyRia+jQ5+vNHhEaI16XtggPbFVmh/tq96+66v9X7U+3o7+m29H/W+8lx5ylrbsDqjptsAnVk5xMHRhpDlC4fDaA/6aRug43sEqc2af4m7ampkqqsDzpnKqoZrWpBBb7h/Q0DuKfRl0Nu0adHjAQAAtAbfLViurYUv6rv+KyVJVlmMyuvPkGt7w/bB8rMOqaDwRX23oJVX0EbI1Ju2qo2q18acaElS0q4CVVqVijfxqrQqtUJLlPnNWklS+Zk/UJ2JjCXudps1b/gkcQnQI0yw2qxZiYlSdMMb3Ptd4DJ3U+HLoLdgD7rUWBTOXySODDoAADjdeQ5Vaeue51Xa7wtVxDfsQffsba/ivVfLtaHhdlmXdB3o97m27nlenkNVTg4XrUS1sbQ+ZqNe67pektRzj1e3bx2i6X/8TrfuHKYH1w1WYrVRUVuX1nQ1qjaWwyMOEXsPOhl0OMUTnAy6ZVl2Ft00KRRnvF6Zqob/UbRkD3rD/X0BuW8JPVXcAQDA6a749UUq7btGlYd6am/9cElSTEmxKr/6l1K2bZMk7UgepcpDPVXad42K33jHwdGitfisfr9ezviLktp0V1WbZLmMUc7qL5WZv0UdNuQpd+0WSdLqczL1+8y/6rP6/Q6POER8VdzDqc0aAXqksYvEtbw+YHOt1kx1dWNA3YI+6JLkSko87DZF4gAAwOltW+0LsqKMCvP66UD+N5Kk+KoqXbRyjRKqquWVVLgtT4V5/WRFGW2rfsHZAaNVyE9fonJ3hS7wXKADvpZ96Vu3SpI6bNhg/1zX71KVuyuUn77EsbGGkuVvw02bNTjF2G3WWpZBlyRXakPlx6at1vw90CXJim/hEvfDlrSTQQcAAKe7yrTdKtmYo0NfbVBdZpokKabeo8x93zWc75AsZbTToa82qGRjjiozdjs5XLQSh1I3q4O3o9qatirt0lChPe5Qw7bU5JJ9siTt75qtmNQcdfB21KHUzQ6ONoTCsM0aAXqkOdUZdP/+8/j4xr9InezjHxagu5IpEgcAAE5vdbXJKvxXotqeHaUeP14jb3Tg+freFep95Rdqe3aUCv+VoPoaEhg4tsJoKdkkKSFhs2LPW9nsNVWjSpSQkK8kk6jC6GYvOf3QZg1Os3/5gpJBT5XUfAa9pfvPJTLoAAAg8uzbmaakjmXKHrpe1TVdVJ0Q+PmnKH6oqqs7K3voeiV1LFfJrjSHRorWZF90mtonFKtDx7dV2j5bXiuwCJzXZam4b446dHxL7ROKtS+6nUMjDTGLJe5wmi+Dbp2iDLq3whegt3D/uXRkkE8VdwAAcLorKYxV9si9qqzoqaKia+R1xwScNzUxKiq6RpUVPZU9cq9K9sQ6NFKEO09hoWq//lq1X3+tzvu669qyvTIbslS5bmgzV1uq+OZ8mQ1Zuq6sWJ3397Dv6yksDPnYQ8Vyh1+A3vIoDa2KCeYS96Nm0FseoAcE5FFRUlxcix8TAAAgnMVn1Cgqtk57ikaoznLL02RvrJHk3X9AdZZb+/dfpOyczYpLr3FusAhr3911t2pXfylJmmsfLZBUoMO7flter4b//n/t23P1gUrmfCBJihk0SBmL3j7Vw3WGf1UxS9zhmGAWiWtuD3qlfw96EDLoTZa0W0lJsqwI6ccIAAAiStNMZ7Zrr5SXrr3FMXpXyUo4dMi+zpKUs2mT3lWy9hbHSnnpynbvjYhMJ05cwtixDUmuZj5DH36k2U/ZliVFRSnhhrGnYnjhIQzbrJFBjzSnPIPe0APdFYQl7q7ExgDdlUyLNQAAcHpqmunsL0k6oN76rX4qHZHpTKyq1B9mPhBwrOTFKySd5plOnLDEm25UdG6u9v/sVnkO7Jd1Aqu4jUtyt0tT2v/+QTEDB5y6QTrMcvn+NEEVdzglqG3W7Ax6aePj+6u4B2GJu9WkD7oVHSmlJAEAQKQh04lTJWbgAGUu/YcOdYmROc7FqMaSDnWJUebSf5zWwbmkxiXuYbQHnQA90pziDLq3MphF4hoz6N6a6hY/HgAAQDhKvOlGZbz1N7natZPXdWJb+rwuS660NGW89Tcl3njDKRohWjN3+/b69Ed9VTb0+H63yoZa+vTHfeXOzDzFIwsDLtqswWGmPoht1prsQTemYQGWXSQuoeVt1lxN9qCbg2UtfjwAAIBw5c90bu3c9YgWWN/Ha1na0qVbZGQ60SKHNqdqe1oX1buOHv7Vu1zalt5FhzalhmZgDgvHKu4E6JHGE7w2a1bb1IYf6uvtpe2NAXp8ix/fW1Nr/2wOHZJn374WPyYAAEC4crdvr4cm/1orz/vBcV2/8rwf6Nf3PhQZmU60iKsyTvFrLbmPEYi6vV7Fr3XJVRkh3ZP8f7Aggw6n2Bn0qCBk0OPjpbiG3pv+Su7+AN2V2LIM+vSpt+nNeU8GHJv/mwc0feptLXpcAACAcBZtLO3OaH/MLLrXsrQ7s4Oij3djMSLawZzBOmPn9oAaBuaw71JDjYNeO7apLGdw6AbnJPagw3H+DLo7OAX8D9+HbheJa8Ee9GkvPKI3Lv2ZvHsb/5LltSy5dtfojUt/pl+98MhJPzYAAEA4O3f3XvX/ep0sc3j99kCWMer39VoN2LU3RCNDa+auKgm47bUs1cfFadOFw1UfF3fEH4SsqghZuWq3WQufAJ02a5HGzqAHKUBv21beor12Bt3ra7N2vFXcPYWFAUvXn/3ry1qZM0zDvt2oi9atbnweYzRyzef6+NtL9K+E3np6xr2adO3t9nl3errcHTsG4yUBAAA4Jvfr95W7oyDgmFFDZtP/Xb7vvbcXKH/9Ykk3h3SMaH16bVojr2XJMkaWpL25vbT+h2NUm5io7YPPU9/3/q6OeRtlJBnLUq9Na5weckjYe9DDaIk7AXqEMb4MejCKxElNMui+Vmum0pdBjz++AL1p309JGitprN5qeKzDro2uqdFjs2bat0tefsv+mb6fAADgdPAf/QZLS/9p3/ZaljyxsSoYfJ66ff6F3DU1cjXJrv9Hv/OcGCZaEVNfr/7frpHLGNXFxenrH16hwj597PO1iYn6auz16vjNNzr7vfcVXV2tczZ8JePxBKU1c1hzhV+ROAL0SOPLoAejSJwUWMldOvE96Aljx6p27bqGv1odtpTruPt+ut30/QQAAKeF1M2bVen72ZL00cAf6P9uvEUmIV7W1Tfpljf+TxevXmknMlLzNzs0UrQWprpaZW1StTLnHJWMGqGk2ObjgMI+fbS5Z64yPvhIfXZsl6mqkpWU1Oy1pw3arMFppv4UZdDtPegn1ge9ad9PzzHaPhzO43LR9xMAAJw2TH29qpctkyWpPtqtT849W+uGX6V6xepQnaV6xWrd8Kv0yblnqz7aLUtS9bLlYRVcIPy4kpK0+uxz9cg9v9Q7Xc/U9+WKvZLe6XqmHrnnl1rdp79cp3twrvBss0YGPdIEsc2a9P0Z9OPdgy419v3857U/Vo+CnQHLtr6P17K0tVsXDf/rW7QWAQAApwVTXa2onGy5s7PV4YlZqttdqLrnfq2BX5fKY1xyW155YlM14LEn1aVTR5VOnSbPzp2RkelEi3So7Kirv92g1/r30YKOZ+jSfTuVXldtn98XHacl6V20KTFV49Z9ow5VnRwcbQj5k5Zh9EcuAvQIE8w2a1LTDPrBhu+VJ1fF3d2+veY8eJtunL9EIz779JjXfzz4fL3xs0s1guAcAACcJlxJScpY/L697/eM9HSd8dKi770+7eXfR8Y+YbRYfucBGrT8D5Jl6Z0ze+uZrv2UXVmuNp5albljtCMhWSm1Ho3797catPwv2tztVqeHHBq+FbxUcYdzgt1m7YgMuq+Ke8KJ90HP3Ves/A6ddaHLJddR3iRey6XNHTurdwltRQAAwOnlRINtgnMcj2XxtRofO1KDP3xdid+dp4OZfbU1o6OqohLVscqjCwrylVK8Xn2++lyKv1TL4+s0xelBhwJF4uC4oGfQUyRJprRUxhi7D7orIf6EHyth42ZdtCZP1jHeIJbxasRXq/Rhcu6JDxgAAACIMPXucq3pmqv+BUZj3n1dm7uuVcecbNVHRyuqrk6dt+/QGdt2a0uPcfp311zVu4ucHnJIWCxxh9Ma26ydggx6ba39y20dZxX3pmZOeUJFrw4IOPZ9fT/P2LFdw//fwpMdNgAAABAxLk6L0fPFXvXs21Vr2j2idsVrNWTtV4r2VKrOnaCS1B9ozXnnKCqrSq9Xe3VPeozTQw6NMAzQqeIeaew2a8Gv4u6tqLSPn+gedEmq+WhFwO16l0sVCQlaeMXVqkhIUP1hVd4Pvx4AAADAkSbefpXiVacFLo9M/12q75+r3efcoS3n3qvd59yh+v65Mv13aYHLo3jVaeJtVzk95NCwGlKAxnvsItWhQgY9wtht1oJdxb20VKbiUMPB2NiTqhJfvWx5wz4QYyRjVJCbo+fvuEF726ZrxaizdM/vF+iMDQUNbyTLUvWyZUq49idBeR0AAADA6SqxTbJ+3SdWv/4mSn9TqkZmHFBapxL7/P7aKC3fn6rNlXF6tI9biW2SHRxt6NhL3L3hk0EnQI80/iXowVri7sugy+uVp6ihaJsVf+L7z/19P+X1ykpJUeoTszTiqis1oulFY+9R5TvvqnTqNJmDB+2+nxRHAQAAAI5u3E9Hy/zfYj32TaxerGyvzrE1So7yqLzerV01sYo3Xj3a161xPx3t9FBDJwyXuBOgRxo7gx6coNaKjZWVkCBTWSnPnj2SJNdJLG9v2vcz9YlZcqenN3tdwlVXKvb8ofT9BAAAAE7QzbeM1o/KyvXH15dpyXajiuoopbu8uqlrvcbfdHHEZM5t/jZrHqq4wyEmyBl0qSGL7mkSoJ9MgbjD+34ejTs9nb6fAAAAwElIbJOse+66Wvc4PZBw4K9xZcInQKdIXKQJcgZdatyH7tm9W5JknUSLNYm+nwAAAABCJxzbrBGgRxh/Bj1Ybdakxn3ojQH6iWfQAQAAACCk7ACdDDqc4sugB6vNmtQ0g+5b4n4Se9ABAAAAIKTsNmtk0OEQ4wlumzVJsnwZ9HpfBt2VSIAOAAAAILw1tlkjgw6n1PuLxAUzg54qSTKlpQ2PTQYdAAAAQLhjDzqcZIxpUiQu+HvQ/U6mijsAAAAAhJQ7/NqsEaBHkqZLN4JZJM63B93Pij+5Ku4AAAAAEDIWbdbgJH/2XMEuEpcaeJsMOgAAAIAwR5s1OMo0/cUL5hL3wzPo7EEHAAAAEO58S9xpswZnNM2gB7NIHHvQAQAAALQ2roaYiDZrcISpD1UGnT3oAAAAAMKb5fKFw7RZgyM8jRl0uYI39a6UlIDbVgIZdAAAAABhjiXucFSTFmuWZQXtYa3oaFnJyfZtb3Fx0B4bAAAAAE4J37ZfQ5E4OMH+xQtiBXe/pvvQa7/6KuiPDwAAAADBZPn2oIs96HCEL4NuBbEHul/TVmu1q1cH/fEBAAAAIKjsPejG2XE0QYAeQewicUEsEOfXtLVaff4WefbtC/pzAAAAAEDQ2HvQyaDDCR5/Bj24S9ynT71N23ZtCzg2/zcPaPrU24L6PAAAAAAQNLRZg6NOQQZ92guP6I1Lf6b62sZfJY/LJdfuGr1x6c/0qxceCdpzAQAAAECw2G3WwqiKe/DXOiNsmRZm0D2FhQFL15/968tamTNMw77dqE77Gyu3u71ejVzzuT7+9hL9K6G3np5xryZde3vj+fR0uTt2PMlXAQAAAABB4A6/PugE6JGkhRn07+66W7Wrv7Rvj5U0Vm9Jkg4vqxBdU6PHZs20b5e8/Jb9c8ygQcpY9PZJjQEAAAAAgoI2a3CSP4Ouk8ygJ4wd2xDcN9ND/fAjzXZZtywpKkoJN4w9qecHAAAAgGBpbLMWPhl0AvRI4m+zdpIZ9MSbblTGW3+Tq107eVwn9qvjcbnkSktTxlt/U+KNN5zU8wMAAABA0Lh8aUUCdDihsc3ayVdxjxk4QJlL/6GtXTvL20wmvTley9LWbl2UufQfihk44KSfGwAAAACCxr+ymCXucIRdJK5lpQfc7dtrzoO36ePB5x/X9R8PPl9zHrhV7szMFj0vAAAAAAQNbdbgqCBk0P1y9xUrv0NneY+x1N1rubS5Y2f1Ltnb4ucEAAAAgGCx3OHXZo0APYI0FolrefH+hI2bddGalbKOsV/DMl6N+GqV4jflt/g5AQAAACBoXLRZg5N8GXQrCBn0mVOeUNGrgfvJjRqqt/u/y/f9jB3bNfz/LWzxcwIAAABA0LhZ4g4HmfrgZdBrPloRcLve5VJFQoIWXnG1KhISVH/Y0vfDrwcAAAAAJ9lt1ljiDkd4/Bn0lgfo1cuWNywJ8VVyL8jN0fRH79Wfr7tQ0x+9VwW5OQ0XWpbkcql62bIWPycAAAAABI29Bz18MugscY8gdga9hUvcTX19Q8Dt9cpKSVHqE7M04qorNaLpRWPvUeU776p06jSZgwdVvWy5jMcjy93y5fUAAAAA0GLsQYej/Bn0Fi5xN9XVisrJljs7W6lPzJI7Pb3Z6xKuulKx5w9V6dRp8uzcKVNVJSspqUXPDQAAAABBYbdZI0CHE4KUQXclJSlj8fvHlQ13p6cr7eXfkz0HAAAAEFasMFzizh70CBLMNmsnGmwTnAMAAAAIK/4YhQAdjghimzUAAAAAaNWadJ4yxjg4kEYE6BEkmG3WAAAAAKA1s5q2hg6TLDoBeiTxkEEHAAAAAEmNS9wlAnQ4wC4SRwYdAAAAQIRrGqCHSSV3AvQIYuw2a2TQAQAAAES4pnvQCdARcmTQAQAAAEASe9DhMH8GXWTQAQAAAEQ69qDDUb4MukUGHQAAAECko80anGRY4g4AAAAAkljiDqdRJA4AAAAAGvljIwJ0hBwZdAAAAABo5AvQjYcq7ggx2qwBAAAAQBMuq+G7IUBHqJFBBwAAAACb5WKJOxxi6mmzBgAAAAA2ew86GXSEmoc2awAAAABgczeExMZLBh0hZmfQo8igAwAAAIBl+UJiLxl0hJo/g+4mgw4AAAAAtFmDc+wMOgE6AAAAANhL3NmDjlAzvgw6ReIAAAAAoEkVd/agI+R8GXSKxAEAAACAJBd70OEQU08GHQAAAABstFmDY2izBgAAAACNXLRZg0NoswYAAAAAjSx/Bp0l7gg52qwBAAAAQCP/HnSWuCPkyKADAAAAQCO7zRpL3BFijW3WyKADAAAAAG3W4By7zRoZdAAAAACgzRocY7dZo4o7AAAAANhL3NmDjtDz7augSBwAAAAASPItcafNGkLPzqCzxB0AAAAA7DZrFIkLnZqaGp1zzjmyLEtr1651ejiOMWTQAQAAAKCRy2r47jXOjsMnIgL0Bx98UFlZWU4Pw3lk0AEAAACgkS+DTpu1EFm8eLGWLFmiOXPmOD0Ux9m/dGTQAQAAACDs2qyd1pHa3r17dccdd2jhwoVKSEg4rvvU1NSopqbGvl1WVnaqhhd6vgw6bdYAAAAAQFRxDxVjjCZMmKC77rpLgwYNOu77zZo1SykpKfZXly5dTuEoQ8t4aLMGAAAAADb6oLfM1KlTZVnWUb/y8vI0d+5clZeXa9q0aSf0+NOmTdPBgwftr507d56iV+KAen+RODLoAAAAABBubdZaXSp1ypQpmjBhwlGv6d69u5YtW6aVK1cqNjY24NygQYM0btw4/fGPf2z2vrGxsUfc53RgjGlSJK7VTTsAAAAABJ0VZkvcW12klpGRoYyMjGNe98wzz+jRRx+1b+/Zs0eXXXaZ3nzzTQ0ZMuRUDjE8NV2yQZE4AAAAALCruIfLEvfTNlLLzs4OuJ2UlCRJ6tGjhzp37uzEkJzlz56LInEAAAAAIMneg06bNYRUwC8cS9wBAAAAoEmbNTLoIdW1a9eGfdiRqmkGnSJxAAAAANCkzRoZdISQqSeDDgAAAAABwmwPOgF6pPA0ZtDtXn8AAAAAEMks3x70MGmzRqQWKZq0WLMsy9mxAAAAAEAYCLc2awToEcIuEkcFdwAAAABo4F/izh50hJQvg27RAx0AAAAAGviquBv2oCOU7CJxFIgDAAAAAEmS5fJt/yVAR0h5/Bl0lrgDAAAAgCSWuMMhZNABAAAAIJAvQDcE6AglQwYdAAAAAAL5O1wZ4+w4fAjQIwUZdAAAAAAIYLHEHU7wZ9BFBh0AAAAAGhCgwxH+Nmtk0AEAAACggashJDYeqrgjhBrbrJFBBwAAAABJsnwBugwBOkLJLhJHBh0AAAAAJLHEHQ4hgw4AAAAAgew2a2TQEUKNReLIoAMAAACAxBJ3OMWXQbfIoAMAAABAA3+AzhJ3hJKpJ4MOAAAAAAHYgw5HePwZdAJ0AAAAAJBEmzU4w86gs8QdAAAAACRJlj+Dzh50hJQ/g84SdwAAAABowB50OIIMOgAAAAAEcrPEHQ6gzRoAAAAABLJcvgSmlww6Qok2awAAAAAQyL8H3UsGHSFEmzUAAAAAOIy9B50AHaHkIYMOAAAAAAH8bdZY4o6QsovEkUEHAAAAAKlJmzWquCOUjN1mjQw6AAAAAEhqXOLuNc6Ow4cAPVKQQQcAAACAQHabNTLoCCH7F44MOgAAAABIos0anOLLoFtk0AEAAACgAW3W4ATDEncAAAAACOSyGr7TZg0hRZE4AAAAAAjkW+JOmzWEFhl0AAAAAAhAmzU4gjZrAAAAAHAYN23W4AQy6AAAAAAQyEWbNTjA1NNmDQAAAACaos0anOGhzRoAAAAABPAvcaeKO0LJzqBHkUEHAAAAAEn0QYdD/Bl0Nxl0AAAAAJAkWb496CxxR0jZGXQCdAAAAACQmrZZI4OOEDK+DDpF4gAAAADAx96DTgYdoeTLoFMkDgAAAAB8fAlMwx50hJKpJ4MOAAAAAE1Zvj3oFIlDaNFmDQAAAAAChdkSd6K1YzDGSJLKysocHknLlFVVq87rVVRNtepa+WsBAAAAgGCoq6pSudcrq7ZWiUGIk/xxoz+OPFGWOdl7RoitW7eqR48eTg8DAAAAANBK7Ny5U507dz7h+5FBP4Z27dpJknbs2KGUlBSHR4OjKSsrU5cuXbRz5061adPG6eHgKJir1oX5aj2Yq9aDuWpdmK/Wg7lqPU7XuTLGqLy8XFlZWSd1fwL0Y3C5GvYkpKSknFa/OKezNm3aMFetBHPVujBfrQdz1XowV60L89V6MFetx+k4Vy1J7FIkDgAAAACAMECADgAAAABAGCBAP4bY2FjNmDFDsbGxTg8Fx8BctR7MVevCfLUezFXrwVy1LsxX68FctR7MVfOo4g4AAAAAQBgggw4AAAAAQBggQAcAAAAAIAwQoAMAAAAAEAYI0I/iueeeU9euXRUXF6chQ4bo888/d3pIkPTxxx/ryiuvVFZWlizL0sKFCwPOG2P08MMPq2PHjoqPj9eoUaO0efNmZwYb4WbNmqXzzjtPycnJyszM1DXXXKONGzcGXFNdXa2JEycqLS1NSUlJ+slPfqK9e/c6NOLINW/ePPXr18/uRTp06FAtXrzYPs88ha8nnnhClmVp8uTJ9jHmK3zMnDlTlmUFfPXu3ds+z1yFl927d+vmm29WWlqa4uPjdfbZZ2v16tX2eT5jhIeuXbse8b6yLEsTJ06UxPsq3Hg8Hk2fPl3dunVTfHy8evTooUceeURNS6Hx3mpEgP493nzzTd1///2aMWOGvvrqK/Xv31+XXXaZiouLnR5axKuoqFD//v313HPPNXt+9uzZeuaZZ/TCCy/os88+U2Jioi677DJVV1eHeKRYsWKFJk6cqFWrVmnp0qWqq6vTpZdeqoqKCvua++67T++++67+8pe/aMWKFdqzZ49+/OMfOzjqyNS5c2c98cQT+vLLL7V69WpdfPHFuvrqq/XNN99IYp7C1RdffKEXX3xR/fr1CzjOfIWXPn36qLCw0P765JNP7HPMVfg4cOCALrjgAkVHR2vx4sX69ttv9d///d9q27atfQ2fMcLDF198EfCeWrp0qSTpuuuuk8T7Ktw8+eSTmjdvnp599llt2LBBTz75pGbPnq25c+fa1/DeasKgWYMHDzYTJ060b3s8HpOVlWVmzZrl4KhwOEnm7bfftm97vV7ToUMH89RTT9nHSktLTWxsrHnjjTccGCGaKi4uNpLMihUrjDENcxMdHW3+8pe/2Nds2LDBSDIrV650apjwadu2rXn55ZeZpzBVXl5uzjjjDLN06VJz0UUXmXvvvdcYw/sq3MyYMcP079+/2XPMVXj55S9/aYYNG/a95/mMEb7uvfde06NHD+P1enlfhaExY8aYW2+9NeDYj3/8YzNu3DhjDO+tw5FBb0Ztba2+/PJLjRo1yj7mcrk0atQorVy50sGR4VgKCgpUVFQUMHcpKSkaMmQIcxcGDh48KElq166dJOnLL79UXV1dwHz17t1b2dnZzJeDPB6PFixYoIqKCg0dOpR5ClMTJ07UmDFjAuZF4n0VjjZv3qysrCx1795d48aN044dOyQxV+HmnXfe0aBBg3TdddcpMzNT5557rn7/+9/b5/mMEZ5qa2v1pz/9Sbfeeqssy+J9FYbOP/98ffjhh9q0aZMkad26dfrkk080evRoSby3Dhfl9ADC0b59++TxeNS+ffuA4+3bt1deXp5Do8LxKCoqkqRm585/Ds7wer2aPHmyLrjgAvXt21dSw3zFxMQoNTU14Frmyxlff/21hg4dqurqaiUlJentt9/WWWedpbVr1zJPYWbBggX66quv9MUXXxxxjvdVeBkyZIheeeUV5ebmqrCwUP/1X/+l4cOHa/369cxVmNm6davmzZun+++/X7/61a/0xRdf6Be/+IViYmI0fvx4PmOEqYULF6q0tFQTJkyQxH8Dw9HUqVNVVlam3r17y+12y+Px6LHHHtO4ceMk8fn9cAToAEJi4sSJWr9+fcDeS4SX3NxcrV27VgcPHtRf//pXjR8/XitWrHB6WDjMzp07de+992rp0qWKi4tzejg4Bn+GSJL69eunIUOGKCcnR3/+858VHx/v4MhwOK/Xq0GDBunxxx+XJJ177rlav369XnjhBY0fP97h0eH7/OEPf9Do0aOVlZXl9FDwPf785z/rtdde0+uvv64+ffpo7dq1mjx5srKysnhvNYMl7s1IT0+X2+0+otrj3r171aFDB4dGhePhnx/mLrxMmjRJ7733npYvX67OnTvbxzt06KDa2lqVlpYGXM98OSMmJkY9e/bUwIEDNWvWLPXv31+/+93vmKcw8+WXX6q4uFgDBgxQVFSUoqKitGLFCj3zzDOKiopS+/btma8wlpqaql69eik/P5/3Vpjp2LGjzjrrrIBjZ555pr0lgc8Y4Wf79u364IMPdPvtt9vHeF+FnwceeEBTp07VDTfcoLPPPls//elPdd9992nWrFmSeG8djgC9GTExMRo4cKA+/PBD+5jX69WHH36ooUOHOjgyHEu3bt3UoUOHgLkrKyvTZ599xtw5wBijSZMm6e2339ayZcvUrVu3gPMDBw5UdHR0wHxt3LhRO3bsYL7CgNfrVU1NDfMUZi655BJ9/fXXWrt2rf01aNAgjRs3zv6Z+Qpfhw4d0pYtW9SxY0feW2HmggsuOKIV6KZNm5STkyOJzxjhaP78+crMzNSYMWPsY7yvwk9lZaVcrsCw0+12y+v1SuK9dQSnq9SFqwULFpjY2FjzyiuvmG+//dbceeedJjU11RQVFTk9tIhXXl5u1qxZY9asWWMkmaefftqsWbPGbN++3RhjzBNPPGFSU1PNokWLzL///W9z9dVXm27dupmqqiqHRx557r77bpOSkmI++ugjU1hYaH9VVlba19x1110mOzvbLFu2zKxevdoMHTrUDB061MFRR6apU6eaFStWmIKCAvPvf//bTJ061ViWZZYsWWKMYZ7CXdMq7sYwX+FkypQp5qOPPjIFBQXm008/NaNGjTLp6emmuLjYGMNchZPPP//cREVFmccee8xs3rzZvPbaayYhIcH86U9/sq/hM0b48Hg8Jjs72/zyl7884hzvq/Ayfvx406lTJ/Pee++ZgoIC89Zbb5n09HTz4IMP2tfw3mpEgH4Uc+fONdnZ2SYmJsYMHjzYrFq1yukhwRizfPlyI+mIr/HjxxtjGlo1TJ8+3bRv397ExsaaSy65xGzcuNHZQUeo5uZJkpk/f759TVVVlbnnnntM27ZtTUJCgvnRj35kCgsLnRt0hLr11ltNTk6OiYmJMRkZGeaSSy6xg3NjmKdwd3iAznyFj7Fjx5qOHTuamJgY06lTJzN27FiTn59vn2euwsu7775r+vbta2JjY03v3r3NSy+9FHCezxjh4x//+IeR1Oy/P++r8FJWVmbuvfdek52dbeLi4kz37t3NQw89ZGpqauxreG81sowxxpHUPQAAAAAAsLEHHQAAAACAMECADgAAAABAGCBABwAAAAAgDBCgAwAAAAAQBgjQAQAAAAAIAwToAAAAAACEAQJ0AAAAAADCAAE6AAAAAABhgAAdAACcFl555RVZlqXVq1c7PRQAAE4KAToAAC3kDwz9X3FxcerVq5cmTZqkvXv3BvW5Hn/8cS1cuDCoj3kiZs6cKcuy1L59e1VWVh5xvmvXrvrhD3/owMgAAGj9CNABAAiS3/zmN3r11Vf17LPP6vzzz9e8efM0dOjQZgPZk+V0gO5XXFysefPmOT0MAABOKwToAAAEyejRo3XzzTfr9ttv1yuvvKLJkyeroKBAixYt+t77VFRUhHCEwXPOOefoqaeeUlVVldNDCbnWOmcAgPBHgA4AwCly8cUXS5IKCgokSRMmTFBSUpK2bNmiK664QsnJyRo3bpykhqBvypQp6tKli2JjY5Wbm6s5c+bIGGM/nmVZqqio0B//+Ed7Of2ECRPs82vWrNHo0aPVpk0bJSUl6ZJLLtGqVasCxuRfjv/pp5/q/vvvV0ZGhhITE/WjH/1IJSUlx/3aHn74Ye3du/eYWfSPPvpIlmXpo48+Cji+bds2WZalV155xT7m//fZsWOHfvjDHyopKUmdOnXSc889J0n6+uuvdfHFFysxMVE5OTl6/fXXm33OyspK/fznP1daWpratGmjW265RQcOHDjiusWLF2v48OFKTExUcnKyxowZo2+++SbgmqPNGQAAwUaADgDAKbJlyxZJUlpamn2svr5el112mTIzMzVnzhz95Cc/kTFGV111lX7729/q8ssv19NPP63c3Fw98MADuv/+++37vvrqq4qNjdXw4cP16quv6tVXX9XPf/5zSdI333yj4cOHa926dXrwwQc1ffp0FRQUaMSIEfrss8+OGNt//ud/at26dZoxY4buvvtuvfvuu5o0adJxv7bhw4fr4osv1uzZs4OaRfd4PBo9erS6dOmi2bNnq2vXrpo0aZJeeeUVXX755Ro0aJCefPJJJScn65ZbbrH/+NHUpEmTtGHDBs2cOVO33HKLXnvtNV1zzTUBf+x49dVXNWbMGCUlJenJJ5/U9OnT9e2332rYsGHatm1bwOM1N2cAAJwSBgAAtMj8+fONJPPBBx+YkpISs3PnTrNgwQKTlpZm4uPjza5du4wxxowfP95IMlOnTg24/8KFC40k8+ijjwYcv/baa41lWSY/P98+lpiYaMaPH3/EGK655hoTExNjtmzZYh/bs2ePSU5ONhdeeOERYx01apTxer328fvuu8+43W5TWlp61Nc6Y8YMI8mUlJSYFStWGEnm6aefts/n5OSYMWPG2LeXL19uJJnly5cHPE5BQYGRZObPn28f8//7PP744/axAwcOmPj4eGNZllmwYIF9PC8vz0gyM2bMOOK1DRw40NTW1trHZ8+ebSSZRYsWGWOMKS8vN6mpqeaOO+4IGFNRUZFJSUkJOP59cwYAwKlABh0AgCAZNWqUMjIy1KVLF91www1KSkrS22+/rU6dOgVcd/fddwfcfv/99+V2u/WLX/wi4PiUKVNkjNHixYuP+rwej0dLlizRNddco+7du9vHO3bsqJtuukmffPKJysrKAu5z5513yrIs+/bw4cPl8Xi0ffv24369F154oUaOHBn0LPrtt99u/5yamqrc3FwlJibq+uuvt4/n5uYqNTVVW7duPeL+d955p6Kjo+3bd999t6KiovT+++9LkpYuXarS0lLdeOON2rdvn/3ldrs1ZMgQLV++/IjHPHzOAAA4FaKcHgAAAKeL5557Tr169VJUVJTat2+v3NxcuVyBfwuPiopS586dA45t375dWVlZSk5ODjh+5pln2uePpqSkRJWVlcrNzT3i3Jlnnimv16udO3eqT58+9vHs7OyA69q2bStJze7VPpqZM2fqoosu0gsvvKD77rvvhO7bnLi4OGVkZAQcS0lJUefOnQP+oOA/3tx4zzjjjIDbSUlJ6tixo710ffPmzZIaawQcrk2bNgG3m5szAABOBQJ0AACCZPDgwRo0aNBRr4mNjT0iaHeC2+1u9rhpsk/7eFx44YUaMWKEZs+erbvuuuuI84cH1X4ej+eExhWs8UqS1+uV1LAPvUOHDkecj4oK/HgULnMGADj9EaADAOCwnJwcffDBByovLw/Ioufl5dnn/ZoLeDMyMpSQkKCNGzcecS4vL08ul0tdunQ5BSNvMHPmTI0YMUIvvvjiEef8mfnS0tKA4yeylP5Ebd68WSNHjrRvHzp0SIWFhbriiiskST169JAkZWZmatSoUadsHAAAnCj+HAwAgMOuuOIKeTwePfvsswHHf/vb38qyLI0ePdo+lpiYeESw63a7demll2rRokUBFcj37t2r119/XcOGDTti2XYwXXTRRRoxYoSefPJJVVdXB5zLycmR2+3Wxx9/HHD8+eefP2Xjeemll1RXV2ffnjdvnurr6+1/x8suu0xt2rTR448/HnCd34m0mwMAIJjIoAMA4LArr7xSI0eO1EMPPaRt27apf//+WrJkiRYtWqTJkyfbGV9JGjhwoD744AM9/fTTysrKUrdu3TRkyBA9+uijWrp0qYYNG6Z77rlHUVFRevHFF1VTU6PZs2ef8tcwY8aMgKy1X0pKiq677jrNnTtXlmWpR48eeu+991RcXHzKxlJbW6tLLrlE119/vTZu3Kjnn39ew4YN01VXXSWpYY/5vHnz9NOf/lQDBgzQDTfcoIyMDO3YsUN///vfdcEFFxzxxxIAAEKBAB0AAIe5XC698847evjhh/Xmm29q/vz56tq1q5566ilNmTIl4Nqnn35ad955p37961+rqqpK48eP15AhQ9SnTx/985//1LRp0zRr1ix5vV4NGTJEf/rTnzRkyJBT/hpGjBihiy66SCtWrDji3Ny5c1VXV6cXXnhBsbGxuv766/XUU0+pb9++p2Qszz77rF577TU9/PDDqqur04033qhnnnkmYHvATTfdpKysLD3xxBN66qmnVFNTo06dOmn48OH62c9+dkrGBQDAsVjmZKqrAAAAAACAoGIPOgAAAAAAYYAAHQAAAACAMECADgAAAABAGCBABwAAAAAgDBCgAwAAAAAQBgjQAQAAAAAIAwToAAAAAACEAQJ0AAAAAADCAAE6AAAAAABhgAAdAAAAAIAwQIAOAAAAAEAYIEAHAAAAACAMEKADAAAAABAGCNABAAAAAAgDBOgAAAAAAIQBAnQAAAAAAMIAAToAAAAAAGGAAB0AAAAAgDDw/wEE6MEn7y3zDAAAAABJRU5ErkJggg==", "text/html": [ "\n", "
\n", "
\n", " Figure\n", "
\n", " \n", "
\n", " " ], "text/plain": [ "Canvas(toolbar=Toolbar(toolitems=[('Home', 'Reset original view', 'home', 'home'), ('Back', 'Back to previous …" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "# Initialize figure\n", "ifig=1;plt.close(ifig);\n", "fig, ax = plt.subplots(num=ifig,figsize=(10, 6))\n", "\n", "for mc in range(mc_runs):\n", " z_plot, y_plot, el_name_plot = [], [], []\n", " \n", " for i in range(n_el): \n", " if i not in {0, 43, 61}: # Skip elements with negligible solar abundance\n", " z_plot.append(z_el[i])\n", " y_value = -20.\n", " if el_abu_sol[i] > 1e-30 and el_abu_0[i] > 1e-30:\n", " y_value = np.log10(el_abu[mc, i] / el_abu_sol[i])\n", " if i == 3:\n", " y_value = np.log10((el_abu[mc, i] + el_abu[mc, i+1]) / el_abu_sol[i]) # Li = Li+Be\n", " y_plot.append(y_value)\n", " el_name_plot.append(el_name[i])\n", " \n", " plt.plot(z_plot, y_plot, linestyle='None', marker='o', markerfacecolor=CB_color[6], markersize=8, \n", " label='multi-zone MC simulations' if mc == 0 else \"\")\n", "\n", "# Benchmark model\n", "z_plot, y_plot, el_name_plot = [], [], []\n", "for i in range(n_el): \n", " if i not in {0, 43, 61}: \n", " z_plot.append(z_el[i])\n", " y_value = -20.\n", " if el_abu_sol[i] > 1e-30 and el_abu_0[i] > 1e-30:\n", " y_value = np.log10(el_abu_0[i] / el_abu_sol[i])\n", " if i == 3:\n", " y_value = np.log10((el_abu_0[i] + el_abu_0[i+1]) / el_abu_sol[i]) # Li = Li+Be\n", " y_plot.append(y_value)\n", " el_name_plot.append(el_name[i])\n", "\n", "plt.plot(z_plot, y_plot, color=CB_color[7], marker='*', markerfacecolor=CB_color[7], markersize=14,\n", " label='benchmark multi-zone model')\n", "\n", "# Formatting\n", "plt.ylim(-5, 5)\n", "plt.xlim(0, n_el)\n", "plt.xlabel('Proton Number', fontsize='large')\n", "plt.ylabel('$\\log_{10}\\,(X/X_\\odot)$', fontsize='large')\n", "plt.legend(numpoints=1, fontsize=14, frameon=False, loc='upper right')\n", "plt.hlines(0, 0, n_el, color='lightgray', lw=2)\n", "plt.tight_layout()\n", "\n", "\n", "# Version that is a highlight to show \"nuclear imapct\" and \"nuclear impact + convection impact\"" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Pearson correlation coefficients" ] }, { "cell_type": "code", "execution_count": 11, "metadata": {}, "outputs": [], "source": [ "pnuclei = ['Se-74', 'Kr-78', 'Sr-84', 'Mo-92', 'Mo-94', 'Ru-96', 'Ru-98', 'Pd-102', 'Cd-106', 'Cd-108',\n", " 'In-113', 'Sn-112', 'Sn-114', 'Sn-115', 'Te-120', 'Xe-124', 'Xe-126', 'Ba-130', 'Ba-132',\n", " 'La-138', 'Ce-136', 'Ce-138', 'Sm-144', 'Gd-152', 'Dy-156', 'Dy-158', 'Er-162', 'Er-164', 'Yb-168', 'Hf-174', \n", " 'Ta-180', 'W-180', 'Os-184', 'Pt-190', 'Hg-196']" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "#### Isotopes" ] }, { "cell_type": "code", "execution_count": 12, "metadata": { "scrolled": true }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "\n", "Isotope Index: 584 Isotope Name: Mo-92\n", "549 Zr-90 0.1556 \n", "569 Nb-93 -0.9372 \n", "585 Mo-93 -0.8190 \n", "586 Mo-94 -0.9109 \n", "587 Mo-95 -0.4440 \n", "588 Mo-96 -0.2660 \n", "625 Ru-100 -0.1744 \n", "715 Cd-110 -0.2040 \n", "716 Cd-111 -0.1641 \n" ] }, { "name": "stderr", "output_type": "stream", "text": [ "/usr/local/lib/python3.6/dist-packages/scipy/stats/stats.py:3845: PearsonRConstantInputWarning: An input array is constant; the correlation coefficent is not defined.\n", " warnings.warn(PearsonRConstantInputWarning())\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\n", "Isotope Index: 586 Isotope Name: Mo-94\n", "569 Nb-93 0.9850 \n", "584 Mo-92 -0.9109 \n", "585 Mo-93 0.8696 \n", "587 Mo-95 0.4786 \n", "588 Mo-96 0.3036 \n", "\n", "Isotope Index: 621 Isotope Name: Ru-96\n", "589 Mo-97 -0.6998 \n", "605 Tc-97 -0.6999 \n", "623 Ru-98 -0.4358 \n" ] }, { "name": "stderr", "output_type": "stream", "text": [ "/usr/local/lib/python3.6/dist-packages/scipy/stats/stats.py:3845: PearsonRConstantInputWarning: An input array is constant; the correlation coefficent is not defined.\n", " warnings.warn(PearsonRConstantInputWarning())\n", "/usr/local/lib/python3.6/dist-packages/scipy/stats/stats.py:3845: PearsonRConstantInputWarning: An input array is constant; the correlation coefficent is not defined.\n", " warnings.warn(PearsonRConstantInputWarning())\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\n", "Isotope Index: 623 Isotope Name: Ru-98\n", "589 Mo-97 0.3236 \n", "605 Tc-97 0.3236 \n", "621 Ru-96 -0.4358 \n" ] }, { "name": "stderr", "output_type": "stream", "text": [ "/usr/local/lib/python3.6/dist-packages/scipy/stats/stats.py:3845: PearsonRConstantInputWarning: An input array is constant; the correlation coefficent is not defined.\n", " warnings.warn(PearsonRConstantInputWarning())\n" ] }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "fcacf539f7ab4af28c401ff91ff8039f", "version_major": 2, "version_minor": 0 }, "image/png": "iVBORw0KGgoAAAANSUhEUgAAAoAAAAHgCAYAAAA10dzkAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOydd1gUV9vG7+1LXUSaKNUSUewodsQCtsSaRBN7NEYTxRaNviaWfLHkNTEaXyOJBk3UKEajsYMKYsdo7AWkqxSVXpZt5/uD7IRlCws7wILnd117KTNnzjkzs3PvmVPuh0MIIaBQKBQKhUKhvDZw67oCFAqFQqFQKJTahTYAKRQKhUKhUF4zarUBGBMTg8uXL0OlUtVmsRQKhVIrUI2jUCj1BU5tzgHkcrngcDjw9PTE4sWLMXXqVAiFwtoqnkKhUGoUqnEUCqW+UKsNwH79+oEQgvv37yM7OxsuLi54/vx5bRVPoVAoNQrVOAqFUl/g12Zh0dHRzP/v3buHixcv1mbxFAqFUqNQjaNQKPWFWu0BpFAoFAqFQqHUPawuAklNTUV+fr7BNAUFBUhNTWWzWAqFQqkVqMZRKJSGAqsNQC8vL2zatMlgms2bN8PLy4vNYikUCqVWoBpHoVAaCqw2AAkhqGxEmY44UyiU+grVOAqF0lCodSPop0+fwsbGpraLpVAolFqBahyFQqkPmLwKePXq1Rp/l18FVx6lUom0tDTs27cP3bt3N7VYCoVCqRWoxlEolIaIyauAudx/OxE5HE6lwx+urq74448/0LVrV1OKpVAolFqBahyFQmmImNwAPH/+PICyeS/9+/fHlClTMHnyZK10PB4P9vb2aN26tYagUigUijlDNY5CoTREWPUBXLVqFQIDA9G3b1+2sqRQKBSzgWochUJpKLD6mrpixYp6IYy7d+/GzJkz4efnB5FIBA6Hg507d1Y5H5VKhe+//x7t2rWDhYUFHB0dMX78eCQmJrJfaQqFUudQjaMaR6E0FFiPBCKTyXD48GFcv34dubm5UCqV2oVyONixYwebxVYJT09PpKSkwMHBAVZWVkhJSUFYWBimTJlSpXxmzJiB7du3o23bthg2bBieP3+O8PBwWFtb4+rVq2jZsmXNnACFQqkzqMZRjaNQGgSERZKTk0nLli0Jl8slHA5H74fL5bJZbJWJjIwkycnJhBBC1q5dSwCQsLCwKuVx7tw5AoD07duXlJaWMttPnDhBAJCgoCA2q0yhUMwAqnFU4yiUhoLJNjDlmT9/Pp48eYKJEydi2rRpaNasGfh8VotghYEDB5qcx08//QQA+PLLLyEUCpntQ4YMQb9+/RAREYHU1FS4u7ubXBaFQjEPqMZRjaNQGgqsKte5c+cwYMAA7Nq1i81szZLo6GhYWVmhV69eWvuCg4MRHR2N8+fPY+LEiXVQOwqFUhNQjSuDahyFUv9htQGoUqnQqVMnNrM0S4qKipCeng5fX1/weDyt/ep5MfHx8QbzKS0tRWlpKfO3SqVCdnY2GjduDA6Hw26lKZTXEEIICgoK4Orqyoo1C9W4MozROKpvFErNYqq+sdoA9Pf3x8OHD9nM0izJy8sDAEgkEp37bW1tNdLpY+3atVi1ahW7laNQKFqkpaWhWbNmJudDNa4MYzSO6huFUjtUV99YbQCuW7cOffv2xe+//46xY8eymXWDZOnSpViwYAHzd15eHtzd3ZGWlsYILIVCqT75+flwc3NjLTYv1TjjqQt9O3v2LEoTYjD01XeVpj3eeB7EzftiwIABNVIXCqWmMVXfWG0AHj9+HIGBgXj33XcREBCAzp0763zQORwOPv/8czaLrlXUb8X63n7z8/M10ulDJBJBJBJpbbe1taUNQAqFRdgacqQaV4YxGlcX+ibg82AjKIStdrFaOAqKIOXzqNZS6j3V1TdWG4ArV65k/h8dHa03aHp9F0crKys0adIESUlJUCqVWnNk1PNiqEcWZcOGDQgLCwOHw8Fnn32GCRMmAACOHTuGhQsXQqVSYcmSJZg+fXod15RiDFTjyjBXjROKxCjmNzYqbRHfHhYicQ3XqOGjS+Nyc3MxcOBAKBQKKBQKhISEYMaMGXVdVUoFWG0ARkVFsZmdWRMQEIB9+/bh0qVLWpEBTp8+DQD1ImIApea4e/cu9u7dixs3boAQgsDAQAwfPhzW1tZYsGABoqKiIJFI0KVLF4waNQqNGxv3w0WpO6jGlWGuGufp6YnoZG/k8pxgp8zSmy6X54xMgTcCvbxqsXYND30aZ2Njg5iYGFhaWqKoqAi+vr4YPXo01Tgzg9UGYEBAAJvZmQUvX77Ey5cv4eDgAAcHB2b7hx9+iH379uHzzz9HZGQk45N18uRJREdHIygoCB4eHnVVbYoZ8PDhQ/To0QNicVkvQ4cOHXDq1Cm4u7ujbdu2aNq0KYAyX7WIiAiMHz++Rurx6tUr+Pj4IDY2Fp6enjVSBluMGzcOXbt2xcKFC+u6KjqhGmfeGuft7Y2rly/immQsBmX/AC60A12pwME1yRiIhXx4VaEBqFAokJiYiOTkZMhKpRCKxPD09IS3t7dZekHWBvo0bty4cbC0tARQthqcEAJSjaBj/fr1Q8eOHfHdd99V6TiqecbBaizg+sL27dsxZcoUTJkyBQcOHNDatn37dibtli1b4OPjgy1btmjkERgYiOnTpyMmJgadO3fGkiVLMGnSJIwcORL29vb4/vvva/WcKOaHr68voqOjkZubi5ycHERHR+PZs2d4/vw50/gDgKZNm+LZs2eIjo4Gh8PR+wkMDKxWPb766iuMGDGCEcKVK1dq5d26dWu9x69btw4cDgfz5s3T2F5QUIB58+bBw8MDFhYW6NmzJ65fv16tOqpZvnw5vvrqq0pX0FMM87pqHJ/PR0DgAKSKOyDSfhZyeU4a+3N5zoi0n4VUcQcEBA4wuuGWnJyMvbt/QXR0NKTx5yBOPApp/DlER0dj7+5fkJKSUhOnY/bo0zgAyM3NRYcOHdCsWTN8+umnzMvFlClTwOFwsG7dOo28Dh8+zNpc3epq3rNnzzBhwgQ0btwYFhYWaNeuHf766y9mf0PTPNZfWxQKBb7//nv89ttvePToEYqLi6FQKAAAt27dwo8//oh58+ahVatWbBdtNBcvXtQycr106RIuXbrE/G3MnKzQ0FC0a9cOP/74IzZt2gRra2uMGjUKX331FZo3b856vSn1izZt2mDu3Lno378/JBIJunfvrtNTTU3Pnj2Rnp6utf3PP//ERx99hNmzZ+s9ViaTaURrUFNcXIwdO3YwQ3Zq2rZtizNnzjB/6/shvH79OkJDQ9G+fXutfdOnT8e9e/fw66+/wtXVFbt378bAgQPx4MEDjQZuefr168c0QnTh6+uL5s2bY/fu3fj444/1nW6dQjXOvDXOw8MDg4KCEBPNR7i4A5xlibBSZqOIZ49MoTfEQj6CAgcY3XuZnJyMyIgIuEtvwz/vd42h5VyeE65JxiLitAKDgoLMvreJbQxpnJ2dHW7fvo3MzEyMHj0aY8eOhbOzMwBALBZj/fr1mDlzJho1asRqnaqreTk5OejVqxcCAwNx8uRJODo6Ij4+XqN+DU7z2IwrV1xcTHr37k24XC5xcnIiTZs21YiJmZubS8RiMfnPf/7DZrENhry8PAKA5OXl1XVVKDXABx98QI4dO0YuXbpERo4cyWwPCQkhe/bs0XnMgwcPiI2NjdYzExAQQD7++GMSEhJCGjduTPr166fz+AMHDhBHR0eNbStWrCAdOnSotL4FBQWkZcuWJDIykgQEBJCQkBBmX3FxMeHxeOTYsWMax3Tu3Nng8x0QEFBpTNpVq1aR3r17V1o/Y2D7maIaV31qW9/kcjmJi4sj4eHhJHTbD2TPnj0kLi6OyOXyKuWxK2wHObVpNlGu4BCyAlof5QoOObVpNtkVtqNKeTdE1BpXkVmzZpEDBw4QQgiZPHkyGT58OGndujX59NNPmTR//PEHqdgkUevcxx9/TGxtbUnjxo3J8uXLiUql0luH6mrekiVLDOqOOWqeqc8Uq0PAa9aswaVLl7B27VpkZGRovWFKJBIEBARotcwplIZKVlZZb8Hjx48RGxuL4OBgdOvWDffu3cOzZ89QWFiIkydPIjg4WOvY3NxcjBgxAv369cOXX36ptX/Xrl0QCoW4dOkStm3bprP8CxcuoEuXLlrb4+Pj4erqCm9vb7z//vtITU3VSvPxxx9j2LBhOuPKKhQKKJVKZu6PGgsLC1y8eFH3xTCSbt26ITY2ViOKhLlANa7+wOfz0bJlS7zxxhsAhwsXFxe0bNmySvP1EhMTIZUp4J/3u875hADABYF/3kFIZQokJSWxVf16gy6Ny8zMREFBAYAyK6GYmJiy+/APPB4Pa9aswffff4+nT58azH/Xrl3g8/mIjY3Fpk2b8O2332pMYahIdTXvzz//hJ+fH95++204OTmhU6dOTDxsoGFqHqtDwPv370dgYCAWL14MQLc3jbe3N/7++282i6VQzJYRI0YgLy8PVlZWCAsLY358vvnmGwQGBkKlUmHx4sVaq+NUKhXee+898Pl87NmzR+ez1LJlS3z99dcGy09JSYGrq6vGNn9/f+zcuRNvvPEG0tPTsWrVKvTp0wf37t1jDEX37duHmzdv6p3fYmNjgx49euDLL7+Ej48PnJ2d8dtvv+HKlSto0aKF0ddHF66urpDJZMjIyDC7RQZU4+of6ntEKixCIIRALpejuLhY56ekpARZWVlwliUYXFEMAHbKTDjLE5GU5Gl21jg1jS6NS0lJwYcffsgs/pgzZw7atWuncdyoUaPQsWNHrFixAjt27NCbv5ubGzZu3AgOh4M33ngDd+/excaNG/XaylRX8xITE/HDDz9gwYIFWLZsGa5fv465c+dCKBRi8uTJDVLzWG0ApqamYtSoUQbT2NjY0AnelNeGMWPGICwsDCUlJXj48CG6dOmC3NxcrF69GpaWllAoFDobEcuWLcOVK1cQGxur1+Vd11tuRUpKSrTeWIcMGcL8v3379vD394eHhwfCw8PxwQcfIC0tDSEhIYiMjNQ6tjy//vorpk2bhqZNm4LH46Fz584YP348bty4waRZs2YN1qxZo1Gfq1ev4pNPPmG2PXjwAO7u7szfFhYWAMrm8pgbVOPMH0IIpFIp05B78uQJACAhIQEqlYpp3JWfu6k/MxWslNlGlWulyIa0VGpq9esdujSuSZMmsLOzQ1ZWFvh8Puzt7XUeu379evTv3x+LFi3Sm3/37t01NLJHjx745ptvdPpTAtXTPKDspdvPz4/Rq06dOuHevXvYtm0bJk+eDKDhaR6rDUAbGxumO1gfCQkJcHR0ZLNYCsUsqa5H1r59+7BhwwYcP37cYG+ClZVVpXVwcHBATk6OwTR2dnZo1aoV80N548YNZGVloXPnzkwapVKJmJgYbNmyBaWlpeDxeGjevDnOnz+PoqIi5Ofno0mTJnj33Xfh7e3NHPfRRx/hnXfeYf5+//33MWbMGIwePZrZVvFtPTu77AfXHHWCalzdoVQqmYabvh479f8r9vap0TVEKxAIYGlpqfPz4MEDFD2lxtL60KdxfD4f3333HTp27IiMjAx06dIFQ4cO1dKsvn37Ijg4GEuXLtW7SKKqVEfzAKBJkyZo06aNRjofHx8cPHiQ+buhaR6rDcDu3bvj6NGjyM3NhZ2dndb+tLQ0nDhxotI3aAqlIVAdj6xbt27hgw8+wLp163TOCyzP77//DgAGPbI6deqE3bt3a2yr6JFVWFiIhIQETJw4EQAwYMAA3L17V+OYqVOnonXr1liyZInWW7eVlRWsrKyQk5OD06dPawxL29vba7z9W1hYwMnJSWPIpKIP1r1799CsWTMNTzpzgWoc+8hkMoMNO/WnqvOjxGIxLC0tmR9XoGylffkGnoWFBQQCgd48CCGIzsykxtJ6MKRxTZo0AQC4uLjAwcEB2dnZOl9a161bh44dO2rMESzPtWvXNP6+evUqWrZsqddRQa15hrwAK2oeAPTq1QuPHz/WSBcXF6dzSLY6mrd8+XK9fn91pXmsNgA//fRTBAYGYsCAAdi8eTPTvV5cXIwrV65gzpw5UCgUGgHCKZSGiq+vL1atWoXc3NyyH5LoaMYaJDc3FwEBAYiPj8d///tfODg44OXLl+jduzeKi4uRk5ODjIwMJq+TJ09i2rRpVTZTVb9d5+TkMHYG6oUoAHD58mVMmDABOTk5CAkJQUhICADgjTfewKNHj5h8rKysIBKJsG7dOpw8eRLFxcVwcXHB/Pnz8eabb+LJkydYsGABLCws8NVXXyEkJASdOnXCpk2b0LVrV4N1XL58Ofr27Yvp06dDIpHgwoULCAoKqtJ51hZU40wnKioKHA6HadhVOgxbDi6XCwsLC709dupGnaWlJbjcsjWOcXFxiI6OhpubG3x9fatU15o0lm4IGNI4NTdu3IBSqYSbmxuAMouihIQEfPTRR9i2bRvatWuH999/H5s3bwZQNmdz8uTJ2LlzJ4CyaRcLFizAzJkzcfPmTXz//ff45ptv9NZJrXmff/454wW4aNEivPnmm/jjjz+wadMmJm1ISAi2bt2KR48eYf78+ejRowcCAwPx5MkTZGZmQqFQYPTo0SCEgMPh4PTp0yCE4I033sCTJ08wadIk5OXl4d69e5Veq4o6V5660jxWG4B9+/bFli1bEBISohEiSD2HicfjYevWrUbNXaJQ6jtV9cg6deoUioqKAGjPI6ku7dq1Q+fOnREeHo6ZM2eiuLgYd+7cQXJyMt544w04OjrCzs4OLVu2RExMDHNcxZWScrkc4eHhGDNmDOORtX37dmzYsAGffvop7O3tYW1tDTs7O4SGhhrtkQVo+mB98MEHOHz4ME6dOmXyudcEVONMJzk5mZnzpEYgEFTasLO0tIRIJKqyWbA6vUqlqnJd1cbSEacViLSfpcMH0BnXJGOQKu6AoCoYSzcUKvM6zc7OxqRJkzRW0wJlvWL79u3Dxo0bYWFhgdWrV2Pfvn0AoDE3DgAmTZqEkpISdOvWDTweDyEhIfjwww/11qldu3bo0KEDwsLCmNCNT58+xfjx45GZmQk+n4+hQ4di6dKl8PT0ZO5Z165d8d5772Hv3r3gcDhwd3fHoEGDsGfPHnz//feYO3cu8vLysHTpUjx9+hQ2NjaQyWRo27Yt87JhCH1+f1KptO40r1rmMZXw4MEDMnfuXOLv709atmxJunTpQmbPnk3u3btXE8U1GKgPYMOmrjyyjh07Rnx8fIhSqTQ7jyw1ah+srVu3kkGDBlWa3lhq6pmiGld11Pfi8uXL5MmTJ+T58+ckNzeXyGSyGi33yZMnJDQ0lPz555/VziMpKYnsCttBQkNDyR/fLyaR380gh7csIaGhoWRX2A6SnJzMYo3rL+U1TiqVkj59+pBffvlFI83kyZPJiBEjiK+vL9m9ezezfc+ePaR9+/ZkxIgRZPLkycx2qVRK5syZQxwdHYlIJCK9evUisbGxBuvx2WefER6PR5RKpcb2yrRu2LBhZNq0aRrbRo8eTd5//32NbYY8Ug2hy+/PFM0zKx9ANT4+Pti0aROuXr2KuLg4/PXXX/jf//6Htm3b1kRxFIrZYg4eWcOGDcOHH36IZ8+ema1HltoHC4BZhhirCNW46tO2bVs0b94cTZo0gUQiMTgHjw302cBUBU9PT7w3YRJatmyJLGFzpNv1hEXL/ggMDMR7EyaZnV1RbaJL4wghmDJlCvr3768xz64806ZNQ1hYGPP3zz//jKlTp2qlW7x4MQ4ePIhdu3bh5s2baNGiBYKDgzXmdlakuLgYLVu2ZMLSlceQ1vXs2RNnz55FXFwcAOD27du4ePGixipiwLBHqiF0+f0JBIK607xqNRspNQLtAWx4uLu7E6FQSMRiMVm9ejUhhJAzZ84QCwsLIhaLiUgk0ni7VL8dE0JI9+7dmbdRfT2APj4+Gj1+S5YsIT4+PnrrM2LECK033BMnTpDw8HBy+/ZtcurUKdKjRw/i7u5O8vPzmTQikYiIRCKydOlScvPmTRIaGkrEYjHZuXMnk6ZHjx4kICCAPHv2jCgUCvLrr78SLpdLWrVqVel1un37NgHAek8KfabMh7q6F0lJSWU9d3/8YXJed+/eJaGhoSQyMtL0ijUQdGnciRMnCAAiFouJWCwmzZo1I3fu3CGE/KtxWVlZRCQSkeTkZJKcnEzEYjF58eKFRg9gYWEhEQgEGpGSZDIZcXV1JV9//bXeOunSOXW9DGmdUqkkS5YsIRwOh/D5fMLhcMiaNWs08vjtt9+Ir68vKSkpIYSQKvUAsq1zpj5TJk1YmDZtGjgcDtasWQNnZ2dMmzbNqOM4HI5B40cKpSFw9+5dNG7cGI8fP2YsEubMmYN+/frh5cuXGjYwr1690jKDbmgeWXv27MHMmTOZsk6ePIk+ffoAMF/vP6px9R/1/CxiQg9gRao6D7Ghok/jgoKCUFRUpKFxFa1PHB0dMWzYMOzcuROEEAwbNkxrFWxCQgLkcjl69erFbBMIBOjWrRsePnyot166dA6oXOvCw8OxZ88e7N27F23btsWtW7cwb948uLq6YvLkyUZ5pNYnnTOpAbhz505wOBwsWbIEzs7OzKqdyqDiSHkdqI4NTHlq0iPLkEVCTXlkvfXWW/D392fSl18YMnv2bADm5/1HNa7+Y8oikIqo86ANwDJM1bhp06YxBsn/+9//WKuXg4MDMjIy4OTkpFPj1FTUuk8//RSfffYZxo0bB6BsQUlKSgrWrl2LyZMnG+WRakjn9Pn9VbTCqi1MagCqTTXVJ/g6xkGkUPRRVRsYQNsioaJHVkWLhOp6ZH311VeMRYKalStXYtWqVczff/31F/744w88evSI8chSKpVYuXIldu/ejbS0NPD5fHz55ZdYvnw5OByOVh4A4OzsDKBspay+qCZ9+vTB2bNna3w+WFWhGlf/UfcAstEAVEMbgGWYqnH/+9//IJPJwOFwEBwcjI8//hhHjhxB8+bNAZS9VKrjnavnWcrlcly/fh3z5s3TW69OnTph/fr1GDlypEGNA8q+H+p5iuqeuc8//xy7d+9GRkYG05AlhGDAgAGYNWsWfvjhB408bGxscOnSJfB4PIM6p8/vz5BFTI3Cxjg0hR3ofKWGx7Zt20inTp1Iv379yKRJk8jGjRs19mdkZJCePXuSjIwMQgghzZs3JxYWFkQikZDi4mJCCCETJ04kIpGIACDu7u7M/JiAgABibW1N5s+fTx49ekT27t1LrKysyLZt2/TW586dO4TH4xEbGxty5coVQgghCxcuJNHR0SQkJIR4eXmRPn36EHt7e3L37l3y4sULQgghsbGxhM/nk0GDBpFGjRqRRYsWEbFYTObOnUusra3Jpk2byKlTp8j7779PWrVqRfbt20fatGlDOnXqRJ4/f17pdZo8eTJxcHAgW7ZsqeolNgh9psyHuroXz549I6GhoWT//v0m53Xr1i0SGhpKoqKiTK9YA8FUjcvLyyN5eXmkpKSE2NnZEQsLC9K8eXPm+JCQEOLq6kpOnjxJ7t+/TyZPnkwaNWpEsrOz9dbp2rVrBAA5ffq0xvYePXoQT09PEhsbS/78809G67KysgghZTpka2tLbG1tyY4dO8i2bduIjY0NEQgEZNOmTYSQspXEbdu2Jenp6SQ9PZ306NGDfPjhhwavUUBAAAkLCyOTJ0/WOTeREEL8/PyqrH9muQqYQqGUoTYvjYqKgkAg0Art5uzsjA4dOuDChQvMNolEAjc3Nxw6dAgAsHr1asYst1OnThrHv//++4iMjISPjw/ee+89NGrUSCtNedq1a8eY1Xbv3h3Avx5Z6lXHrq6uiI2Nha+vL/Om2rVrV/zxxx+4evUq8vLycOzYMWzevBmbNm1CUFAQYmNjkZeXh+PHjyM+Ph7z5s1DYGAgoqKimIgA+lD7YI0cOZLxAqNQ2ILNHkDC4jzChoKpGmdrawtbW1scOnQI7u7uWj1gq1atgoODA4YOHYq2bdvi0KFD2LhxI2Nsr4vU1FTw+XytHvv8/Hw8ffoUvXv3xqxZsxitUw/Jfv/997C3t4dSqcTHH3+Mr7/+GnPnzsWwYcMYlwKgzB/SxcUFLi4uEAqFWr6WupDL5Th8+DBmzJihc/+bb75Z6/rHagPw0qVLWLBggUYEg/Kkp6djwYIFuHr1KpvFUihmS1VtYHr37g1/f38NiwRPT0/069cPGzdu1Mg7OjoaIpEI2dnZOH78OO7fv48BAwZg8ODBBi0SfHx8oFKpmB/Effv24fnz5/j8888hEAgQExODQYMGaVkkDB8+HJ999hnc3Nxw5MgRzJgxQ8Mm4Z133kFISAgsLCzA4XBw4sQJzJ49W8tSpiJhYWHo1q0bxowZo2WRYG5Qjat/sLkIRJ2HMca/rwtsaBzwrw2Mv78/evfuzWz/4osv8PLlS0bjRo8ejfnz5xvUuAsXLqBDhw7YtGmTRsN/7NixEAqFaNy4MYRCIXg8nsa0ExsbG8yYMQMODg64ffs2EhIS8Pbbb+Py5csaC0jKW8k0bdrUqMg/Fy5cQLdu3ZgX74rosoipcarVb6iH0aNHkxYtWhhM07JlS/LOO++wWWyDgQ5XNTy6d+9OfHx8iJ+fH/nrr78IIWXDEx06dCDt27cn7dq10xiyrS2LBH9/f5Kamqqx3Rg7mMpsEozJoyI//fQTefToUY1YwbD9TFGNqz51pW9ZWVkkNDRUw3S4uty4cYOEhoaS8+fPs1CzhoG5aty0adPIxo0bNXSurjQuICCATJkyhTx69Ehvmuron1kNAV+/fl2j5a6Lvn370rdjymvDmDFjwOFwUFJSwtgWdOvWDbdu3cKVK1eQl5eH+Ph4rePKWySEhYWxbpHQpUsXJjanmiFDhuDtt99G+/btERwcjBMnTiA3Nxfh4eFMmvI2CTdv3sSuXbuwYcMG7Nq1y6g89uzZA2tra+Zz4cIFTJ8+HW+88YbZWSTogmpc/aMmhoDpIpB/0adx6oUhXC5X59BmTWucWCzGvHnzNHSuNjQOKAvlWVHnfvvtN3Tp0oXZVnFkpC70j9XAhVlZWQZjfgKAi4sL02VMoTRk7t69i7179+LGjRuMR9bw4cNhZ2cHAPjqq6/0DgcANWuRkJOTU2k6XXYwldkkVJZHdSwSzAmqcfUPNiKBqKENQE0q07jLly/D2tpa7/ENUeMA4KOPPsI777zD/P3+++9jzJgxGD16NLOtoi9iXegfqz2AdnZ2lc73SUlJMfiFoFAaCuU9siwsLBiPLKBsDsmjR4+0QgyVZ/DgwZDJZJDL5QgODtbaX94iQY3aIqGiZ195OnXqhDt37sDJyQnJycl60xUWFiIhIUFjEUdxcbHW/Ccej6e3d6ViHjY2NmjRogXzUb/1jhs3Dt98841OiwRzgmpc/YPawNQchjTOGBqixgGAvb29ls45OTlpbOPz/+1/qzP9q9bAsR5GjBhBrK2tteYWqUlJSSHW1tbkrbfeYrPYBgOdA9iwuH//PmnTpg3Jyckh2dnZpFWrVmTDhg2EEELeeust8vjxYxIWFkYWLlzIHNO8eXMCgMycOZMQQhiLBEIImT17NgFgskXCnTt3CIfDIRMnTtTY3qNHDwJA48Pj8RiLBELKLGlsbGyIs7MzEYlExNnZmVhaWpJPP/2UEFJmKXPgwAEyYsQIYmtrS7hcLuHxeCQiIsLgtbp79y4RCoVkwoQJxlxao2H7maIaV33qSt/y8vJIaGgo+fnnn03O69q1ayQ0NJRcunSJhZrVfwxpnKenJ+ncuTPx8/PTmH9Z3zXO1tZWKw8AZOrUqXrro7aB0Ud19c+s5gAuWLAAxcXF6NWrF3755Rekp6cDKFsZt2vXLvTq1QslJSW17nZNodQFbdq0wdy5c9G/f3+MHj0a3bt3B4/Hw5EjR9CqVSvGMLUiFhYW2LdvH0pKShiLBKlUir1792rZDaxbtw5jxozBxIkT0blzZzx58gSnT582aJHQvHlzcLlcLXuW/Px88Pl8CAQCuLi44K233sKVK1c0hiS8vLwgl8uhUqkYd3+FQgEXFxcAQGJiIsaNG4ejR49CJBJhyJAh2L59OxMNRB8tWrSAUqlkTKPNFapx9Q82I4FUzPN1R5/GAWWGzzdu3MCff/6JNWvW4M6dO8xx9VnjAgMD4eTkxOQREBAAAJg0aZLe+ty6dQsXL17Uu7+u9I/VOYB9+/bFt99+i4ULF2Lq1KkAyh4UUm7p/KZNm9C3b182i6VQzJaZM2cycSGnT5+Oli1b4uLFi9i3bx8OHDiAwsJCyOVy2Nra4osvvkDv3r2Rm5uLhIQEHDp0CO+//z4AMB5ZXl5ezPwa4N8foqr8IJ04cQLW1tY4evQo1q5dywx3jB07FocPH8atW7f0Hnvjxg289957GmHOxowZg5s3bwIAWrVqhR49emh4fhlDWFgYPDw8tCKbmBtU4+ofdBFIzaJL44B/5/c2adIEQ4cOxc2bN9G+fft6r3GHDx/WSD9v3jw8ffqUaQjqomPHjgYXj9WV/rFuZhQSEoKbN29i5syZ6Ny5M7y9vdGlSxfMmjULf//9Nz7++GO2i6RQzBZdHllr165FWloakpOTsWHDBsyYMQNffPGFxnH6PLIqsnjxYhw8eBC7du3CzZs30aJFCwQHB1fqkdWjRw98+OGHePbsmca+8v5WFX0AAaBnz544e/Ys4uLiAEDDBxAA/vzzT/j5+eHtt9+Gk5MTOnXqhJ9++qnS6yQQCLB06VKz9wEEqMbVN8ovAiEmLgQx9fiGiC6NKyoqYnwACwsLce7cObRt21bjuPqqceWRyWTYvXs3pk2bZtJLQZ3pX7UGjhsAsbGxZMiQIUQikRBLS0vi7+9fpVBBYWFhOucBqD/VCRVE5wA2PHR5ZJWn4hzA2vTIqggbHlkikYiIRCKydOlScvPmTRIaGkrEYjHZuXNnpdeqPvgA1ifMTePq6l6UlJSQ0NBQEhoaSpRKpUl5Xb58mYSGhpKrV6+yVLv6jy6NS0hIIO3btyft27cnbdu2Jd999x2Tvr5rXHn2799PeDweefbsmcFrVNkcQELqxgeQ1SHg+kJUVBSCg4MhFosxbtw42NjY4ODBg3j33XeRlpZWpfk7I0aMQMeOHbW2lw9ATXl9GTNmDMLCwhiPrC5dugAo+37Y2tqCy+XqnMtS3iOLEFIjHlkVKf+G2759e/j7+8PDwwPh4eH44IMPAGh6ZLVt2xa3bt3CvHnz4OrqismTJ0OlUsHPzw9r1qwBULYa7969e9i2bRsmT56MPXv2MMNFAHDy5En06dMHQN34YDVUqMb9S/kVnYSlHkA6BPwvujTO29sbhw8fxrRp05CZmYnt27dj+vTpsLKyYo6rrxpXnh07dmDIkCFali5r1qxhNFBdn6tXrzKWNwDw4MEDuLu7M3/Xex/A+oBCocCMGTPA5XIRExPDCNsXX3yBbt26YdmyZRg7diw8PDyMym/kyJGYMmVKzVWYUm95HT2ymjRpomXP4OPjg4MHDwKo/z6A9QGqcZqUb6ypVCpmkUJ1UDcAc3JyEBERAVmpFEKRGJ6envD29taw9ngdMKRxU6ZMwf/93/+hT58+yM7Ohkgk0jq+PmqcmpSUFJw5c4aJ2V6e+uIDaNK3VT3uvWbNGjg7O2PatGlGHcfhcDQmWNYm586dQ0JCAqZOnarxViuRSLBs2TJMmTIFu3bt0pqTRaFUlfIeWQAYjyy1sFSG2iOLw+FU6pGl/jFXe2TNmzdPb76dOnXCzp074eTkhNjYWL09OWp/q4kTJzLbKvPI6tWrFx4/fqyxPy4ujqmfjY0NbGxstMoaN24cVCqV2fkAUo2r/7DZA5ifnw8OUSIlJQUu8kRYKl6hmN8Y0cneuHr5IgICBxjdsG4I6NO4du3aQSAQML379vb2Oo+vjxqnJiwsDE5OThg2bJhWvvb29hrnXN4HUBd1pn/VGjj+Bw6HQ7hcLnn8+DHztzEfLpdrSrEmsXTpUgKA/Pbbb1r70tPTCQDSv3//SvNRz4+ZO3cu2bBhA1m3bh3Zt28fefnyZbXr9jrPV2qIvI4eWU2aNNE5X2zgwIEGr5W5+gBSjWNP4+pK31QqFTMHsKSkpNr5JCUlkdDQbeTkd7NJzmonQlaA+eSsdiKnNs0mP4aGkqSkJPYqb+bo07g//viDjBgxggwfPpx06tSJfPXVV8wx9V3jFAoF+c9//kN4PB7h8/nE29ubrF69mqhUKr31MVcfQJN6ADdu3IjBgwczHl9JSUmmZFcrqOOuqpeql8fFxQXW1tY6Y7PqY/PmzRp/W1hYYMWKFViyZIlpFaXUe8p7ZEkkEi2PrKZNmyI9PR0DBw5Eu3bt0L59ewD/emRt3LgRtra2AGDQI0ulUmHixIkoKCiAn5+fyR5ZHA4HjRs3Rrdu3bB8+fIqeWTdvn0bp06dwldffYWkpCQ4OzsjLS0N//nPfwxeK3P1AaQaV/81ruIQcHVQKBSIiT4HD+kdDMr5AVxo9iTaKbMwKPsHRNrPQkw0H80mTHothoP1aZxCocCFCxdw69YtODk5YfDgwejatSsGDRoEoH5r3Pr16/H9999DqVTi7NmzyM7OxtSpUyGRSDB37lyd9VH7AOqbSlFX+meSDcyCBQsQHh7OfNEDAwPx559/wsPDo9JPXZGXlwegbDhEF7a2tkwaQ3h5eeH7779HXFwciouL8fTpU/zyyy+wt7fHZ599hu+//77SPEpLS5Gfn6/xoTQsZs6ciZs3byIqKgoCgcCgRxYA9O7dG0FBQXBzc9OYW6L2yAoKCtLwkzLVI6v8D+LYsWPRtm1byGQypKen48iRI+jatavGsWqPrKysLJSWliIzMxPDhw9n6u/o6IiJEyfi0aNHKC0txejRo9G8eXODHlmA+foAUo2rvsaZk76ph/RINYeAExMTIZUp4J/3u1bjjykDBP55ByGVKerFiwJb6NK4pk2bws/PD25ubhCJRBg6dCjjvVffNe7y5csYO3YsCCHo378/xo4di6CgIMTGxuqtT4P0ARQIBJDJZMzfycnJRk28bAgEBATgk08+QcuWLWFhYYGmTZti4sSJOH36NMRiMVauXAmFQmEwj7Vr10IikTAfNze3Wqo9pbagHlnGeWSZqw8g1bjqa5w56Zsx0UBUKhWkUikKCgrw6tUrZGRkIDU1FQkJCbh37x6cZQmwU2YZLMdOmQlneeJr1QDUpXFdu3ZFVlYWcnJyoFKpEBMTAx8fH43j6qvGVUUDjaWu9M+kPmp3d3dcvHgRSqWSGdoy9+Xx6rdifW/A+fn5BruWK6Nt27bo3bs3zpw5g4cPH6Jdu3Z60y5duhQLFizQKJs2AhsWI0aMQF5eHqysrBAWFgY+n4/U1FSMGjUKAKBUKjFjxgytt9AJEyZg6dKlSElJAQBcunQJ+/btQ3R0NJOmqKgIP/zwA3bu3MmIz08//YTIyEjs2LEDn376qc46paSkwNXVVWsStb+/P3bu3Ik33ngD6enpWLVqFfr06YN79+4xCzc+++wz5Ofno3Xr1uDxeFAqlfjqq68YN//yHD58GLm5uUatIJ0+fTru3LkDmUyGjIwMs5lITzVOG2M1rjb0TaVSQS6XQy6XQyaT6fxXLpdDqVQCAM6cOQMLCwud6dRpdEJU8Fbqb3CUx0qRDWmplI3Tqxfo0jigzAqlb9++IIQgKCgIw4cP1ziuvmpcVTTQWOpK/0xqAL733ntYvXo17O3t0bhxYwBlc2bKt+p1weFwkJCQYErR1UY9BBcfH894sqnJyMhAYWEhunXrZlIZ6lU8RUVFBtOJRCKdS+MpDQfqkaXpkVXffACpxunGGI3Tp2+EEIONNZlMpvW3rjRyubzSUZaKvHjxotI0PB4PQqEQAoGA+Tc3NxdFct0rWStSxLeHhUj7+WqoXLlyRef2IUOGGOwVq68aZ4wGvhY+gMuXL4dYLMbx48fx/PlzJiZmZfMsqjsPgw0CAgKwdu1aREREaNlxnD59mklTXZRKJf766y8AMJteDErdQD2ytD2y6psPINU4bUzVuJ07d2pN9DcVHo8HgUCg0WhT/ysQCPDo0SMAQOvWreHk5KSxr2L6ihYgQJmVUXR0CXJ5TgaHgXN5zsgUeCPQy4vV82uo1EeNM0YDXwsfQD6fj88++wyfffYZgLKJtvPnzzdrf6kBAwbA29sbe/fuxdy5cxmfrLy8PKxZswZCoRCTJk1i0qenpyMvLw9NmjTRmFR948YNrbdrpVKJzz77DE+ePEFgYKDWCiTK6wX1yNL2yKpvPoBU42pO4zgcjlbjy1DDTP1/XWkqM3dOTU1FcXEx2rZty/TkVgVv7zKfv2uSsRiUrb0KGABU4OCaZAzEQj68aAPQKGpS43bv3l1p+dXROGM0sKo+gABw7969+uUDeOTIEcYfixBCVq5cSc6fP29KlrXCuXPniEAgIDY2NmTGjBlkwYIFxMPDgwBgfNrUTJ48mQDQ8vABQNq3b08mTJhAlixZQmbMmEFatWpFAJBmzZqRhISEKteL+gA2LKhHlnEeWYSYrw8g1Tj2NE59LzIyMohcLq/0O8Emu3fvJqGhoRrf5aqSnJxswAfQmfEBZDOWdUNEHQtYTXmNI4RoxAImpPoax+fztdIsXLiQREdHk6SkJHLp0iUycOBA4uDgoPG9mDx5MmnatCk5duwYSUpKIocOHSIODg5k8eLFRu3XhTGxgCdPnqwzfrEh6tQHcNSoUVixYgXzNrxr1y40atQIffv2NSXbGicwMBAXL17EihUrsH//fsjlcrRr1w7r16/Hu+++a1QeCxcuxNWrVxEZGYns7GwIhUK0aNECy5cvx4IFC0yaZE1pGFCPLOM8sgDz9QGkGse+xllYWNS6R56pNjBA2XC3s7ML0jJUSLXoAGdZIqyU2Sji2SNT6A2xkI+g1ywSCBuoNU4f1dG4du3aoXPnzggPD9eYc/z06VOMHz8er169gqOjI3r37o2rV69qaNz333+Pzz//HLNnz0ZWVhZcXV0xc+ZMRgMq218dpFIpDh8+jFOnTlU7j2pRrWbjP4hEIrJ8+XLmbw6HQ1atWmVKlq81tAewYfPBBx+QY8eOkcuXL5OgoCBm+9dff02+/vprQsi/b8e+vr4aEUL27NlD2rdvr/V2LJVKyZw5c4ijoyMRiUSkV69eJDY21mA9Dhw4QCQSCfHx8SFKpZLZvmLFCtKhQweDxw4bNkzrLXX06NHk/fffN2q/PrZu3Uq8vb1J7969DaarKqY+U1Tj2KMu9W3fvn0kNDSUpKenm5RPREQECQ0NJVFRUeTAgQMkdNsP5NdffyVxcXFELpezVFsKGxw7dkxL48yVrVu3kkGDBlX5OFOfKZN8AMtbJKgxd4sECqU2oR5ZxnlkmasPINW4hoExPoDGQP7pQXRyckKnTp0ADhe2trZo2bLlaxH5oz4xbNgwnRpnjggEAqOCR7DNa2cDQ6HUJtQjyziPLHP1AaQa1zBgYwi44vGvXr0CALx8kYWIiAh4enrC29ubNgTNCEMLRcyJ6dOn10m5r50NDIVSm7i4uODRo0cYMGCAxopKpVIJmUwGlUqFNm3aMNvT0tJw7do19OzZE23atGlwHln1zQeQalzDgO0ewGtXLkGuJHCWJcBKmY3i+CeITi5bKRxA5wFS6gmvnQ0MhVKbhISEYNq0adi1axezTaFQYMGCBYiKioJEIkGXLl0watQoSCQS/PXXX+jVqxcOHjyI1q1bY8eOHeDxeA3GI6u++QBSjWsYsNUDWFxcDBAC16Lb8M/7XcMTMJfnhGuSsYg4rcCgoCC99koUirlg0hzAiqxYsQL9+vVjM0sKpV7Tr18/Ld+72NhYtG3bFk2bNoW1tTWGDBmCiIgIxMbGQiKRwMLCAtbW1hgzZgwKCgogl8sr9chSo/bIKt+rWJFOnTrhwYMHGttevXoFJycnJCcnM9vUHlnlVwub6pFlY2ODFi1aMJ/yq5rL+2CNGzcO33zzjd5zqCuoxtVP1N9JU3oAFQoFcl69gLv0DgZl/6BlCG2nzMKg7B/gLr2NmOhzVY5SQqHUNqw3AM3dHoFCqWueP3+u0fPVtGlTPHv2DM+fP4elpSWzvVmzZli4cCEePHgAHo+HKVOm4MiRI9i1axcEAgF8fX3Rrl07LFq0CKdOncKDBw8wY8YMFBcXM0O2uggODsb9+/c1egG/+uoruLi4ICUlBcnJybh8+TITrzgmJgaNGzeGhYUFVCoVVqxYgePHjyM5ORkTJkzAF198geTkZDg5OcHKygorV65k9r/77rtYtmwZ4uPjweFwwOFw0Lp1a531unDhAoKCggCUDb1+9dVXeuPZ1hVU4+onbAwBJyYmQkk46J7/u04jaADggsA/7yCkMgWSkpKqXRaFUhuw2gAEyt6SNm7ciG7dusHW1lZjQuytW7cwe/ZsZoUghUIxjFgs1vDJcnJywjvvvIPExERs3LgR8fHxaNKkCSZOnIjOnTvjyZMnVfLIAsp67Xbs2AEnJyeMHz8eb7zxBt555x3Y2NjA0tISNjY2OHnyJB48eICwsDAMHToUs2fPho+PDw4dOoTBgwcjNjYWkZGR8PHxQUlJCT766CP4+PggIiICjo6OSElJQXp6OtLT03Hx4kWtOql9sGbMmAEA8PX1RfPmzY1y869tqMbVP9gYAk5OToazLMFgKDgAsFNmwlmeSBuAFLOH1QZgSUkJAgMDsWjRIqSkpMDW1lbjgfPy8kJYWBh++eUXNoulUOoVrq6uGtYEz549g6urK1xdXeHj44PDhw9rbC9Pjx49sH//fri5uWHkyJEYOHAgCCF48eIFpFIpnj59qjEkDAAdO3bEypUrNbZ98cUX2LRpE1QqFU6cOAGRSIQzZ87g+fPnKC0txdOnT9GqVSvmme3WrRu8vLwwcuRI7Ny5EykpKSgpKUFxcTGOHj2Kjh07okOHDti9ezcKCgqwZ88elJSUICQkBK6urnB3d4eLiwtcXFx0hjpSl9G9e3dm25tvvol9+/aZeLXZhWpc/YSNHkBZqRRWSv32SuWxUmRDViqtdlkUSm3AagNwzZo1uHTpEtauXYuMjAytpc0SiQQBAQFMQHIK5XWkW7duuHfvHp49e4bCwkKcPHkSwcHBerfr4969e7h8+TKEQmGV61DeI+vChQtaMV8B4M8//4Sfnx/efvttxvfsp59+Mpivesi2fBzMyrwFAd0+WN26dTM7X0CqcfUTNnoAhSIxini643ZXpIhvD6FIe6U9hWJOsGpYtH//fgQGBmLx4sUAdBument74++//2azWArFbBk4cCBu376NoqIiNGvWDAcOHECPHj3wzTffIDAwECqVCosXL2Y85vRtV3Ps2DFYW1tDoVCgtLQUXC4XW7ZsqVbd1B5Zal/AiiQmJuKHH37AggULsGzZMly/fh1z586FUCjE5MmTtdKrVCrMmzcPvXr1gq+vLwDjvAUB3T5Yrq6uZucLSDWufsJGD6Cnpyeik5sjl+dkcBg4l+eMTIE3Ar28ql0WhVIbsNoDmJqaCj8/P4NpbGxszG5iN4VSU9jY2EChUGDo0KF4+vQpevToAaBsyPPFixfo2LEjPvzwQyY9l8tlFktUXE0LlMV4vXXrFq5du4bJkydj6tSpGDNmjEl11OcLqFKp0LlzZ6xZswadOnXChx9+iBkzZmDbtm068/n4449x7949jWHbIUOG4O2330b79u0RHByMEydOIDc3l5l/uGfPHlhbWzOfCxcuMMeaoy8g1bj6CRurgL29vcHjEFy1HQsVdEeDUYGDa5IxEAv58KINQIqZw2oD0MbGhgl9pY+EhASz8vmiUGqSkJAQnfPBdG1X+wOeO3cOf//9N/773/8y0QbUWFlZoUWLFujQoQN+/vlnXLt2DTt27GD2c7lcrWEuuVxusI76fAGbNGmiZSfj4+Ojcwj3k08+wbFjxxAVFYVmzZrpLauit+Bbb72FW7duMZ/yjStz9AWkGlc/YWMImM/nw9rWDqni9oi0n4VcnpPG/lyeMyLtZyFV3AEBgQNoRBCK2cNqA7B79+44evQocnNzde5PS0vDiRMnqI0C5bVBlw+gvu36/AH1weVysWzZMixfvhwlJSUAyhpL6enpTJr8/Hw8evQIp06d0ptPp06dcOfOHS0fwF69euHx48caaePi4jSGYwkh+OSTT/DHH3/g3LlzlfZ6VPQW1OcLqPYBVPsCmgtU4+onbEUCEQqFAIeDdOtOCHf+EkccluBMoxk44rAE4c6rkWnbBUHBwWYzZYFCMQSrDcBPP/0UOTk5GDBgAC5dusQYYRYXF+Ps2bMIDg5mejkolaNQKBAXF4eIiAgcO/onIiIiEBcXRw1GGyj6/AHLI5VKMWfOHHh7e0MkEmHx4sXIzc1l5vP1798fv/76Ky5cuIC7d+/qnKtXkeDgYDx48ACDBw/WiF4QHR2NixcvMkPSHA4H3333HaysrJg0o0aNQmhoKEpLS9GqVSuEhYUhIyODaZAuWrQIU6ZMYY63sbFBTk5OpYHPly9fjiNHjpid6TLVuPoJW5FA1AQEDkBgYCAUTboiUdwZBXa+CAwMxHsTJtHGH6XewGofdd++fbFlyxaEhIRovAGrezp4PB62bt2qc8UhRZPk5GTERJ+DVKaAizwRlopXKOY3pvEmX2MKCwtx/vx5pKWl4b///S/atWsHuVyOxYsXY8eOHfj222+xdOlSJCUlYfjw4ZBIJPjyyy8RGRlpMN/mzZuDy+VqRPwAgNu3b+PUqVP46quvkJSUBGdnZ6SlpeE///kPk+bIkSMAwAxVT5s2DUDZHMcpU6bg6dOnOH78ODgcDpydndGtWzcsXboULVq0MFinFi1aQKlUwtnZucrXqSahGlc/YTsWMJ//7xy/qKgoNGrUCC1btjStkhRKLcP6JIVZs2ahX79+2LZtG65du4bs7GzY2trC398fs2fPRtu2bdkussGRkpKCq1euwF1K402+TujyB+zWrRvzd3FxMRo3bozY2FiNXrjjx48jNzcXVlZWKCoqglAohFKphFwux8uXL+Hn54eOHTvqLffEiROwtrbG0aNHsXbtWqa3xNHRERMnTsTEiRMBlK0aPnbsGAICAphjy/eocDgc/PHHHxg5ciSzbd++fVi5ciUOHz6MW7duGX0twsLC4OHhgWvXrhl9TG1BNa7+wcYiEODf77u6QSkQCABUPs+WQjFHamSWqo+PDzZt2lQTWb8WXL4YA0/5AwzK/kEr5JA63mSk/SzERPPRbMIkOtm4gVDeB1AikeDkyZP4/PPPAZQtiFD3xpVv/Kmxs7MDUDZEef78eRw5cgROTk5YtmwZbt68abABeOHCBfTo0QPBwcF49uwZ3NzctNLIZDLs3r0bCxYs0Gl9UhlqL0CxWIwePXpg7dq1cHd315teIBBg6dKl+Pjjj1FaWgqRSFTlMmsSqnH1C7aGgCs2ANUenDKZzKR8KZS6gLYczJC8giL4FhxAifJfsbIUAOrfXbmCwPfF74jjtMb9+/e1htMsLCwYwZPJZAbfTquSViwWg8fjVTmtXC43KJAikYhpxFYlrdoLTx9CoZB5Q69KWqVSCalUv4u/QCBghL+ytJ6ennj16hU4HA6aNWuGX375Bf7+/hrbmzZtil9//RW9e/dG48aN4e7uDgsLC6xduxZisRhFRUW4e/cuCCHw9PREUVER+Hw+0ygihKC4uBiFhYXYsWMHtm/fzkTU2Lp1K9544w2mPuq05UlMTISTkxNmzJjB3DM1RUVFAICDBw8iNzcX77zzDrONx+Np2cdIpVJmv5oOHTrgxx9/RLt27RgvwN69eyM2NlbnAhkul4vp06fjzp07kMlkSEpK0tkoBcp+iMvHTy4uLtb4ka9YF0rdU1RUxHx3aksjpFIpSktLUVRUpPGdqKpGqL9bKpUKRUVFkMlkKC0tRUFBgUa+VdGI8mlVKhUzf9bUtLo0go20FZ97Q89YVdJyuVxmEVhV01Z87stTmUYYSltSUmKw17j8y3hV0kqlUiiVSpPTmqxvpAa4ePEimT59OvHz8yOtWrUifn5+ZPr06eTChQs1UVyDIS8vjwDQ+claBEJWlH1m++lOo/4kJSUxeS5atMhg2nv37jFpV6xYYTBtbGwsk/brr782mDYqKopJu2XLFoNpjx07xqQNCwszmDY8PJxJGx4ebjBtWFgYk/bYsWMG037xxRdELpcTQgiJiooymPbrr79m8o2NjTWYdvLkyeTPP/8kY8aMIffu3TOYdtGiRSQqKor8+eefZPDgwQbTzp49m6lDVlaWwbT29vYkJCSEEEJIYWGhwbRjx47V+E4aSjt06FCj0wYEBDDpcnJyCIfD0ZvWz8+PEEJIXFwcAUBcXV31pm3Tpo1GHdq0aaMzXV5eHmETqnFVp6K+1TeN2LJlC9m/fz8JDQ0lBw4cYE0jVqxYwaQ1RiPUJCUlsaYRkydPZtLWpEZYWloapRGEEOLg4FCpRqjx8PAwWSMAEA8PD420fn5+etM6ODhopA0ICNCb1tLSUiPt0KFDDV638owdO9ZgWqD6+sZ6D+D8+fOxefNmja5yQghu3LiBn3/+GSEhIfj222/ZLpZCMYm4uDjs3f0LAgIHsJqvp6enzl4uffTr1w/R0dGs1iE/Px/nz583Km1t9JjZ2dmBx+MZXM0+btw4ODmV+azpMsSuS6jGvb6QCkPAFEp9hkMIS+viAezatQtTp05Fq1atsGLFCgQGBsLZ2RlZWVmIiorCqlWrEBcXh7CwMEyaNImtYhsM+fn5kEgkCPtqNt4u3AoAUICHJItOyLTpDDnPCkJVMVwLb8Kt6CZOOcyFRYt+GDBAs9FCh4DLqDi8ExcXh3Nnz8JNehd++Ydhp3zBpC0WOuKm/dtlJq79+qG4uBipqamQlUohFInh7u4OLy8v8Pn8Kg/vXL58GVu2bEF4eLjGkE1MTAxCQ0OxZ88eJq1QKER0dDS+//57LaPoUaNG4c6dOxg2bBjOnTuH58+fw8nJCR07dsSECRPQr18/uLm5YceOHRg9ejQAICcnBx4eHmjfvj3+/vtvncM7mzZtwrfffos333wTP/zwAzNk4+npiZSUFK1zmjFjBjZu3Agej4fY2Fj897//xY0bN5Ceno4FCxZg9erVWsekp6dj5cqVOHnyJIqLiyGTyfDxxx9j7dq1Wmm5XC4SEhLg7+8POzs7xMfHV3t4Jz8/H66ursjLy4Otra3OPKoC1bjqo9a358+fw9bWtlY14q+//sKdO3fQpk0bZnoEUPUh4IMHDyI/Px/Dhg2DnZ0dFAoF85xOnDiRyYsOAVc9LR0CrnpaU/WN1R7AH374Ac2aNcO1a9cgkUiY7c7Ozhg3bhyGDBmCdu3aYevWrVQcDZBn1QpypRNy+S6IsZsEKc8GLqXxsFTlophrh8uO0yFqXIhSrjU6+/joXBSgRigUMoJRGTWVViAQMMLIZlo+n1+lBTB/xV5FS/IIg4q2g8sjQLnpblZ4gUHZP+CIwxKcj1aCgAcXeSLs/rHfic3IwJ1bN7Xsd3g8nsHrXx4ul6uR1sLCAnw+X+fxHA5Ha/vy5csRGBiIPXv2YM6cORg0aBCkUinT2CgtLcUHH3yAzz//HE2bNoWTk5OGZYu+fAcOHIj//Oc/GD9+vIZYX79+HXK5HN26dcPIkSMxcuRIDBo0CO+99x6Tx8uXL+Hi4oJFixZh4cKFyMnJQXx8POzt7ZlFHp988gl+//139OnTB+vXr8fOnTtx9+5dTJgwQe+18/X1hYWFBdzd3SEUCpGYmIjk5GSmQe7p6Qlvb2+t+19evAEYFNnqQDXOdKysrGBlZcW8lBlzX8tTHY2wsrKCSCSCWCzW+50zRk/UDQd1noQQiMViEEIgEAh05m2KRrCVVtdzz0ZaAGaRtuJzz1ba8o1MNtPqCr0JlL2EGKt1gOn6xmoD8P79+5g+fbqGMJZHIpFgzJgx2L59O5vFNjjEQj6iGk3DS4EH3KV34J9/UNsKxnYMUsQdtCbtvw5U9SEByhY6SGUK+Of9rrWyWgE+Ei264IFlAF4IPOFecgfd883PfmfdunVwdnbGm2++iQMHDmDz5s1wdHREly5dcPDgQQDAypUrcfr0aQwYMABcLhdDhgypdAg6NTUVfD4fSUlJGtsdHR0RERGBZ8+eYe7cudi6dSuaN2+uYQNjb2+v8TyHhYUhLCwMgwYNwtw5n0AoEuPkyZPIzs7Gn3/+iStXrqB3797YtWsXmjdvrrdOUqkUhYWFyMvLw97dv5iNHybVOHYo73PqLE+CihC84jsjOSkRMefPo62vL7p27cqawwFbPoAV8+NwOBAIBJWOiFAolVEX3r+1vgqYzp2onO49eyP26mW4S+9gUM423VYwOdsQaT8LF2MEcHd3f22sYKr7kCQnJ5f16Ck147gmi9ozvaw8IoeH9Lb+a16H9jvlbWCWLl2qN92qVaugVCpx5swZxgZGpVJpNNoqcuHCBXTo0AGbNm3CjBkzNObcBQUFgRCi1wamX79+GvOi5s75GG1928NFnghx4lEU8xujpKQEgYH9wOcLcP36dTx+/Bjnzp0z2AAMCwtDixYt8PjxYzTKjkWfoj/MrkGuD6pxhinvc9pMeg83bN7SGOUo4jbC3bsEjx/eR+CAQaz86NWUDQxQNhoik8lYsYKpzsutOeRNMY3k5GRERkTUuvcvq3e9bdu2OHjwIL788ktYW1tr7S8oKMDBgwfNxij1+vXrWLFiBS5fvgy5XI527dphwYIFeOedd4zOo7S0FOvXr8evv/6KtLQ02NvbY/jw4fi///s/ZhJ7VVEqlSAcHvzzD2o1RNRwQeCfdxDh4g5ISkqqtgt9fRIFUx4SWakUlopXmvmJyoK6u0vvwFn2BLGSsaxf84EDB+L27dsoKipCs2bNcODAAfTo0aPK2588eQJCCFq3bq23LLUNzO7du5l5obt27UKzZs0M1jElJQUdOnRAu3bt9PoAHj58GLm5uZgyZYrOPNQxhO2KE/BO5gGNe/POCyDqXBYGDhyEsLAwpkdRKBTqDVXH5XIxsH9/3L9/H76pofjH5pChfIP8fBQPxf498OjRIxQWFgCEwNrGFm3atKn2M6iP+qRx5qpvap/TVkWXcMb+I2aUw1qZjXiLbnhoFQCRshBylRCnT5+GjY0NrK0sIBJbVkubFAoFE6kmNSUJERHSamtc+QagWjulUilAVDhx4gT4PC7A4UIo4ENi1wheXl5Gl5OYmIjzUWchVxI4yxJgpcxGEc+0HiB1HR88eIBXLzKhJBw4yxJhpfz3xfnShRg0auwAPo9r1vqvD4VCgfj4eDx8+BAFBflQKZXgcHmwtBBBYmdfpXtgqIyabJjHRJ+Du/R2pd6/56N4kPboheTkZOTn5SEvP9+kslm9wzNnzsQHH3yAHj16YOXKlQgICICDgwNevnyJ6OhorFq1Ck+fPtU5Sby2iYqKQnBwMMRiMcaNGwcbGxscPHgQ7777LtLS0rBw4cJK81CpVBgxYgROnz6N7t27Y8yYMYiPj8f27dtx9uxZXL16FY6OjlWuW0pKikZvlXqIMlncETKuJYSqYnhKb8G75Aac5YlISvKsVgOwpruc2XxopFIpos5GGvWQ6OqhE4rEKOY3/rdu4CPGbhLTy3qm0YdwKY3X6iGsiJ0ys0rX/MyZM6xsN6bnIiEhATKZDP7+/sw2e3t7DR9AXZSUlEAsFjPxhHWxY8cODBkyBK6urlr71AIGAB0KT8GuwrQUlQrwc1UiZIg3Ml9kYtq0abh37x62bdsGPp+PmTNnMmlPnjyJPn36IDAwEFlZZfdCqmdkjQuCZtJ7SBH54tKF8yAcHpxLn8BKlYOiAnvEvHwJpVz/pP7qUF80zpz1TSpTwC//MI47LGCev2RRRxx0XA4Vhw/C4UEifw4FzwEAYPnqFiyyqtcY0hhqliXAqiQbxfnV1zj1c/j8+XOcOPYnpDIFeEQOcARQlhZBxhH8+x18YY/olOZGlRMbG4tbf/8Ndyl700/KnzsIgYf0tsZ0omRRe+Q0moxSWIPz9ArEymxW9L82OhXKN2xfZmWCEBUIhwcekUPJEcC59DGs8qp2D/RR07+ThqYnqVFrXarIFzExMcx52uTer3a5AMsNwKlTp+Lvv//Gli1bmLdMLpfLzLsghGDOnDlGBaivSRQKBTPUFRMTw0RJ+OKLL9CtWzcsW7YMY8eOrfSm7tq1C6dPn8b48eOxZ88eZlhg27ZtmDVrFpYvX47Q0NAq108uK4XNP71V5YconUufQMnhIUvkiWRxJ0TbTQEHBLy0FJw+fbpKbzo13eVc/qGRKLIg5/Ch4IiQnJyM89HRaGQnga1dI6OEITk5GVFnz0CuJJU+JPp66Dw9PRGd7I1cnhPslFlItOgCKc+G6fGTcS1hqcrVyE9fw9tCkQNZqf5VfTVBy5YtweFw8OjRI6PSl38rzs7OxsMHD3Do0CG0bt0aXC5XY4WzUChEdna23rxSUlJw5swZHDp0SOf+J0+elP3IANBl2NLEBmjjCI174+Pjg4MHD+Ktt97SaLA2bdoUQNk9F+fHAwAc9cwFTxa1xyXJeAAcuEtvwy//CF4J3ZAs7gguUaCR7Cleyo2f8G0M9UHjzF3fnOXJeCV0Y56/v6zfxC2boQAAD+ltNCu9j8uS8frnPxupTTWhceoG4LWrV+EgS0KpwAP2sjS8FHqimfR+teqbkJCA23/fgIf0LmvTTxITE3HmTCTcpXeRKfSGS+kTjbzLj36Yco0rUhvz2Mr3lOKf++EoSzHpHhg6n5oemn3w4AGcZQl6Ox8U4OOq7Rg8sAqEgywZr4QezHlyiw13WFQG6wZbmzdvxvnz5zFlyhR07NgRnp6e6NixI6ZOnYrz58+bRfikc+fOISEhAe+9955GiCyJRIJly5ZBJpNh165dlebz008/AQDWrl2rMSdk5syZ8Pb2xp49ewwu09eHQChCMb8x85A6yxLQK3cPsvmueCVwh4IrBg8KgMOFkywJ7oWxkMafQ3R0NPbu/kWndUd5KnY5V/ziqQXHXXobMdHnDPq16UL90NgUxkOkKkQe3wlClRRKlK3cc5IlwC79DErizlZaZ3VeHHmBwYfk37qre+g0FzR4e3tDLOTjmmQsVODggWWARn5CVTGKuXb/litqj73O6xDdaBqkXBuIVQWQcm0Q3Wga0sTtoVCyM5ncWOzt7REcHIz//e9/Ou0RcnNz0bx5cwgEAhw9ehS//rITF2OikZKSgsyMdAjk2cjNSsOlC+cRExODkrizECcehTT+HEQiES5fuqT3HoSFhcHJyQnDhg3T2pecnIyLFy7AWZagt+693IDHrzTvTVxcHDw8PGBjY4MWLVowH/VKOlmpFBlPk9HMFnDQ0YZTgI/zdpPAIwp4SG+jVfFlHHdYgOhG05DLd0GWwAs5wmawU2QYeYWNx9w1ztz1zUKZjWRxR7iUxuMVvylu2Qxm5t8G5mzHDZu3mJ7B6mpTTWmcSqUChyjhJr2DAp4D3KR3UcB3rHZ9y+oZZfSUH6lMoaVtFUlISMDZM6fhXnIHXiU3UMq11si74ugHW9dGrdXO+TfwTubneOvFegzM2Y63XqzHO5mfwzn/BiJOn2ami1SH2NhYnImMhEvhbfBVJeAROdyld0y6B/qo6d9JoOyavcjMgJVS9wt4oqgTdrp8i4dWAXCT3kUh30HveVaHGhnk79OnD/r06VMTWbOC2mg3KChIa19wcDAAVGqcK5VKce3aNbzxxhtabzQcDgeDBg1CaGgo/vrrrypfCw8PD/z14gVyGk2Gu/QOWhVfRqT9RwA4cJQlmfymY2yXc3XmGKofGgdZErOKubpv9Jp5uet9SCpipciGtEIPHZ/PR0DgAEScViDCfjZeCt3hKb3F7PeU3iprPPDK7HcMvR1ftR2L1Cw+kpOTa3Xxwf/+9z/06tUL3bp1w+rVq9G+fXsoFApERkbihx9+wJEjR9C/f3+sWPEFJk2chDdEz3H06FlwOFyUcCVQcMRaw0AA0NjFHgHPcvHHoUMYOWqUxjmpVCqEhYVh8uTJWr0OycnJOPrnn8jNSIJCXtZ4TMoBbmUA9haA+z8LZed3B3r+DKy5ADTtkYQLSafx448/4scff9R7rkKRGLeSchDkrbld3St7z6o/Snllq5ubld5n5pJV/K6Z+oasD3PWOHPXtxKePXhcDsSqPMQ0mgxweFD+0wBKtuis0TOvC2O0qaY0Tj0/26U0Dqni9nCRxSPVokO165uYmAi5UgVnY6efyAxPP0lOTsbZs2cB8NA9/3fE2o7SmtpScfSjqnXWRVXmsVV3EV18fDzTU2qteIk0i/YAYPI90EdN/k4C/14zC1U+isp1PqiJtX6L6RkHh4MmsjikWbQ3eJ5VpX7M8mSZ+PiyoSVdN8vFxQXW1tZMGn0kJCRApVLpveHq7fHx8VUWSEdHR6gUcuQrBQh8+QdONZ4DhbQIrqWP8ULoCae8G+iZux1cAOX7ggTIQs+SrZA2moHI00q8M+49nQ/Zo0ePYFf4CIKSLOi32gQEyISk8BEePnTROfdLF/Hx8cgrKIJUZQvn4hvolrsTvzutqlady+fFVbzCK4UlioxYaPdKaQ0Lom0k6uDggF69eyMmWg65TIVX8n/zc5b9BY7oLUSLRlR6jXuVbEVpoxmIPK3Se40NoVCUvcXrM5rWh7OzMy5evIivv/4aCxYsQEZGBhwcHPDGG29g2JDBOH36NIIGBCD71Qts/d8WWAuB3gOGorn0OqCQwjnvL53n1NE2Gx2dgbiLhxBpKdY4p7NnzyI1NRXjxo3TuJ4KhQKRp08i70EEvgg9zmxfEFH27/vtgNDhZf9v4wj8NhpYcR6IjzkIZ5cmWL9+PUaOHKnX7FUikeDKnQSEvGuHIlkuAJTN9ZOMh5RnA5GiEFC8gkSRicvCYDjl6f6u5Zu+MLPeYe76lqpqgubSZLziOaFQzoVI+Qp2igwISrLwSDQcdvn3TdammtK44uJiOJYmIJW4wS7/PvNvdct59OgRUJINbukLo7SNW5yJ/Lxcnc+N+pnklryCjeIFBCVZyLcQQKTSzPuRZVtWrnF51Fo94IVmDHtNDMewN0RiYiKio88B4MLn5R846vgpBMVl3xtT74E+dH2H1IEZUkXtmWlB7qV3YFv4uEq/k8C/18wv/zT+sh2JZ0pHJjhBoqg9rgkDwZMWQkhKYKN4ofM8jfnOGKRaAeT0cPHiRTJ//nySnp6uc//z58/J/PnzyZUrV9gstsoMGjSIACDx8fE697u6uhJbW1uDeVy6dIkAIO+//77O/T/++CMBQL799lu9eUilUpKXl8d80tLSKo35Rz/0Qz9V/7AVC7g+aBzVN/qhn9frU119Y3UO4LfffoujR4/CxcVF5/4mTZrg2LFj2LhxI5vF1lvWrl0LiUTCfHTZb1AoFPOBapzxUH2jUMwbVoeAr1+/rhWXtiJ9+/ZFZGQkm8VWGbWLf15ens79+fn5aNSokcl5lE+ni6VLl2LBggUax7i5ueH58+e4fv06pE+iwVXJkct3gbMsHqVcG4hUBeifW/kE7nN2U1DqNQRDhmpP3I+Pj8eFCxcwOutLjXi4FcnlOeGQ03L07dvX6O76s2fPIiPpAZqUPkL/3F04af9JtetcMa9UkS/ONpoON+k9+BUc0ah7Ls8Jf9m8hVSLdhg4cBAThkxfHaVPotGuIJLJz1X2ELesh0LKtYKn9G+Tr3FFFAoFwvfthVP+3+if85PO1VcqAOcazUCWbSejhpbL30drZTZ2O38NESmBk+wJ0sTt4CBLxfDsTSbdA32cPHEcoqQTTJ6V3hvbEUgTt8OAgQMN3puKpKSkICY6CnKlSuP7Gm/hhwt2kwCiYu6XrvPMLwVcvzW6uEqpDxpXH/QtJycH586dhbU8CwX8Mj/B0Vlf4oXQAxfsJpmsTTWlcTt37oRKpYJf/mH8ZTuS+be65ajrKVIVwrk0Ef3/mbpQERWAs3YzkGHdAePfn6BTG9TPpFvpfeYaWiuzEe60GtaKl3gp9ADAgb08DdlCd1avjVpTh72s/MXnmMN8nTHsdaG+Po6liSjkN4Kt4hW4UEHOEeCl0AsATL4HlZU9ImsNTjeeAydZksH7UxXtBrSvWYrIFxcl41HKtYZQVQwelHCWxTP3U9d5mqpvrDYAs7KyGBsHfbi4uDD+XnVF+fkrXbp00diXkZGBwsJCdOvWzWAe3t7e4HK5eufSGJqHo0YkEjEBuMtjZWWF1q1bIzojA02l91EksADhOcJWVQAp1xFW+uN0M6isnGErsdMZT9HX1xd3bt3EPfK2zgm7AKACBxftx0JiY4W2bdsaPc+tdevWyMjIgOqfetoK5NWuc8W8fMg9WBT9jBi7SThu1/Ufv61cFHHtkClqAS6Rw825KXx8fCqtY3RGBpoU7cHwop8RZTcVmVw/eEhvQwEBlBamX+OKxMXFgXB4CJAegY2BEMoB0j8RLvFDVlZWpROKs7Ky4MF9hqa8F4iz9ofAwhoCJVAi8IKAb4nGpAhWQtPugT5sJXaQWrkweVZ2b3gcgjeDBlfZAqJNmzZIS0uDND4KTXkvmPjNvspbuM0fh1KuFVQcJ73fNb3TkapJfdC4+qBvTZo0YWxqbFSFUEKIew5jEZizHXf4MtxzGKvTEgUwTptqSuNEIhGIUo48Gx9I+DLkWbeGxIT6qutpU/gcWZIuuCwS6Fh45oxrtqORJe6AoEGD9Da61c+kb/Ee3OGPY+o0oOR3nLGfAUuiRLPSBwgs2I59zmtNvsblUWuqvMjJ4GKWXJ4z8qxbVxrDXo1a48SCEnD4jZBr2RZNpfch4PBhy5dBwRGZfA/0ob431zkfgAgdEFCwiTXtBrSvWRtyD9zS44ixmwhLVTGUKPvd9y2+hTv8cTrP01R9Y3UI2M7ODqmpqQbTpKSk6HTQr03UYbEiIiK09p0+fVojjT4sLCzQrVs3PH78WMs+gxCCyMhIWFlZwc/Pr1p1VNuWSLk2KOVZI0PUEk6yRGSIWiKXZ9iBP5fnjEyBN7y8vHTuV6+ITRV3QKT9LK38cnnOiLSfhVRxBwQEDqjSIgdvb28IeFxk/lNPT+mtate5Yl4A4Fl6B+9lfobAnJ9hocqHlGsNC1U+/PN+h4ojMCoCQ3lLGNfSh+BByYSAa1lyjZVrXBF9oegqos/GRhflo5skiztCIs9AKc8aeQIXiMrZ2phyD/Th6emJDIG3Rp667g2flBkx9+oTUG3/L7msFFZKzSgufCjQL/cXAECmqEWVvmumUB80rj7oGwC0aNECYiEfEsULKDl8pIg7IKrRdPjlH0GquD0iG31UbW2qSY0jHB7SxO1ho3yJNHG7sgn61ayvup4vhV5wkKcgQ9QC4c5fYp/jaux2Xoedzt8i3Hk1UsTt0aFjR3h7V1gWXw71M1nIs0dA7i9MnfL5DmUrrblC+OcfhBByjf1sXJuKNlu6UIGDa5IxEAv5RuumWuM8pbf+0bVCSLnWyBS1QNf8I1By+EgVtzfpHuhDfW9eCd3hXPqEVe0GdF+zVHE7iFTFEKhkzO+++n5W9l2rDqw2ALt3744//vgDaWlpOvenpqbi8OHD6NmzJ5vFVpkBAwbA29sbe/fuxa1bt5jteXl5WLNmDYRCISZNmsRsT09Px6NHj7SGQz788EMAZUMdpFykhtDQUCQmJuL9999nfM2qSvkvH5fIwFPJkCFsCbGyANdsx5j8kHl4eGBQUBAybbsg3PlLHHZYjDONZuCI4xKEO69Gpm0XBAUHV/lHu6ze/cEhSlyzHQPPkpvVrnPFvNTH86FAy5JrCMoJxfBXGzEw50dkiFoaLSzlfxyOOizWsETwLrnB2jUuj65QdPqwUmQbZTRdPrqJjGuJRoqnECkLwCEK2CqzmMZQTZyTPsEvf2+GvvoOfCggFvKrtOLP0HmWx6P0DgZk/wgOUeKq7VijvmumUh80rj7oG6DZ+HGUp4BPpEgVt8PFRhNgq8jEU3EbTW1yqJo2VdS4I45LTNY49XXoGxCAAuuWIBwuXgndQDhcpInbltW3cVl9DzssNqocdT0LrFuilGsNLlEgX+AMG2U2msnKTILB4eLxw/sGPV7LP5NupXcxKPsHZAqbI1YyFiJVoYYdjEfpHWZ/uPOXONL407Jr0/hThDuvxlOL9lW6NjXV4FY/+2oNs5Vn4ZXADTyVDGliXwzK3gaBqgQvhR4m3QN9eHh4wL6RBFaqHKPSG6vdgO5rJuNawlaZhTyBC4SqQvBUMlyzHcPczwK+o8Z5HmsUUqXzqQiHEBOjY5cjJiYGgYGBaNq0Kf7v//4PgwYNQpMmTZCeno6IiAgsX74c6enpOHfuHPr27ctWsdVCX6iklJQUbNiwQSNU0pQpU7Br1y6EhYVpxEJVqVQYOnQoEyopICAAT548waFDh+Dp6Ylr165VKVRSfn4+JBIJ8vLyYGtrC+CfKBjnzkAuL4uvpfYB1O1R54xrkjFIFXcw+suutiSJiooCiApu7h5o0aJFpZYklVE+tJG79C4u2b1X7TobDpNU9XNWk5ycjDORkXAsfYIRL79mtqeI2iNCrw9g9cqLiIiANP4c3nqxvtK0RxyXwKJlf50+buWJi4tDdHQ03sn8HLG2oyDl2qBDYQRO28+GkzwJ+TxHOMsSMChnG9JE7Vg/p5SUFEScPq3HJb/698XQeep6C08UdcQZ+5nwkN6Bm/SexneNW5wFyTpoPFOmUF80rr7oG6AZPcJGkYVSrhXkHBEIyuLqlsUCtoRIbAEvL68qa5Na45KSkhjbperkA4DxrpwwYQKEQiGSkpKQkJCA/Lw8lMpk4IAAHC5EAj5s7RrB29vb6HLU0Ts8pHf0Rp1IFXcw6PFa8ZnM5jfFGfsZsFAVooksDgNztmteG/CRZNEFSeWiHRXx7MB374E33xpRpWsDVAi9J0+ElSIbRXx7ZArKGqdVjQRS/tnP47sgwn4WHGTJyBE0YXxN/fKP4IXQEw+sAlDAawwlhw8lRwACLhydnOHr62vS71lERARK4s9hBIvaXZ7y10ykKoJEnoF8vhNsFC/wQugJgMP4t1ors5Fk0QUJ4k7I5bvihVyMufMXV1vfWG0AAsCmTZuwcOFCjaDZ6v9zuVx89913+Pjjj9ksstrExsbqDJb+7rvvaqTTJ5BAWbD0devW6QyW7uzsXKX66BNIhUKB69ev4/7dO0zMQy6RQ8URwKk0AdaqHBTyGiFL2LxaDxkhhHH9nzBhAiwt2QmflZiYiKhzZ6BUARJ5Ogr5jaHkCOEkS4C1MgdFPHtkCo0ThrLwP+cgV6rgJEuEtTK7Ssfr4+ifh2GRdFxLGCuG4LNS5aKQ2whZoupd48oaMWpyec4Id16NwMBAo8xX9+7+Bc75N+BZchPnG03FO5mf44FlX9yzGYTeObs1GkO5fBftczLhewOwL/iVnae++VxJog44Zz8dSo4QEkUGCnn2UHKEsM57gPcXb2KtAQjUH42rL/oGsNtIqynK6+TEiRNN6v2siDHfcRU4iLSfhUzbLnjPgJFy+WeSR+QQqYqgBB+NFOl469WGSuty2GEJLFtVrRFT8VzYupcVr0uqqB2jYRaKHJTybKDi8Kv1m2IsNaHdFVFfs7t37+Lly5eMdqsbu0qOEITD0/q9l0mLMSdkvvk0AAHgzp072LZtG65fv468vDzY2dmhW7du+Oijj+Dr68t2cQ0GQwIJlH1Jnjx5ggcPHqCgIB8qpRIcLg+WFmJIqvi2WR6VSoXt28saQJMmTYJYLGblfADgxo0buHHjBqytrWFjbQW5QgkOhwM+j1vlN/qa+JEw1DNX8e34lcANNk4eeOutt0wWMlMEvjzqN3436R0m5mdgTtkkb2dZAloVX8YFu4lMo89ClYdsflPkC1zAIQqAy0efPmWr4qp7DWvjx1tXb6M6Kki8hT9eCdwg5dqgabNm4PP5kJVKIVcoUVJSggkTJrDaAASoxlWHyvTN3KlJnWS7kaFQKHDlyhU8fPgQ3fJ+R6xkLADUaCOmpqj47Kt7wZLEHVHEtUOewBkyrhXs/4kvz7b21JR2V1ZWq6JLjHbbyDNQyrP5t2ccZS+bb40YCWdn52o/UzXyatW+fXts3bq1JrJ+reHz+WjdujVat27Nar7l3wG4XHbDQ6vjI3p5eaFHjx4m5cXn89GyZUtWhcnT0xPRyWWLGSoKo3o+W8uSa4ww9mzXrloPd/lQdJH2swwPmVZhjox6/lBMNB+lMoXGRPpLdu8BAIa9/BbZQrd/GrJWsFG+goCU4pXQA8FBpg3Pqs+N7ftSkfLnGS7uUNbLx7WHkiuEsywBrrLHKOLZ49kzjsbbv9quhG2oxr3elI+NzAZVXySmPxwcUPZMlpSUwEWeCN+iKNy2DoaCI8I12zEGV8peta3a3ObaoOKzrx5pKOHb4cU/Iw3BLPX26aKmtLuysoAK2q2yBIcoIeVa45XQA4OCgk1+CTGPvnVKnaJSqZj/sy1sMllZrBqh0MD6+TrE29sbly/G4KrtWATl6H+7q+qiD13oE7LyQ6ZB1RAyT09PNJswCUlJSbh//z6evuiAFIuyVcFPxW2QYtGRGSJRcoTIFNW8aNYE6vO8fv067t4lBudKqWNL29vb12GNKQ2J8i/KrOtkFReJVYx1bihP9Yr50/azkCLugMhGH+mcB3zVdgxSLdoj2MRGTE1QXuOSkjwhLZXCQiRGYC1NE6gp7a6srIPlylJyhUxZwSy94JrXXaYAKIthy+PxNLZZWloyolNaWsr0rOnCwsKC6cmTyWSQy+UG06qFTaFQoKSkhGm0VUQsFjP1qixfddrS0lIolUooFAq9cV9FIhHzAMvlcr3lV0yrUChQWlqqN61QKIRAIDCYNiUlBQVFJSgRtGWE0UaeBek/lzeX54TrNiOQxnkDA/17oLS0FCqVimnQKpVKSKX6xVggEDBpVSoVHB0dMWLUGCQnJyMlxQW5/wyZ+nt4oGXLlsz8S5VKhZKSEr358vl8xmONEILS0lK4urrC1dUVCoXin/xTwJWWQEUAIuyOEh4XYpEY/i4u8PT0BJ/P17onPB5P461S3z2raloul6sxZ6oqaYuLizW+o/fu3IJz/t/omfMTeBwAgn+PFUo1Y0sPHjpcbzmUukGtb+X1pCrPfW1rhJryoyMqlcrgd7j8c2+URvyz2lVFgBL9sgoBDyji28NCJK5UI8DhMqvn3aV30Dvjf4iRTEA8txXi7JbDsTSxzKuTZ4dX4hYQCfkIDhoMd3d31p57tjVCrXGGNKIiHA5HY157VdKWlJQwHSS6tNtWYsc0QuVyucHzK+97KJVKoVQq9aYt3+B9/NgVuSXFzO9Eee02VJ5RVCuAHKVGyMvL0xvrLysri0k3e/Zsg3EBk5KSmLSLFi0ymPbevXukpKSEhIaGkuHDhxtMGxsby+T79ddfG0wbFRVFCCHkxIkTZNy4cQbTHjt2jMk3LCzMYNrw8HAmbXh4uMG0YWFhTNpjx44ZTLvyzaZk19YNJDQ0lHw5512Dab/++msm39jYWINpV6xYwaS9d++ewbSLFi1i0iYlJRlMO3v2bCZtVlaWwbSTJ09m0hYWFhpMO3bsWI3vpKG0Q4cO1UhraWmpN21AQIBGWgcHB71p/fz8NNJ6eHjoTdvGEYSs+PfTxlF3OrZiAVOqT0V9U2sEIYRs2bLF7DVi06ZNJDQ0lISGhpIzZ86wqhGPHz8moaGh5PIn9gbTftLLkoSGhpK4uLhKNeK9994joaGhJGe1E8lapD8dANKjRw/y8OFDQkgD1Ig2bTTStmnTRm9aDw8PjbR+fn560zo4OGikDQgI0JvW0tJSI+3QoUMNXrfyjB071mBawExiAVPqJ+WHgNnG0Ju6OeGgeMaYGItURoTMoFAorxWE/fWSDGoPvzvWhlfepotaGT0VxdbWtpxXp2F4XI5JXp2U+kmNrAKmVA/1Krnnz59rreipySHg4uJi7N27F0qlUsMgtiLVGQI+cOAAXr58iYEDB8LV1VVn2roa3ikfi1HIKxteAQClCswQsJry8SurPLxTbgjY0JBNVdJWHAIuLtbfaK1KWnMeAlYoFNj96y64F99k4v1yOIBluSHgYjmgVrRzdlOQ4xyAyVOm1tuVpw2JivpW34aACSHYu3cvgDLrHEP6Vx2NSElJwamTJ+FScBN++Yd1xtN+btURQ4cNg4eHh1EakZGRUeYSUHIL7V7+rjdGd1BwMFq1asWcZ33VCF2wNQSsi/LDulVJW9kQsLFp8/Pz4erqal6rgCmmYWVlZTBOor4Ym7oQCoWVLsBQPwxCodCo+IzG5guUNRR5PB7s7IyLmSsQCBhBrgw+n1+lsD4V03I5gD2vAFYVToPHhda2xrxCSDnQOgcej2f0NeNyuTWSlsPh1EhaQPt86yKtWpDj4uIgEIqhIvrjGpdvDKosnWFjKzG6HErtoEvfqvLc16ZGlKd8I47P5xu9sM1YjfDw8EDw4MGIiRbiuMRP50KDoeUWGhijEeUXFBy36KgzzzcrLF6ozxrBdtqqeD1WJW1VVu8aSmuoEWkMtAFIYd5a2LSAUSgUSExMLHuTJCpcv34dLVq0gLe3t9msMNMXYkwX6onXlLojOTkZEkUWExu6Mj+zTKE3uuqJmEChmALbq4DV1MRq17peQUsxX+idp2hEMWADjegQsgRYKbNRlJSM6KdPcfXyRdYc2k3FkAdgeXJ5zsgUeCPQjLyxXkdkpVI0kqeilGNRqZ/ZNdvR4HGIWXzPKA0DUoM2MOWpCV/N2vDqpNQ/WG8AymQyHD58GNevX0dubq7OLkoOh4MdO3awXTSlmqh7ANkQteTkZERGROiJD6vp0aYvnmVt4e3tjauXL+KaZKxBh3c2PAAppiMUiSHl2yMg9xdE2M/S62d2zXY0UsQd4OToXCO9G1TjXk/UDcCabPxRKLUJq+qYkpKCQYMGISEhweCKKSqO5gVbQ8AKhQIx0efgLr2ts0Flp8zCoOwfEGk/CzHRfDQzIWQOG9SmwzvFdNQ9tn0VGRiU/QNi7CYh3PlLJq5xEdcOmaIWEKkKAQ4Hbdu2Zb0OVONeX+h6SUpDg9VftPnz5+PJkyeYOHEipk2bhmb/xOWkmDdsvdkmJiZCKlPAP+93nb1pAMAFgX/eQYSLOyApKanOhyRq0+GdYhoVe2zfy/yMiQkq5VrDQpWPgJyfkWThhyzbzvDy8jK4mrE6UI17faE9gJSGBqvKde7cOQwYMAC7du1iM1tKDcNWDyDb8SxrCzpJun6gq8dWHasZ+LfHNk3cvsZ6bKnGvb7QBiClocGqQqpUKnTq1InNLCm1AFsNwJqIZ1lb0EnS9YO67rGlGvf6QhuAlIYGqw1Af39/PHz4kM0sKbUAW6uAqa0KpTaoyx5bqnGvL7QBSGlosKqU69atQ9++ffH7779j7NixbGZNqUHYWgVMbVUotUVd9dhSjXt9oQ1ASkOD1Qbg8ePHERgYiHfffRcBAQHo3LmzzvAkHA4Hn3/+OZtFU0yArSFgaqtCaehQjaPQBiClocBqLGBjGxAcDsfkECYNEXWszNqOW5qSkoLTp0/D0dERo0aNMjmviNOn9fgAlrNVCQ6mK2spNQ7bzxTVuOpTV/rGFjk5OThw4ADEYrHBmOkUSm1h6jPFag9gVFQUm9lRagk2Q8FVnKTvJEuAtTKH2qpQGgRU415f6BAwpaHBagMwICCAzewotQTboeDUk/R/++03ZKE5lPaNYGMrobYqlHoP1bjXF2oETWlo1Mgv8aVLl7Bz507cunUL+fn5sLW1RadOnTB58mT06tWrJoqkmACboeDU8Pl8Jt/+AwaiUaNGrOVNodQ1VONeP2gPIKWhwXoDcP78+di8ebPGw0IIwY0bN7Bjxw6EhITg22+/ZbtYigmwOQQMlIWEe/LkCUpLSwGiwrVr1+Dt7Q1vb2/a+0ep91CNez2hDUBKQ4OdX/x/2LVrFzZt2oSWLVtiz549eP78ORQKBdLT07F37160atUKmzZtwi+//MJmsRQTYbMBmJycjL27f0FMTAycZQnwlt5AaUI0oqOjsXf3L0hJSTG5DAqlrqAa9/pCG4CUhgarq4C7d++O58+f4+7du5BIJFr78/Ly0K5dO7i6uuLq1atsFdtgqKtVcg8fPsSFCxfg4eGB4ODgaueTnJyMyIgIPSuAnXBNMhap4g4YFBQET09PFmpOoRiG7WeKalz1qe+rgDMzM3HkyBHY2Nhg/PjxdV0dCsXkZ4rVHsD79+9jzJgxOoURACQSCcaMGYP79++zWSzFRNjoAVQoFIiJPgd36W0Myv5BywjaTpmFQdk/wF16GzHR56BQKEyqM4VSF1CNe32hPYCUhgarDUBjMIeHJz8/HwsWLICHhwdEIhE8PT3x6aeforCwsEr5cDgcvZ8pU6bUTOVrADaELTExEVKZAv55v+s0gAYALgj88w5CKlMgKSmp2mVRKOZMXWsc1beapa7vL4XCFqzOyG/bti0OHjyIL7/8EtbW1lr7CwoKcPDgQbRt25bNYqtEUVERAgICcOvWLQQFBWH8+PH4+++/sWHDBpw/fx4xMTEQi42PUevh4aFTDDt27MhepWsYNnoAk5OT4SJPNBgCDgDslJlwliciKcmz1sN4USimYu4aR/Wt5qA2MJSGBqsNwJkzZ+KDDz5Ajx49sHLlSgQEBMDBwQEvX75EdHQ0Vq1ahadPn2L16tVsFlslvv76a9y6dQtLlizBunXrmO2fffYZ1q9fj40bN2Lp0qVG5+fp6YmVK1fWQE1rDzYagLJSKSwVr4xKa6XIhrRUWu2yKJS6wtw1jupbzcG2XyqFUtew+k2eOnUqPvnkE9y/fx/vvPMOnJ2dIRAI4OzsjHfffRf379/HJ598gsmTJ7NZrNEQQrB9+3ZYW1trxen8/PPPYW1tje3bt9dJ3eoSNnwAhSIxivmNjUpbxLeHUGR8LwSFYi6Ys8ZRfatZaA8gpaHBuinb5s2b8fbbb+s1Se3Tpw/bRRpNfHw8nj9/juDgYFhZWWnss7KyQq9evXD69GmkpaXBzc3NqDxzc3Px448/4uXLl7C3t0evXr3Qrl27mqh+jcHGm62npyeik72Ry3MyOAycy3NGpsAbgV5e1S6LQqlLzFXjqL7VLHQRCKWhUSOuvH369KnThp4+4uPjAUDv3LOWLVvi9OnTiI+PN1ogb9++jZkzZ2psGzx4MHbt2gUnJyeDx5aWlpaZJf9Dfn6+UWWyDRtDwN7e3rh6+SKuScZiUPYPOheCqMDBNckYiIV8eNEGIKUeY44aR/WtZqENQEpD47WazJCXlwcAei0c1D466nSVsXDhQly+fBkvX75Efn4+Ll++jCFDhuDUqVMYPnw4lEqlwePXrl0LiUTCfIwVZbZhQ9j4fD4CAgcgVdwBkfazkMvT/HHI5Tkj0n4WUsUdEBA4gEYEoVBYhupbzUIbgJSGRr38FV64cKHGm2VlhISE1MiK0w0bNmj83aNHDxw7dgz9+/fH+fPnceTIEYwePVrv8UuXLsWCBQuYv/Pz8+tEJNmKBOLh4YFBQUGIieYjXNwBTrIEWCtzUMS3R6bAG2IhH0GBA+Dh4cFGtSmUBgnVN/OGNgApDQWTGoDTpk0Dh8PBmjVr4OzsjGnTphl1HIfDwY4dO6pdbmhoKIqKioxOP3bsWLRs2ZJ5M9b3BqweotD3Bm0MXC4XM2bMwPnz53Hp0iWDAikSiSASiapdFluwGQrO09MTzSZMwp9//omsl0CprQ0a2TdGoJcXvLy8aM8fpV5RFxpH9c08YWOxHIViTpj0a7xz505wOBwsWbIEzs7O2Llzp1HHmdoArKqhqRr1W7J6rkxFKptDYywODg4AUCURr0vYHtrg8/mwsLAAAHTq3AWtWrViJV8KpbapC42j+mbe0AYgpaFgUgNQHc2hadOmGn+bKy1btoSrqysuXbqEoqIijZVyRUVFuHTpEry8vEweprh27RoA1Jt4t2z2AKpRh3rj8Xis5Umh1Db1SeOovtUs1AaG0tAwqQFYcS6Xuc/t4nA4mD59OlavXo0vv/xSwyj1yy+/RGFhIZYtW6ZxTHFxMVJTU2FpaQl3d3dm+927d9G6dWsIBAKN9JcvX8b69eshEAjw9ttv1+wJsURNDG2oJ4jTBiClPlOfNI7qW81CF4FQGhqsrgJOTU2tdKl/QUEBUlNT2Sy2SixevBgdOnTA+vXrERwcjKVLlyI4OBjr169H165dMW/ePI30sbGx8PHxwaRJkzS2f/PNN3B1dcWoUaMwd+5cLFy4EIMHD0bv3r0hlUqxefNmNG/evBbPzDhWrlypEdNz3759lfoADhs2TOOY5OTkSstRNwDZnPOXn5+Pr776Cn5+fpBIJLC0tESrVq0QEhKCp0+fGqzL2bNnsWjRIvTs2RONGzeGQCBAo0aN0LNnT6xZswY5OTms1ZPScDF3jaP6pq1vlWGsvtV0A7C6+qaPxMREWFlZMedl7PQFymsEYREul0tWr15tMM3//d//ES6Xy2axVSY3N5fMmzePuLm5EYFAQNzd3cnChQtJfn6+VtqoqCgCgAQEBGhsP3ToEBkxYgTx8vIiVlZWRCAQEDc3NzJ+/Hhy7dq1atUrLy+PACB5eXnVOt4YVqxYQQAwn6CgIHL27FkSGhpKbt++rZX+2bNnhMfjaRyTlJRUaTn79u0joaGh5Pnz56zU++HDh8TT05Opg0gkInZ2dszftra25Ny5czqPnT59ukb9uVyuxrEAiLOzM7ly5QordaWYD2w/U/VB46i+aeqbIaqib/Hx8SQ0NJQcPXqU9Xqbom+6UKlUJDAwUOO8wsLCWK83pW4x9ZlitQeQEFLpPInK9tcGEokEGzduRGpqKmQyGVJSUrBhwwbY2Nhope3Xrx8IIYiOjtbYPmrUKBw+fBiJiYkoLCyETCZDamoq9u7di27dutXSmVQfBwcHWFlZ4cyZM8jMzASguwfwl19+gVKprPJ8HzaHgEtKSjBs2DAkJyejcePGOHjwIAoLC5GTk4P4+HgMGTIE+fn5GDlypM43ZblcDicnJyxatAiXL1+GVCpFTk4OCgoKsH37djRu3BiZmZkYNmwYXrx4YXJ9KQ2X+qBxVN809c1Q71lV9I3UUA+gqfqmix9//BFRUVHo2bMnq3WlNCxq3Qj66dOnOoWIUrtYWVlh7NixUKlUOH36NADdwhYWFgYAmDJlSpXyZ3MIeMeOHUhMTGT+P3r0aCbfFi1a4NChQ/Dw8EB+fj5WrFihdfysWbOQnJyM//73v+jRowczr8na2hoffPABjh49CgDIzs5GaGioyfWlvN5Qjat7yuuboaHPquhbTTUATdW3iqSlpWHx4sWwt7fHxo0bWa0rpWFh8q/z6tWrNf6u+CapRqlUIi0tDfv27UP37t1NLZbCAlOnTsWuXbsQERGBnj17avUAXrx4EXFxcfD29kbfvn0N5iWVSrFt2zaEh4fj4cOHKCwshK2tLc6dO4fPPvsMHTt2rHY9jx8/DqBsleOIESO09ovFYmae0v79+7FlyxbGhgYA/P39Debfo0cPtGnTBg8ePMD169erXU9Kw4RqXP1ErW87d+7E8uXLtfZXVd927tyJ/fv3IysrC3K5HM7OzggICMCCBQvqVN8qMnPmTOTn5+Pnn3+uNFwf5TXH1DFoDofDfLhcrsbfuj5NmzYlsbGxphbbIKnNOTIeHh5EpVKR5s2bEwBk4cKF5OHDhxppp02bRgCQ1atXM3OFoGOOzNOnT4mvry+zXyAQEAsLC405d5s3b652nX18fAgAMmLECL1pTpw4wZQXGRlZ5TI6d+5MAJBhw4ZVu54U84ONZ4pqHDvUpb6dP39eK2119Y3P5xOJRGKW+rZr1y4CgPTv358QQkhSUhKdA9iAqfM5gFFRUYiKisK5c+dACMGUKVOYbeU/MTExuHfvHlJTU9G1a1dTi6WwAIfDYYY+Ll++rNEDWFRUhPDwcHC5XIPDI0qlEmPGjMG9e/cgkUiwe/du5Ofn47vvvsP//d//YejQoVCpVAgJCcHJkydNqq+h2KPl9929e7dK+b58+RL37t0DALRr1656laM0WKjG1U/K69vPP/+ssa86+mZjY4Np06bh0KFDyM3NRUJCAoYPH242+paZmYn58+dDLBbTqSwUozB5CDggIID5/4oVKxAYGFhpdzrFfJg8eTJWrFiBmzdvoqSkhNkeHh6OwsJCDBo0CG5ubkhISNB5/O+//84Yw4aHhyMoKAhyuRwA4OjoiN9//x2BgYG4du0aFi9ejCFDhlS5jp6ennj48CHu378PQojOOTjqBhwAPH/+vEr5f/7555DJZODz+VWe60hp+FCNq7+o9e3333/Hli1bYG1tDaB6+vbtt99CpVJBKBQCALy9vfHHH3+gd+/eZqFvH3/8MbKzs7FmzRq0aNGiyvWgvH6wughkxYoVVBjrGW5ubujQoQNKS0s13mDVk6Mri326f/9+AGXz6IKCggBovq2KRCJm4vK9e/eq3DsHAEOHDgVQFoVh7969WvsLCwuxefNm5u/KfNoq1n/btm0AgE8//RRvvPFGletHeX2gGle/cHNzw8CBA5kePzXV0Tf1itryDTQ+n28W+nbgwAEcPHgQ7du3x6efflrlOlBeT2psFbBSqURmZiZSU1N1fijmQ//+/QGUve0CwJMnT3DhwgU0atQII0eONHjsX3/9BQAYOHAgs00dBo7D4YDL5SIwMJCxg1GnrwpTp06Fl5cXgLIJztu2bcOrV69QWlqKy5cvIygoCOnp6czKOWND2l24cAFTp04FUHYNKk72p1AMQTWufqB+xtXDwNXVN6JnFXBd69urV6/wySefgMvl4qeffmLVfJ/SsGG9AXjjxg0EBwfD2toarq6u8PLy0vp4e3uzXSzFBLp16wZLS0vcuHED8fHxzNvx+PHjIRaLDR6blZUF4N9YqYC2BYxYLGYCyKvTA2Vv1y4uLjo/ly9fZtJZWVnh2LFj8PDwQFFREWbNmgUHBweIxWL06tULV69exddffw07OzsAQKNGjSo95ytXrmDYsGEoKSlBr169cOTIESqcFKOgGle/GDVqFBo1aoRLly6ZpG/6GoB1rW8hISHIysrCnDlz6oVHI8V8YPUX79atW+jTpw/4fD6CgoJw9OhRdOjQAS4uLrh58yZevHiBfv36mXU8zdcRPp+Prl274vz589i+fTszDKF+c64qxppAl5SUMCbUFZHJZBp/t2nTBnfv3kVoaCiOHz+OlJQU8Pl8dOrUCZ988gn8/f2ZOKetWrUyWO6VK1cwePBgFBQUoEePHjh58iQzN4hCMQTVuPqHSCTC+PHjsXXrVpP0TV8DUB+1oW/nz5/Hnj170KRJE3z22WcoLCzUyLe4uJj5f2lpKQoLC8HhcGBlZWXUOVAaOGwtRyaEkNGjRxMLCwvy4MEDQkiZfcKqVasIIYQUFxeTWbNmEUdHR6NCib2O1LZNgpoDBw6QpUuXEgBEKBQSAMTX11fjOH02CW5ubgQAWb58ObMtMzOThIaGkj179hBCCCkpKSF8Pp8AID///HONnFdsbCxTv8ePH+tNd+nSJWJjY0MAkB49eugMj0VpOLD9TFGNqz51pW+EEHL9+nWT9e327dskNDSUnD17VuPYutS3sLAwjXBvxnwkEkmN1JFS+9S5DUx5Ll68iLfeegs+Pj7lG5gAAAsLC2zZsgWurq7MmwxFN0+ePEFaWhpevnyJ4uJiqFSqGi2PEAJPT0/4+Pgwb6aVTY5W4+fnBwA4c+YM4uLiEBERgYsx5wGU9QQqFApER0cz8wJryh5j9+7dAMpMn/X1AF6+fFmj5+/UqVM0YgOlSlCNq5/4+fmhXbt21da3s2fP6k1jLvpGoVQVVoeA8/LyNOa+CAQCjS5pLpeLfv364bfffmOz2AbHhQsXtJzexWIxLC0tYWFhAQsLC73/F4vFRi+CUKNuYP7nP//B33//DQCYMGGCUceOGzcOf/zxB65evYqtW7eif0sxbBWvwOPZIxPN8euuMGzZWrbK1tfXF76+vlWqmzFcvXoVP/zwAwDodPwHNBt/PXv2pI0/SrWgGld/Wb9+PdOQq6q+XblyBZcuXQKPx9MYAlYoFMzisbrQtylTphi0rkpOTmYWmISFhVGbK4oGrDYAnZyckJOTw/zt4uKC+Ph4jTRSqVRjXgJFG1dXV3A4HJSUlDDefFKpFFKptNJjORwOxGKxVuNQ/a/aQoD8E9Sew+EwDcCBAwfi/fffr1Jdu3TpAi8vLyQlJSEsdDO6DSUY0gYQ8IDb+Y3xUaQNbt5LBgB8/fXXVcq7PJs2bYKjoyMGDBgAZ2dnAGUTrn/99VesXLkScrkcH374IYYPH6517NWrV5nGX69evXDy5Ena+KNUC6px9ZchQ4ZU2advzJgx8Pf3Z3z+3n33XeYFICkpCfPmzcOVK1cA1J2+USjVhdUGYJs2bfD48WPm7169euHw4cO4cuUKevTogYcPHyI8PBytW7dms9gGR3BwMGxtbQGU9c5JpVKmMVhcXKz3/1KpFIQQjYZjRdQ/VkVFRdi+fTvEYjGTNiYmBu7u7jobj+phrvIoFApcunAeX07pg7VbknD/BcH7h4CpRwBLAZArfQXgFbgcDsaPH4dBgwZV+5pERUXhyJEjAMp6Q4VCIdOY5XA4mDNnDr777judxy5btgwFBQUAgAcPHqBly5Z6y3Fzc6PxgCl6oRr3esHj8XDw4EEEBwfj/v372LFjB3755RdYWVkhNzcXQFmv78aNG6tlAq3GFH2jUKoLqw3AYcOGYf78+UhPT0eTJk2wZMkSxind3t4eOTk5UKlUdH5MFeByubC0tISlpWWladWNRX2NxJKSEg3bA3VjUU1OTo5G70Z54uLimP9HR0fD09MTJSUlkMoUeIdzCmM+BH64DoQ/AB6+AIrlgJst0M8TmNGrER527IekpCSDjS9DzJw5E7a2toiNjUV6ejpkMhm8vb0REBCADz/8EN27dzd4XcqfoyEqs4WgvN5QjXv9aNq0Kf766y/85z//wR9//IEXL16guLgYbm5u6NevHxYsWICOHTuaVIYp+kahVBcO0dW1U03kcjmys7PRqFEjJlzO5cuX8dVXXyExMREeHh6YM2cOhg0bxlaRDYr8/HxIJBLk5eUxPYA1hUqlYhqFhw4dAgC0aNGC6REs34AsLS3Vm4+zLAEjXlY+9HHEcQksWvZnooVQKLUB288U1bjqU5v6VhPcuHEDN27cgI+PD/r06VPX1aFQTH6mWO0BFAgEzPwFNT179sTx48fZLIbCAlwuF1ZWVrCysoJIJEJpaSk6d+7MmI2Wp3xjsXyP4oN7d2FVkm1UeVaKbEhLK5/DSKGYM1TjXl9IFX0AKRRzh4Y+oDBDpPqErXxjsTxZWVkozmvM/K0AH4kWXZAs7ggZ1xJCVTE8pbfgXXIDRXx7WIjo8CqFQqlfKBQKJCYmIiEhASAqpKWlIS4uDt7e3jR6EKVeY9K311gvpYpwOBzs2LHDlKIpLKJuAFbVPsbT0xPRyd7I5Tkhl++CGLtJkPJs4FIaD0tVLoq5dohuNA1XJO+glGuNwH/sCCiU+gLVuNeb5ORkxESfg1SmgLMsAY2V2SiS2yM6ugBXL19EQOAAGvWFUm8xaQ5gVRsMTKEcDhMujPIvtT1HRv1mGx0dDRAV3Nw90Lx5c6PfbBUKBfbu/gU2hfF4KfCAu/QO/PMPwk75bzzMXJ4TrtmOQYq4AwYOGkRjpFJqFVOfKapx7FHf5gAmJycjMiIC7tLb8M/7XVvXJGORKu6AQUFB8PT0rLuKUl5b6nQOYFJSkimHU+qQim+2VspsFCUmIzotzeg3Wz6fj959++FsZCncpXcwKGcbuNB8n7BTZmFQzjZE2s/CxRgB3N3d6bAJpd5ANe71RKFQICb6HNyltzEo+wfdupb9AyLtZyEmmo9mEyZRXaPUO0z6xtKu7/qJMW+2EacVRr3ZKhQKEA4P/vkHtURSDRcE/nkHES7uYJIVDIVS21CNez1JTEyEVKaAf97vVNcoDRZWYwFTzJ+Kb7blG3/Av2+27tLbiIk+x8S41EdycjJc5Ila+VTETpkJZ3ki7VGhUChmD9U1yusA6w1AhUKBjRs3olu3brC1tdXoFr916xZmz56tYSpMqV2q8mYrlSkqFTZZqRSWildGlW2lyIaMWsFQ6jlU4xo+VNcorwOsNgBLSkoQGBiIRYsWISUlBba2thohxLy8vBAWFoZffvmFzWKrxK1bt7Bs2TIEBwfD0dERHA4H/fr1q3Z+169fx9ChQ2FnZwcrKyt0794d4eHh7FWYZdh+sxWKxCjmNzaYRk0R3x5CagVDqcdQjTN/jWMDqmuU1wFWG4Br1qzBpUuXsHbtWmRkZGD69Oka+yUSCQICAnD69Gk2i60Shw8fxtq1axEdHQ0XFxeT8oqKikKvXr1w8eJFvPPOO/joo4+QkZGBd999F9988w1LNWYXtt9sPT09kSEos4IxRC7PGZkCb3hRKxhKPYZqnPlrHBtQXaO8DrDaANy/fz8CAwOxePFicDgcncbC3t7eSE1NZbPYKvH222/jxo0bKCwsRGRkZLXzUSgUmDFjBrhcLmJiYvDjjz/im2++we3bt9GqVSssW7YMKSkpLNacHdh+s/X29oZYyMc1yViooNtIWgUOrknGQCzkU6Gk1Guoxpm/xrEB1TXK6wCrDcDU1FT4+fkZTGNjY4O8vDw2i60Sbdu2RefOnSEQCEzK59y5c0hISMB7772nEQhcIpFg2bJlkMlk2LVrl4m1ZR+232z5fD4CAgcgVdwBkfaztPLN5Tkj0n4WUsUdEBA4gFolUOo1VOPMX+PYgOoa5XWA1W+tjY0NsrIMzy1LSEiAo6Mjm8XWCdHR0QCAoKAgrX3BwcEAgPPnz9dmlYzC29sbVy9fxDXJWJ3+VkDV32w9PDwwKCgIMdF8hIs7wFmeCCtFNor49sgUlL1JB1HHfEoDgGpcGeascWxBdY3S0GG1Adi9e3ccPXoUubm5sLOz09qflpaGEydOYNSoUWwWWyfEx8cDgE7vJxcXF1hbWzNp9FFaWorS0lLmb3WvQX5+Pos11aazXzecO1uAIssP4Jd3GHaql8y+XK4j/pKMwFPSCv39uqG4uNioPO3t7TH8rZFISUlBcrIjsmWlEAhF6OrpCQ8PD/D5/Bo/LwqlIurvnAkBjzSgGleGMRpXV/rGJlTXKOaMqfrGagPw008/RWBgIAYMGIDNmzczHnLFxcW4cuUK5syZA4VCgQULFrBZbJ2gFjOJRKJzv62tbaXDQGvXrsWqVau0tru5uZlewWrzAsD2OiyfQmGfgoICvc9qVaAa9y+VaZx56huF0vCorr6x2gDs27cvtmzZgpCQEPTt25fZbmNjAwDg8XjYunUrunTpYlI5Cxcu1HizrIyQkBCzdGlfunSpxg+FSqVCdnY2GjdurDW5PD8/H25ubkhLS6sXcTRNhZ5vw6a2zpcQgoKCAri6urKSH9U446mKvgH0GWjo0PNlH1P1jfWZq7NmzUK/fv2wbds2XLt2DdnZ2bC1tYW/vz9mz56Ntm3bmlxGaGgoioqKjE4/duxY1sVR3drW9wacn5+PRo0aGcxDJBJBJBJpbNM1rFQeW1vb1+LhUUPPt2FTG+fLRs9feajGlVGZxlVH3wD6DDR06Pmyiyn6ViNLl3x8fLBp06aayBoAUFhYWGN5G4tabOPj47Xe9jMyMlBYWIhu3brVRdUoFEoNQzWOahyFUt9h1QaGx+Ph/fffZzNLsyUgIAAAEBERobVPbQKrTkOhUBoGVOPKoBpHodR/WG0A2traNrgJvnK5HI8ePUJCQoLG9gEDBsDb2xt79+7FrVu3mO15eXlYs2YNhEIhJk2axFo9RCIRVqxYoTWk0lCh59uwqa/nSzWOahxb0PNt2NSH8+UQtvwRUOYNxeVycfLkSbayZJ1Hjx5h3bp1AMrieoaHh8PZ2RmDBw9m0uzcuZP5f3JyMry8vODh4YHk5GSNvKKiohAcHAyxWIxx48bBxsYGBw8eREpKCjZs2ICFCxfWxilRKJRagmoc1TgKpcFAWOTy5ctEKBSSXbt2sZktq0RFRREABj/lSUpKIgCIh4eHzvyuXbtGBg8eTGxtbYmFhQXp1q0b2bdvXy2cCYVCqW2oxlGNo1AaCqz2AK5evRqXLl3CmTNn0LlzZ3Tt2hXOzs5aS/45HA4+//xztoqlUCiUWoFqHIVCaSiw2gDkco2bUsjhcKBUKtkqlkKhUGoFqnEUCqWhwKoNTFRUFJvZUSgUillBNY5CoTQY6nYE+vXCw8ND75ycgIAAjbRhYWEG5/BERUXpLCM2NpYMGTKESCQSYmlpSfz9/cn+/ftr/uQMcOjQITJw4EBib29PRCIR8fT0JOPGjSOpqaka6fLy8sj8+fOJu7s7EQqFxMPDgyxatIgUFBTozFepVJLNmzcTX19fIhaLiYODAxk3bhxJSEiojdPSizHnu2LFCoP3NykpSWfep06dIn379iXW1tbExsaG9OvXj5w5c6aWzuxfKvt+AiD9+/fXOKah3F+KfqjGUY1TQzXO/O8vqz2APB4P48aNw549e9jMtkEhkUgwb948re2enp46048YMQIdO3Y0Kr2+FXvvvvsu0tLSan3FHiEEH330EX788Uc0b96cqdPz589x/vx5pKSkMJYaRUVFCAgIwK1btxAUFITx48fj77//xoYNG3D+/HnExMRALBZr5D9z5kxs374dbdu2xdy5c/H8+XOEh4cjIiICV69erfXQWFU5XzWTJ0/WeS91RUzYvXs3Jk6cCEdHR0yZMgUAsH//fgwaNAjh4eEYO3ZsDZyVbjp27IgVK1bo3Pf777/j/v37CA4OZrY1hPsLUI0zBqpxVOPKQzXOjO8vm61JOzs7smTJEjazbFB4eHjoXWlXEfXbR1hYmFHp5XI5ad68ORGJROTvv/9mtufm5pJWrVoRoVBIkpOTq15pE/juu+8IADJ79myiUCi09svlcub/X3zxBQGg9f1ZsmQJAUDWrFmjsf3cuXMEAOnbty8pLS1ltp84cYIAIEFBQSyfTeVU5XzVb8f6ejkqkp2dTezs7IiDgwNJS0tjtqelpREHBwfi4OBA8vPzTT4HUyktLSWNGzcmfD6fZGRkMNsbwv0lhGpcZVCN04RqHNU4c76/rDYAg4KCyODBg9nMskFRk+J4+vRpAoBMnTpVa9/OnTsJALJq1aoq1NY0iouLSaNGjYi3t7eGKOhCpVIRV1dXYm1tTQoLCzX2FRYWEmtra+Lt7a2xffz48QQAOX/+vFZ+/fr1IwBISkqK6SdiJFU5X0KqLo6hoaF67+HKlSsJALOwJtm/fz8BQEaOHMlsawj3Vw3VOMNQjdNNQ3gGqMaV0ZA0jtVIICtXrsS5c+fwyy+/sJltg6K0tBQ7d+7EmjVrsGXLFly7ds1g+r///hvffPMN1q9fj/379+PVq1c600VHRwMAgoKCtPapu6nPnz9vWuWrQEREBHJycjBy5EgolUocOnQI69atw7Zt2/DkyRONtPHx8Xj+/Dl69eoFKysrjX1WVlbo1asXEhMTkZaWxmyPjo5m9lXE3M+3PDExMVi/fj3++9//4vDhw3pjwJrb/dXH9u3bAQDTp09ntjWE+6uGalzlUI2jGlceqnHme39ZnQMYGRmJfv36YerUqfj++++pR5YOMjIyMHXqVI1tXbt2xW+//YbmzZtrpd+8ebPG3xYWFlixYgWWLFmisT0+Ph4AdM4ZcHFxgbW1NZOmNrhx4waAsjlT7du3R1xcHLOPy+Vi/vz52LBhAwDDdVdvP336NOLj4+Hm5oaioiKkp6fD19cXPB5PZ/ry+dYGVTnf8lScY2JnZ4dNmzZphdgydI3q4nx1kZKSgrNnz6JZs2YaUScawv1VQzWucqjGUY0rD9U4872/rDYAV65cyfz/xo0bzBemIq+rOE6dOhV9+vSBr68vrK2tERcXh2+//Ra//vorBgwYgLt378LGxgYA4OXlhe+//x7BwcFo1qwZsrOzce7cOSxduhSfffYZLC0tMWfOHCbvvLw8AGUTsHVha2vLpKkNsrKyAADffvst/p+9846Oqlrb+HOmp/cEAulUKaGEACKEUBIEFb0gRcEAgggWpEm5YGiC+HH1Uq6K4g3YRVBQLAklCb1eugiBNFoIENLLtPf7I84hkymZZE6SybB/a81aM3u/Z5fZc57ZZ5d3d+vWDcePH0f79u1x+vRpvPLKK/jXv/6FsLAwTJs2zaKyAw/rWFv7hqA29QWA8PBw/Pe//0X//v3RvHlz5OTkYNeuXXjnnXcwYcIEuLu745lnnuHTN1fnxqivMRISEqDVajFhwgQ9UbOH9tXBNM48TOOYxjGNM8RW25f5AWxAqj8JdenShZ9K+vLLL/HZZ59h1qxZAICoqChERUXxti1atMD48ePRrVs3REREYMmSJZg2bRokEkGbUDC0Wi0AQCaTYceOHfD39wcA9O3bFz/88APCw8Pxr3/9ixeLpk5t6/vcc8/pXR8cHIzXX38d7du3x+DBg7Fo0SI9cbR1tFotEhISwHEcJk2a1NjFqTeYxpmHaRzTOKZxTQdB76yqNzPDcqZOnYovv/wShw4d4sXRFB06dMATTzyBPXv24NKlS+jUqROAh08Spp4YCgsL4eHhIWzBzaArT0REBC8UOjp27IjQ0FBcvXoV+fn5FpW9apq1tW8IalNfY+4PdAwcOBBhYWE4f/48CgsL+SfBqnX28vLSu6Yx6ludPXv2IDs7GwMHDkRISIhenD20rw6mcXWDaVzTvweYxtmfxgm6CYRRN7y9vQFU+hGqq725NQM5OTkoLi5uUJ9Rbdu2BWDc11PV8LKyshrXO1RfX+Hk5ITmzZsjIyPD6HFbNa3HqA9qU9+a0LVvaWkpH2buO2qM+lbH2MJoHfbQvgzrYBrX9O8BpnH2p3H10gE8dOgQpkyZgh49eqBt27bo0aMHXnnlFRw8eLA+smvy6HbJmXKUWhWNRoOTJ08CAIKCgvhw3chEUlKSwTWJiYl6Ng1BdHQ0AODSpUsGcSqVClevXoWTkxN8fHzQunVr+Pv749ChQwZ/ECUlJTh06BBCQkL0HIxGRUXxcdXR1bdfv35CVskstamvOUpKSnDx4kU4OTnxIgnYXvtW5f79+9i5cyc8PT0Npn0A2EX7VodpXO1gGtf07wGmcXaocUL7lXnrrbdIJBIRx3HEcZzB+5kzZwqdZZPg0qVLVFJSYjS8WbNmBv6ATp48aWCrVqtpzpw5BICio6P14lQqFYWGhpp1kmrq6J36IiYmhgDQZ599phe+bNkyAkDjxo3jw5qiE83qWFrfwsJCunz5ssH1paWlvG+o6r7O8vLyyM3NzSadpH744YcEgN58802TNvbQvjqYxhmHadxDmMYxjdNhy+0raAdw8+bNxHEctW3blr755hu6ffs2abVaysnJoW+//ZbatWtHIpHIJpw5NjTx8fHk4uJCw4YNo+nTp9PcuXNp+PDhJJVKCQAtWLBAzx4Ade7cmcaNG0fz5s2jKVOmUJs2bQgAtWzZ0uhZgfv27SOpVEouLi40ZcoUmjVrFn8255o1axqqqjxXr14lX19fAkDDhg2j2bNn04ABAwgABQUF0e3bt3nb4uJiCg8P53/48+fP58WmR48eVFpaapD+5MmTCQB16NCB3n77bRo/fjzJZDLy9PQ0Kj71jaX1zcjIII7jKDIykuLi4mjevHk0YcIEatmyJQGgTp060b179wzS//LLLwkA+fj40Ouvv06vv/46+fj4EMdxtHXr1oauLk/Hjh0JAJ07d86kjT20LxHTOHMwjWMaxzSuabWvoB3Anj17UkBAAOXn5xuNz8/Pp4CAAOrZs6eQ2TYJUlJSaNSoUdS6dWtydXUliURCzZo1o+HDh1NiYqKB/ezZs6lPnz7k5+dHUqmUnJycKDw8nBYtWkR5eXkm8zl27BgNGTKEXF1dycHBgSIjI+m7776rz6qZJTs7myZMmEDNmjUjqVRKAQEB9Nprr9GdO3cMbPPz8+mtt96igIAAkkqlFBgYSLNnzzb51KfRaGjt2rXUoUMHksvl5OXlRaNHj6arV6/Wd7VMYkl9CwoK6LXXXqMePXqQj48PSSQScnFxocjISHr//feNCoWO33//nfr27UtOTk7k7OxMUVFRtHv37oaomlGOHTtGACgyMrJGW3toX6ZxpmEaxzROB9O4ptG+HBGRdZPID3FxccHkyZPx4YcfmrSZOXMmNm3ahKKiIqGyZTAYjAaBaRyDwbAXGnwXcHWP+QwGg2FPMI1jMBhNAUFHAHv16oVbt27hzz//hLOzs0F8UVEROnbsiObNm+Po0aNCZctgMBgNAtM4BoNhLwg6Ajh16lTcuHEDvXv3xvbt23Hv3j0AwL1797Bt2zY8/vjjuHHjht14RmcwGI8WTOMYDIa9IOgIIAC8+eab2LBhAz8NIhKJ+CNkiAhvvPEG1q5dK2SWDAaD0WAwjWMwGPaA4B1AADhw4AA2b96MM2fO8Ee9dO3aFXFxcejbt6/Q2TEYDEaDwjSOwWA0deqlA8hgMBgMBoPBsF0EWQP47rvvYuHChVCpVCZtlEol/vnPf+K9994TIksGg8FoMJjGMRgMe8PqDuCePXvwzjvvwMvLC1Kp1KSdTCaDl5cX/vnPfyI5OdnabBkMBqNBYBrHYDDsEas7gF988QU8PDzw+uuvG43/7rvv8MILL+D555+HVCqFh4cHEhISrM2WwbCKlJQUcByHJUuWNHZRADRMeZYsWQKO45CSklJvedgjTOMYTRGmcYyasLoDePjwYQwaNAhyudwgbv369XjxxRdx7949KJVKzJ07F97e3jh06JC12TIagMzMTHAcp/eSSqVo0aIFRo0ahZMnTzZ2Ec3CcRz69+/f2MVgNHGYxtkvTOMYjzISaxO4desWQkNDjcZ99NFHWL9+PaZPnw4ASExMxFNPPQWJxOpsGQ1IWFgYxo0bBwAoKSnBqVOn8MMPP2DHjh3Ys2cP+vXr18glrD2RkZG4dOkSvL29G7soAGyvPIyHMI2zf5jG1T+2Vh6GAB1AkUhkcmF0RkYGnn76af5zbGwsiIgdldTEaNWqlcGw/XvvvYcFCxZg8eLFSE1NbZyCWYGjoyPatWvX2MXgsbXyMB7CNM7+YRpX/9haeRgCTAH7+/vjwoULRuNUKhUUCoVBeLNmzazNltHIvPzyywCAU6dOGcQplUp88MEH6NatG5ycnODi4oK+ffvi559/NrC9cuUK3n77bXTr1g1eXl5QKBRo06YN5s+fj+LiYqN5FxUVYenSpejcuTMcHR3h5uaGrl27YvHixVCpVPxaEwBITU3Vm97ZvHkzAPPrUS5cuIBRo0bB19cXcrkcISEheOutt3D//n0D2+DgYAQHB6O4uBgzZsyAv78/5HI5OnfujG3btln6dZosT13Sv379OsaOHQtPT084OzsjKioK+/fvN5v//v378fTTT8Pb2xtyuRytW7fGokWLUFpayttcvXoVLi4uaNmypcF3YS6uqcM07tGEaVwlTONqjmuqWD0C2LdvX3z11VfIzMxEcHCwXhwRYfLkyfzamZKSEmg0GqjVaowaNYq327p1q7XFYDQS1ae6KioqMGTIEKSkpKBLly54+eWXoVKp8Ouvv2L48OFYv3693mL6H3/8EZ9//jmio6PRv39/aLVaHD16FKtXr0Zqair279+vt/MyNzcXUVFR+Ouvv9ClSxdMmzYNWq0Wf/31F1avXo3Zs2cjODgY8fHxWLp0KYKCgjBhwgT++i5dupitz8GDBxEbGwulUomRI0ciODgYR44cwdq1a7Fr1y4cPXrUYApDpVIhJiYGDx48wIgRI1BaWorvvvsOo0aNwh9//IGYmJi6f8G1TP/27dvo3bs3bt68idjYWHTr1g2XLl3C4MGDER0dbTT9jz/+GK+99hrc3d3x9NNPw9fXFydPnsS7776L5ORkJCcnQyaToVWrVli/fj0mTpyIyZMn46effuLLN3bsWJSWluLnn3+Gl5eXVfW1NZjGPdowjWMaZ7caR1Zy6tQp4jiOunfvTnfv3tWLmzBhAv8aO3YseXl5EQB6+umn9eIYtklGRgYBoNjYWIO4lStXEgAaNmyYXvjChQsJAC1evJi0Wi0fXlhYSBERESSTyejmzZt8+I0bN6iiosIg/aVLlxIA+uqrr/TCR4wYQQBo4cKFBtfk5OSQSqXiPwOgqKgoo3VLTk4mABQfH8+HaTQaCgsLIwD0xx9/6NnPnTuXANCkSZP0woOCgggADR8+XK8ee/bsMfndWVqeuqQfFxdHAGjFihV64Rs3biQABICSk5P58IsXL5JEIqHw8HC6d++e3jWrVq0iALRmzRq98DFjxhAA+uijj/S+mwULFlhU16YG0zj7hWncQ5jGPeRR0TirO4BERDNnziSO44jjOHriiSdo3759dOXKFbpy5QolJyfTokWLyNfXlziOo9mzZwuRJaMB0IljWFgYxcfHU3x8PM2ZM4eio6MJAPn5+dGff/7J22s0GvLw8KCwsDA9YdTx888/EwBav359jXnfv3+fAOj9ed6+fZs4jqOwsDBSKpU1plFbcdy/fz8BoCeffNLAvqioiDw9PUmhUOiJlE680tPTDa4JCgoiT0/PGstpqjy1Tb+iooIUCgX5+vpSWVmZnq1Go6HWrVsbiOObb75JAGj//v0G6Ws0GvLx8aHu3bvrhefn51NwcDA5ODjQunXriOM4ioyM1PtjsjeYxtknTOMewjTuIY+KxgmyVe1f//oXFAoFVq1ahYMHD2LQoEF68UQEsViMBQsWYMWKFUJkyWhArl27hqVLl+qFNWvWDAcOHECrVq34sMuXL+PBgwfw9/c3sAeAu3fvAgD++usvPoyIkJCQgM2bN+PChQsoKCiAVqvl42/dusW/P3nyJIgI0dHRZh3y1pXTp08DgFG3Cs7OzoiIiEBSUhIuX76MTp068XHu7u4ICQkxuKZly5Y4cuSI1eWyNP3Lly+jvLwcAwYMMFiXJhKJ0KdPH6SlpemFHz16FEDl7tW9e/ca5CGVSvXaCwDc3Nzw9ddfo1+/fnjzzTfh4uKCb775xq53vjKNs2+YxjGNq8qjonGC1IbjOKxcuRLJyckoKSmBt7c3cnJyAFTeRH369MGECRMQFhYmRHaMBiY2NhZ//PEHgEqB27JlC+bNm4dnnnkGx48fh7OzMwAgLy8PAHDx4kVcvHjRZHolJSX8+zfffBMbNmxAQEAAnnnmGTRv3pxfT7V06VJUVFTwtgUFBQCAFi1aCFvBvyksLAQA+Pn5GY1v3ry5np0ONzc3o/YSiURP6OuKpenrvh9fX1+j9sbqpWuzd999t1Zl6tatG4KCgpCeno4nn3zS7u9tpnH2DdO4SpjGPeRR0DhBu7PvvPMOnn/+eezYscOk3yxG08bHxwdz5sxBQUEBVqxYgUWLFuHf//43AMDV1RUAMGLECIt2h+Xm5uI///kPOnfujCNHjsDR0ZGPy8nJMXjCdnd3BwDcvHlTmMpUQ1f+O3fuGI3X/eHr7GwNnYjm5uYajTdWL11dCgsL4eLiYnFec+fORXp6Ory8vLB161bExcVh6NChdSh104JpnP3DNI5pHPBoaJzVbmCqkpaWhn79+iEqKsroUCvDfli4cCH8/f3x0UcfITMzEwDQvn17uLq64uTJkyb9plUlPT0dRIRBgwbpCSMAHDhwwMA+IiICIpEIycnJFqUvEomg0WgsqxCArl27AoDRY4RKSkpw8uRJODg4oG3bthan2ZC0adMGCoUCJ0+eRHl5uV6cVqvF4cOHDa7p2bMngIfTJJbw66+/YsOGDYiKisLJkyfh4eGBiRMnmvxTsSeYxj06MI2zPZjGCYugHcC33noLiYmJuHnzJmJiYtClSxcsWrQIO3fuxPXr14XMitHIODg4YN68eVCpVFi+fDmAyuH6adOmISsrC3PmzDEqYBcuXOCf3oKCggBUHrVVdZj/xo0bWLBggcG1fn5+GDFihNH1OkDlU6FareY/e3p64saNGxbXqU+fPggLC8Pvv/+OPXv26MWtWLEC9+/fx9ixYyGTySxOsyGRy+UYNWoUcnNz8a9//UsvbtOmTbhy5YrBNdOnT4dEIsEbb7yB7Oxsg/j8/Hx+3RBQOUIwceJEeHh44KuvvkJwcDA+/fRT5ObmIi4uDkQkfMVsCKZxjw5M42wPpnECI+SOkh9++IH++c9/0rBhw8jf35/fNScSiUgkEpGPjw/FxMTY3VZqe8WciwQiorKyMvL39yeJREJXr14lIqLy8nIaPHgwv7Nu4sSJNG/ePBo3bhyFh4cTADpy5Aifhs7lQdeuXWnOnDk0fvx48vDwoJEjRxrd4Xb37l1q3749f83s2bNp1qxZ9NRTT5FMJqMHDx7wtqNGjeLdCyxZsoSWL19OZ8+eJSLTO9IOHDhAjo6OJJVK6YUXXqAFCxZQ//79+frk5ubq2QcFBVFQUJDR7ycqKoosvcXM7ZCrTfq3bt2iFi1aEAAaMmQILViwgJ599lmSyWQUExNjsEOOiOjTTz8lsVhMCoWC/vGPf9DcuXPp1VdfpZiYGJLL5TR16lQiItJqtXzbbtu2TS+Nl19+2ag7BXuDaZx9wTSOadyjrHGCdgCrk5ubS0lJSbR69WoaO3YstW/fnsRiMYlEovrMliEQNYkjEdH69esJAI0fP54PU6vVtHHjRurTpw+5urqSXC6nwMBAGjJkCH388cdUXFzM2xYVFdHs2bMpODiY5HI5tW7dmpYvX05KpdKki4OCggJavHgxtWvXjuRyObm5uVGXLl3onXfe0XOdcPv2bRo1ahR5e3uTSCQiAJSQkEBEpsWIiOjcuXM0cuRI8vb2JqlUSkFBQTRjxgwDH3BEtieORERZWVk0evRocnd3J0dHR+rbty+lpqZSfHy8UXEkIjp+/DiNGTOG/P39SSqVkre3N3Xr1o3mz59Ply5dIiKi//u//yMANHnyZIPri4uLqU2bNiSTyeh///ufRXW2B5jGNW2YxjGNe5Q1jiNq2PHMsrIynDt3jp+XZzAYDHuCaRyDwWgKNHgHkMFgMBgMBoPRuAi6CYTBYDAYDAaDYfuwDiCDwWAwGAzGIwbrADIYDAaDwWA8YrAOIIPBYDAYDMYjBusAMhgMBoPBYDxisA4gg8FgMBgMxiNGg3YA9+/fb3AkDoPBYNgLTOMYDEZToUH9AIpEInAch+DgYLz99tuYOHGizZ45yGAwGLWFaRyDwWgqNGgHsH///iAiXLx4EXl5eWjWrBlu3brVUNkzGAxGvcI0jsFgNBUkDZlZSkoK//7ChQs4ePBgQ2bPYDAY9QrTOAaD0VRgR8ExGAwGg8FgPGIIugkkOzsbhYWFZm2KioqQnZ0tZLYMBoPRIDCNYzAY9oKgHcCQkBCsXbvWrM26desQEhIiZLYMBoPRIDCNYzAY9oKgHUAiQk0zymzGmcFgNFWYxjEYDHuhwR1B37hxAy4uLg2dLYPBYDQITOMYDEZTwOpdwMuWLdP7XHUXXFU0Gg2uX7+O7777Dr169bI2WwaDwWgQmMYxGAx7xOpdwCLRw0FEjuNqnP7w9/fHTz/9hB49eliTLYPBYDQITOMYDIY9YnUHMDU1FUDlupcBAwZgwoQJiIuLM7ATi8Xw9PREu3bt9ASVwWAwbBmmcQwGwx4R1A/g0qVLER0djX79+gmVZL3w1Vdf4cCBAzh16hTOnz8PpVKJhIQETJgwoVbpaLVa/Oc//8Gnn36Kq1evwtnZGYMGDcK7776L0NDQ+ik8g8FoNJjGMY1jMOyFR9IRdHBwMLKysuDt7Q0nJydkZWXVSRynTJmCTZs2oUOHDhg2bBhu3bqFrVu3wtnZGUePHkXr1q3rpwIMBoNhBqZxDAajJgQ/Ck6pVGLHjh04ceIE8vPzodFoDGw4jsPnn38udNYWs2nTJrRu3RpBQUF47733sGDBglqnkZycjE2bNqFfv37YvXs3f+D7Cy+8gKFDh+L1119HYmKi0EVnMBiNDNM4pnEMhj0gaAcwKysLgwcPxrVr18wulG5scRw0aJDVaXz22WcAgOXLl/PCCABPPvkk+vfvj6SkJGRnZyMwMNDqvBgMhm3ANI5pHINhLwjaAZw5cyauXr2K8ePHY9KkSWjZsiUkEsEHGW2ClJQUODk5oU+fPgZxsbGxSElJQWpqKsaPH98IpWMwGPUB07hKmMYxGE0fQZVr3759GDhwILZs2SJksjZHSUkJbt++jY4dO0IsFhvE69bFpKWlNXTRGAxGPcI0rhKmcQxG00fQDqBWq0XXrl2FTNImKSgoAAC4ubkZjXd1ddWzM0VFRQUqKir4z1qtFnl5efDy8gLHcQKVlsF4dCEiFBUVwd/fXxDXLEzjKrFE45i+MRj1i7X6JmgHsGfPnrh06ZKQSdo1q1atwtKlSxu7GAyG3XP9+nW0bNnS6nSYxlkO0zcGo2Goq74J2gF877330K9fP2zbtg0jR44UMmmbQvdUbOrpt7CwUM/OFAsWLMCsWbP4zwUFBQgMDMT169f5J2wGg1F3CgsLERAQINjZvEzjKrFE45i+MRj1i7X6JmgH8Ndff0V0dDRGjx6NqKgodOvWzeiNznEcFi9eLGTWDYqTkxOaN2+OjIwMaDQagzUyunUxNfnIksvlkMvlBuGurq5MIO2ENWvWICEhARzHYf78+Rg3bhwuX76M0aNH8zaXL1/Gt99+i2effbbxCmrnCDXlyDSuEks0junbowHTuManzvpGAsJxnEUvkUgkZLZWsWrVKgJACQkJtbpuzJgxBIBSU1MN4vr3708AKDMzs1ZpFhQUEAAqKCio1XUM2+TcuXPUtWtXKisro9LSUurZsyc9ePBAz6aoqIi8vLyouLi4cQpp5wh9TzGNq6QuGsf0zf5gGte4WHtPCToCmJycLGRyNsG9e/dw7949eHt7w9vbmw9/5ZVX8N1332Hx4sV6TlJ///13pKSkICYmBkFBQY1VbIYNcOnSJfTu3RsKhQIAEB4ejj/++ANjxozhbX7++WcMHDgQTk5ODVq2+/fvo3379jh+/DiCg4MbNG9jjBkzBj169MDs2bMbuyhmYRrHNI7xEKZxwtBo+idwh7RJ8Nlnn1FcXBzFxcVRt27dCAD16dOHD/vss8942/j4eAJA8fHxBulMnjyZAFCHDh3o7bffpvHjx5NMJiNPT0+6fPlyrcvFnpDti4sXL9Jjjz1GDx48oLy8PGrTpg2tWbNGz2b48OG0fft2/nNcXBwBoKlTpxqkN336dAJAcXFxVpdt5syZNHnyZL0w3W+96qtt27Z6Nmq1mhYtWkTBwcGkUCgoNDSUli1bRlqtloiICgsLacaMGRQYGEgKhYJ69+5Nx48fr7E858+fJw8PD8rPz7e6blV5VO8pW9S4R7Ut7BmmcZZrnDnqqn/W3lOPZAdQ9wM09ar64zMnjhqNhtauXUsdOnQguVxOXl5eNHr0aLp69WqdysUE0v745JNPqGvXrtS/f3966aWX6MMPP+TjCgoKyMfHh8rKyviwuLg4CggIIDc3NyotLeXDy8rKyN3dnQIDA60Wx5KSEnJ1daUjR47ohcfHx1OHDh3o9u3b/Ovu3bt6Nu+++y55eXnRrl27KCMjg3744QdydnamtWvXEhHRqFGj6LHHHqPU1FRKS0uj+Ph4cnV1pRs3btRYroiICNqwYYNVdavOo3pP2aLGPaptYe8wjatZ46KiompcglEX/bO5DqBKpaIPPviAevToQS4uLiQWi/m406dP07Rp0+o0OvYowATSvnn55Zdp165d/OcvvviCXnzxRT2buLg4Gj58OHXs2JG++uorPvzrr7+mzp070/Dhw/XEsby8nN544w3y8fEhuVxOffr0qfFp9IcffiAfHx+D8Pj4eAoPDzd77bBhw2jSpEl6Yf/4xz/oxRdfpNLSUhKLxXp1JCLq1q0b/fOf/zSbLhHR0qVL6YknnqjRrjbUxz3FNK5uMH2zf5jGGceSDmBd9M/ae8p6z6hVKCsrQ3R0NObMmYOsrCy4urrqnZcZEhKChIQEfPHFF0Jmy2DYLLm5uQAqd8EdP34csbGxfNzWrVv1dspVZdKkSUhISOA///e//8XEiRMN7N5++21s374dW7Zswf/+9z+0atUKsbGxyMvLM1mmAwcOoHv37kbj0tLS4O/vj9DQULz44ovIzs7Wi3/88cexd+9eXLlyBQBw9uxZHDx4EE8++STUajU0Gg2/HkiHg4MDDh48aLI8OiIjI3H8+HE958G2BtM4BkMfpnGWa5w5GkX/6tRtNMGiRYuI4zhavXo1abVaio+PN9gNFxsbSxEREUJmazewJ2T7o1evXtS+fXuKiIigkydP8uH5+fnk6+tLFRUVeva6p+Pc3FySy+WUmZlJmZmZpFAo6O7du3pPx8XFxSSVSunrr7/mr1cqleTv70/vv/++yTINHz7c4AmXiOi3336jrVu30tmzZ+mPP/6g3r17U2BgIBUWFvI2Go2G5s2bRxzHkUQiIY7jaOXKlXx87969KSoqim7evElqtZq+/PJLEolE1KZNmxq/q7Nnz9Zp97w5hL6nmMbVHaZv9gnTuJo1zpIRwLron02NAH7//feIjo7G22+/DY7jjPqmCQ0NNehxMxj2yogRI8BxHMrKyvgTJC5fvoyoqCg0b94ckZGRcHBwwI4dO/Su8/HxwbBhw7B582YkJCRg2LBhejs0AeDatWtQqVTo06cPHyaVShEZGWn2tIqysjKDJ1gAePLJJ/H888+jc+fOiI2NxW+//Yb8/Hxs3bqVt9m6dSu+/vprfPPNN/jf//6HLVu2YM2aNfzZuF9++SWICC1atIBcLse6deswduxY/piir7/+Gs7OzvzrwIEDfNoODg4AgNLSUku+2kaBaRyDoQ/TOH2NA4CVK1ca6Nyrr76qF1ZdIxpD/wR1A5OdnY3nnnvOrI2Li0uNZ+QyGPbA+fPn8c033+DUqVMgIkRHR+Opp55C27ZtcebMGQBAcXExgoODMXjwYIPrJ02ahNdffx0A8J///Eewcnl7e+PBgwc12rm7u6NNmza4evUqHzZ37lzMnz+fd/PQqVMnZGVlYdWqVYiLi0NYWBhSU1NRUlKCwsJCNG/eHKNHj0ZoaCgA4JlnnkHPnj359Fq0aMG/103p+Pj4CFLP+oBpHIPxEKZxhhoHAK+++ipGjRrFf37xxRcxYsQI/OMf/+DD/P399crSGPon6Aigi4sLvx7AFNeuXbNpgWcwhKKqjywHBwfeR1ZVzPnIGjJkCJRKJVQqld66Gh1hYWGQyWQ4dOgQH6ZSqXDixAk89thjerb379+Hr68vMjMz0bVrV/z55581lr+4uBjXrl1D8+bN+bDS0lKDQ8fFYjG0Wq1emO4kiQcPHiAxMRHDhw8HUKkRrVq1wqJFi7Bz507+qRcALly4gJYtWxqMAtgSTOMYjIcwjTPUOADw9PREq1at+JeDgwN8fX31tE8i0R9/axT9q9PEsQmeeuop8vLy4j2BL1myRG99THZ2Njk4ONALL7wgZLZ2A1sjY1/U1kcWzLjtwN9uOqrvkJsxYwb5+/vT77//ThcvXqS4uDjy8PCgvLw8vXyq+sQ6d+4cSSQSunDhAr344ovk6elJCoWCvL296ZNPPqGMjAw6dOgQDRo0iJycnCggIIDkcjlFRkbS0KFDqUWLFryLhFGjRhmUs2XLlpSenk5JSUkUHh5OPXv2JKVSqVceY36v4uLijK7bsQah7ymmcXWH6Zv9wTTOtMZVpeoaQFM+/+qifzblBiY1NZVEIhF169aNDh48SIsWLSKRSEQlJSW0Z88eat++PUmlUr2FooyHMIG0P2rjI+v27ds0atQoio2NpX//+9/k6uqq56+qqKjIQBzLysrojTfeIG9vb5MuEoz5xOrWrRt5enrShAkT6NixY5Senk5RUVHk4+NDMpmMWrRoQb179yapVEr//e9/6eLFizRlyhRyd3enKVOm8E5Q3d3dycfHh7Kysuj27du0ceNGCgoKIplMRs2aNaPXXnvNpHPTqn6vysrKyM3NzcBvl7UIfU8xjas7TN/sE6ZxhhpXfdNH9c/Vff7VVf9sqgNIRPTRRx+RVColkUhk8JJKpXoe6Bn6MIG0byzxkaUjISGB3NzcjMZpNBpavXo1hYWFkUwmo4CAAFqxYoXJfI35xBo5ciQ5ODiQRqMxeV1kZCS99tprevn6+/vTqlWr+DBL/GqZoqrfq48++ogGDx5cp3TMUR/3FNO4usH0zf5hGldJTbt+q/v8q6v+2dQuYACYNm0azp49i9dffx09evRAWFgYunbtildffRWnT5/G5MmThc6SwbBZ6uojyxwLFizAe++9h8WLF+PPP//EN998Az8/P5P2xnxiXbx4ET169MDTTz8NX19fdO3aFZ999hkfr1QqcerUKQwaNIgPE4lEGDRoEI4cOaKXVk1+tUxR1e+VVCrF+vXrLbqusWEax2A8hGlc7anu86/R9K9O3UZGvcCekO2P2vrI0mHq6biwsJDkcnmtRpmM+cSSy+Ukl8tpwYIF9L///Y82btxICoWCNm/eTEREN2/eJAB0+PBhvevmzp1LkZGR/GdL/GqZoj78/lWH3VO2A2sL+4RpnCE1jQAKpX02NwLIYDAeYsxHFlDp9d7b2xtdunTBm2++qXeahDkuXbqEiooKDBw40OIyGPOJpdVq0a1bN6xcuRJdu3bFK6+8gilTpuCTTz6xOF2gZr9aTd3vH4PBMI8pjcvLy8Njjz2GLl26oFOnTigpKbEovaamcUDt/f7ZivZZ5Qdw0qRJ4DgOK1euhJ+fHyZNmmTRdRzH4fPPP7cmawbD5jHlI0ulUmHDhg24ePEipFIp+vXrh6NHj6J37941plnVbYqlGPOJ1bx5cwM3Cu3bt8f27dv5a8RiMe7cuaNnc+fOHTRr1sxkXtX9ajV1v39M4xgM05jSOHd3d0yYMAErVqxA3759kZeXB7lcblGaTU3jgNr7/bMV7bOqA7h582ZwHId58+bBz88Pmzdvtug6Jo6MR4GqPrIA8D6yBg4cCLVajfLycgCVfq18fX0tSrN169ZwcHDA3r17LV5r1rVrV3z11VcAKn1ltW/fHr169cLly5f17K5cuYKgoCAAgEwmQ/fu3bF37148++yzACqfqPfu3cs7bjWGzq/W+PHjAVT6zXNxcTFqe+HCBTg4OGDLli2YPXu2RXVpaJjGMRimMaVxnTp1glQqRd++fQFU+sWzlKamcbr6Va1jVb9/Y8aMQY8ePfQ0zmZ8nloz/6w7w0+lUul9tuTFMIStkbEvzPnIWrduHbm4uJCHhwctWLCAvyYuLk7P31RwcDDNnTuXd6NAVOl7zsPDg7Zs2UJXr16lI0eO0KZNm0yWQ+cTKy8vj/eVdfz4cZJIJPTuu+9SWloarV+/nsRiMTk7O5NCoaCOHTvSu+++S3K5nEaOHEkdO3YkqVRKHMfRkCFD6K+//iIiotmzZ1NKSgotX76cwsLCSCwWE8dx1L17d/rtt9/Mfj9xcXH03HPPGfWJJRTW3lNM44SD6Zv9YUrjfvrpJxo+fDg99dRT1LVrV3r33Xf5a5qqxn333XfUp08fkslkBIBfS2iMmvz+CeXz1ObcwDDqDhNI+8OYj6y8vDyKiYmh+/fvU2lpKUVFRVFqaioRVQrDkCFD6N///je5uLjQTz/9RK6urvT222/zaWo0GlqxYgUFBQWRVCqlwMBAvcPKjREZGUnr1q3T85X1yy+/UMeOHUkmk5FEIqHHH3+c95eVmJhIV69epfXr15NCoSCxWEwdO3akL7/8koYOHUqBgYFUXFxMo0ePpubNm5NEIiEvLy8aOnQo7d69mxYuXEhSqZQuXLhgtDxV/V5V94klJOyesh1YW9gnxjTuhx9+IE9PT8rOzqby8nLq378/JSUlEVHT1jgXFxfq06cPAaCffvrJZFnM+f0T0ucp6wDaEUwg7Rudj6ytW7fS9OnT+fD333+fVq9eTUSV4jh8+HC96/7xj39Q165d9cKCgoL0HK4SEYWHh1N8fLzRvHft2kUtWrQw8JVFRDRv3jw9n1Q1kZubSwD4TqspPDw8TD61V/V7Vd0nlpCwe8p2YG1h/+g07vDhwxQTE8OHv//++/T+++8TkX1oXE0dwOrUl89Tm9oFfOjQIcyaNQs5OTlG42/fvo1Zs2bh6NGjQmbLYNgsxnxkBQQE4PDhwygvL4dGo0FKSgratm1r9PoLFy7g8OHDkMlkVpVj2LBhCA0NRYcOHQzifv75Z0REROD555836i+rOgUFBQBMr+vRaDT47rvvUFJSYnJjS1W/V9V9YtkyTOMYDH2MaVyPHj2Qm5uLBw8eQKvVYv/+/Wjfvr3R65uixtUWW/V5atUmkOp88MEHOHfuHD744AOj8c2bN8euXbtw8+ZNfP/990JmzWDYJMOHD0dBQQGcnJyQkJAAiUSCXr16YejQoejatStEIhEGDhyIZ555hr9m165dcHZ2hlqtRkVFBUQiETZs2GB1WTw9PeHl5WUQnp6ejo8//hizZs3CwoULceLECbz55puQyWSIi4vTs9VqtXjrrbfQp08fdOzYUS/u/Pnz6N27N8rLy+Hs7IyffvrJYBeejqqLu/39/aFUKpGTk8Mv0LZVmMYxGPoY0zig0jVKv379QESIiYnBU089xV/TVDWurlTVOFtyFC9oB/DEiRM1+u7p168fdu/eLWS2DIbNUt2jvI53330X7777rtG46OhofPzxxygpKcGHH34IiUSCESNGWF0WY76ygErBi4iIwMqVKwFU7qi7cOECPvnkEwNxfO2113DhwgUcPHjQIJ22bdvizJkzKCgowLZt2xAXF4fU1FQ89thj+PrrrzF16lTe9vfff+d3CNqKTyxLYBrHYOhjSuOefPJJPPnkk0bjmqrGmaMpapygHcDc3Fw9P1/GaNasGT9kzGAwDHFyckKrVq0AVDqMDg8Px+eff46XX36ZtxGJRAbOo1Uqldl0jfnKAmr2l6Xj9ddfx65du7B//360bNnSIB2ZTMaXu3v37jhx4gTWrl2LjRs3Nnl/gDqYxjEY1tNUNc4cTVHjBF0D6O7uXuMZeVlZWXB2dhYyWwbDbhGJRFi4cCEWLVqEsrIyPtzHxwe3b9/mPxcWFiIjI8NsWl27dsWff/5pEN6nTx+z/rKICK+//jp++ukn7Nu3DyEhIRaVXavV8uv6XFxc0KpVK/5V1dmrzfjEsgCmcQyGsDRljatKU9Q4QTuAvXr1wk8//YTr168bjc/OzsaOHTvw+OOPC5ktg2HXPP/88xCLxfjPf/7Dhw0YMABffvklDhw4gPPnzyMuLg5isdhsOrGxsbh48aLBE/LMmTNx9OhRrFy5ElevXsU333yDTz/9FK+99hqAyimRr776Ct988w1cXFyQk5ODnJwcPbFesGAB9u/fj8zMTJw/fx4LFixASkoKXnzxxRrrd+DAAcTExNTmK2k0mMYxGMLTFDSuuLgYZ86cwZkzZwAAGRkZOHPmTI0PhIANa5wge5H/JjU1lUQiEQUEBNCWLVvo1q1bRER069Yt2rx5M7Vs2ZLEYnGN7iMeVZibBIYxFwlERKtWrSIfHx8qLi4mosrfyujRo8nV1ZUCAgJo8+bNZl0k6IiMjKRPPvnEIFznL0sul1O7du3o008/5eNQxWlr1VdVP1eTJk2ioKAgkslk5OPjQwMHDuT9fplDSJ9YxhD6nmIaV3eYvjGImq7GJScnG7WJi4szW5761Dib8wP473//m8RiMYlEIhKJRHrvJRJJvTl8tQeYQDLqm127dlH79u1Jo9E0dlGISFifWMaoj3uKaVzdYPrGaAgeJY2z9p4SdBMIAMyYMQPR0dH45JNPcOLECRQUFMDd3R2RkZF49dVXBdtWzWAwas+wYcOQlpaGmzdvIiAgoLGLY1M+sSyFaRyDYbswjasFAndImwzHjx+nJ598ktzc3MjR0ZF69uxJ33//vcXXJyQkmBw2BkDJycm1LhN7QmYwhOVRvqdsTeMe5bZgMOoDmxsBbAokJycjNjYWCoUCY8aMgYuLC7Zv347Ro0fj+vXrmD17tsVpDR8+HF26dDEIDw4OFq7ADAaDUQuYxjEYjJp45DqAarUaU6ZMgUgkwv79+3lhe+eddxAZGYmFCxdi5MiRFp9I8Oyzz2LChAn1V2AGg8GoBUzjGAyGJVjVAZw0aRI4jsPKlSvh5+eHSZMmWXQdx3H4/PPPrcm6zuzbtw/Xrl3DxIkT9Z5q3dzcsHDhQkyYMAFbtmzBO++80yjlYzAYtgPTOAaDYa9Y1QHcvHkzOI7DvHnz4Ofnh82bN1t0XWOKY0pKCgAY9ckTGxsLAEhNTbU4vdOnT+P+/ftQq9UIDg7GoEGDjJ5FyGAwmh5M45jGMRj2ilUdwA8//BBDhgxBaGgoANTopdsWSEtLAwC0bt3aIK5Zs2ZwdnbmbSxh3bp1ep8dHBwQHx+PefPm1XhtRUUFf1ICUOnpnMFg2A5M4+qucUzfGAzbxqqTQGbNmoWtW7dCIqnsR0ZHR+Pnn39GUFBQja/GoqCgAEDldIgxXF1deRtzhISEYP369bhy5QpKS0tx48YNfPHFF/D09MT8+fMt2va9atUquLm58S9b2LLOYDAewjSu7hrH9I3BsG2s6gBKpVIolUr+c2ZmptGDmO2RqKgovP7662jdujUcHBzQokULjB8/HomJiVAoFFiyZAnUarXZNBYsWICCggL+Zep4KQaD0Tgwjau7xjF9YzBsG6s6gIGBgTh48CA0Gg0fxnGc1YWqT3RPxaaegAsLC00+OVtChw4d8MQTTyAvLw+XLl0yayuXy+Hq6qr3YjAYtgPTOEMs1TimbwyGbWPVGsAXXngBy5Ytg6enJ78o+MMPP0RCQoLZ6ziOw7Vr16zJus7o1sWkpaWhe/fuenE5OTkoLi5GZGSkVXl4e3sDAEpKSqxKh8FgNC5M44zDNI7BaPpYNQK4aNEirFy5Ep07dwbHceA4DlR5vrDZl1arFar8tSYqKgoAkJSUZBCXmJioZ1MXNBoNTp48CQCNug6IwWBYD9M4Q5jGMRh2glXnkFSD4zhaunSpkEkKjkqlotDQUJLL5XT69Gk+PD8/n9q0aUMymYwyMjL48Fu3btGlS5coPz9fL52TJ08apK1Wq2nOnDkEgKKjo2tdNnZUEoMhLELfU0zj6q5xTN8YDGFp1KPgfv75Z7Rr1w5t2rQBAMTHx6N///7W9UjrGYlEgk2bNiE2Nhb9+vXTOyYpKysLa9as0TviaMGCBdiyZQsSEhL0vOFHRESgc+fO6Ny5M1q0aIG8vDykpqbiypUraNmyJTZt2tTwlWMwGILCNI5pHINhr1g1Bfzcc8/hu+++4z9v2bIFZ86csbZM9U50dDQOHjyIPn364Pvvv8fHH38MPz8/fPfddxafkTl79my4uLhg9+7d+OCDD/DNN9/AwcEBixYtwrlz53i/YQwGo+nCNI5pHINhr1g1AiiVSqFSqfjPmZmZyM/Pt7ZMDUJkZCR+//33Gu02b95s1Pv/mjVr6qFUDAbDlmAaxzCFWq1Geno6MjMzoawoh0yuQHBwMEJDQ3m/kY2ZHoNRE1b9qqq6SBCLxQBs30UCg8FgWArTOIYxMjMzsT9lH8qVajRTpcNRfR+lEi+kZIbi6OGDiIoeWKsNMkKnx2BYAkdEVNeLlyxZgmXLlsHFxQVeXl7IzMyEu7s73N3dzWfaiC4SbBmdf66CggLmM4vBEABr7ymmccJhL/qWmZmJ3UlJCCw/i54F2+CuyeXj8sW+OOY2EtmKcAyOidFba9lQ6TEeHay9px45NzAMBoNhKUzjGFVRq9XYn7IPgeVnMTjvY73OGgC4a3IxOO9jBJafxf6UfTWeBiV0egxGbbBqClgikWD+/PmYP38+AEAkEmHmzJl45513BCkcg8FgNCZM4xhVSU9PR7lSjZ4F2yCC8ckzEQg9C7ZjqyIcGRkZvGPuhkiPwagNVo0AVqcpuEhgMBiMusI07tEmMzMTzVTpBiN11XHX3IGfKh0ZGRkNmh6DURsE3VoUHx8vZHIMBoNhUzCNe7RRVpTDUX3fIlsndR7KK8obND0GozYIOgIIVK5p+PDDDxEZGQlXV1e97etnzpzB9OnTceXKFaGzZTAYjAaBadyji0yuQKnEyyLbEoknZHJFg6bHYNQGQTuAZWVliI6Oxpw5c5CVlQVXV1dU3WQcEhKChIQEfPHFF0Jmy2AwGA0C07hHm+DgYORIQ5Ev9jVrly/2wx1pKEJCQho0PQajNgjaAVy5ciUOHTqEVatWIScnB5MnT9aLd3NzQ1RUFH8gOYPBYDQlmMY92oSGhkIhk+CY20hoYdwfpBYcjrmNgEImqbHDJnR6DEZtELQD+P333yM6Ohpvv/027zKhOqGhocjOzhYyWwaDwWgQmMY92kgkEkRFD0S2Ihy7PacZjNzli/2w23MashXhiIoeWOMJHkKnx2DUBkF/TdnZ2XjuuefM2ri4uKCgoEDIbBkMBqNBYBrHCAoKwuCYGOxPkWCrIhy+ymtw1jxAsdgDubIwKGQSxNTi5A5T6ZVIPHFHGlrr9BgMSxG0A+ji4oLcXPPb2a9duwYfHx8hs2UwGIwGgWkcA6hcu9dy3EvIyMhAcjKQS1qAEyE6OhohISG1HqnTpZeeno6UlMr0AgKDEN2qVZ3SYzAsQdAp4F69euGXX34xeVj69evX8dtvv6Ffv35CZstgMBgNAtM4hg6JRPLQKTMnglQqRevWrevcWZNIJGjTpg3kcjnAidCrVy+r0mMwakLQDuDcuXPx4MEDDBw4EIcOHeKPrSktLcXevXsRGxsLtVqNWbNmCZktg8FgNAhM4xhV0Wg0/HuRSJi/U5lMBgBQKpWCpMdgmELQR4t+/fphw4YNmDFjht4TsIuLCwBALBbjo48+Qvfu3YXMlsFgMBoEpnGMqqhUKv69sQ1BdYF1ABkNheBjy9OmTUP//v3xySef4NixY8jLy4Orqyt69uyJ6dOno0OHDkJnyWAwGA0G0ziGjqqdtKqjgdag6wBW7VwyGPVBvSwuaN++PdauXVsfST9SqNVqpKenIzMzE8qKcsjkCgQHByM0NJStC2EwGhGmcQxAv5OmWw5gLVKpFAAbAWTUP6wXYYOUlJTgxo0bOHQgFeVKNfxUGfAQFaJM6o2UzFAcSE3G40/0Q2BgoNHrHRwc+PUoSqXS7JNkbWwVCgXEYrGBrVqtRkZGBrKzs/mOauvWrfkFzCqVyqyYyeVyvkNbG1u1Wo2KigqTtjKZjBfT2thqNBqUl5s+c1MqlfJP6bWx1Wq1KCsrE8RWIpFULhYHQEQoLS0VxFYsFkOheHjcVElJiSC2IpEIDg4OdbItLS3VO22jKhzHwdHR0aStuXwYjUNJSQn/29HpSVPViPz8fL1rioqKIBKJrNIIjUaDiooK5OfnG/x+mUYYt7VGI8zZlpWVQavVmiyHk5NTnWzLy8vNjhhbamu1vlE9cPDgQZo8eTJFRERQmzZtKCIigiZPnkwHDhyoj+zshoKCAgJg9JU7B0TxoAfLfOmpJzqatANAGRkZfJpz5swxa3vhwgXeNj4+3qzt8ePHedv333/frO2sWbNoS8LnlJmZSRs2bDBru2vXLj7dhIQEs7Zbt27lbbdu3WrWNiEhgbfdtWuXWdsNGzbwtsnJyWZt33//fd72+PHjZm3j4+N52wsXLpi1nTNnDm+bkZFh1nb69Om8bW5urlnbuLg43ra4uNis7ciRI/V+k+Zshw4dqmfr6Oho0jYqKkrP1tvb26RtRESEnm1QUJBJ28cee0zP9rHHHjNqV1BQQELCNK72VNe35ORkPo5pRCX1pRG3bt1iGvE3pjQCAAUFBenZRkREmLT19vbWs42KijJp6+joqGc7dOhQs99bYmIiXb58mVQqFY0cOdKsLVB3fRN8BHDmzJlYt24d38PmOA5EhFOnTuG///0vZsyYgQ8++EDobB8Z3DW5CCg374fMFoh+8F9IC19AUqIa9+/fb+ziMBiCwTSO0ZTIzMzErp93NnYxGLWgPG0fUjJDcfTwQbOjsdbCEZkYC60DW7ZswcSJE9GmTRvEx8cjOjoafn5+yM3NRXJyMpYuXYorV64gISEBL730klDZ2g2FhYVwc3PD6tWr8WLRGrhr7vJxjlJAt8msQg3c43zxo+8i9OvXD61atdJLpyGmgEtLS/H1l1vgW3gaAx58ZuBPSCEBOBGH3Z7TcNMxHCOeH21y3aKtTu+Ygk0B1962saZ3CgsL4e/vj4KCAri6uprM01KYxtUdnb7dunULrq6ukEgkyMrKQmZmJkpLiiESSxAYGGjU8bGtasSlS5dw5MgR3mbkyJFwdXWts0YolUr88ccfyMrKgoODAr6+fnrfSW014vbt29idlISAsjPodG+b3n9KvtgHJ12fxXVFJwyOiUHbtm0BPHoaYc62vqeAs7KysG/vXgSUn0dE4Q6+fZxkQL7YF8fcRuKa+DH0j442ehKMtfomaAewV69euHXrFs6fPw83NzeD+IKCAnTq1An+/v44evSoUNnaDTqB/Pb/3sKY4n/XaL/TZx4cWg9ATExM/ReuGleuXEFKSgpG3VkMd43+iKQaEqQ7dEemogtKRW7IlYehffv26N27N9u8wmhQdPeUUB1ApnF1p2pb5OXlYX/KPpQr1WimSoej+j5KJV7I+fvosygbP/pMt0Hv7NmzeJB3H+AqH4Gfe+65Op8Ck5mZyX8nfsprcNLkWfWdqNVqfPPVF/ArPIXBeR9DBMO/ei0qH9LvuHbHC+NeYvrcgAjRPtbqm6CtffHiRUyePNmoMAKAm5sbRowYgU2bNgmZrd3hoMmzyM5JnYfyCtNPlvVJZmYmmqnSDTp/mfLO2O/+EsrFLmhWkQZnbR64CsKlS0DGtTSbF3ZG08PcbnmhYRpnPVlZWTh65AgCy8+iZ8E2PQ3RjXokJaoxOCYGwcHBjVdQVI6G6V4qlQqZmZm4dOkS8u7lQkMc/JTXEKrJQ4nYE3dkYfj1l53o9fgT8Pf3568DwI8MVU2v6uv27ds4ceI4gsrPmfxOEhNVCA/vAm9vb5PpVM0vNzcX5Uo1ehZsM9q5AAARCD0LtmOrIhwZGRkPTzZh1Dvp6emN3j4N3t0XylmmPVMm9uTfqyFBmkMkLjlFoUjsBQ0nBkEMDlpoOCmQcwdbv/8Wbu6eCAkJaTAXMcqKcjiq9df2Zco7Y7fnNASWn0PPwu1w1+Tyo4ESqsA9TQASExPh6uoKJ0cF5ApHm3ZrY49ueJpincyV+caNG/yoias6F+UiR6g5BTIz0pGSksIvWWhImMaZZ3/KPrSiK/yoR9UZA6XIETJtKTyV2diTlAj/lgEATHecjHV8qttrtVqoVKpKNy2kAUEEsVgMjuPAcZzZzllVONKAODFAhKDys7zG6cgX++Ko60jsT9U8XK9jIRxpEFh+AYMfGI4EuWtyMTjvYyR5TMO5M9rKMliIn/KawUN6ddw1d+CnSkdGRjDrADYgpgZRqlOf7SOo4nfo0AHbt2/H8uXL4ezsbBBfVFSE7du324yj1BMnTiA+Ph6HDx+GSqVCp06dMGvWLIwaNcriNCoqKrB69Wp8+eWXuH79Ojw9PfHUU09hxYoV8PX1rVO57kiDkS/2Rb6kGZLdJ0ItkoM4MUSkBoEDcWKISQXiJPArT4NT6QOU3PVESlYYjh4+2CCjbDK5AqUSL/6zGhLsd38JgeXnMPjBJ9BCjMOuI3HJMQoakQxuqltQc5VrQRzunYaDJg8lYi9+oaslZdZ1BNLT01FYUAClSgWZVAI3dw/BO79Vp2OqTlHVpry2gu57+/PPP3H/7p2/Ry7S4aQRvk5CdzDNtcOhg/uhUmvgo8yEWtIMRWIvECeGm+oWisXe0HAyOOadt6o+1WlKGmer+qbWAj0LK0c9qs8YOGrzUSpyx31ZIDjS4MaNG3XKoyq6jptuWlU3Wsd36CyBCC3LLyJXHoZmFWkY/OATox21mAeVHbXrik4QS2UQiUR8R1P3YKBbc60LU6lUKC8vR69C8yNBvQq3I9shHG5ubnByctJL11get2/dgFOZ7c8m1Zam+BBrDGODKKaor/YR9NuaOnUqXn75ZfTu3RtLlixBVFQUvL29ce/ePaSkpGDp0qW4ceMGli1bJmS2dSI5ORmxsbFQKBQYM2YMXFxcsH37dowePRrXr1/H7Nmza0xDq9Vi+PDhSExMRK9evTBixAikpaVh06ZN2Lt3L44ePVqn9SAKmQTJHpNwVxoEgIOPMgN3ZcHQQgwfZQbuyYLRsvyi0SfQhpo+CQ4ORkpmKPLFvnDX5CLdoTvKxS7oWbgd2fJOSHafCJXIAUHlZ9Gy4iIOu43VGxmsbZmrdgTEpIKGk8Kv4iqctMJ3fjMzM7E7KalJTFHVRNXvzdzIhTV1qq8OprF20I0WiRzKcVveBt7K67grq7xPjP3WRKXC7phvKhpny/rmq8yAuybX6IyBjnyxL465jkCWQzg6derM52Oq01P9defOHZw+dRJqjRaB5edN/uazFeHo88QTaNmypdFOWlZWFg7uT0FA+QW4qO/iukPnyt+VBR21vn37WjRik5SUhPK0fRaPBDl4WLbuOykpCaVFXjXaAUCJxBMOckXNhhZQnx20qnrmps6FipNAw8mRmZmJQwf2Iyp6QL0s/dAhZN2qD6KYQ8j2qYqgm0AA4M0338SGDRv0bqSqQ+xvvPFGo3vQV6vVaNeuHW7cuIGjR4+iS5cuACoXcEdGRiIzMxNXrlyp8c8qISEBkyZNwtixY/H111/zdf7kk08wbdo0vPLKK9i4caPF5dIt6Dxz5gyOHT0MMWnQouIS7shCoebkaFFxCbmyUPgprxl9AgVqt6jXmh9z9QWsezxeQZnIBeHFSUjynAYxqdGy4k9EP9iE7/xWWVVmXUfAW5mBe9Igsx3JbEW4VR0ze1k4rVarcfz4cVy4cB6B5edxRxaKZhVXBfndVKU2HczatI2xdqg6WuSmykGBtBlk2mJoIDP5WyusANzeg2CbQADb1zhb17cd772EYWXf4Bu/9wTTsqpkZmYiKSkJYlKiZfmfVulOUlISAKBP/tc45PYC/FTpGH7v/RrLUJsNert++RmK9F8w6EHN60b3eExBeehTeOrpZ2q0NbdRryr5Yj9s9VuG6Ohoq6cYTY3YC7G5p+r/QKHEBxUiZ/hVXIWWE6FQ7IsKkSMADoFBQRg0aJDguix03YRoH2s3gVT33mE169atQ2pqKiZMmIAuXbogODgYXbp0wcSJE5GamtronT8A2LdvH65du4YXXniBF0egcgH3woULoVQqsWXLlhrT+eyzzwAAq1at0lv3M3XqVISGhuLrr782u03fFBqNBuDE0IhkaKZMQ4XYhX+vG2WradFoubLydA5TZGZm4puvvkBKSgrK0/ZBkf5Lpe+hlBR889UXyMrKMltGiaTyB5+tCMduz2l4IGkOB20B9ru/BC/VdWhEMvQs3I5Mh25WlVmtVmN/yj4ElJ9Dkdibn2KufsPo1skElp/F/pR9dT6W6fjx4xYvzK3pO24sMjMz8fWXW3Dx/FkElp1DSNkpVIicBfndVM9nd1ISfAv/B7m2GEHlZwVrm+oLpHWjRX7Kaxh1ZzE81LfgpsqBUuRcq9+aENi6xtm6vpWJPfVmDIT8Ter0wkuZDQ0ns1p3HDX58K24ipMuz4CDBk612KCntHDKrrYjQTILR4JCQys7JsfcRkKLh+2nhgRXHHoiyWMqdnnNxC7vWZCKRQgICLAoXVPo9MCv8BRG3VmMZ+6uxqAHm/DM3dUYdWcx/ApPISkxEZmZmbVOW9ceukGAZhVX0Sf/axRI/HBXFgqFthiO2nzItKXIzs7Gls0JSE9Pt6o+VUlPT0dSUqKgdTPWPtXbJsljKvZ6TIZcKkZISIhg9dFRL0MXffv2Rd++fesjaUFISUkBAKNPZ7GxsQCA1NRUs2mUl5fj2LFjaNu2rUGvn+M4DB48GBs3bsTJkydr/V1cuXIFKMuDu+o2sikAKL0Pd3UOsikA7oUXIS3LhbkDYKS4A7fiv3DpUjP4+/sbxFf1PdS/8BfkyVoiW94ZSlUJvErPoFzkjJ9/LsHAgeafaLy9vdHniSewP1UFlUqDMo0aRWoZnMofwL28GNKyXPwlf8qqMqelpaGgqAStiy4hzbUtBt7bhjKNqT93Qse723CFa4eLFy8a+EesiaysLJw6dQq+Fdes/o4bC13bOqnvoVzijU73fsApl6cF+d1URa1WY3fi7/AtPA2/8jNIc2+LQQK2zV9//QX34r8gLctFAcTY7T4avgWn8Hj+JogAFDpIUUQAVJX3hqnfWkk9Hadqyxpn6/qWrW0Oqaib4L9J4KFeOJXnwb28yGrd8am4jTKOQyFkADS4r3K06Dd1X+0MB7LsqC5fX18cuNwCNzU+cNfchRpiZDh0rdTkvzfFBFacg6fyJrK1LdDPz8/iI8B69OyNvXtKUO40GV0Lf0GaYy9cdnwCGpEMvhXX4KjNg1RMeKB2wJdbEvBEv/4mjxg1R1U9ePxvv7BVSyhFLh4v+wjlHlOwO1GDUWNeqNUI3dGjR1FQVIJyrSv8Sk+hZdlRJHtMhldJFsqlPsgVecCv7CrctAV/ux5rhd92/YxO4V0RERFR6/pUJT09Hakpe9Gy7E88ni9s3aq2j3/FnzjjPBTlYhf4VVyFgzYPD0TuyBX5QVZejrS0NIO2scmj4Gwd3dEqJ0+eNBrv7OxMAQEBZtPQHdnz1FNPGY1fs2YNAaDPP//cZBrl5eVUUFDAv65fv17jkS/sxV7sVfuX0EfB2TJM39iLvR6tV131TdAp4EOHDmHWrFnIyckxGn/79m3MmjWr0R2kFhQUAIBJX16urq68jTVpVLUzxqpVq+Dm5sa/rB2CZzAY9UtT0DimbwwGwxIEnQL+4IMPcO7cOZPnYDZv3hy7du3CzZs38f333wuZdZNkwYIFmDVrFv+5sLAQAQEBOHDgAE6fPg0AiCjcgZOuz+q9/0fucr0jfaqTLzZ9TNzevXtRdjUVhSIv+CozMODvKbXqaAHsc5+Mm46d8OL4OKND2mq1Gl99+SW8y6/iqby1+MXzLXAc0Lb0IA64v4R/5C7HXVkQ/74uZd67dy/Kr6ZAoS5AucgZw/LWmUxDxy7vmXBo1R8DBw40a1d1KlwNCTScFG3KDltVXkvzq3rsT2V6D49lGlDD1Lsx1Go1fvrpJ+DBNRRJfCEiNbyVWXgqby3SHCIEr9Pvv/0KecZvGJC/BXvdJwneNmlpaThw4AD+kbscR9xGQ64twoD8h+vW0uWdkeIxEfjbjYep31phBeAv4LG8TOMsx5S+3bp1C3/++Sf+/PNP9Cr4Hsdcn4eXMgv50mbQcDIQJ4ar6jZKxF6VU5XKdDhqHqBU7IlcWQgUMonJqUqdXrQpOSCI7sTeW4evmr0PqbYC7uocdCrZh70ekxFQfgERRTtRIPHDIbexKBe78N4JKqdW81Eq9kCuLNRseXWo1Wp8981X8Cs6i4H5hkdrAn9rsscU5Lp2tXiaUa1WY+t338CxOAN5sgC97yNL3pEve+WU48PpU6lYhKjoARZPB1fVg5rY5z4BFSFP4smhw2q01emAf/kl3JcGornyLxDEeCBpjkKpH/6Ru9yiNqhtfarm7VORDiftA8HrVj0fY7/Vk85Dcc45FgHlF9BC+XCKWFdP54I/MWnxJxbnVR1BO4AnTpyoUdj79euH3bt3C5ltrdE91Zp6ei0sLISHh4fVaVS1M4ZcLufPaK3KY489hmtpl6FWlqHAuR1cJUqoOTkKnNvBTaLEBe+RZne2HfQcCTcXJ3To0MFAJEQcIJNJQTJvRBWthYvMdB2jKn7BVvceyM3NNbo77MqVK5BKJfDSlMBJBnTTHEGKxyQElG7lyxn9YBPOWVHmdu3aISUnB5EF23DcdSRUZb417pgqcG6Hbu3b6529WB21Wo2Tx4+iNf2FwSWb8JvXW1Boi9Cx+AzOScZY9R1bkp9ITEAVF2ROuIvmJZuwWz4NJ487oU2bNrXa9ZiavBcqpRIOCif4ah+gQNoMBYrHoCrzRUeN8HVydXNHuVMzOJUC7egiUlwnCdY2ANCxY0ecO/M/XKDn4UoqlIt84PT38aSZ8s446jkNLZRZuCcLhJg0Jn9rJpck1pGmoHG2rm9OTk6IiorCjexMnJONQQvlDdx1aQMxOISWn0XL8kpXPmHl59Az3/iO8oMHxEZ3lOv0IqDke6u0UpcOlXihm+oIzrsMRj680LzsOzxV8l/sd38Jv7r3AIj+ds3licDyS+hZULvy6rhy5Qo4sRT9K3aa1+Tyn7HVLcKkJhtLlzgxFHIZAnEDLcR3AXHlPXRI54Kn+ndcpiuz1OJd+1X1oCa0Tn5wdXOvUQMAIDc3F0Gim2in/R9SHLtAK/aBGBqIJc4IUmdD5dgchzynwVuZaUEbWF6fqnkrpGV6+iNU3arno2sbHdfkXXHF8ym0KT+PNprj2OPzqkE9RaW5mGRxToYIOgWcm5uLFi1amLVp1qwZcnOF9c1VW3Q3TlpamkFcTk4OiouLa7y5QkNDIRKJjKZRNe26bKuXSCToP2AQNJwM2YrOcFXfhYaTIFvRGS7qu8hWdMZuj1eRL9Z3xJov9sNuz2nIVoQjKnqg0T9xmVyBQokfmlWkWeR3yleZbnIHXmZmJuRUhlKROwAgtOwUFJoinHQdjr75XyBb0RnJHpMRUbizzmXW7ZTKkbeBQlOEY64j9Ha0VUULDsfcRkAhk9S4Y6r6LlOZthSlIndIoEbU32U3WV6PV5Gl6GzyO7YkP2NYsxPXuSQDxImhhhwqkQx+FVf570sETc11quF3U53g4GDkSCv9QOraXai2AfR3mReJvZEjb418sa+ew/Fn769Gl6I/oOGkyFKE1/hbE4KmoHG2rm9AZfu2afcYNJwMBVJfiEmNoPKziH6wCadcnqnzbn+dXpx0e5bXIFO/+SSPmnXnmNtIdC/aCam2FGKtEsdcRyCw4jxG3VkEqbYMgeXnUCTxsdo7Qe1PhbBcH/xUGXggac7vYK7utF+IXftV9cAc+WI/3JGGWryjVecsObTsFKTaMtyRtwZHGmggh+JvrxMB5ecFaQNTeQeXn+H1R8i6Vc+nKmpIkOIxEcSJEVG4Ewfcx9dYz7ogaAfQ3d0d2dnZZm2ysrKMetBvSKKiogCA9/FUlcTERD0bUzg4OCAyMhKXL182cJlCRNi9ezecnJzqvAMpKCgIMTExkErFuCcLAjgROGhwTxYE4kS4ruiArX7LscPrbezxmIId3m9jq98y3HHtjpjYWJNTiMHBwajgHOCozbeoHM4a0+4MlBXlcFXf4W+Oqp2nK4598HjBt7gjC8NBj3FwVefghuKxyjJ7V5Z5p/e8Gsus6whcV3SGi+aeYJ2Y6oJb9SYPqjiHwXkf444sDFv9lmOn19zK8nrNxVa/ZchWdEKnTp1r7dRYaIHXuUYILD8LF829SrcoYieoIYeT9oFep89NnWO0Tpb+bqpT9Q+yPjqYQOU9MDgmBsVOIeBIg2OuI3DNIULPfUhk8c8YlLcRYlIiW9Hp79/aHf63tstzhkV5WUpT0LimoG9A5akprurcWrvyMfegVPXB4YrTE7wG6f3mvSp/8zkuXWvUnWxFOJI9p6BnwY/QcBJkKcKx2+NV/OXUFyqRg2CuuWp7KoSlLmaUFeXQEkErkqLk7wf1+nDBY8rlTFVq+xAIPHSRI4EaUQ+2gCMNykXOqBA7IU/SsvIEGQHdoxnLuz4ecI3lU5XjLs9CI5LDryIN92UBFteztgjaAezVqxd++uknXL9+3Wh8dnY2duzYgccff1zIbGvNwIEDERoaim+++QZnzpzhwwsKCrBy5UrIZDK89NJLfPjt27fx119/GUyHvPLKKwAq17pQFX/aGzduRHp6Ol588UU4ODjUuZzBwcEY/9IE9I2Khre3N2QKR4glUojFYogkCkglYuS7tEdeswFwaD0A0dHReGHcS2b/xCuf7MUoEZmfAtJhzu+UTK6AiOP0bo6qnadD7i/CVZ0LH2U6ykWu0EACDkC5d1eUhQyDQxvLyqzrCBQ5t7aq81uV6oJb/SYPrjiHF+7MR/SD/8JBW4hykTMctIXwUmZBJpOhR48eFn1/pvIzh6UCX3VUUSlyhIf6BqTaMijFTigRuRt0ZM86x6KZ8gpcVTm4I2+FTHk4HkhawNvbu8Y2qE51P5BCdzB1BAcH48XxcejYuQuyHMJxxG2UwfmmoRWnEZczC33zv4K3MhMVImdItGUQaZUocG5bq/xqoiloXFPRN2VFOdScBHJNMT8jkanoYvHshKkHJZ1e3HHtXqlB2nvwUaYjX9oc6YpuuKdohU6dOmHcSxMs0p07rt1x0GMc3DS5EEGNbEUnHHcbCb+Kq8iVhVpdXqD+fAHqZnzcVDm48/cDrhDfcXWq64FQD4F6Mw0VpxFe9AfuSwPBadUolDaDX0WaYG1gKu9isWeND7hJHtNqPStkrI5A5ejfRedoyDQlcNLm8+1laT1rg6BrAGfNmoVffvkFffr0wYoVKzB48GA0b94ct2/fRlJSEhYtWoSysjKLjiGqTyQSCTZt2oTY2Fj069dP76ikrKwsrFmzRm+dwIIFC7BlyxYkJCRgwoQJfHhcXBy+//57fPvtt8jIyEBUVBSuXr2KH3/8ESEhIVixYoUgZW3Xrh3atWtndVq69Dp07Ijz54k/xs0UuiHtaBNPNJXHwYXgiQdf4ZD7C9jt8Sp6Fm5HcMU5tLwzHxkO3XHFoSfuSwJQIXICOA4vvPhirdZHVM2r5biXkJGRgUOHDkFZUY4C18egUsjh6u6B6NDKoXdLbz5jghtadhx/Og1Aksc09CqsPHqsddkxtC47hnyxH465jUCeLAgxA2rvZb4+jv2pOqoo05aiXOSGqAdbsMfzFV7sq7ZFhqILlCIneKpvoXvxb/BU3sB2v3fQqVOnOnnN1/1B7k+RYKsiHH6qdDRTXkGeNAB35K0g4gjePn6I7tChVm1THYlEgt69e8PX1xf79iQZdcYrgRrtyg6jXdlhPmyPxxTkNRtQpzxN0RQ0rqnom0yugIaTQ0RqfkZCKXK0eHbC3PmoVfUiIyMYyopyNJcrEBISUqvfon46GXAsL4NSpUbBgzw4aR+gXOQiWHmrHq1pipo02Vi6mRnpaK6+hAqRE465joBKpBCkzNUxpgdO6jyUSDxx5+/TMmJqeVpGaGjlMZLH3EZicN7HiCz+Gd6q69jnMREgDk7afMHaoKa8B+d9jP3uL2Gr3/K/jyHNR4nIHXfkrcBBi0GDBtfplJPq+Rx3eRYEESSoQKnIHSJo4FjLelqKoB3Afv364YMPPsDs2bMxceJEAJVOQ3VPjyKRCGvXrkW/fv2EzLZOREdH4+DBg4iPj8f333/PH5a+evVqjB492qI0RCIRdu7ciffeew9ffvklPvzwQ3h6euLll1/GihUr6nROZkPQo0cPXL50EUddRyLmgenjzmoa0tb9cK87dMKgvE9wwH280ZtDTEpU7mETQyqV1rncEokErVu3xvnz53HvnhIDBgyos2uJqoKbL2mGZPeJUIvkAMdVTh86LIdvxTU4ax+gWOyBXFlYnQTMWH5CCXzVUcXg8jNI8ZiEfvlfoHNRIs67xOCY6wgMfvAJJFDzHVkdumOw6jJlUb1e1f9oPeUKdK/lH60laDQaECfmp7JqokTsCanMcBOCNTQVjWsK+hYcHFy5jlhTzK8j1q3FtYSaHpR0emHt8WbG0klKSkJp2jUo1PmClLd6J6Cummws3f2pqSgTuSMq/wskeU6Dg7YQLmpxzRfXUGZjVNeD8opyOMgViK6jHuhGFpMS1djtOQ09C7YhtOI0AnPO4zu/d1Ei9oSDpkCw30xNeb9Q5WG6WOSB4r8f6gcOiqnzGcRV80nynI4b8scg15ZCqlUiR94aLcovolTkDoW2yOJ6WorgZwEDwLlz5/DJJ5/gxIkTKCgogLu7OyIjI/Hqq6+iY8eOQmdnN1h7rl9tyMrKQlJiIgLLz6JnwbZqu6YqR7uyFeE1TttVTSeiYAfyZAF/jzQ58us17ksDgb+Pknr55ZchFlsmPqb44Ycf8ODBAwwbNqzGBfmm0J0161KchrvSIAAcf46tsyaPv8lLRW4oknihTOyGgQMHISwszKr8hDxjWHeI/DN3V0MNid7Zqiech+OsyxAElp/jRzN11KZ9bYmkpCQ8uHocBRJfi8/P7NGjB7p16yb4PcU0rvZU1ze1Wo0vt2yGSlN5jvKoO4uRKwtBisekBj2/ti7oznGNLNiG424jBSmvUJpcnSNHjuD8+fMYdWdx5cOuxySoRA42/x1Xpeo5vLqRxXvSQBRKfAVtA0vzrjqqac35xtXzSd67Byq1Gj6qTNyVhUKuLYaz+j7uy4KM1tPas87r5Si4zp0746OPPqqPpBkCIdRwfdV0tldJRyOS4Y40FBxp+M4fUDmqYC1ardbqtCSSSt9ce3ZXQExqtKzQPzS+6oiZFhySPKbh0AEpgoKC6jSqZexp0qTA12InbtVRRd0Tvm4q3keVhVSPOGz1E3Y0s7FQVpTDQ5WNCs6BH900OVLi+g+IOaq3+jGNs57Ke2IA9uxOhPjvTT7RDzZB4fp8ze1bxwX3QqEbsavqncDa8tbHFCpgOOMzNmc+vm32ns1/x1UxNrLoLpWh7OYNQdvA0rytGdU0l49/ywDkZPwJEWmh0BTBRX0Xd2XBEGuVyJG1rrGetaVeOoAM6ygpKTEYJXN0dOQPZK+oqDC7ld3BwYHvHCmVSqhUKqN2Pj4+GPPCOGRlZSEjIxhFxUUQS6ToGRSE4OBgSCQSvbMGFQoFX66q6fr4+GD4cyOQmZmJrKxmyK8oh5OzC6JCQ5GamgqNRgO1Wg2O41BaauhMSS6X8zeRSqWCUmn6sE25XM53AInI7FmIMpmMn3JWq9WoqKjQiy8sLESFsvJ77PbgoXsWjRYo1/t6CZ3ubcOPospzbNu3bw+ZrNJZl0ajQXm56TUlUqmUtw0ICECfJ57AoQMaXHFvB19VBhzVD1Aq8UCuNARODnLEDK58utdqtSgrKzOZrkQi4f+EjrqOQJ87H8NbeQ59lP/BIbexuOK+CL4V1+BVeBYFsgDkOobhHkfw8vZFz9BQo+0LAGKxGArFwykSc99vbWxFIpHehoHa2JaWloKIoCUgX+OMHrmbsddjMsodX0aPop3wFz90nnpL44sTLs8gm2sHHxc3gzZnND46fVMoFAgNDUWXrt1x6uRJXOHaodwxDo/d+xFH3Uah3PFlRBTthLvmLuQSQCKqfFA65PwsMrh2GNizNyoqKgzauKqeGLvvq1KTRpiy5TiOP8fVqzQTadK2euWVigGZuLK8h12eQ7qZ8lbViMDAQAMtlckVvCZXvS8s0Qjdd9F/wCDs+qUMFU6TEVG4A73ubOLvoYiinfCmyu8YAB6IfLHfYTiumyhzY2qEv78//P39edvKUVMtXIqvIE2i3wY6CsS+OO8zkn+4ViqVJtuZ4zg4Ojryn8vKyvj/G13eVana+atqa4yqa9/Ly8uh0WgMbIoKCyAruY47Lu34tfVuJVeRJ/ZFGtcW3iWZSJM9rKdIadrJuUXU6QA5Rr1QUFBg8qy/3Nxc3m769OlmzwXMyMjgbefMmWPW9sKFC7xtfHy8Wdvjx4/ztu+//75Z2+TkZNJqtbRx40YaM2aMWdtdu3bx6SYkJJi13bp1K3311Ve0ceNG2rRpk1nbhIQEPt1du3aZtd3wJIjiK1/JcebPXXz//ff5dI8fP27WNj4+nrfVna9q6jVr1izeNiMjw6zt9OnTiYgoMzOT/vX3uaymXr1796bDhw+TSqWi4uJis7YjR47U+02asx06dKieraOjo0nbqKgoPVtvb2+TthEREXq2QUFBJm2bN29OO9bNpd3/nkI71s2l5s2bG7V7lM4CtlWq61tycjIft2TJErO/tRVTYmnH+nm0ceNGmvzyxBo1QsfWrVuF04gNG3jb5ORks7ZTnomkn9a/TRs3bqT4xYsE04g5c+bwtpZqBBFRbm6uWdvoyI6V99CGebRu3bompREZGRnk7eVlViO2JHxOmZmZRET02GOPmbQNCgrSK0NERIRJW29vbz3bqKgok7aOjo56tkOHDjX7vW35aA398e9plL4ynHp07WzWFrCRs4AZjKpwHMePWgqJEFPAtkhd6hMUFISo/v3N2vj7+6N3796CbsiwFZw0+Xpuepw0+Y1dJEYd8Pb2Nhtf0awH7zaqV+8+DVSqulPm0op3zRX75NDGLk6NiF2boTz0KTi0HtDoG5hqS3BwMJzM+N10cnKqtZurxkbn0P6K4+NorrxSb/nUyyYQRt3QLZK+deuWwYLO+pgCrq2tqSlgc7aff/45lEol1Go15HI5XnzxRQPb2k4Bf/XVV1AqlfjHP/5h1g9ZTdM7e/fuRU7Gn3BX3cZzBesg/XvW3XAKuJJfvGbCsXV/DBkypE5TwDVN2dTGVje9AwBEhMLCwr+njbKg/HvaKOjvaSOFQqFna2waXoctTwEDlX729u7Zw5+n7KG9C8e/N5bni/2Q6vAMrss7YeCgQQgMDERhYSH8/f0bZGMVwzzV9a2qnlhy39dGI+p7Crg2972taIS5+742trauEdWpPq1bG9vaTOsKMQWsO7s5sOIC2pQcwgH38SjSKuBdlgZH/qzmMIhJCZFUgWFPPYPAwEDb2gTCsA4nJyezvvJMnbFpDJlMxgtGY9iKxWL+5ejoWKMPQKlUWqOrGN1NJpPJLPYpKJFIDEbA2rVrh5ycHOQ7eKKkyjm2YhHgVK1q+WI/FLq0Q/cq6/909bO0DCKRqF5sOY6Dm5sbwsPDER4eXqNtbfww2oJtVUFu3749HBwcsD/FCb+6RRhdKP90lYXyxkSW0bgY0zdL7vu62Bq774Wwrc19bysaUR+2gO1phJC2tXF0Xhvbqp3i6sQMGYqkxMoHo2H3PqjiWcMDzqSBhMvBfXkQYmNjzZ7FbQmsA8ioV6pOawo1ZSvUFHBoaCiOHDoAtbKsxh1kR11tZ0fco05D7cpjMBiMhqYmzxoKmQSxfz/kFhYWWpUXU0pGvSJ0B5CI+A6gtf4EdbvjEhMT+TM+exZuN3DPctR1BLIdOiO2Dsf8MOoHoZz8MhgMhq3RUA+57N+MUa9U7aQJ1QEUMr2goCDExMRgz+4kZCs6Icuhi4HPPJlEhNiBdTvmh8FgMBiM2tIQD7mCdwCVSiV27NiBEydOID8/3+gaHI7j8PnnnwudNcMGEXoEsOrvSagp5eDgYLRp2w5//fUXHB0dUah4DIVEcHF1Q7/27dGqVSs28sfgYRrHYDDsAUH/1bKysjB48GBcu3bN5C4bgInjo0TVTpq1U7YA9HZZCZFe9XQ7duyILl26CJYuw75gGsdgMOwFQTuAM2fOxNWrVzF+/HhMmjQJLVu2ZCMnjzhCjwBW7QAK6WNQ51aH/V4Z5mAax2Aw7AVBlWvfvn0YOHAgtmzZImSyjCZMfXUARSIR6wAyGhymcQwGw14Q9CgFrVaLrl27Cpkko4lTX2sAhT4FROfU2lL/YoxHE6ZxDAbDXhD0X7Rnz564dOmSkEkymjhC7wKur2Pg2AggwxKYxjEYDHtB0H/R9957D/v27cO2bduETJbRhKmvKWAhN4AArAPIsAymcQwGw14Q9N/u119/RXR0NEaPHo2oqCh069bN6Pl0HMdh8eLFQmbNsFHqaxcwGwFkNAZM4xgMhr0g6L/dkiVL+PcpKSlISUkxasfE8dGhPjeBCAnrADIsgWkcg8GwFwT9t0tOThYyOYYd0FQ2gbAOIMMSmMYxGAx7QdB/u6ioKCGTY9gBTWETCBGxDiDDIpjGMRgMe6Fe/u0OHTqEzZs348yZMygsLISrqyu6du2KuLg49OnTpz6yZNgotj4FrFarcfXq1cpTHUiLgwcPIiQkBKGhoawzyDAJ0ziGLaNWq5Geno7MzEwoK8ohkysQHBzMdI2hh+C/hJkzZ2LdunX8MUkcx4GIcOrUKXz++eeYMWMGPvjgA6GzZdgotrwLODMzE/tT9qFcqYaf8hqcNHkouZqJlKwsHD18EFHRAxEUFGR1Pgz7gmkcw5apqmvNVOlwVN9HqcQLKZmhTNcYegjaAdyyZQvWrl2LNm3aID4+HtHR0fDz80Nubi6Sk5OxdOlSrF27Fl26dMFLL70kZNYMG0XoXcBCrQHMzMzE7qQkBJafRc+CbXDX5PJx+WJfHHMbiaRENQbHxCA4ONiqvBj2A9M4hi3DdI1RGwRdSf/xxx+jZcuWOHbsGMaOHYtmzZqB4zj4+flhzJgxOHr0KFq0aIGPPvpIyGwZNowtrgFUq9XYn7IPgeVnMTjvYz2RBAB3TS4G532MwPKz2J+yj18fyGAwjWPYKkzXGLVF0A7gxYsXMWLECLi5uRmNd3Nzw4gRI3Dx4kUhs601hYWFmDVrFoKCgiCXyxEcHIy5c+eiuLi4VulwHGfyNWHChPopfBPDFqeA09PTUa5Uo2fBNohARm1EIPQs2I5ypRoZGRl1zothXzQFjWP69mjCdI1RWxp8NSjHcQ2dpR4lJSWIiorCmTNnEBMTg7Fjx+L06dNYs2YNUlNTsX//figUCovTCwoKMiqGXbp0Ea7QTZj66gBa8zvKzMxEM1W6wRNyddw1d+CnSkdGRjBat25d5/wYjxaNqXFM3x5dmK4xaougHcAOHTpg+/btWL58OZydnQ3ii4qKsH37dnTo0EHIbGvF+++/jzNnzmDevHl47733+PD58+dj9erV+PDDD7FgwQKL0wsODtZzDsvQxxZHAJUV5XBU37fI1kmdh/KK8jrnxbAvbF3jmL49ujBdY9QWQaeAp06dihs3bqB3797Yvn077t27BwC4d+8etm3bhscffxw3btzAtGnThMzWYogImzZtgrOzs4GX/sWLF8PZ2RmbNm1qlLLZK7a4CUQmV6BU4mWRbYnEEzK55SMmDPvGljWO6dujDdM1Rm0RdARw4sSJOH36NDZs2IBRo0YBqPyj1o3aEBHeeOMNxMXFCZmtxaSlpeHWrVuIjY2Fk5OTXpyTkxP69OmDxMREXL9+HQEBARalmZ+fj08//RT37t2Dp6cn+vTpg06dOtVH8ZsktrgJJDg4GCmZocgX+5qdLskX++GONBTRISF1zothX9iyxjF9e7RhusaoLYKvAVy3bh2ef/55k05S+/btK3SWFpOWlgYAJtc9tG7dGomJiUhLS7NYIM+ePYupU6fqhQ0ZMgRbtmyBr6+vdQW2A2zREXRoaKU/rGNuIzE472OjC6a14HDMbQQUMglCmFAyqmCrGsf07dGG6RqjttTLJpC+ffs2akfPFAUFBQBgcgefq6urnl1NzJ49GyNGjECbNm0gk8lw4cIFLF++HL///jueeuopHDlyxOy0Z0VFBSoqKvjPhYWFllalyVBfZwFbM50skUgQFT0QSYlq7PacZsRflh+OuY1AtiIcMdEDmed8hgG2qHFM3x5tmK4xakuT/AXMnj1bT1hqYsaMGfWy22nNmjV6n3v37o1du3ZhwIABSE1Nxc6dO/GPf/zD5PWrVq3C0qVLBS+XLWGLI4BA5e7GwTEx2J8iwVZFOPxU6XBS56FE4ok70lAoZBLEMI/5jEaA6RujrjBdY9SGJtkB3LhxI0pKSiy2HzlyJFq3bs0/GZt6AtY9oZp6grYEkUiEKVOmIDU1FYcOHTIrkAsWLMCsWbP08rd0aqapYItrAHUEBwej5biXkJGRgYyMYJRXlMNBrkB0SAhCQkLYEzKjUWD6xrAGpmsMS7HqlzBp0iRwHIeVK1fCz88PkyZNsug6juPw+eef1znf2jo01aF7StatlalOTWtoLMXb2xsAahRxuVwOuVxuVV62jtC7gIXsAAKV0yatW7dm/rAYRmkMjWP6xrAWpmsMS7CqA7h582ZwHId58+bBz88Pmzdvtug6azuAdaV169bw9/fHoUOHUFJSordTrqSkBIcOHUJISIjVT6nHjh0DAHbWImx3CpjBsISmpHFM3xgMRm2wqgOoO0qmRYsWep9tFY7jMHnyZCxbtgzLly/Xc5S6fPlyFBcXY+HChXrXlJaWIjs7G46OjggMDOTDz58/j3bt2kEqlerZHz58GKtXr4ZUKsXzzz9fvxVqAtiiI2gGw1KaksYxfWMwGLWCHjGKi4spPDycAFBMTAzNnz+fYmJiCAD16NGDSktL9eyTk5MJAEVFRemFx8XFkbe3Nz377LP0xhtv0KxZsyg2NpY4jiORSEQff/xxrctWUFBAAKigoMCaKpolPj6eABi8ZDIZNW/enGJiYuizzz4jpVIpSH7Xr1+njRs30saNG+nWrVsWX3ft2jV67bXXqE2bNuTg4ECurq7UrVs3mjx5Mq1fv57OnDlTYxrl5eW0YcMGio6OJj8/P5LJZNSsWTPq3bs3zZs3j7Kzs62pGqMJ0BD3lC3B9K1h9a2umNK3VatWGbSRMY4dO0ZxcXEUFhZGCoWCZDIZtWzZkp599lnasWNHA9SAYQtYe08J2gHMysqqsSCFhYWUlZUlZLa1Jj8/n9566y0KCAggqVRKgYGBNHv2bCosLDSwNSWQP/74Iw0fPpxCQkLIycmJpFIpBQQE0NixY+nYsWN1KldDC6Sfnx//cnR01BPMiIgIysvLszq/W7du8R3AO3fuWHTN9u3b9crj4uKi99nPz4/27NljNo3z589TWFgYf41EIiEPDw/iOI4P++mnn6yuH8O2Efqeagoax/St4fStLtSkb23btqWbN2+avH758uV6OiaTycjJyUmvfs8//zypVKoGrBWjMbCpDqBIJKJly5aZtVmxYgWJRCIhs7UbGlogq5OVlUVTpkzh48eNG2d1fjk5OXwH8O7duzXanz17luRyOQGgrl270okTJ4iISKvVUmpqKvn7+xMA6tChA2k0GqNpXLlyhby8vAgA9e/fn1JSUkitVhNR5ajguXPn6N13363zHxmj6SD0PcU0ru7Yo77Vlpr0rVWrVnwH1Zi+7d27ly9///796fTp06TVaomIKDs7myZPnszHf/DBBw1aN0bDY+09JehKeqrsUNZow7BNAgMD8emnn2LAgAEAgK1bt9Z5R6KO2q4BXLZsGSoqKuDk5IRdu3YhIiICQOX6pn79+uGdd96BSCTCxYsX8fXXXxtcT0SIi4vD/fv38eyzz2LPnj2Iiori1wzK5XJ06tQJCxcuRGRkpFV1Yzx6MI1rutSHvtWWmvRtx44dEIvFOHnypFF9+/LLLwEALi4u2LlzJ7p06QKO4wAAAQEB+Oyzz3gH5Vu3bm2gWjGaKg2+lfLGjRtwcXFp6GwZtWDIkCEAAKVSqedSYsKECeA4DhMmTDB5rW7XZHBwMNRqNa5fv14ZQVocOXIEV65c0n8aGAAAK3JJREFUgVqtNnqtRqPBH3/8AQB44YUX4O/vz8ep1WpcuXIFjo6O6NixAwDgP//5j0FaSUlJOHLkCGQyGTZu3Mg2izAaHKZxto1Q+lZbzOmbjg4dOmDo0KEAgISEBIP427dvAwDatGnDn+xSnR49egCouzshxqOD1R4hly1bpvc5JSXFqJ1Go8H169fx3XffoVevXtZmy6hHqo5g6I5eqy1qtRrffPUFypVq+CmvwUmTh5LMTKTcvImjhw8iyog3+vv37/O+xR577DE+PDMzE/tT9vFptfPmcA7AiRMnsDnhcwyOGcKn9cUXXwAAYmNj2VmlDEFgGmdfCKFvdcGUvlWnffv2+OWXX7B//36Ul5dDoVDwcaGhoQCAK1eu8GdQV+fEiRMAwI8uMhimsLoDuGTJEv49x3FISUkxKZAA4O/vj9WrV1ubLaMeSUxMBFDZnnU9MLy8vBx+haeMnEfpi2NuI5GUqMbgmBiTT9I6Yc7MzMTupCQElp/l0zpQVmmj1WpRkbYXScTxaR08eBAA0L17d9y/fx8rV67Ejh07+FGZrl27Ii4uDi+88ALzJciwCKZx9oUQ+mYt5jqeujiNRoNLly6ha9eufNwrr7yCjRs3oqioCMOHD8eHH36I8PBwcByH69evY/ny5Thw4AC8vb31frcMhjGs7gAmJycDqHyqGjBgACZMmIC4uDgDO7FYDE9PT7Rr14798doo2dnZWLFiBfbt2wcAePrpp+Hl5VWrNHTiJSYlBud9DBH010O5a3IxOO9j7Pachv0pErQc9xJ/NJGXlxecnZ1RXFyMCxcuQK1WY3/KPgSWn9VL68LD/iQCb/wAWUsf7E+RwOf50cjOzgZQeexUp06dcPv2bUgkEri4uCAvLw979uzBnj178N1332H79u3spAJGjTCNsw+E0DdrqK5vpqgad+vWLb0OYJcuXfDtt9/i5ZdfRkpKCrp27QqZTAapVIqSkhI4Ojpi/PjxWLFihZ5fRwbDGFZ3AKOiovj38fHxiI6ORr9+/axNltEANGvWjH9fVFSE0tJS/nO7du3w0Ucf1TrNu3fvAgDk2hKDzp8OEQg9C7ZjqyIcGRkZ/HFFYrEYsbGx2L59O7799luMGzcO5Uo1ehZs49M6eQtIuvYwreIK4Mm/0zp79iwf/u9//5tfBzh+/Hg4ODjg7t27WLZsGTZs2IBff/0Vc+fOxbp162pdR8ajBdO4pkl96Js1VNe3xYsX81O6Ok6ePImkpCT+s+785qqMGjUKgYGBGDduHK5duwalUgmlUgkAUKlUKCoqQl5eHusAMmpE0MfU+Ph4JoxNiDt37vCvquL40ksv4fTp0/zpB7Xh3r17AAARac3auWvuwE+VbnCywqJFiyCTyVBRUYGXXnoJN87shqw8F0UVwLY/gWe+BSRVfrUi7mFaWVlZfLhWq8WqVavwyiuvwMHBAQDg4+OD9evX46mnngIAfPLJJ8jNzQWDYSlM45oO9aFv1lJV32JjY/Hbb7+htLQURUVF2LZtG5555hl+RgQw9Jyg0Wjw1ltvoXfv3hCJRPjxxx9x+/Zt5Ofn4+DBg+jfvz927NiBPn36YM+ePQ1dPUYTw+oRQFNoNBrcu3cPFRUVRuPZ00njo1sMTUTIycnBzz//jPnz5+OLL75Ap06dMGfOnFqnqVarjIbP+B34/qJ+mFK0DiTeiAcPHvBhXbp0wVdffYW4uDjcunULyz/ehuVVrnGRAR/EAm/8XvnZo7JvByd1HipEHG/n6OiI1157zWhZ5s2bh127dkGlUiE5ORmjR4+udT0ZDKZxtk196JspZsyYge+//95oXE5ODv++qr5dvXoVw4YN07N1cXHBBx98gDfeeAMA4OHhoRf/wQcfYO3atfD29sbBgwf1Nrr16dMHiYmJiI6ORmpqKqZOnYpLly5BJpMJVU2GnSF4B/DUqVNYuHAh9u/fzw9LV4fjOJOuQBgND8dxaN68OaZOnYq2bdtiwIABePvtt9GtWzfeZ5alSCRSo+EFFcCdkuqhZX+/9Hn++efRo0cPzJkzB2dPHIKyIAducqBfEDDncSDjYX8Rbf5ewlMi8YS7hydcXV1RWFiIsLAwg3NMdVTdgVd11JDBsASmcU0LIfXNFAUFBbhz545Ftjp927BhA1JTU5Gbmws3Nzf069cPc+bM0ZsVadOmjd61a9asAVA5imnMywHHcZg9ezZSU1ORnp6OM2fOMH+nDJMI2gE8c+YM+vbtC4lEgpiYGPzyyy8IDw9Hs2bN8L///Q93795F//79Ddx/MGyH/v37Y/z48fjiiy/wxhtv4Ny5c7wvPd3URHl5ucnrdZsqtJwIwMNp4M3PVr505Iv9sNVvGaKjo42mExwcjJUrVyIlJQWj7izW20n8w98jic2dgWD3yrTuSEMRHRKCTp064dChQ2brWNUNhM6JKoNhCUzjmjbW6ltBQYHR8M2bN2Pz5s0WlyM4OJjvzFXnhx9+AAA0b95cz0vC/fv3+SUrYWFhJtPWrakGgIyMDNYBZJhE0DWAy5dXTtYdO3YMO3fuBAA899xz+P3335GZmYlXX30VFy5cQHx8vJDZMgTmnXfegVgsxp9//oktW7bw4brpCN65sxHS09MBABUiJ2hhvHOlBYdjbiOgkEnMumEIDQ2FQibBMbeRfFpEwNfnK+NfCjdMKyYmBgBw7do1qFTGp6P//PNP/n1juYFgNE2YxjV9rNG3Y8eO1WvZiIg/AeSll17Si6u6HtDczEXVkUjmkJxhDkE7gAcPHsQzzzyD9u3b82G60RYHBwds2LAB/v7+WLhwoZDZMgQmLCyMXxe3fPlyviMVHh4OoNLRqDGRvHTpEn766ScAgIaTYbfnNOSL9acp8sV+2O05DdmKcERFD9Rb8FwdiUSCqOiByFaE82l9eBQ4ewdwkwNxvb0N0ho3bhykUilKS0vxn//8x2i6Oh9tjo6OGDhwYC2/HcajDNO4po81+vbjjz/Wa9k+/PBDnD17Fm5ubnjzzTf14jw8PPgRwW+++cbkaOTHH38MoLLDyEb/GOYQtANYUFCgt61dKpXqHUcjEonQv39/7N27V8hsGfXAggULwHEcMjMz8fnnnwOo9Jvl7OwMlUqFUaNG4fLlywAqXQ/s3LkTgwYNgpOTEwBAoVDgjmt3bPVbjp0+87DHYwp2+szDVr9luOPaHTGxsSanyWbNmoXdu3ejoKAAQUFBGBwTgzMlLfDs3vaYnQRwHDBpzFM40Ppdg7RCQ0MxY8YMAMDChQvx2Wef8VM6d+/exZtvvolff/0VAPD2228bLLJmMMzBNM4+sFbfrKGqvum4fPkypk+fjtmzZ4PjOPznP/8xelScbnPIjRs3EBMTgyNHjkCtVoOIcO3aNbz44ov8ZpS4uDh4e3tbXV6GHUMCEhAQQK+++ir/OTAwkIYPH65nM3XqVHJ2dhYyW7uhoKCAAFBBQUG95REfH08AyJKmHz58OAGgli1bUnl5ORERbdq0iTiO49NwcXEhmUxGAKhXr160YcMGAkBBQUGkUqnoypUrlJiYSL/8vJMSExPpypUrpFKpzObr5uaml76DgwP/WaFQ0My3ZphNS61W06hRo/hrpFIpeXp66pV70qRJpNFo6vYlMpoMQt9TTOPqjr3pW10xp29OTk60ZcsWk9dqNBqaOHEibw+AJBIJOTo66oVFR0dTcXFxncvIaBpYe08J2gGMjY2l6Oho/vPYsWPJwcGBDh8+TEREf/75J3l4eFBERISQ2doNtiaQx48f523Xrl3Lh//22280YMAAcnV1JQcHB+rYsSO99957VFFRQQkJCVYL5IYNG+jpp5+m4OBgcnBwIBcXF+rUqRO9/fbblJ2dbXE6P/zwA8XGxpKPjw9JpVLy8/OjZ555hn799dc6l43RtBD6nmIaV3eYvlUihL4lJSXRmDFjKDg4mBQKBUmlUmrevDkNHTqUvv76a/Zw+4hg7T3FEVXZEmkl69evx8yZM3H9+nU0b94cZ8+eRa9evaBUKuHp6YkHDx5Aq9Vi+/bteO6554TK1m4oLCyEm5sbCgoKjB7yzWAwaofQ9xTTuLrD9I3BEBZr7ylB1wC++uqruHnzJn++Ynh4OPbu3YshQ4bA29sbgwYNwi+//MKEkcFgNEmYxjEYDHtB0BFAhnWwJ2QGQ1jYPWU7sLZgMITFpkYAGQwGg8FgMBi2j1UngUyaNKlO13Ecx2+9ZzAYDFuFaRyDwbBXrJoCruqZvFaZchw0Gk1ds7Vb2BQJgyEsVk+RMI0TDKZvDIawWHtPWTUCWPXQagaDwbA3mMYxGAx7xaoOIDvwnMFg2DNM4xgMhr3CNoEwGAwGg8FgPGII3gFUq9X48MMPERkZCVdXV0gkDwcZz5w5g+nTp+PKlStCZ2sxZ86cwcKFCxEbGwsfHx9wHIf+/fvXOb0TJ05g6NChcHd3h5OTE3r16oWtW7cKV2AGg2FTMI1jGsdg2ANWTQFXp6ysDDExMTh8+DC8vb3h6uqKkpISPj4kJAQJCQnw9PTEihUrhMzaYnbs2IFVq1ZBJpOhTZs2uHfvXp3TSk5ORmxsLBQKBcaMGQMXFxds374do0ePxvXr1zF79mwBS85gMBobpnFM4xgMu0GwQ+mIaNGiRcRxHK1evZq0Wi3Fx8eTSCTSs4mNjW3UczIvXLhAp06dIqVSSbdv3yYAFBUVVet0VCoVhYWFkVwup9OnT/Ph+fn51KZNG5LJZJSZmVmrNBvirEwG41FC6HuKaVzdNY7pG4MhLNbeU4JOAX///feIjo7G22+/DY7jwHGcgU1oaCiys7OFzLZWdOjQAd26dYNUKrUqnX379uHatWt44YUX0KVLFz7czc0NCxcuhFKpxJYtW6wsLYPBsCWYxjGNYzDsBUE7gNnZ2YiIiDBr4+LigoKCAiGzbRRSUlIAADExMQZxsbGxAIDU1NSGLBKDwahnmMZVwjSOwWj6CNoBdHFxQW5urlmba9euwcfHR8hsG4W0tDQAQOvWrQ3imjVrBmdnZ96GwWDYB0zjKmEax2A0fQTdBNKrVy/88ssvyM/Ph7u7u0H89evX8dtvv+G5554TMttGQfeE7+bmZjTe1dW1xlGAiooKVFRUGKRZWFgoUCkZjEcb3b1EdT/wSA+mcQ+pSeOYvjEY9Yu1+iZoB3Du3LmIjo7GwIEDsW7dOqjVagBAaWkpjhw5gjfeeANqtRqzZs2yKp/Zs2frCUtNzJgxw+hTbGOzatUqLF261CA8ICCgEUrDYNgvRUVFJjsytYFpnOUwfWMwGoa66pugHcB+/fphw4YNmDFjBvr168eHu7i4AADEYjE++ugjdO/e3ap8Nm7cqOd6oSZGjhwpuDjqvmxTT8CFhYXw8PAwm8aCBQv0/ii0Wi3y8vLg5eVlsLi8sLAQAQEBuH79+iNxjiarr33TUPUlIhQVFcHf31+Q9JjGPaQmjauNvunSY/eA/cLqKzzW6pugHUAAmDZtGvr3749PPvkEx44dQ15eHlxdXdGzZ09Mnz4dHTp0sDqP4uJiAUpqHTqxTUtLMxD7nJwcFBcXIzIy0mwacrkccrlcL8zYtFJVXF1dH4mbRwerr33TEPUVYuSvKkzjLNO4uugbwO4Be4fVV1is0TfBO4AA0L59e6xdu7Y+krYZoqKisGrVKiQlJWHMmDF6cYmJibwNg8GwP5jGMY1jMJo6gu4CFovFePHFF4VMstFRqVT466+/cO3aNb3wgQMHIjQ0FN988w3OnDnDhxcUFGDlypWQyWR46aWXGri0DAajPmEaxzSOwbAXBB0BdHV1tfkFvn/99Rfee+89AJXHOunCJkyYwNts3ryZf3/z5k20b98eQUFByMzM5MMlEgk2bdqE2NhY9OvXT++YpKysLKxZswbBwcGClVsulyM+Pt5gSsVeYfW1b5pqfZnGMY0TClZf+6Yp1JcjofwjoNI5qEgkwu+//y5UkoKTkpKC6OhoszZVv5LMzEyEhIQYiKOO48ePIz4+HocPH4ZKpUKnTp0wa9YsjB49WuiiMxiMRoZpHNM4BsNeELQDeOTIEfTv3x+fffYZmxpgMBh2B9M4BoNhLwjaAVy2bBkOHTqEPXv2oFu3bujRowf8/PwMtvxzHIfFixcLlS2DwWA0CEzjGAyGvSBoB1AksmxPCcdx0Gg0QmXLYDAYDQLTOAaDYS8Iugs4OTnZote+ffuEzLbJEBwcDI7jjL769++vZ7t582aTthzH8Qe1V+fEiRMYOnQo3N3d4eTkhF69emHr1q31Xzkz/PTTTxg8eDC8vLygUCgQEhKCsWPH4vr163p2hYWFmDVrFoKCgiCXyxEcHIy5c+ea9Imm1Wqxfv16dOrUCQ4ODvDx8cHYsWORnp7eENUyiSX1XbJkidn2NbYWC6h0vxEVFQUXFxe4uroiOjoae/fubaCaPaSm3yfHcRg4cKDeNfbQvkzjzMM0jmmcDqZxtt++gu4CZj6hasbNzQ1vvfWWQbip3XTDhw9Hly5dLLJPTk5GbGwsFAqF3o690aNH4/r165g9e7Z1ha8lRIRXX30Vn376KcLCwvgy3bp1C6mpqcjKyuJ3VJaUlCAqKgpnzpxBTEwMxo4di9OnT2PNmjVITU3F/v37oVAo9NKfOnUqNm3ahA4dOuDNN9/ErVu3sHXrViQlJeHo0aMNfjRWbeqrIy4uzmhbGnOY+9VXX2H8+PHw8fHhd3R+//33GDx4MLZu3YqRI0fWQ62M06VLF8THxxuN27ZtGy5evIjY2Fg+zB7aF2AaZwlM45jGVYVpnA23LwmISCSiF154Qcgk7YqgoCAKCgqyyDYhIYEAUEJCgkX2KpWKwsLCSC6X0+nTp/nw/Px8atOmDclkMsrMzKx9oa3g3//+NwGg6dOnk1qtNohXqVT8+3feeYcA0Lx58/Rs5s2bRwBo5cqVeuH79u0jANSvXz+qqKjgw3/77TcCQDExMQLXpmZqU9/4+HgCQMnJyRalnZeXR+7u7uTt7U3Xr1/nw69fv07e3t7k7e1NhYWFVtfBWioqKsjLy4skEgnl5OTw4fbQvkRM42qCaZw+TOOYxtly+wraAXR3dzeoPOMh9SmOiYmJBIAmTpxoELd582YCQEuXLq1Faa2jtLSUPDw8KDQ0VE8UjKHVasnf35+cnZ2puLhYL664uJicnZ0pNDRUL3zs2LEEgFJTUw3S69+/PwGgrKws6ytiIbWpL1HtxXHjxo0m23DJkiUEgLZs2VLbYgvO999/TwDo2Wef5cPsoX11MI0zD9M449jDPcA0rhJ70jhB1wBGRkbi7NmzQiZpd1RUVGDz5s1YuXIlNmzYgGPHjpm1P336NP71r39h9erV+P7773H//n2jdrr1MjExMQZxumHq1NRU6wpfC5KSkvDgwQM8++yz0Gg0+PHHH/Hee+/hk08+wdWrV/Vs09LScOvWLfTp0wdOTk56cU5OTujTpw/S09P11pekpKTwcdWx9fpWZf/+/Vi9ejX+7//+Dzt27DC5VsTW2tcUmzZtAgBMnjyZD7OH9tXBNK5mmMYxjasK0zjbbV9B1wAuWbIE/fv3xxdffMF8ZJkgJycHEydO1Avr0aMHvv32W4SFhRnYr1u3Tu+zg4MD4uPjMW/ePL3wtLQ0ADC6ZqBZs2ZwdnbmbRqCU6dOAag8Oqtz5864cuUKHycSiTBz5kysWbMGgPmy68ITExORlpaGgIAAlJSU4Pbt2+jYsSPEYrFR+6rpNgS1qW9Vqq8xcXd3x9q1aw3uH3PfUWPU1xhZWVnYu3cvWrZsiSFDhvDh9tC+OpjG1QzTOKZxVWEaZ7vtK+gI4O7du9G/f39MnDgRPXr0wPTp07F06VIsW7ZM77V8+XIhs20yTJw4EXv37sWdO3dQUlKC06dPY/z48Thx4gQGDhyIoqIi3jYkJATr16/HlStXUFpaihs3buCLL76Ap6cn5s+fj/Xr1+ulXVBQAKByAbYxXF1deZuGIDc3FwDwwQcfwM3NDcePH0dRURH279+PNm3a4F//+hc+/vhjAJaVvapdbe0bgtrUFwDCw8Px3//+F+np6SgrK0NGRgbWr18PjuMwYcIE/Pzzz3rpm6tzY9TXGAkJCdBqtZgwYYKeqNlD++pgGmcepnFM43QwjXuIzbavkPPJHMdZ9BKJREJm2+QZP348AaB//etfNdpeuHCBFAoFeXp66q3DGDx4MAGgtLQ0o9f5+/uTq6urYGWuiSlTphAAcnBwoJs3b+rFnT9/nkQiEYWFhRER0ddff00A6J///KfRtBYuXEgA6McffyQiops3bxIA6tOnj1H7pKQkAkBvvvmmgDUyT23qa449e/YQx3HUqVMnvfDWrVsTAKNrb5RKJQGgzp07W1cJK9BoNBQYGEgcx1F6erpenD20rw6mcXWDaVzTvweYxtmfxgk6BZycnCxkco8MU6dOxZdffolDhw5h1qxZZm07dOiAJ554Anv27MGlS5fQqVMnAA+fJEw9MRQWFsLDw0PYgptBV56IiAj4+/vrxXXs2BGhoaG4evUq8vPzLSp71TRra98Q1Ka+xtwf6Bg4cCDCwsJw/vx5FBYW8k+CVevs5eWld01j1Lc6e/bsQXZ2NgYOHIiQkBC9OHtoXx1M4+oG07imfw8wjbM/jWN+AG0Ab29vAJV+hOpqX3XNQPfu3fXsc3JyUFxcjMjISCGKaxFt27YFYNzXU9XwsrKyGtc7VF9f4eTkhObNmyMjIwMajcZgDUVN6zHqg9rU15w4ApXte/XqVZSWlvLi2Lp1a5w8eRJpaWkG4tgY9a2OsYXROuyhfXUwjasbTOOa/j3ANM7+NE7QNYCMuqHbJWfKUWpVNBoNTp48CQAICgriw3V/TElJSQbXJCYm6tk0BNHR0QCAS5cuGcSpVCpcvXoVTk5O8PHxQevWreHv749Dhw4Z/EGUlJTg0KFDCAkJ0XMwGhUVxcdVR1fffv36CVkls9SmvuYoKSnBxYsX4eTkxP8JArbXvlW5f/8+du7cCU9PTzz33HMG8fbQvgzrYBrX9O8BpnF2qHH1Ma988OBBmjx5MkVERFCbNm0oIiKCpkyZQgcOHKiP7JoEly5dopKSEqPhzZo1M/AHdPLkSQNbtVpNc+bMIQAUHR2tF6dSqSg0NNSsk9SMjAzB6mMJMTExBIA+++wzvfBly5YRABo3bhwf1hSdaFbH0voWFhbS5cuXDa4vLS3lfUNV93WWl5dHbm5uNukk9cMPP6xxvYo9tG9VmMYZwjTuIUzjmMbpsOX2FbwD+NZbb5FIJNJbDF31/cyZM4XOskkQHx9PLi4uNGzYMJo+fTrNnTuXhg8fTlKplADQggUL9Ozx94LXcePG0bx582jKlCnUpk0bAkAtW7aka9euGeSxb98+kkql5OLiQlOmTKFZs2ZRUFAQAaA1a9Y0VFV5rl69Sr6+vgSAhg0bRrNnz6YBAwYQAAoKCqLbt2/ztsXFxRQeHs7/8OfPn8+LTY8ePai0tNQg/cmTJxMA6tChA7399ts0fvx4kslk5OnpaVR86htL65uRkUEcx1FkZCTFxcXRvHnzaMKECdSyZUsCQJ06daJ79+4ZpP/ll18SAPLx8aHXX3+dXn/9dfLx8SGO42jr1q0NXV2ejh07EgA6d+6cSRt7aF8dTOOMwzSOaRzTuKbVvoJ2ADdv3kwcx1Hbtm3pm2++odu3b5NWq6WcnBz69ttvqV27diQSiWzCm3dDk5KSQqNGjaLWrVuTq6srSSQSatasGQ0fPpwSExMN7GfPnk19+vQhPz8/kkql5OTkROHh4bRo0SLKy8szmc+xY8doyJAh5OrqSg4ODhQZGUnfffddfVbNLNnZ2TRhwgRq1qwZSaVSCggIoNdee43u3LljYJufn09vvfUWBQQEkFQqpcDAQJo9e7bJpz6NRkNr166lDh06kFwuJy8vLxo9ejRdvXq1vqtlEkvqW1BQQK+99hr16NGDfHx8SCKRkIuLC0VGRtL7779vVCh0/P7779S3b19ycnIiZ2dnioqKot27dzdE1Yxy7NgxAkCRkZE12tpD+zKNMw3TOKZxOpjGNY325YiIrJtEfkivXr1w69YtnD9/3ujulYKCAnTq1An+/v44evSoUNkyGAxGg8A0jsFg2AuCbgK5ePEiRowYYXLrspubG0aMGIGLFy8KmS2DwWA0CEzjGAyGvdDgu4A5jmvoLBkMBqPBYBrHYDCaAvUyBfznn3/C2dnZIL6oqAgdO3ZE8+bN2fQIg8FocjCNYzAY9oKgI4BTp07FjRs30Lt3b2zfvh337t0DANy7dw/btm3D448/jhs3bmDatGlCZstgMBgNAtM4BoNhLwg6AggAb775JjZs2MBPg4hEImi1WgAAEeGNN97A2rVrhcySwWAwGgymcQwGwx4QvAMIAAcOHMDmzZtx5swZ/qy/rl27Ii4uDn379hU6OwaDwWhQmMYxGIymTr10ABkMBoPBYDAYtosgawDfffddLFy4ECqVyqSNUqnEP//5T7z33ntCZMlgMBgNBtM4BoNhb1jdAdyzZw/eeecdeHl5QSqVmrSTyWTw8vLCP//5TyQnJ1ubLYPBYDQITOMYDIY9YnUH8IsvvoCHhwdef/31Gm1fe+01eHp6IiEhwdpsGQyrSElJAcdxWLJkSWMXBUDDlGfJkiXgOA4pKSn1loc9wjSO0RRhGseoCas7gIcPH8agQYMgl8trtJXL5Rg0aBAOHTpkbbaMBiAzMxMcx+m9pFIpWrRogVGjRuHkyZONXUSzcByH/v37N3YxGE0cpnH2C9M4xqOMxNoEbt26hdDQUIvtQ0JCsHPnTmuzZTQgYWFhGDduHACgpKQEp06dwg8//IAdO3Zgz5496NevXyOXsPZERkbi0qVL8Pb2buyiALC98jAewjTO/mEaV//YWnkYAnQARSKR2YXR1VGpVBCJGvwEOoYVtGrVymDY/r333sOCBQuwePFipKamNk7BrMDR0RHt2rVr7GLw2Fp5GA9hGmf/MI2rf2ytPAwBpoD9/f1x4cIFi+0vXLiAFi1aWJsto5F5+eWXAQCnTp0yiFMqlfjggw/QrVs3ODk5wcXFBX379sXPP/9sYHvlyhW8/fbb6NatG7y8vKBQKNCmTRvMnz8fxcXFRvMuKirC0qVL0blzZzg6OsLNzQ1du3bF4sWLoVKp+LUmAJCamqo3vbN582YA5tejXLhwAaNGjYKvry/kcjlCQkLw1ltv4f79+wa2wcHBCA4ORnFxMWbMmAF/f3/I5XJ07twZ27Zts/TrNFmeuqR//fp1jB07Fp6ennB2dkZUVBT2799vNv/9+/fj6aefhre3N+RyOVq3bo1FixahtLSUt7l69SpcXFzQsmVLg+/CXFxTh2ncownTuEqYxtUc12QhK5k0aRLJZDLKyMio0TYjI4NkMhlNnjzZ2mwZDUBGRgYBoNjYWIO43NxcAkBubm564eXl5dS/f38CQF26dKE33niDXn31VQoICCAAtH79ej37VatWkaenJ40YMYJmzpxJM2bMoJ49exIA6tWrFymVSj37O3fuULt27fj0Z82aRW+99RYNGTKEpFIpPXjwgDIyMig+Pp4AUFBQEMXHx/Ov06dPExFRcnIyAaD4+Hi99A8cOECOjo4kkUhozJgxNH/+fIqKiiIAFBYWRnfv3tWzDwoKIn9/f+rduze1a9eOXn/9dZo0aRI5OjoSx3GUmJho0Xdtqjy1Tf/WrVvUokULvt0WLFhAzz77LMlkMoqNjSUAlJycrHfNRx99RBzHkYeHB7300ks0Z84cvg0ff/xxqqio4G0TEhIIAD377LN8mFKppIiICBKJRLRv3z6L6tuUYBpnvzCNYxr3KGuc1R3AU6dOEcdx1L17d4MfTlXu3bvHf4GnTp2yNltGA2BOHFeuXEkAaNiwYXrhCxf+f3t3FhvT+4cB/JmadqZCN11oMJWxXtgbLhqE2PNLJSq1hFS5sCQqtE21UdG0uEAi1hBJSXAhriRiiSVIVGRCiKJFgxQ11haxTp//RTOHY6YM+qd6ns9V+573vOe8M5lnvmc6520RAbC4uJiNjY1Ge0NDA1NTUxkREcGHDx8a7bW1taYXn19JSQkBcN++fab2jIwMAmBRUVHAPnV1dfz06ZPxOwCOGjUq6NyChZHP56Pb7SYAHjt2zNQ/Pz+fADhv3jxTu8vlIgBOmTLFNI+TJ082+9iFej6/Mn5WVhYBsKyszNS+c+dOAggIx8rKStrtdg4cOJDPnj0z7bNu3ToC4IYNG0ztM2bMIABu377d9NgUFhaGNNd/jTKu7VLGfaGM+8IqGffbBSBJLlu2jDabjQkJCSwuLubp06dZXV3N6upqnjlzhitXrmRiYiJtNhtzc3Nb4pDyB/jD0e12G1eXeXl5HD16NAEwKSmJN27cMPr7fD7GxsbS7XabgtHv8OHDQa+Qg3n+/DkBcO7cuUbb48ePabPZ6Ha7A66ag/nZcDx37hwBcNKkSQH9X79+zbi4ODqdTlNI+cOrpqYmYB+Xy8W4uLgfnmdz5/Oz43/48IFOp5OJiYl89+6dqa/P52OvXr0CwjEnJ4cAeO7cuYDxfT4fExISOHToUFP7q1evmJKSwsjISG7evJk2m43Dhg0zvTG1Ncq4tkkZ94Uy7gurZNxv3wQCABs3boTT6cT69euxZs0arFmzxrSdJNq1a4fCwkKUlZW1xCHlD7p79y5KSkpMbZ07d8b58+fRs2dPo62qqgovX75EcnJyQH8AePr0KQDg1q1bRhtJlJeXY8+ePbh+/Trq6+vR2NhobH/06JHxs8fjAUmMHj36uwvy/qorV64AQNBlFTp06IDU1FScOHECVVVV6N+/v7EtJiYGPXr0CNina9euqKio+O3zCnX8qqoqvH//HmPGjIHT6TT1DQsLQ1paGm7fvm1qv3jxIgDg+PHjOHXqVMAxwsPDTc8XAERHR2P//v0YOXIkcnJy0LFjRxw4cAB2e4vESaukjGvblHHKuK9ZJeNaZDY2mw1r167F/PnzUV5ejgsXLqCurg5A04soLS0Nc+fOhdvtbonDyR82YcIEHDt2DEBTwO3duxcFBQVIT0/HpUuX0KFDBwDAixcvAACVlZWorKxsdry3b98aP+fk5GDr1q3o1q0b0tPT0aVLF2O9tZKSEnz48MHoW19fDwD/ty/YNzQ0AACSkpKCbu/SpYupn190dHTQ/na73RT0vyrU8f2PT2JiYtD+weblf86+LWh+ZMiQIXC5XKipqcGkSZPa/GtbGde2KeOaKOO+sELGtWg563a7dfXbxiUkJCAvLw/19fUoKyvDypUrsWnTJgBAVFQUACAjIyOku8O8Xi+2bduGAQMGoKKiAu3btze21dXVBVxhx8TEAAAePnzYMpP5hv/8nzx5EnS7/w3f36+18Yeo1+sNuj3YvPxzaWhoQMeOHUM+Vn5+PmpqatCpUyccPHgQWVlZmDx58i+c9b9FGdf2KeOUcYA1Mk6LVckvKSoqQnJyMrZv34579+4BAPr164eoqCh4PJ6Q1k2rqakBSYwdO9YUjABw/vz5gP6pqakICwvDmTNnQho/LCwMPp8vtAkBGDx4MAAE/TdCb9++hcfjQWRkJPr06RPymH9S79694XQ64fF48P79e9O2xsZGXLhwIWCf4cOHA/jyZ5JQHDlyBFu3bsWoUaPg8XgQGxuL7OzsZt9URP5FyrjWRxnXslQAyi+JjIxEQUEBPn36hNLSUgBNH9cvWrQI9+/fR15eXtAAu379unH15nK5ADT9q62vP+avra1FYWFhwL5JSUnIyMgI+n0doOmq8PPnz8bvcXFxqK2tDXlOaWlpcLvdOHr0KE6ePGnaVlZWhufPn2PmzJmIiIgIecw/yeFwIDMzE16vFxs3bjRt2717N6qrqwP2Wbx4Mex2O5YsWYIHDx4EbH/16pXxvSGg6ROC7OxsxMbGYt++fUhJScGuXbvg9XqRlZUFki0/MZG/QBnX+ijjWtjfuvtEWr/vLZFAku/evWNycjLtdjvv3LlDsmmNrHHjxhl31mVnZ7OgoICzZ8/mwIEDCYAVFRXGGP4lDwYPHsy8vDzOmTOHsbGxnDZtWtA73J4+fcp+/foZ++Tm5nL58uX877//GBERwZcvXxp9MzMzjeUFVq9ezdLSUl69epXkj9fICg8P56xZs1hYWGisF+V2u+n1ek39XS4XXS5X0MfHv7ZWKL53h9zPjP/1GlkTJ040rZE1fvz4oGtk7dq1i+3ataPT6eTUqVOZn5/PhQsXcvz48XQ4HFywYAFJsrGx0XhuDx06ZBpj/vz5QZdTEGnNlHHKOCtnnApAadaPwpEkt2zZQgCcM2eO0fb582fu3LmTaWlpjIqKosPhYPfu3Tlx4kTu2LGDb968Mfq+fv2aubm5TElJocPhYK9evVhaWsqPHz82u8RBfX09i4uL2bdvXzocDkZHR3PQoEFctWqVaemEx48fMzMzk/Hx8QwLCyMAlpeXk2w+jEjy2rVrnDZtGuPj4xkeHk6Xy8WlS5cGXQOutYUjSd6/f5/Tp09nTEwM27dvzxEjRvDs2bPGwrHfhiNJXrp0iTNmzGBycjLDw8MZHx/PIUOGcMWKFbx58yZJcv369QQQdJHjN2/esHfv3oyIiODly5dDmrPI36aMU8ZZOeNsZFv6PFNEREREfkTfARQRERGxGBWAIiIiIhajAlBERETEYlQAioiIiFiMCkARERERi1EBKCIiImIxKgBFRERELEYFoIiIiIjFqAAUERERsRgVgCIiIiIWowJQRERExGJUAIqIiIhYjApAEREREYtRASgiIiJiMSoARURERCxGBaCIiIiIxagAFBEREbEYFYAiIiIiFvM/bEpOtiauP8EAAAAASUVORK5CYII=", "text/html": [ "\n", "
\n", "
\n", " Figure\n", "
\n", " \n", "
\n", " " ], "text/plain": [ "Canvas(layout=Layout(height='9.0in', width='11.0in'), toolbar=Toolbar(toolitems=[('Home', 'Reset original view…" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "# Define the isotopes you want to analyze\n", "isotope_list = ['Mo-92', 'Mo-94', 'Ru-96', 'Ru-98']\n", "\n", "# Create a full list of isotope names in the format 'Element-MassNumber'\n", "iso_full_name = [iso_name[i] + '-' + str(int(iso_a[i])) for i in range(n_iso)]\n", "\n", "# Initialize the plot\n", "ifig = ifig + 1\n", "plt.close(ifig)\n", "fig = plt.figure(ifig)\n", "size = 10\n", "fig.canvas.layout.height = str(0.9 * size) + 'in' # Adjust figure height\n", "fig.canvas.layout.width = str(1.1 * size) + 'in' # Adjust figure width\n", "\n", "iso_name_plot = [\" \" for x in range(n_iso)]\n", "i_sub = 0\n", "kmin = []\n", "rmin = 0.15 # Minimum value for the correlation coefficient\n", "\n", "\n", "for isotope in isotope_list:\n", " # Find the index of the current isotope\n", " try:\n", " i = iso_full_name.index(isotope)\n", " except ValueError:\n", " print(f\"Isotope {isotope} not found in the data.\")\n", " continue\n", "\n", " k_plot = -1\n", " i_sub += 1\n", "\n", " # Calculate the abundance ratio for the isotope\n", " y = iso_abu[:, i] / iso_abu_0[i]\n", "\n", " print(\"\\nIsotope Index:\", i, \"Isotope Name:\", iso_full_name[i])\n", "\n", " x_plot = np.zeros(n_iso)\n", " y_plot = np.zeros(n_iso)\n", "\n", " for k in range(n_iso):\n", " \n", " if k == i: continue \n", " \n", " x = iso_abu[:, k]\n", " r = stats.pearsonr(x, y)\n", " x_plot[k] = k\n", " y_plot[k] = r[0]\n", "\n", " if np.abs(y_plot[k]) >= rmin:\n", " sign = '+' if r[0] >= 0 else '-'\n", " kmin.append(k)\n", " k_plot += 1\n", " \n", " this_name = iso_name[k] + '-' + str(int(iso_a[k]))\n", " \n", " iso_name_plot[k_plot] = f'$^{{{round(iso_a[k])}}}${iso_name[k]} ({k}{sign})'\n", "\n", " print(f\"{k} {this_name} {r[0]:.4f} \")\n", " \n", " # Plotting\n", " plt.subplot(2, 2, i_sub)\n", " plt.plot(x_plot, y_plot, color=CB_color[6], marker='o', markerfacecolor=CB_color[1], markersize=8)\n", " plt.xlim(min(kmin) - 5, max(kmin) + 5)\n", " plt.ylim(-1, 1)\n", " plt.xlabel('Reaction index', fontsize=14)\n", " plt.ylabel('Correlation coefficient, $r_{\\\\mathrm{P}}$', fontsize=14)\n", " plt.text(min(kmin) - 4 + 0.1 * (max(kmin) - min(kmin)), -0.8, iso_full_name[i], fontsize=18)\n", "\n", " if k_plot > -1:\n", " for kk in range(k_plot + 1):\n", " plt.text(max(kmin) + 2.5 - 0.475 * (max(kmin) - min(kmin)), 0.7 - (kk - 1) * 0.1,\n", " iso_name_plot[kk], fontsize=10)\n", "\n", " # Add threshold lines\n", " plt.plot([-0.5, n_iso - 0.5], [rmin, rmin], 'k--')\n", " plt.plot([-0.5, n_iso - 0.5], [-rmin, -rmin], 'k--')\n", " plt.plot([-0.5, n_iso - 0.5], [0, 0], 'k-')\n", "\n", " plt.xticks(fontsize=14)\n", " plt.yticks(fontsize=14)\n", "\n", "plt.tight_layout()\n", "plt.show()\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "#### Reactions" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "scrolled": true }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "\n", "Isotope Index: 966 Isotope Name: Ce-136\n", "285 ND 138 (g,n) -0.3786 \n", "947 ND 138 (g,p) 0.6486 \n", "1609 ND 138 (g,a) -0.1649 \n", "1611 ND 140 (g,a) 0.3388 \n", "\n", "Isotope Index: 968 Isotope Name: Ce-138\n", "261 CE 137 (g,n) 0.5077 \n", "262 CE 139 (g,n) -0.4305 \n", "285 ND 138 (g,n) -0.2954 \n", "936 PR 139 (g,p) 0.2874 \n", "1609 ND 138 (g,a) -0.2195 \n", "\n", "Isotope Index: 1164 Isotope Name: Dy-156\n", "406 ER 159 (g,n) -0.1806 \n", "641 PB 202 (g,n) 0.1765 \n", "1731 ER 160 (g,a) 0.7371 \n", "\n", "Isotope Index: 1166 Isotope Name: Dy-158\n", "635 PB 196 (g,n) 0.1646 \n", "641 PB 202 (g,n) 0.1832 \n", "1729 ER 158 (g,a) -0.2348 \n", "1731 ER 160 (g,a) 0.5624 \n" ] }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "8cd58acc0c7641a4b8479903a1a06fea", "version_major": 2, "version_minor": 0 }, "image/png": "iVBORw0KGgoAAAANSUhEUgAAA+gAAAJYCAYAAADxHswlAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOydd3xVRfr/3+fcnp6QAqQSQJDeBBQpgQBWEFFRcUVZLNhB3a/6cxfXXZpfXfuCFVwVla+sKCgdAiggiAIJIC0JPQkhvdw+vz/uvcdcUkggQIB5v173BTlnzpw5bT7zPPPMjCKEEEgkEolEIpFIJBKJRCK5oKgXugASiUQikUgkEolEIpFIpIEukUgkEolEIpFIJBJJk0Aa6BKJRCKRSCQSiUQikTQBpIEukUgkEolEIpFIJBJJE0Aa6BKJRCKRSCQSiUQikTQBpIEukUgkEolEIpFIJBJJE0Aa6BKJRCKRSCQSiUQikTQBpIEukUgkEolEIpFIJBJJE0Aa6BKJRCKRSCQSiUQikTQB9Of6BF9++SXfffcdDoeDwYMH8/DDD6Moyrk+rUQikUgkkgYiNVsikUgkkgvLOe1Bf/vttxk7diz5+fnY7XYmTZrE008/fS5PKZFIJBKJ5AyQmi2RSCQSyYVHEUKIc5X5lVdeyeOPP84jjzwCwLJlyxg1ahTl5eXSIy+RSCQSSRNCarZEIpFIJBeec2qgm81m9u3bR3x8vN+2AwcOEBsbe65OK5FIJBKJpIFIzZZIJBKJ5MJzTkPcHQ4HZrPZb5vBYMBut5/L00okEolEImkgUrMlEolEIrnwnNNJ4oQQTJgwAZPJpG2zWq089thjBAYGatvmz59/LoshkUgkEonkNEjNlkgkEonkwnNOe9DHjRtHREQEgYGB2u+ee+4hOjrab9v55rPPPuOhhx6iV69emEwmFEVh7ty5Dc7H7Xbz9ttv07lzZywWC1FRUdx1111kZmY2fqElEolEIjmHSM2WSCQSieTC06hj0CMjI5k4cSL/+Mc/GivLc0JSUhIHDx4kMjKSwMBADh48yJw5c7jvvvsalM8DDzzAhx9+SMeOHbnxxhs5duwY8+fPJygoiE2bNtG2bdtzcwESiUQikZwlUrOlZkskEomk6dGoPeh2ux23292YWZ4TPvzwQ7Kzszlx4gQPP/zwGeWxZs0aPvzwQwYMGMCvv/7KzJkz+fTTT1m4cCEFBQU89thjjVxqiUQikUgaD6nZUrMlEolE0vRo1DHovXr14siRI42Z5TkhNTX1rPP44IMPAPjHP/6B0WjUtl9//fUMGjSI5cuXc+jQIRISEs76XBKJRCKRNDZSs6VmSyQSiaTp0ag96M8++ywLFiy4LMZzpaWlERgYSL9+/artGz58OABr164938WSSCQSiaReSM32IDVbIpFIJE2JRjXQ9+3bx4ABAxg4cCCrVq1qzKybFOXl5Rw/fpxWrVqh0+mq7feNY9u3b9/5LppEIpFIJPVCarYHqdkSiUQiaUo0aoj7U089haIoCCEYNmwYnTt35qabbuKqq66iR48exMfHN+bpLhjFxcUAhIaG1rg/JCTEL11t2Gw2bDab9rfb7aagoIBmzZqhKEojlVYikUgk5xshBKWlpbRs2RJVPacLppwxUrM91EezpV5LJBLJpUtT0+xGNdDnz5/Ptm3b2LZtG7/99hs7duxgx44dmng1a9aM7t2707NnT6ZNm9aYp74omT59On//+98vdDEkEolEco44fPgwcXFxF7oYNSI1u/5IvZZIJJJLn6ai2Y1qoN92223cdttt2t8nTpzQhN/XCFi1ahUrV668qMXe54WvzdteUlLil642nn/+eSZPnqz9XVxcTEJCAocPH9Y8+hKJRCK5+CgpKSE+Pp7g4OALXZRakZrtoT6aLfVaIpFILl2ammY3qoF+KlFRUQwdOpShQ4dq2yorK9mxY8e5PO05JzAwkBYtWpCVlYXL5ao2ps03ju10a6qaTCZMJlO17SEhIVLwJRKJ5BLgYgp/lppdu2ZLvZZIJJJLn6ai2ec9yN5isdCnT5/zfdpGZ+DAgZSXl/PTTz9V27ds2TIABgwYcL6LJZFIJBJJoyE1WyKRSCSS88uFHwXfxMnPz+f3338nPz/fb/uDDz4IwF//+lfsdru2fcmSJaSlpTFs2DASExPPa1klEolEIrmckZotkUgkkoudcxri3lT58MMP+fHHHwFIT0/XtqWlpQFw7bXXMmHCBADeeecd/v73vzNlyhReeuklLY+UlBQmTJjAhx9+SI8ePbjxxhs5fvw4X331FREREbz99tvn9ZokEolEIrkUkZotkUgkksuJy9JA//HHH/nkk0/8tv30009+oW8+sa+L9957j86dO/P+++/z5ptvEhQUxKhRo5g6dSqtW7du9HJLJBKJRHK5ITVbIpFIJJcTihBCXOhCSDyUlJQQGhpKcXGxnHRGIpFILmJkfX5pI5+vRCKRXDo0tTpdjkGXSCRNnlGjRhEeHu63JFRRURG9evWiW7dudOrUiQ8++EDb9/rrr9OxY0c6dOjAE088gfRDSiQSiURy7mmIXu/Zs4du3bppP4vFwsKFCy9QySWSpoPsQW9CNDXvjUTSVEhLS6O0tJRPPvmEr7/+GgCXy4XNZiMgIIDy8nI6derEL7/8gtvtpm/fvuzcuRODwcCAAQN49dVXufrqqy/wVUguJ2R9fmkjn69EUjMN0etmzZppx5WVlZGUlMTBgwcJDAy8UMWXXKY0tTr9vPagr1u3jg0bNuB2u8/naSUSyUXOoEGDCA4O9tum0+kICAgAwGazIYTQesqdTidWqxWHw4HD4SA6Ovq8l/nkyZNER0eTnZ193s9dE3feeSevvfbahS6G5CJCarZEImkoDdVrH9999x1Dhgw5b8Z5U9PoupD6fflxXg30QYMG0b9/f9q2bct7773nt9SJRCKRNJSioiK6du1KXFwczz77LJGRkURFRfHMM8+QkJBAy5YtSU1N9ZsA6r777kNRFGbMmOGX18KFC1EUpVo6RVEwGAzExMQwdOhQPv7443oZLFOnTmXkyJEkJSUBMH36dK666iqCg4OJjo7mlltuYc+ePX7HuFwu/vrXv9KqVSssFgutW7fmH//4h19D5qWXXtLK5fu1b9/+tOV58cUXmTp1KsXFxadNK5GA1GyJRNJ41KTXVZk/fz5jxoypdlxOTg6PP/44ycnJmEwm4uPjufnmm1m1ahXgr9VVf9ddd12d5TlVo6F+Og1w9OhR7rnnHpo1a4bFYqFz58788ssv2v5169Zx880307JlSxRFOeuwfanflx/n1UAfMGAA1157LcXFxUycONHvo5BIJJKGEhYWxvbt28nKymLevHnk5uZSWFjI4sWLyc7O5ujRo2zYsIF169b5HWc2m5k5cyaFhYV15n/ddddx/PhxsrOzWbJkCSkpKTz55JPcdNNNOJ3OWo+rqKjgo48+4s9//rO2be3atTz66KNs2rSJFStW4HA4GDZsGOXl5VqamTNnMmvWLN555x12797NzJkzeeWVV6otAdWxY0eOHz+u/XxLUNVFp06daN26NZ999tlp00okIDVbIpE0HjXptY+SkhI2bNjADTfc4HdMdnY2PXv2ZPXq1fzv//4v6enpLF26lJSUFB599FEtnU+rq/6++OKLWstSk0ZD/XS6sLCQfv36YTAYWLJkCbt27eK1114jPDxcS1NeXk7Xrl15991363VvBg0axNy5c2vdL/X78uO8LrPmW7MUICMjo16NSolEIjkdMTExdO3alfXr1yOEoE2bNkRERABw4403smnTJgYMGKClT01NZf/+/UyfPp1XXnml1nxNJhPNmzcHIDY2lh49etC3b1+GDBnC3Llza13a6YcffsBkMtG3b19t29KlS/3SzJ07l+joaLZu3aqVbcOGDYwcOZIbb7wRgKSkJL744gs2b97sd6xer9fK1RBuvvlmvvzyS7+GjURSG1KzJRJJY1NVr30TyX377bcMGzYMs9nsl/aRRx5BURQ2b97sF/resWNHxo8fr/1dVavrQ00aDfXT6ZkzZxIfH8+cOXO0dK1atfI77vrrr+f666+vd3nqg9Tvy4sLNot7p06dePjhhy/U6SUSyUVObm4upaWlABQXF7Nu3TratWtHfHw8GzZswGq14nK5SEtLo127dn7H6nQ6pk2bxttvv82RI0cadN7BgwfTtWtX/vvf/9aaZv369fTs2bPOfHyhaj5HAsA111zDqlWr2Lt3LwDbt2/nxx9/rCb0+/bto2XLliQnJzN27FgOHTpUr7L37t2bzZs3Y7PZ6pVeIvEhNVsikZwptem1j5rC2wsKCli6dCmPPvpojePSw8LCzrg89dFoX1nBX6e/++47evXqxe233050dDTdu3f3W0XmXCH1+/KiUXvQDx06RFhYWJ2z35WWllJYWEhCQkJjnloikVzCpKamsn37dsrLy4mLi+P//u//0Ol0PPjgg9pkM48//jidO3cG4IYbbqB79+6oqsqQIUMYMWJEtTxHjRpFt27dmDJlCh999FGDytO+fXt27NhR6/6DBw/SsmXLWve73W6eeuop+vXrR6dOnbTtzz33HCUlJbRv3x6dTofL5WLq1KmMHTtWS9OnTx/mzp1Lu3btOH78OH//+9/p378/GRkZ1SbmOZWWLVtit9vJyckhMTGxAVcsuRSRmi2RSBqbhup1cXExmzdvZsGCBX757N+/HyFEveZYWbx4MUFBQX7bXnjhBV544YUa059Oo6F2nc7MzGTWrFlMnjyZF154gS1btvDEE09gNBoZN27cact6pkj9vrxoVAO9VatWvPTSS/z1r3+tNc1bb73F3/72N1wuV2OeWiKRXMKsXLmyxu3btm2rcfvUqVOZOnXqafOdOXMmgwcP5plnnmlQeYQQfhPKnUplZWW1UL2qPProozWGDM+fP5/PP/+cefPm0bFjR7Zt28ZTTz1Fy5YtNeGv2pvepUsX+vTpQ2JiIvPnz+fPf/4zn3/+OQ899JCWZsmSJfTv3x8Ai8UCeMbfSSRSsyUSSWPTUL0ODQ31G4/uoyGrQKekpDBr1iy/bVV7vU/ldBoNteu02+2mV69eTJs2DYDu3buTkZHB7Nmz622gT5s2TTveV55Nmzbx2GOPadt27drl5xiV+n150agGek3LJtSURiKRSJoCAwYMYPjw4Tz//PPcd9999T5u9+7d1cacVSUyMrLWCegee+wxFi9ezLp164iLi/Pb9+yzz/Lcc89x5513AtC5c2cOHjzI9OnTaxX+sLAwrrjiCvbv3w/AiBEj6NOnj7Y/NjZW+39BQQEAUVFR9bhKyaWO1GyJRNJUadu2LYqi8Pvvv582bWBgIG3atKl33nVpNNSt0y1atKBDhw5+26688spqEQB18fDDD3PHHXdof48dO5bRo0dz6623attO7eGX+n15cd7HoB85cuS0YZgSiURyvpgxYwaLFi1i48aN9Uq/evVq0tPTGT16dK1punfvzq5du/y2CSF47LHH+Oabb1i9enWNBn5FRQWq6l8t63S6Opd1Kysr48CBA7Ro0QKA4OBg2rRpo/18XnfwTPQVFxdXbXkbiaQ2pGZLJJILQUREBMOHD+fdd9/1m0XdR1FR0RnnXZNGQ/10ul+/ftWWXtu7d2+Dws4jIiKq6XR0dLTfNr3evw9V6vflxVn3oL/88st+f1ed9bUqLpeLw4cP8+WXX1abNVEikUjqYtSoUaSlpTFkyBC+/vprwCPOqampOJ1OnE4nTz75JA888AAAr7/+Oh9++CFCCFJTU3nzzTdrDUnv3LkzY8eO5a233qq2z2azkZOTg8vlIjc3l6VLlzJ9+nRuuukm7r333lrL6+uVLyws1JZeefTRR5k3bx7ffvstwcHB5OTkAJ7wPp8RffPNNzN16lQSEhLo2LEjv/32G//617/8Zqt95plnuPnmm0lMTOTYsWNMmTIFnU7HXXfdddr7uH79eoYNG3badJJLF6nZEonkXNJQvX711VeZM2cOiqLw3HPPcc8992h5vfvuu/Tr14/evXvz8ssv06VLF5xOJytWrGDWrFns3r0b+EOrq6LX62s1ZmvSaKifTk+aNIlrrrmGadOmcccdd7B582bef/993n//fS2fsrIyLaoNICsri23bthEREXHG83lI/b7MEGeJoijaT1VVv79r+sXGxorNmzef7WkvSYqLiwUgiouLL3RRJJImxZo1a8R3330nRo8erW1zOp2ivLxcCCFEWVmZSEpKEvn5+SIvL08kJyeLyspK4XQ6xTXXXCM2bNigHTdu3DgxcuRIv/yzsrKE0WgUVavEcePGCUAAQq/Xi6ioKJGamio+/vhj4XK5Tlvm3r17i9mzZ2t/+/I69TdnzhwtTUlJiXjyySdFQkKCMJvNIjk5Wfy///f/hM1m09KMGTNGtGjRQhiNRhEbGyvGjBkj9u/ff9ryVFZWitDQULFx48bTppWcPU21Ppea3Tg01ecrkVxoGqLXO3bsEN27dxeVlZWioqJC9OnTRxQWFvrld+zYMfHoo4+KxMRETfdGjBgh1qxZI4Tw1+qqv3bt2tVZzlM1Woj66bQQQixatEh06tRJmEwm0b59e/H+++9Xuwc15TNu3LgayzJw4MBq56iK1O9zT1Or0xUhzm6A2dq1a32GPoMHD+a+++6rcaykTqcjIiKC9u3bVwvhlHgoKSkhNDSU4uLiOmfVlUguR9LS0njnnXc0j3xVCgoK6NGjB7/88gtCCHr16sX27dsxm80MGDCAL774gtatW5/X8n7xxRf86U9/Yu/evSQnJ5/Xc9fErFmz+Oabb1i+fLnf9jvvvJOrrrqKp59++gKV7NKkqdbnUrMbh6b6fCWSpkB99Xr16tWsXbuWd999F4CHHnqIlJQUbR6Wc0lT0+i6tLg2/ZY0Hk2tTj9r1R04cCADBw5k0KBBTJkyhfvuu0/bVvV37bXX0qFDByn0Eomk0SgqKqJr167ExcXx7LPPEhkZSVRUFM888wwJCQm0bNmS1NRUP+P8vvvuQ1EUZsyY4ZfXwoUL/cLgfekURcFgMBATE8PQoUP5+OOP6xwT7mPLli1cddVVGAwGwLNc1VNPPUViYiIWi4VrrrmGLVu21Hr8jBkzUBSFp556ym97UlKSVq6qv0cffbTO8hgMBt5+++1q21988UWmTp2qrfcqubSRmi2RSC4ENel1p06dSEtLo6ioiMLCQtLS0jh69KjfcTk5OTz++OMkJydjMpmIj4/n5ptvZtWqVYC/Vlf9XXfddXWW51SNBpg+fTpXXXUVwcHBREdHc8stt1Qbbw5w9OhR7rnnHpo1a4bFYqFz58788ssvDc6nKnVpcW36Lbl0aVTlnTJlCgMGDGjMLCUSiaRWwsLC2L59O1lZWcybN4/c3FwKCwtZvHgx2dnZHD16lA0bNrBu3Tq/48xmMzNnzqxzFleA6667juPHj5Odnc2SJUtISUnhySef5KabbsLpdNZ6XEVFBR999BGvv/468fHxAEyYMIEVK1bw6aefkp6ezrBhw0hNTa3WGAFPw+G9996jS5cuNe47fvy49luxYgUAt99+e63lGTRoEHq9nnbt2lXb16lTJ1q3bs1nn31W572QXHpIzZZIJOeLmvS6Q4cOPPHEEwwePJhbb72Vvn37otPptGOys7Pp2bMnq1ev5n//939JT09n6dKlpKSk+DmlfVpd9ffFF1/UWpaaNBo8EUaPPvoomzZtYsWKFTgcDoYNG+Y3SV1hYSH9+vXDYDCwZMkSdu3axWuvveY3lr0++ZxKXVo8YcKEGvVbcunSqMusAdjtdhYuXMiWLVsoKiqqce1URVH46KOPGvvUEonkMiUmJoauXbuyfv16hBC0adNGWwP1xhtvZNOmTX6GSGpqKvv372f69Om88sorteZrMplo3rw54FmurEePHvTt25chQ4Ywd+5cJkyYUONxP/zwAyaTSZtcq7KykgULFvDtt99q5XjppZdYtGgRs2bN4p///Kd2bFlZGWPHjuWDDz7w2+7j1CVWZsyYQevWrRk4cGB9blWN3HzzzXz55Zen7YWXXHpIzZZIJOeTqnp922238dBDD/HQQw8BHkO0bdu2WtpHHnkERVHYvHkzgYGB2vaOHTv6TZ5aVavrw6ka7WPp0qV+f8+dO5fo6Gi2bt2qaffMmTOJj49nzpw5WrpTZ3uvTz41IbVY4qNRDfSDBw8ydOhQDhw4UOfaqVLsJRLJ2ZKbm0tAQADBwcEUFxezbt06Jk6cSHl5ORs2bMBqtWIwGEhLS+PBBx/0O1an0zFt2jTuvvtunnjiiWrrnNbF4MGD6dq1K//9739rNdDXr19Pz549tb+dTiculwuz2eyXzmKx8OOPP/pte/TRR7nxxhtJTU2t0UCvit1u57PPPmPy5Mm1zlJfH3r37s3UqVOx2WyYTKYzzkdycSE1WyKRnA9q02uAvLw8oqOj2bNnD5s3b2b27NmAZ6z60qVLmTp1qp9x7iMsLOyMy3OqRteGL9zc5/AH+O677xg+fDi33347a9euJTY2lkceeUSblb6++dSE1GKJj0Y10CdNmsT+/fv505/+xPjx44mLi6u2jp9EIpE0lNTUVLZv3055eTlxcXH83//9HzqdjgcffBAhBEIIHn/8cTp37gzADTfcQPfu3VFVlSFDhjBixIhqeY4aNYpu3boxZcqUBhsf7du3Z8eOHbXuP3jwIC1bttT+Dg4O5uqrr+Yf//gHV155JTExMXzxxRds3LiRNm3aaOm+/PJLfv311zrHpldl4cKFFBUVcd999zWo/KfSsmVL7HY7OTk5DVrLVXJxIzVbIpE0Ng3V65EjR1JcXExgYCBz5szR6qD9+/cjhKB9+/anPefixYsJCgry2/bCCy/wwgsv1Jj+VI2uCbfbzVNPPUW/fv3o1KmTtj0zM5NZs2YxefJkXnjhBbZs2cITTzyB0WisccLN2vKpCanFEh+NqsSrV69myJAhfPLJJ42ZrUQiucxZuXJljdu3bdtW4/apU6cyderU0+Y7c+ZMBg8ezDPPPNOg8ggh6uyxrqysrNZb/umnnzJ+/HhiY2PR6XT06NGDu+66i61btwJw+PBhnnzySVasWFHt2Nr46KOPuP7666s1NKZNm8a0adP8yrNp0yYee+wxbduuXbu09Vh967tWVFTU67ySSwOp2RKJpLFpqF5v3Lixxu0NWWQqJSWFWbNm+W2rq7e6Jo0+lUcffZSMjIxqUW5ut5tevXppGtu9e3cyMjKYPXt2jQb6qfl8/vnnWkg/wJIlS+jfvz8gtVjyB41qoLvdbrp3796YWUokEsk5Y8CAAQwfPpznn3++Qb3Qu3fvrjbmrCqRkZHVJqBr3bo1a9eupby8nJKSElq0aMGYMWO05V22bt1KXl4ePXr00I5xuVysW7eOd955B5vN5jd5zsGDB1m5ciX//e9/q53/4Ycf5o477tD+Hjt2LKNHj+bWW2/VtlU16gsKCoDq49sllzZSsyUSSVOlbdu2KIrC77//ftq0gYGBftFop6Mmja7KY489xuLFi1m3bl21IXAtWrSgQ4cOftuuvPJKFixYUK98RowYQZ8+fbQ0sbGx2v+lFkt8NOos7n369GH37t2NmaVEIpEwatQowsPDue2227RtRUVF9OrVi27dutGpUyc++OADbd/rr79Ox44dtRli6/LEz5gxg0WLFtXqxT+V1atXk56ezujRo2tN0717d3bt2lXjvsDAQFq0aEFhYSHLli1j5MiRAAwZMoT09HS2bdum/Xr16sXYsWPZtm2bn3EOMGfOHKKjo7nxxhurnSMiIoI2bdpoP4vFQnR0tN+2qqHMGRkZxMXFERkZWa97ILk0kJotkUgam8bS64iICIYPH867775b4+znRUVFZ1zG2jRaCMFjjz3GN998w+rVq2t0xPfr16/akml79+71C0mvK5/g4OBq+uxDarHER6Ma6DNmzGD16tV8/fXXjZmtRCK5zHnyySf5z3/+47ctODiYdevWsW3bNn7++WemTZvGyZMnOXHiBO+88w5bt24lPT2drVu3smnTplrz7ty5M2PHjuWtt96qts9ms5GTk8PRo0f59ddfmTZtGiNHjuSmm27i3nvvrTXP4cOHs3PnTj8P/bJly1i6dClZWVmsWLGClJQU2rdvz/33369dT6dOnfx+gYGBNGvWrNq4NbfbzZw5cxg3blyjjBlev349w4YNO+t8JBcXUrMlEklj05h6/e677+JyuejduzcLFixg37597N69m7feeourr75aS+fT6qq//Pz8WstYk0aDJxz9s88+Y968eQQHB2t5VVZWamkmTZrEpk2bmDZtGvv372fevHm8//77fjOv1yefmpBaLPHRqCHu33//PSkpKYwZM4aBAwfSo0cPQkJCqqVTFIW//vWvjXlqiURyCTNo0CDS0tL8tul0OgICAgCPOPsmnwHPrOlWqxUAh8NBdHR0nfm//PLLfPXVV9W2L126lBYtWqDX6wkPD6dr16689dZbjBs3DlWt3b/ZuXNnOnfuTGJiIjt27CApKYni4mKef/55jhw5QkREBKNHj2bq1KkYDIaG3ArAM8bv0KFDfsvMnClWq5WFCxeydOlS7rzzTq666iqefvrps85X0vSRmi2RSBqbxtTr5ORkfv31V6ZOncrTTz/N8ePHiYqKomfPnn5jzn1aXZV27drVGh7fuXNnevTowfz583nooYc4efIkV155JSdOnNCuoSpz5szRhsFdddVVfPPNNzz//PO8/PLLtGrVijfeeIOxY8dq6X1lqyufU5FaLPFDNCKKotTrp6pqY572kqG4uFgAori4+EIXRSJpdBwOh9izZ49YtmyZWPTdt2LZsmViz549wuFw1Ov4NWvWiNGjR/ttKywsFF26dBEWi0W888472va33npLBAcHi/DwcPH888/7HTNu3DgBiOnTp/tt/+abb0TVKtGXDhB6vV5ER0eL1NRU8dFHHwmXy3Xa8o4cOVKEhYVpadeuXStuuukm0aJFCwGIb775psbjjhw5IsaOHSsiIiKE2WwWnTp1Elu2bPFL884774jExERhMplE7969xc8//+y3v6SkRDz55JMiISFBmM1mcfXVV4vNmzfXeL5///vfYujQoUIIIdLT00V4eLgoKio67fVJ6uZiqM+lZp85F8PzlUguFBeDXi9evFhceeWVwuVyiUmTJokJEyZo+6ZNmyZ69eolgoKCRFRUlBg5cqT4/fff/Y53Op3ixRdfFElJScJsNovk5GTx8ssvC7fbraWZMmWKVi7fr127djWWR2rxhaWp1emN2oO+Zs2axsxOIpFcImRnZ7MubTVWu5PmjkwCnCep0DcjLTuZTRt+ZGDKkDNaUiQsLIzt27eTm5vLrbfeym233YbRaGTx4sVkZ2djsVi4/vrrWbduHQMGDNCOM5vNzJw5k4ceeojw8PBa87/uuuuYM2cOLpeL3Nxcli5dypNPPsnXX3/Nd999V2t4eUVFBWvWrOH+++/n6NGjxMfHU15eTteuXRk/frzfZG1VKSwspF+/fqSkpLBkyRKioqLYt2+fXxm/+uorJk+ezOzZs+nTpw9vvPEGw4cPZ8+ePVrPw4QJE8jIyODTTz+lZcuWfPbZZ6SmprJr1y6/CWkADAYDb7/9NgCdOnWidevWfPbZZ37hepJLE6nZEonkfNHU9PrGG29k37597N+/n48++ohly5Zp+9auXcujjz7KVVddhdPp5IUXXmDYsGHs2rVLW5N95syZzJo1i08++YSOHTvyyy+/cP/99xMaGsoTTzyh5dWxY0e/me1razdILZZUpVEN9IEDBzZmdhKJ5BIgOzubFcuXk2DdTp/irwlz5Wn7inTR/Bx6G8uXORk6bBhJSUlndI6YmBi6du3K+vXrEULQpk0bbYmVG2+8kU2bNvkJfmpqKvv372f69Om88sorteZrMplo3rw54JlptUePHvTt25chQ4Ywd+5cJkyYUONxP/zwAyaTiTfeeEPbdv3113P99dfXeR0zZ84kPj6eOXPmaNtOnaTmX//6Fw888IA2dn327Nl8//33fPzxxzz33HNUVlayYMECvv32W+2aX3rpJRYtWsSsWbP45z//6Zffqddw88038+WXX8pGwWWA1GyJRHK+aUp6/dRTT/H1119jMpno27evtn3p0qV+6ebOnUt0dDRbt27VyrZhwwZGjhypTdSalJTEF198webNm/2O1ev1WrnqQmqxpCqNOkmcRCKRVMXpdLIubTUJ1u0MLZjlZ5wDhLnyGFowiwTrdtalrcbpdNY779zcXEpLSwEoLi5m3bp1tGvXjvj4eDZs2IDVasXlcpGWlka7du38jtXpdEybNo23336bI0eONOiaBg8eTNeuXWtc3szH+vXr6dmzZ4PyBfjuu+/o1asXt99+O9HR0XTv3t1vtlu73c7WrVtJTU3VtqmqSmpqqjYLvdPpxOVyVVvj1WKxVFvPtSZ69+7N5s2bsdlsDS6/RCKRSCSncrHrdXFxMeC/tvo111zDqlWr2Lt3LwDbt2/nxx9/rOaI37dvHy1btiQ5OZmxY8dy6NChepVdavHlTaMb6E6nk9dff53evXsTEhLiF8qxbds2HnnkEe1llkgklzaZmZlY7U76FH+NSs1LnakI+hQvwGp3kpWVVWOa1NRUbr/9dn744Qfi4uLYuHEjBw8epH///nTt2pX+/fvz+OOP07lzZ/r27csNN9xA9+7d6dKlC61bt2bEiBHV8hw1ahTdunVjypQpDb6u9u3bk52dXev+gwcP+q0zXl8yMzOZNWsWbdu2ZdmyZUycOJEnnniCTz75BID8/HxcLhcxMTF+x8XExJCTkwN4Zsu9+uqr+cc//sGxY8dwuVx89tlnbNy4kePHj5+2DC1btsRut2v5SS5tpGZLJJLG5FLTa7fbzVNPPUW/fv38VlR57rnnuPPOO2nfvj0Gg4Hu3bvz1FNP+U0W16dPH+bOncvSpUuZNWsWWVlZ9O/fX3NW1IXU4subRg1xr6ysZNiwYWzYsIHIyEhCQkL81i5s1aoVc+bMISIiolqYpUQiufTIzs6muSOzWs/5qYS5colxZJKVlUTbtm2r7a86fqsq27Ztq3H71KlTmTp16mnLN3PmTAYPHswzzzxz2rRVEUKgKEqt+ysrK6v1YNcHt9tNr169mDZtGuBZqzUjI4PZs2czbty4eufz6aefMn78eGJjY9HpdPTo0YO77rqLrVu3AvD555/z0EMPaemXLFlC//79AbQ1WSsqKhpcfsnFhdRsiUTS2Fxqev3oo4+SkZFRLQJt/vz5fP7558ybN4+OHTuybds2nnrqKVq2bKnpddXe9C5dutCnTx8SExOZP38+f/7zn6UWS2qlUXvQp02bxk8//cT06dPJycmpNp4iNDSUgQMH+k3EIJFILl3sNisBzpP1ShvoLMBus57jEvkzYMAAhg8fzvPPP9+g43bv3l1tbHhVIiMjq62vWh9atGhBhw4d/LZdeeWVWkhcZGQkOp2O3NxcvzS5ubl+Y9xat27N2rVrKSsr4/Dhw2zevBmHw0FycjIAI0aMYNu2bdqvV69e2rEFBQUAREVFNbj8kosLqdkSieRi4ULo9WOPPcbixYtZs2YNcXFxfvueffZZrRe9c+fO/OlPf2LSpElMnz691nOFhYVxxRVXsH//fkBqsaR2GtVA/+qrr0hJSeEvf/kLiqLU6LFKTk6u9/gLiURycWM0manQN6tX2nJ9BEZTw3udz5YZM2awaNEibQz36Vi9ejXp6emMHj261jTdu3dn165dDS5Lv3792LNnj9+2vXv3ajPcG41GevbsyapVq7T9brebVatWcfXVV1fLLzAwkBYtWlBYWMiyZcsYOXIk4AmDb9OmjfbzeeoBMjIyiIuLIzIyssHll1xcSM2WSCQXE+dLr4UQPPbYY3zzzTesXr26RgO/oqICVfU3o3Q6HW63u9ZzlZWVceDAAW3NdqnFktpoVAP90KFDft6fmggODtYmW5BIJJc2SUlJ5BiSKdJF15muSBdDriG5Vi/3qFGjCA8P57bbbqu2r6KigsTERL+wt8WLF9OuXTvatm3Lhx9+WOe5O3fuzNixY3nrrbeq7bPZbOTk5HD06FF+/fVXpk2bxsiRI7npppu49957a81z+PDh7Ny5088rX1ZWpnnJAbKysti2bZuf8TNp0iQ2bdrEtGnT2L9/P/PmzeP999/3m8V18uTJfPDBB3zyySfs3r2biRMnUl5ers3qDrBs2TKWLl1KVlYWK1asICUlhfbt2/ulqY3169czbNiw06aTXPxIzZZIJI1NTXpdVFREr1696NatG506dfKb/PTVV1+lY8eOdOrUic8++6zOvM+XXj/66KN89tlnzJs3j+DgYHJycsjJyaGyslJLc/PNNzN16lS+//57srOz+eabb/jXv/7FqFGjtDTPPPMMa9euJTs7mw0bNjBq1Ch0Oh133XVX3TcRqcWXPY25qHpkZKS47777tL9feukloaqqX5rRo0eLuLi4xjztJUNxcbEARHFx8YUuikTSKDgcDvHJnI/E0jcfEa4pihBTqPZzTVHE0jcfEZ/M+Ug4HI4a81mzZo347rvvxOjRo6vte+GFF8Qdd9whnn76ae2cbdu2FUeOHBGlpaXiiiuuEPn5+Vr6cePGiZEjR/rlkZWVJYxGo6haJY4bN04AAhB6vV5ERUWJ1NRU8fHHHwuXy3Xaa+/du7eYPXu23zX48qv6GzdunN9xixYtEp06dRImk0m0b99evP/++9Xyfvvtt0VCQoIwGo2id+/eYtOmTX77v/rqK5GcnCyMRqNo3ry5ePTRR0VRUdFpy1xZWSlCQ0PFxo0bT5tWUjcXQ30uNfvMuRier0RyIahJr51OpygvLxdCCFFWViaSkpJEfn6+2LFjh+jevbuorKwUFRUVok+fPqKwsFA77kLpdU1aDYg5c+ZoaUpKSsSTTz4pEhIShNlsFsnJyeL//b//J2w2m5ZmzJgxokWLFsJoNIrY2FgxZswYsX///tOWR2rx+aep1emNaqDfdNNNolmzZtrHdarYHzp0SFgsFnH33Xc35mkvGZrayyGRNAbZ2dni/ffeE0vffEQUvhztZ5wXvhwjlr75iHj/vfdEdnZ2nfmsWbOmmoG+d+9eceutt4o5c+ZoBvpPP/0kbrnlFi3Nk08+KebNm9f4F3Ya5s2bJ3Q6nThw4MB5P/eZ8u9//1sMHTq02vYxY8aIV1999QKU6OLlYqjPpWafORfD85VILhQ16bWPkydPisTERHHixAnx1VdfiUceeUTb9+CDD4ovvvjivJQxPz9fREVFiaysLLF48WJx5ZVX1suYPx+cqsVSg889Ta1Ob9QQ92effZbCwkKGDBnCTz/9pK1pXFFRwapVqxg+fDhOp5PJkyc35mklEkkTJjExkaHDhpEb0pP5Mf9gYeRfWBn+AN9G/Q/zY14mN6Qnw4YP18ZZN4Rnnnmm2oQsx44dIzY2Vvs7NjaWo0ePan/fd999KIrCjBkz/I5buHCh3xhcXzpFUTAYDMTExDB06FA+/vjjOseY+diyZQtXXXUVBoMBgHXr1nHzzTfTsmVLFEVh4cKFNR539OhR7rnnHpo1a4bFYqFz58788ssv2v765FPfc52KwWDg7bffrrb9xRdfZOrUqTLU+RJDarZEIjlfFBUV0bVrV+Li4nj22WeJjIykU6dOpKWlUVRURGFhIWlpaTXqtaIoGI1G2rRpw8svv6zVVafqdKtWrfjLX/6C1Xr6CWenTp3KyJEjSUpK4sYbb+Tee+/lgQceIDExEYvFwjXXXMOWLVv8jpk1axZdunQhJCSEkJAQrr76apYsWVIt79Pp+Ok4VYulBl9+NKqBPmDAAN555x3S09MZMGCAtlRQcHAww4YNY//+/fz73/+mZ8+ejXlaiUTSxElKSuLue+4lJiaGPGNrMs09sLQdTEpKCnffc+8ZGefffvstV1xxBVdccUWDjzWbzcycOfO0M61fd911HD9+nOzsbJYsWUJKSgpPPvkkN910k9ZAqImKigo++ugjXn/9deLj4wEoLy+na9euvPvuu7UeV1hYSL9+/TAYDCxZsoRdu3bx2muvER4erqWpTz71SXMqgwYNQq/X065du2r7OnXqROvWrU87PlBycSE1WyKRnC/CwsLYvn07WVlZzJs3j9zcXDp06MATTzzB4MGDufXWW+nbty86nc7vOJ8O79u3j6effpqXXnqJ//3f/622PzMzk9dff5333nvvtOul+zT6z3/+s7btt99+Y9OmTXz66aekp6czbNgwUlNT/RwGcXFxzJgxg61bt/LLL78wePBgRo4cyc6dO7U09dHxUxk0aBBz587V/p4wYYKfFksNvvxo1HXQASZOnMigQYOYPXs2P//8MwUFBYSEhNCnTx8eeeQROnbs2NinlEgkFwF6vZ6QkBDPEmGKetaTn2zatIkvv/yS//u//6OsrAyHw0FISEg1QT169Ci9e/f2OzY1NZX9+/czffp0XnnllVrPYTKZtOXLYmNj6dGjB3379mXIkCHMnTu32rJUPn744QdMJhN9+/bVtl1//fV+a6LWxMyZM4mPj2fOnDnatlMnzqtPPvVJ01BuvvlmvvzyS78J6yQXP1KzJRLJ+SQmJoauXbuyfv16brvtNh566CFtLfAJEybQtm1bv/RVdXjixIl88803fPfdd9pya1X3x8fHk5qayooVK5g5c2atZThVoysrK1mwYAHffvstAwYMAOCll15i0aJFzJo1i3/+85+ARwerMnXqVGbNmsWmTZu0urI+On4mSA2+vGjUHnQfV155JW+++SabNm1i7969/PLLL7z77rtS6CUSSaMxffp0Dh8+THZ2Nq+++ioPPPAAf/vb3+jduzcZGRkcPXqUsrIylixZwvDhw/2O1el0TJs2jbfffpsjR4406LyDBw+ma9eu/Pe//601zfr168+o1/G7776jV69e3H777URHR9O9e3e/2W4vJL1792bz5s3YbLYLXRRJIyM1WyKRnEtyc3MpLS0FoLi4mHXr1mk9xHl5eQDs2bOHzZs3V9PrU7FYLNjt9hr3ZWRksGHDBoxGY515nKrRTqcTl8uF2ey/1KvFYuHHH3+sMQ+Xy8WXX35JeXm53zKn50rHpQZfXpwTA/1iYMuWLdxwww2EhYURGBhI3759mT9/fr2Pnzt3rjbupaZfWlrauSu8RHKZkZqayu23384PP/xAXFxcnWug6vV6XnvtNVJSUujWrRtPP/00zZpVX4t91KhRdOvW7bShcDXRvn17srOza91/8OBBWrZs2eB8MzMzmTVrFm3btmXZsmVMnDiRJ554gk8++aTBeTU2LVu2xG63k5OTc6GLIrkMaaqavWrVKhYv+o7ly5ezd+/eOoe+SCSXAzXp9cGDB+nfvz9du3alf//+PP7443Tu3BmAkSNH0qFDB+655x7mzJmDXl9zcK8QgpUrV7Js2TIGDx6sbV+8eDFBQUGYzWY6d+5MXl4ezz77bJ1lPFWjg4ODufrqq/nHP/7BsWPHcLlcfPbZZ2zcuJHjx4/7HZuenk5QUBAmk4mHH36Yb775hg4dOmj7z5WOSw2+vDirEPfx48ejKArTpk0jJiaG8ePH1+s4RVH46KOPzubUZ8WaNWsYPnw4ZrOZO++8k+DgYBYsWMCYMWM4fPgwTz/9dL3zGjlyJN26dau2PSkpqfEKLJFc5qxcubLO/ffdd5/f3yNGjGDEiBGnzXfmzJkMHjzYbw31+iCE8JtQ7lQqKyureeLrg9vtplevXtpY4O7du5ORkcHs2bMZN25cg/Ori2nTpmnnAU+ZN23axGOPPaZt27VrFwkJCYCnJwE8Y/ckFydSsxtfs20H1hFsKKNC34y07GQ2bfiRgSlDzmheDYnkUqA2vd62bVuN2+tyuMMfBrjD4cDtdnP33Xfz0ksvaftTUlKYNWsW5eXlvP766+j1ekaPHl1nnjVp9Keffsr48eOJjY1Fp9PRo0cP7rrrLrZu3eqXrl27dmzbto3i4mK+/vprxo0bx9q1azUjvT463lD9BanBlxtnZaD7PNL/8z//Q0xMjN8EB3VxIcXe6XTywAMPoKoq69at04TaFxr7wgsvcNttt9VbXG+55ZZqxoFEIrk4GDBgAMOHD+f5559v0He8e/fuOseURUZGnnYCuppo0aKFnycePOHHCxYsaHBep+Phhx/mjjvu0P4eO3Yso0eP5tZbb9W2Ve1hKCgoACAqKqrRyyI5P0jNbnzNvuHkG4SYPP8v0kXzc+htLF/mZOiwYdJRL5E0Aj4D3Gg00rJly2o97IGBgbRp0waAjz/+mK5du1abAO5UatLo1q1bs3btWsrLyykpKaFFixaMGTOG5ORkv3S+2eQBevbsyZYtW3jzzTd57733gPrpeEP1F6QGX26clYGelZUFoC1p5Pu7KbN69WoOHDjA/fff7+dFDw0N5YUXXuC+++7jk08+4W9/+9uFK6REIjlvzJgxg27dutU4e3lNrF69mvT0dCZNmlRrmu7du5/RbKv9+vVjz549ftv27t17TnrjIiIiiIiI0P62WCxER0drDY9TycjIIC4ujsjIyEYvi+T8IDX73BLmymNowSxWRExkXZqeuHvurTVcVyKR1I+qBvjpUFWVF154gcmTJ3P33Xdrvc6nUpdGBwYGEhgYSGFhIcuWLatzIlnw9JhXHRdeHx1vqP6C1ODLjbNSjlMbjRdDSJdvnFlNM0j7JqZYu3ZtvfP77bffOHnyJE6nk6SkJFJTU2sc7yqRSJomnTt3ZuzYsbz11lvV9tlsNnJycnC5XOTm5rJ06VKmT5/OTTfdxL333ltrnr5e+cLCQm1plbKyMvbv36+lycrKYtu2bURERGhhbJMmTeKaa65h2rRp3HHHHWzevJn333+f999/XzuuPvnUJ01DWb9+/VnPvC+5sEjNPvearSLoU7yA+eauZGVlVZuRWiK51Bk1ahRpaWkMGTKEr7/+GvCsgZ6amorT6cTpdPLkk0/ywAMPAPD666/z4YcfIoQgNTWVN998s84hZKfj9ttv59lnn+Xdd9+tdfhaTRq9bNkyhBC0a9eO/fv38+yzz9K+fXvuv/9+7bjnn3+e66+/noSEBEpLS5k3bx5paWksW7ZMS1MfHT8TpAZfZojLjNtuu00A4pdffqlxf1BQkIiPjz9tPnPmzBFAtZ/FYhEzZsw4o7IVFxcLQBQXF5/R8RJJU2fNmjXivffeE++9994FK8O4cePEyJEj/bZlZWUJo9EoqlaJ48aN075rvV4voqKiRGpqqvj444+Fy+U67Xl69+4tZs+erf29Zs2aGuuMcePG+R23aNEi0alTJ2EymUT79u3F+++/77e/PvnU91xVGThwoJgzZ06N+yorK0VoaKjYuHHjaa9b4kHW541DU9Vs7fk+hxBTqv8WvvM/YtmyZQ3OVyK52FmzZo347rvvxOjRo7VtTqdTlJeXCyGEKCsrE0lJSSI/P1/k5eWJ5ORkUVlZKZxOp7jmmmvEhg0btONq0uuq1LZ/+vTpIioqSpSVldV67Kka/dVXX4nk5GRhNBpF8+bNxaOPPiqKior8jhk/frxITEwURqNRREVFiSFDhojly5dXy/t0On4qdemvEFKDzwdNTbMb1UD/8ccfxaRJk8Tx48dr3H/s2DExadKkC/qCDR06VABi3759Ne5v2bKlCAkJOW0+aWlp4u233xZ79+4VFRUV4siRI+I///mPiI2NFYB46623TpuH1WoVxcXF2u/w4cNN6uWQSBqbpmCgny8WL14srrzyynoZ802df//732Lo0KEXuhgXFU1N7GtCanb9NbtWva7FQF/xxgNi0XffntE1SyQXO2vWrPEz0Kty8uRJkZiYKE6cOCHy8vJEQkKCKCwsFJWVleKqq64S+/fvPy9lrKrR+fn5IioqSmRlZZ2XczeUmjR4zJgx4tVXX71AJbr0aGqa3ajLrP3rX/9i0aJFNG/evMb9LVq0YPHixbz++uuNedoLwsCBA3nsscdo27YtFouF2NhY/vSnP7Fs2TLMZjMvvfTSaZdbmT59OqGhodovPj7+PJVeIpGca2688UYefPBBjh49eqGLctYYDAbefvvtC10MSSMjNbv+mt1QvS7XR2A0NXwlB4nkUqWoqIiuXbsSFxfHs88+S2RkJFFRUTzzzDMkJCTQsmVLUlNTad26tXbMfffdh6IozJgxwy+vhQsX+oXB+9IpioLBYCAmJoahQ4fy8ccf43a7ayxPVY2eOnUqI0eO1CZ2XLduHTfffDMtW7ZEURQWLlxYYx5Hjx7lnnvuoVmzZlgsFjp37swvv/zil+bdd98lKSkJs9lMnz592Lx5s9/+0tJSnnrqKRITE7FYLFxzzTVs2bLFL01NGvziiy8ydepUiouLayyb5OKmUQ30LVu2cO2119aZZsCAAWzatKkxT9sgQkNDAWp9oUtKSrQ0Z0LHjh259tprKSgoYPfu3XWmff755ykuLtZ+hw8fPuPzSiSSpsdTTz11STjeJkyYUO9J9CQXD1Kz66/ZDdHrIl0MuYbkOld6kEguN8LCwti+fTtZWVnMmzeP3NxcCgsLWbx4MdnZ2Rw9epQNGzawbt06v+PMZjMzZ8487coo1113HcePHyc7O5slS5aQkpLCk08+yU033VSr8+2pp56iWbNm1WZ9Ly8vp2vXrrz77ru1nq+wsJB+/fphMBhYsmQJu3bt4rXXXtPGtAN89dVXTJ48mSlTpvDrr7/StWtXhg8fTl5enpZmwoQJrFixgk8//ZT09HSGDRtGamqqn3O/Jg3u1KkTrVu3PqMJaSVNn0Y10PPy8rTZYWujefPmfi/m+cY3Ycu+ffuq7cvJyaGsrOysJ3XxzbBYXl5eZzqTyURISIjfTyKRSCSS84HUbA/10ez66rUbhZ9DR2M26qWBLpHUQExMDF27dmX9+vWsXLmSNm3aEBERgcVi4cYbb6zmEExNTaV58+ZMnz69znxNJhPNmzcnNjaWHj168MILL/Dtt9+yZMmSOpeU/OGHHzCZTPTt21fbdv311/PPf/6TUaNG1XrczJkziY+PZ86cOfTu3ZtWrVoxbNgwvwiAf/3rXzzwwAPcf//9dOjQgdmzZxMQEMDHH38MeNY/X7BgAa+88goDBgygTZs2vPTSS7Rp04ZZs2bVeb0AN998M19++eVp00kuPhrVQA8LC+PQoUN1pjl48CBBQUGNedoGMXDgQACWL19ebZ9vFkZfmjPB5XJp4S0Xwwy5EolEIrk8kZrduJpdpIthRcREDpm7MjBliFxiTSLxkpubS2lpKeCJhlm3bh3t2rUjPj6eDRs2YLVacblcpKWlVesp1ul0TJs2jbfffpsjR4406LyDBw+ma9eu/Pe//601zfr16+nZs2eDr+m7776jV69e3H777URHR9O9e3c++OADbb/dbmfr1q2kpqZq21RVJTU1lY0bNwLgdDpxuVyYzf7DYSwWCz/++ONpy9C7d282b97st8yb5NKgUQ30vn378s0339Qa+nXo0CEWLlzINddc05inbRBDhgwhOTmZefPmsW3bNm17cXEx06ZNw2g0+i2fdPz4cX7//fdq4XVbt26tlrfL5eK5555j//79pKSk0KJFi3N2HRKJRCKRnA1Ss89esxdHPMnK8Af4Nup/mB/zMrkhPRk2fLh00EsuW1JTU7n99tv54YcfiIuLY+PGjRw8eJD+/fvTtWtX+vfvz+OPP07nzp3p27cvN9xwA927d6dLly60bt2aESNGVMtz1KhRdOvWjSlTpjS4PO3btyc7O7vW/QcPHqRly5YNzjczM5NZs2bRtm1bli1bxsSJE3niiSf45JNPAMjPz8flchETE+N3XExMDDk5OQAEBwdz9dVX849//INjx47hcrn47LPP2LhxI8ePHz9tGVq2bIndbtfyk1w6NKp7d/LkySxatIh+/frxz3/+k6FDh9KiRQuOHz/O8uXLefHFF6msrOTpp59uzNM2CL1ez4cffsjw4cMZMGAAd955J8HBwSxYsICDBw/y6quvapNEgGfc2SeffMKcOXO47777tO29evWiS5cudOnShdjYWAoKCli7di179+4lLi6ODz/88PxfnEQikUgk9URq9tlr9gljK8rMJpJaJZPSqhWtWrWSPeeSy5qVK1fWuL2qg60qU6dOZerUqafNd+bMmQwePLjWtc1rQwhR57rqlZWV1Xqw64Pb7aZXr15MmzYNgO7du5ORkcHs2bMZN25cvfP59NNPGT9+PLGxseh0Onr06MFdd92lORU///xzHnroIS39kiVL6N+/P+DpaQeoqKhocPklTZtGVZEBAwbwr3/9i6effpr7778fAEVREEIAntCON998kwEDBjTmaRtMSkoKP/74I1OmTOGrr77C4XDQuXNnZs6cyZgxY+qVx9NPP82mTZtYsWIFBQUFGI1G2rRpw4svvsjkyZP9JomQSCQSiaSpITW7kTRbURk2bNiZHy+RSE7LgAEDGD58OM8//7yf8+107N69u875ICIjI087AV1NtGjRgg4dOvhtu/LKK1mwYIGWr06nIzc31y9Nbm6u38oZrVu3Zu3atZSXl1NSUkKLFi0YM2YMycnJAIwYMYI+ffpo6avOG1JQUABAVFRUg8svado0upv3ySefJCUlhdmzZ7NlyxaKi4sJCwujd+/ePPzww3Tq1KmxT3lG9O7dmyVLlpw23dy5c2ucXOLVV189B6WSSCQSieT8ITVbIpFcLMyYMYNu3brVe1WR1atXk56ezqRJk2pN07179zOaCb1fv37s2bPHb9vevXu14S1Go5GePXuyatUqbrnlFsDT675q1Soee+yxavkFBgYSGBhIYWEhy5Yt45VXXgE8YfDBwcE1liEjI4O4uDhtokvJpcM5icPq0qUL//73v89F1hKJRCKRSBoRqdkSieRioHPnzowdO5a33nqr2j6bzUZOTg4ul4vc3FyWLl3K9OnTuemmm/zmqTgVX698YWGhFklTVlbG/v37tTRZWVls27aNiIgIEhISAJg0aRLXXHMN06ZN44477mDz5s28//77vP/++9pxkydPZty4cfTq1YvevXvzxhtvUF5erkUsgWeySyEE7dq1Y//+/Tz77LO0b9/eL01trF+/XkbvXKLIgVISiUQikUgkEomkyfPyyy/z1VdfVdu+dOlSWrRogV6vJzw8nK5du/LWW28xbtw4VLX2ObE7d+5Mjx49mD9/vjbW+5dffiElJUVLM3nyZADGjRunRehcddVVfPPNNzz//PO8/PLLtGrVijfeeIOxY8dqx40ZM4YTJ07wt7/9jZycHLp168bSpUv9Jo4rLi7m+eef58iRI0RERDB69GimTp2KwWCo8z5YrVYWLlzI0qVLT3/TJBcdivANNpNccEpKSggNDaW4uFiuiS65JElLS2Pv3r0APPjggxe4NBLJuUPW55c2vuf7xhtvYLFYZH0mkVzEfP/99zz77LNkZGTUacw3JWbNmsU333xT4xKUkobT1DT7rHrQx48fj6IoTJs2jZiYGMaPH1+v4xRF4aOPPjqbU0skEolE0qRwOp1kZmaSnZ1NUWHBhS5ONaRmSyQSSXVuvPFG9u3bx9GjR4mPj7/QxakXBoOBt99++0IXQ3KOOKsedFVVURSF3bt3c8UVV9Tb66QoCi6X60xPe8nS1Lw3EkljI3vQJZcq2dnZrEtbjdXupLkjE1F2nFue+0+Tqs+lZjcesgddIpFILh2amg12Vj3or7/+Otddd522FEBWVlajFEoikUgkkouF7OxsVixfToJ1O32KvybMlUeJ7UKXqjpSsyUSiUQiafqclYE+efJkSkpK+Otf/wp41iqdNGkSjz/+eKMUTiKRSCSSpozT6WRd2moSrNsZWjALlaY7rYvUbIlEIpFImj5nNROCwWDAbrdrf2dnZ1NYWHjWhZJIJBKJ5GIgMzMTq91Jn+Kvm7RxDlKzJRKJRCK5GDgrAz0hIYEff/zRb2yaoihnXSiJRHJpIusHyaVGdnY2zR2ZhLnyLnRRTovUbIlEIpFImj5nFeJ+99138/LLLxMREUGzZs0Azxi3OXPm1HmcoigcOHDgbE4tkUgkEskFx26zEuA8eaGLUS+kZkskkvpQdUUKu82K0WQmKSmJ5ORk9PqzMh0kEkk9OKuv7MUXX8RsNvP9999z7NgxFEVBCMHpJoaXS69LJBKJ5FLAaDJToW92oYtRL6RmSySS03HqihQBzpNU6JuRlp3Mpg0/MjBlCImJiRe6mBLJJc1ZGeh6vZ7nnnuO5557DvAs4TJp0iT+9re/NUrhJBKJRCJpyiQlJZGWnUyRLrrJh7lLzZZIJHVR04oUPop00fwcehvLlzkZOmwYSUlJF66gEsklzlmNQf/uu++0NY0BpkyZwqBBg862TBKJRCKRXBQkJydjNur5OfQ23DTt8dxSsyUSSW2cuiLFqQ7HMFceQwtmkWDdzrq01TidzgtUUonk0uesDPRRo0bx5Zdfan9/8sknbNu27WzLJJFIJBLJRYFer2dgyhAOmbuyImIiRbroC12kWpGaLZFIaqM+K1KoCPoUL8Bqd5KVlXWeSyiRXD6cVYi7wWDA4XBof2dnZ1NUVHS2ZZJIJBKJ5KIhMTGRocOGsS5Nz3xzV6LtB1DKc4FPLnTR/JCaLZFIaqO+K1KEuXKJcWSSlZVE27Ztz1PpJJLLC7nMmkQikUgkZ0lSUhJ333MvoaGh5Blbk23qeqGLVA2p2RKJpDYasiJFoLMAu816jkskkVy+yGXWJBKJRCJpBPR6PQEBARQXF4NyVv7vc4LUbIlEUhsNWZGiXB+BxWQ+xyWSSC5f5DJrEolEIpFcBkjNlkgktVHfFSmKdDHkGpJJadXqPJZOIrm8kMusSSQSiURyGSA1WyKR1EZysmed859Db2NowawaJ4pzo/Bz6GjMRj2tpIEukZwzGjUGTy7ZIpFIJBLJxYHUbIlE4uN0K1IU6WJYETGRQ+auDEwZgl5/Vn18EomkDhr165oyZUpjZieRSCQSieQcITVbIpFUpaYVKYJchZTpwskztsZs1DMsZQiJiYkXuqgSySVNo89i43Q6ef311+nduzchISF+HrZt27bxyCOPsHfv3sY+rUQiuQiQM0ZLJE0LqdkSiaQqvhUpUlJSyDO2JtPcgzxja1JSUrj7nnulcS6RnAca1UCvrKwkJSWFZ555hoMHDxISEuI3uUyrVq2YM2cO//nPfxrztBKJRCKRSBqI1GyJRFITer3+jzXOvStStG3bVoa1SyTniUY10KdNm8ZPP/3E9OnTycnJYcKECX77Q0NDGThwIMuWLWvM00okEolEImkgUrMlEolEIml6NKqB/tVXX5GSksJf/vIXFEWpMZw1OTmZQ4cONeZpJRKJRCJpElxMwzikZkskEolE0vRoVAP90KFD9OrVq840wcHBFBcXN+ZpJRKJRCKRNBCp2RKJRCKRND0adTBJcHAweXl5daY5cOAAUVFRjXlaiUQikUgkDURqtkQikUjOB06nk8zMTLKzs7HbrBhNZpKSkkhOTpZzG9RAo96Rvn37smjRIoqKiggLC6u2//Dhw/zwww+MGjWqMU8rkUgkEomkgUjNlkgkEsm5Jjs7m3Vpq7HanTR3ZBLgPEmFvhlp2cls2vAjA+XSfdVoVAP92WefJSUlhSFDhvDWW2/hdDoBqKioYOPGjTz++OM4nU4mT57cmKe95CgvL0en01XbHhgYqP3farXicrlqzSMgIEAbT2iz2bRncbZpLRYLquoZGWG323E4HI2S1mw2a9fckLQOhwO73V5rWpPJpHnmGpLW6XRis9lqTWs0GjEYDA1O63K5sFqttaY1GAwYjcYGp3W73VRWVjZKWr1ej8lkAkAIQUVFRaOkPfWdLi8vrzOt2WyuV1pVVbFYLGeUtqKiwm/W6qooikJAQMAZpa2srMTtdtdajqrfckPSnu67v5jqCKfTyfHjxzl06BB2mxVF1REbG0urVq1q9KZfLHWE1WrFZrPVee+bClKzzx6bzYaqqpSXl1+y32pD014s36oPqee1p616L6pqa0M0Wup5zWkvlzri4MGDrF61inhrOkNKFhLmOoFZDzoVinTRrA+8le++KycqKgq9TsVoMpOQkKC1Bc5XHVHXu3ZBEI3Mv//9b2EwGISqqtV+BoNBfPDBB419ykuG4uJiAdT6q8ptt91WZ9qysjIt7bhx4+pMm5eXp6V95JFH6kyblZWlpX3mmWfqTJuRkaGlnTJlSp1pN2/erKV95ZVX6ky7Zs0aLe0777xTZ9rFixdraefMmVNn2vnz52tp58+fX2faOXPmaGkXL15cZ9p33nlHS7tmzZo6077yyita2s2bN9eZdsqUKVrajIyMOtM+88wzWtqsrKw60z7yyCNa2ry8vDrTjhs3TktbVlZWZ9rbbrtNrF27Vrz33nvivffeqzPtDTfc4Pe+BwQE1Jp24MCBfmkjIyNrTdurVy+/tImJibWmjY+PF8uWLRN79uwRDodDdOjQoda0iYmJfvn26tWr1rSRkZF+aQcOHFhr2oCAAL+0N9xwQ533rSoXQx0xZcoU8e07/yOWvfGAGH1DSp1pL7Y64q677hKAKC4uFk0Zqdlnxql6fal/q1LPPT+p557fbbfd5vcO15W2Keh5hw4d/NJKPfdwweqICQgxBZE1rYsYM+rGOtOe7zqiqWh2owf9T5w4kUGDBjF79mx+/vlnCgoKCAkJoU+fPjzyyCN07NixsU8puQzxjWXZvXv3hS7KRcGBA/tZvnw5SUlJmoezKVNeXs7y5cu1cUqiFk/3uUR1lGLdt1oLwarLcyw5M4affJsWpjjWhd2LTT1+oYtzWSI1W3Iuqas38VLncr52ieR0ZJu6sCJiIkGuT+pMl5OTc55K1LRQxIVo+UpqpKSkhNDQUI4dO0ZISEi1/TWFuzidTrKysrQwUV9oSMeOHbUwrKYW7lITDQmJy8nJ4af1a7HanTSz7sfucFKqj8amWFBVHVd26EDPnj21cK3LMSTu4MGD2j2KcWQRLIpwmKPJMSRj1Kv0ubofCQkJNeZ7LkPcN23axN69ewGICA/FaLIQGxuLoigcOXKEkuIiSoqLEIqOOA5jcRZQaEggzxWKqgiaRUbTvn17vzDo+oTE+b6Tw4cPoyC0yUmaN2+OTqfzC8Hq5Q3BUhQIMHhCsH4OvY196pUMHjy4xnFSZxoS53Q62bVrl9+kKVVDu6qmhcYNiTMajWRlZZGdnU15WSk6vaHauX00Vh3hdDqZ/+U8okt+Y3DhB5wI7MyqyEdIsO6ge8HXBDpOaGmLdFH8EnILh82dGTxkCO3atbsowmaXLl3KsWPHcDgcPP300xQXF9dYn0subnx6PXPmTCwWC+PHj78sw1drwvf9ZWdns3rlcsorbcQ4srA4C6jUR5BraIXZqOfaAYO44oorLuoQ9z179vhpbdVrDDAb6dCpC6WlpVRWlKOoulrr2KYa4v7xxx9r+8ePH6/9v6aw9drao23atCEoKMgvbW1cLCHuVa9VVdDaFC1atEBV1RrvRWxsLIGBgdo2FJW4uLhah3VdCnXEqlWrsO5P48b81/3S6vU6vmoxkxj7AQbmz6KmS3MDq8MfoLBZb+659z70ev0Z1xE1PY82bdpwxRVXoNfrcTqdnDhxgpYtWzYZzZYGehPCJ/inezl8vce7du3i5IlcXEIhxp5JoMsz6UKOIRmzUX/Gky6cz5kWG3qu7OxsVixfTrx1ByZXKZmWq3CpRmJs+wl0F1KuhpNraoNRr5IyZOhlOemE7x4lWLfTp/hrwlx/zNLsMzYPmbsydNgwkpKSzmu5Vq9cjtMNMfYDBLoKKDDEU6yLQig6Qh05FOujSbTuoE/JAor0zVkXdi9WXTAxtn0Euoso10WQa2zdoPf71MlJzF6jv1gfrRn9RQX5tCzfxtCCWaj4V4lO9Byw9GJLyCis+lDiE5Jo1apVnd9Dfd7rquWKcWThFoISfYzmaOrYqRNXXXXVOZndNDMzk7VrVuFwCe1ZlOuakWs8u7rjdOzdu5e0tDTuyP0rQa4C5sXMIMZ+gKGFs6vddwA3CisiJpIb0pO777m30e6F7/lkZmZSUlyM3eHAaNATGhZ+2md7Or7//nuOHj1KZWUlTz31VJMRe0nj4tPrN954A4vFwoMPPtig4+uqIwC/fXqDkYCAACorK3HYbWetyedD46tqdXPbXvKMydjVAIzuCqLtmeSYruCwuQuDhwzB5XI1almqXp/NWonD6Wn9G/QqJnNAo11rbVrrRM/60Ls5ENAHt6L/o47VNyP3LNtn55v3339f+/+gQYOqPaeEhAQOHTrErl27yM/LxY2CyV2OKpy4FT02NRCTQcegwakXxfXWh9omPPO1va/s2JndO9P99ldt68TYM7G4/NshkVExdOjQQXsvnU4n+/btY/fu3ZSVlYIQBAWH0KFDB9q0aXPRzHq+eNF3mDMXkVr4od/2vZY+pIWP547cv/q1UU+lSBfD/JiXSUlJoW3btqc9X011W1BQEPv3/l5rG9B37yMjI2nWrFmT0exzYqD/9NNPzJ07l23btlFSUkJISAjdunVj3LhxXHvttY19uksGn+Bv3bqV/Pz8GsWqasWAECRat9OnZAFBrgIyLT3JNnejQg2lTN+MCl0YHTp0oKKiot7CV1PFU66PJNfQClVRCAsLJSQ0jPj4eBRF8fNGNVT0TlfJnSpgTqeTeZ/9h+CyfRTpYnCoFu36qwpjRmAK6UGpWNUQomKa065dO4QQ/P77702moqta+ZaWluB2uVBUHQEWE6FhEWdsJPjuUUzJ1hqNTfA3eu64824OHTp01o2j0zX4amrI+MKbEqw76FXyLd9HTtaMtUOmztq+qs8XGuZkqHreXsUL2RN4DbsDBvo5dfINCZToY2oUimxTF9aG3YtNF4zJVYaKq85Gh9VqZdWqVRw/ehg3aq0NMyGEVq44awZbg0dg1QXT3LaPAHdRjY6mxmpUb968mW2//UaCdQdXlSzkpDGebHM37GoAinBhVYM5aUxgWCM5cKq+6wUFBURZ9zEy/5WzEugzuRc1OTZ9jcg/nBQNcwDVVI7i4mIKCwsvKgNdanbDOdVAT0pKqtFwqekdPXLkyB/OuVPePVUBhFurPxBu8o1JuBSDlvZMHfFOp5PNmzeze2e617F/bgzHqlpdqov0q9sq1DByTG0xu0oxuCso00d6jZYDWFyFFBgSKKnFaKkP2dnZrF2zCpvDhd5txa3oT/nG/3BEXjtgEE6ns9Z65NTvW28wYjabOXnyJGVlpdhtVhKs6X5am23qwpqw+2tsnwCc1LUkLfx+ThoTiAgPJSQ0vMa662zr+7qckAkJCdXab6e26XxOod9//x2EGwXheU6OTAKrtAsV4UIoOhACnXDgUo3VdAzh6X2Ojmne4OfZEGq6Z/VpqzakPXa6DpA14eM5YUgi0bajxrbOqZ0P0bb9CEWlRB+NTQlAVXXEJyRw7OhhnA6H5577OqC8dURDOqDOxNBv6LtXV/rVq1dTuW81I0/M9DtmefhDWNVgRpx89bTX8G3U/2BpO5hhw4bVma4mm6LAEE+RLoYE6w76lnxd57232ew88eSTTUazG91AnzRpEm+99ZYWOqIoit//n3zySf71r3815ikvGaoKfiv98Rq9ctt++4146w5yjck0t+3XjBnfC+erGE/qYynRx2jeuvr0rtdmRP3Ri+mpJE7q4ynRRzUo71M5k15eX+8bwo1OOImz7fLreata1hBHDk7ViF0JwKkYUKDGik6nKjSL9Mwc2Vi9FKfrndPr9axNW61Vvjrh8DS+TinbmTSWqvZQ1sfo0SlCa6h5GkfxlOhjtMZRu3btahTtqvfoVO9k1ffWoFMJi2hGQX4ecZU7tIaME71f7+l+S2/NWKtPz6odA4si/0KhKZGYmKgae0WqOiuuKP+JtLD7tEZTr5JvNcM0x9iWUGcuI0/+r985sk1dWB4xEZ1w+jU6fA1MRTgRil5rZLndbg4dygKhntZxZtCrtCz7jSvKf2JlxMOak6I2Y7lbt278viuj3s6s2ti3bx9pq1eSYE3niooNrA/7E1ZdMKGOHByqERcmbLpAFOFEpzdw99g/1WhkJCQkkJWVdVrRz87OZs3qldq7bnSVE2ffRWrhhyxs9hcUBUbmv+JXRid67Z7Z1EAciokifXP0lmCat4it8X07nROxpLiI4qJCXEIBIQhx5lKi/0O0z8QBVJczEyE8BvqkSU1G7GtDavaZ4dPrN19/DXNAENH2LAR/RMGcatD4vledquByu0mo9H/3sk1dWBk+Abdi9GtM1uaorGroBQZYECh1RoH4vkWHw+VnOPq+t32WPpw0xGPVhdCpUyd69+5do8FYn6gTnw4pwl2rk3VpxKN+32BjRExlZ2ezfPlydMKOSzH6dWLUZEjlGxIQiq5evaBut4sTRk90g1B0hDhyKTH4O3arasap7RMrZlZFPMBxU/vT9qpXrVtCnXk4FD0uxYRNDcSgUxmYMliLtKjtPviOP7V9cVIfR4k+2q/9VrV3N9qehVWxUKqPRCh6Qh3HKdbHaJFtQa4CNofcwq6AQbgVPQnWHRwzXYFTMfvd60xTd9aGj8OhWhrkAK3JKVKfdlltxlnVXuua2qpCCD+Nqqs9dnW//vy4Lq3OaLtT2y6nbqva+RBn21nNOX9SH0uxvgVAre/uppDbOGTpwrBhw+t0omdmZrJm9UrcLpdf+7dM14w877tsMBjQqYqm30ajkR/XpZ22reF7ThkZGRTk5/l3SFS5ZzEtYjl48KDfd+JEz3+jXiDCeaxaz3pNrAx/AGvyTdx084ga3xFfO3RnRoZmUwS5Cthn6c2G0Lu0bzHb1I2VEQ+SWMu9P2EL4O7/eavJaHajurA++eQT3nzzTa644gqmTJlCSkoKMTEx5OXlsWbNGv7+97/z5ptv0q1bN+69997GPPUlxci8GdhDEsk0d8eKGZOrBLvVxLZffyHemkEr668cMnehT8mCGnsas01dyDpN7+PyZU4GDxmC3W7XvIaneoNP7eE8aYxnV8BAb2Vdc891RlAqy5cuIaoOT6nT6WRd2moSrNtrrOSCXAUkVf5KniGRFcuXYQkIxGjQY7M70AkHYY5jnDQm0qdkgZ9xviJiIpH2bISiUGJoTpjjGBX6MEDxfLRVyptt6sLa8HHYCEI5shGXcJPr7aWItmcigJP6GLKzMlm3di0dO3Wie/fu1YyVqkaAtbKCouISbNYKBGr1iv5EBGkHW4O38RtlP0i+MYk4606/xtI+S2/smCgWMSxbuoSQ0DC6detWZ2+/r8LavHkzMfYDdRrnAFuCbwYhiK309KLuCbyGXQEDcatGjK4yhKJyIvc4J3KPa70bVLlHVUPUs3X+ho4TPZtDbuGEPg6Hy4jteAYufQx9ir/WnlempSdWXbD2DLPN3Yix7SPMlcdeSx9tnx0Tm0Nv5ZC5Cy4M6HAQ7jhKviERm9dpZMnaXON6mpmZmVjtTuKsGayIeBidcJJo3c4VFRv4PnKy5nRScBPoLvzjXnqfwU+hdwMKcbZd2vufae5OqS5CM85j7AcIPFZATn4bKtQwdMJFnC1dE+LvIv+iCUCQuwDF6aZCF4bD6aZX8UK+j5xMgnWHX5mibQc877A+GpsaAMKt9Xj3Lfnaz+iPdGdR4G7JsmXLUABFAYPRRFBQEEaDDpM5gNjYWPLz88nMzMRht4GiI862k5URD2vfS7GheZVejzByTW1xOp18/uknHgeONwTf902A0JxeIY5cnKqBkspC1uXn89OP60kZPARVVVm+fLm3kZxOn5IFbA4ZRYUaRrapCyeMSbSy/ur3XlZ1soU5jlGqi/REO9gPEFhUwMmyeLJPMax9DUGAIEcO1vyTlJwM4GDWAb+hEwnWdHJNbQh25HHSmECidXs1B5AVMzuCUjlhSEBx21m+fDnt2rWjV69eHD16VAuZLSuvoLS0xM/IyjZ1YXXY/SBcoOgwidrHejYVpGafPXG2XbS1H+CXkFtwqBZCHcew6S0kWNP9nW4YUYUdt0tHgjWDYYX+va7LIyaiILT30o2O7yL/QoJ1R7X3tKrxowgn5RWVfzSOvTqz8af1XNG+A6WlpZQUF1FQWIhOOEi0/mE4nuqAD3blI1DJSN/Brp07Nd379ddf2ZWRjhvFv+6rcr5T616dcBBn3elXdp8zYGfAIEr1Udq11tSO8aXVu62cdMWzbNky2rdvjxCCw4cP43La0emNJCQk0Lt3bwBWrfTUN7HW3eSaWmudGKe2MYr0zck3JNbaRloTPp7ffnVovaB7LNewPfg64A+jaU3Y/X5a60TPurB7aeY4XK19sjloBNuCrwPU07adgkPDKCkpJsqejdBHUayPJsa2H7eiUqKLxiYCWLliBZaAAEJDgnC6POfwhe+bzWZ+/303kbZsbMZEv/aFp23Ys1p7cYV3W5xtJ5uDR/k5sr+PnEyidQcphR+yOeRWdgcOQKDzvkvbSbDu4LC5k1996rneG6pFaemEg1jrTirtwSxb5iQ6OlpbVispKQm9Xu9nHAq3q1qboyat37dvH2vWrParjzNN3cmM6Kk5Fmpybi1b5qy1PVZVZ6NtByhyxbBm9SpQVPoUf40bHfu9+31DN8zuUr92Dfi3ddzoSAu/n3ivg9znnK/6zn8eM8Pz7dh2kVL4IdmWHmw2j8KuBqB3VxLgLkFBYHaVsnLFCq7t37/GtqEvUs7zzqb7OVeyTd20yIeIst2e9mlpBOvy8z16bdtBr+I/npvqthNr3YnV+9wSEhI4evig5vBOsKbX6OheEz6eg9kOdDj4OWR0tQ5Fk6h9jqWqlOsisJjMNUYAWVyFnDQkcFDXjHhrBkMLZ/m1vQD6lCwgy9SN1RETtM6JlREPE29Np7l9H3nGZKxqMGZRVK/ynC8a1UCfNWsWcXFx/Pzzz4SGhmrbY2JiuPPOO7n++uvp3Lkz//73v6XY18GyZo+hBEVpBp5OOHArnklJ+pZ8zeaQUZ4Gv6uAhVHPE29N9/PW+SoAn8jvtfTx640C0LsqWLVyudbIDnbkYjP8YUT5xOZU40EVTq3B4Mt7V8BAThoTNGO0uXsf5UciSMvL82sk+Ixas9mM1e70M9h8VG0w6IQDgUJw4Q4C3YUcNHXBpZowu8to7jXm4A9hjLRnk29M0hwKiyMna57sqhVdiT6aAn1Lv7HONXk0q4pi+o7tZOzYpvWIWJwF5BnbaEaA0VWGXbUAKlHeclQVRvA0/uc1n4lAJda2mxxTW79n5wuNc6omjyfbZ6gVRbNubRHr16+jU6fO1cYlV/UcG90VBLoKan23rJhZFDmZIkOcZqx+F/ksDtWCTngm/3CqZtyK3lvx1t6T4/MMJ1q3a/c3LeA+8o2JuNFpDZG0sPuwuMv8Ku+qBjlAiS6KMFeO3769lr5sDx7uaQxq3v9Yjpo6+hmr+yy92R04EJOrDIfVyLJly+jQoQPl5eVE27PYGjxCazTF2XayIuJhP0FZHv4QFWpYtfdPEa5qBr0iXAhvI6tXybfkGZPYGTiISjWEZo5DWsOsqqf21MbB9xFP4FRMnDTGY9UF+5Up3vZHuHug8yQ2LChAvDWdYacIT4CzgApdKIo3X7OzCJsuCJsNQkt34wRy9XHaO4oQoKhE2/azJWQUzbwNklN773W4iLAfosAQT2zFDmJtu6oZH6ASac+ixBBNiSGmxgakooDO7fDrSUqybiMtfDwnDXGY3aWUe++779773rGWtt1sDB3j12uzz9Kbg6Fda2wIRtqzKTVEUaKPIdRxjAp9uNY49DUwg5z5HLJ0xWVogVB0fo0o8DSife9biCMXkyqwuwPZs2cPe3/fpRn7pboIhOJvZGWaurMy4kFA8dbbOsIcTX/mWanZZ0+Y4zgbo+4k3ppOlD2TbSE3ao1AX70R5jhGkb45zRxHOGlMoG/J135G69qwe1GEG6Hqtfdyr6V3tcY+oL3zFlcxDsVMvHVntcbxzoABbAq9nfT0dIKdeZTrImjmOMZJY8IfTtEq31tNvUnlajjp6YL0HdsAFVU4QdGTYM3wqy9U4STcfoRydwTLli4hOqa5J1pFMVRzov9Rtzq1b9CNTmtr1OQ4aG7bR0v7HnIMrdmze6dfT2Cp2ozfKyr4/ffdIITXwZFOkvU3Dlm6Vrt34NHANeHja3R8gKeDoFQXqdUzm4NGsiN4mGY0DS2czS9BN3PCmESydav2DDeE3oFVF4xeWP0M95+DbmF78HXe49OrtUWKddG4VCPRtv3oVCulxYJI+yHyjYnas/kleAQ2XTCq2+6NzFAxlmSRV9EMt9d4tbgKOG5ojVUXSrx1J7mmNnW2DVWE3724omKDnyN7aOFs9lqu1jTq05jXcKlGTyeJ86imdUsiHvOrTw+YurM9+DoSrDtoV/ETiyMna0PEFFzYFYtHjwDlyEbM3iiCtOxkzTjsU+zf5vB7304xFhMTEzmUnelXH+8z9SItYrynw6nK9e+z9ObXoOsp1zcDRQfChU64qrXHTnWuK7ixq4FY3MWEOE9QpG/ut98XWZdt6VHNaZMROJgY237CXHlsCL4Nuxqg6VLVd9D3Dtm8RmWcbSdfxkzXziGAXHMnrRMp2JVPiaKybm0aP65f7zdnzYEDB9j221Zvh8Eu7Zq+iXweh+qZVO/USEK7YkIRLuKtGVxR8ZNWd1W9vpPGBBAuDh08SJAzj3J9pN899l1zpqUnmebuFBjivO/Bj6yMmMi3zf5CvjGJeGs6R03tyDW2pkgXXWOHUtXInlxDEuacHOZ8/BFCUGPUDXjso6ptL6diwOmNwFsV8SAoqnbvI+3Z5BmTOWTpql1jmRJUrRwXkkY10Hfu3MmECRP8hL4qoaGhjB49mg8/PH1Iw+VMkDOfCtGMCPth8o1JxFp3cdIQR5C7iDBXHjY1gAB3EZuDb8GuBmhi70TPsoiJ2raqnqpQxzFK9VG4FQOhjuM4VDO+nuU42042hI7xq1h8Xr+qPW1OxYBTNVfLu6ohV/VDSw8YxM+ht5Genk6IM1f7WOxqYLVKLNPSk4yAgeQbk4m0Z2NTA6v1LH/W/BUibYcRio4Ad5F2ns3Bt2DVBSMUhQSvp3dT6O01VnQxtv0U6zwTkfmcDD4nR1WPZtUGS5jjGDY1QOsR8fQ2e8K7ouxZ5BvisauBHu+wLYM8Y7JWjgOWq1gd+GeKddE4VJNHFACTu1x7Tm50bAgZza7AFMBTccbZdrIleAR2r1NEJ5wIt0p6ejo7M9IJj2hGaUkJdodDu//xtgw2hI6hXBeh3ZuqlWWOsTV2NRBQPLOHeg1DVXgm0Al0FVCixBBuP0KBMY54606GFc6qsSenaoOk6v31jUNLtGVo9zffmECSdZtfmU4YEolxZAKehluBIQ6D8MycW6KLwqXo2BZ8g5+IZJq7U3ZKr8s3kc9rDo2qIWm7doEi3EQisOqCaeY4RIzXME3wGrs+QUmwprMufBw7AwawIfQuIu3ZWNVAz0zy3vc/2JmHVQ1C9faQ+xwbvnN78Hh0T+pjNU/t0MLZ2DGRFjqWLEtPnIoZASRbf9U8874ytav4I9zd4iri98CBAAhF0b45X4OlVI2gwBgPQKQ9i0JDCyp1oSRat9PStlszqBGCSHs2J40JWNylODFgVYOwqwGUGqKqOeCa2/ZhdheTa25NgnUH4Y6jbAy9kwTrDnqULGJx1NPohJMIxxHNuK96vhjbfizuIo4ar8ShC8SlGv0aycmVW1kfOhaHaiGp/Df2BV5DkS6aIFeB1khvXfEzayL+rN2/Q6bOfBv5F+179jXqN4Tcyu7AQZ5v0FuW5rY9bA69jQTrDoYVzmJT8GjtHf0p9G4tLLWqcwj+MHqiqjgdfA5ShCDemuH9vu4iyJlPqSFaq3cPmLqzKuIBPEuoeiIu+pQsQK2oO4qlKSA1++zJCBpCvD2LHGMbDps7gaISb8vQvuUuJUtYEjWZBGs6hfoW1SKcMi09tXfb915mm7qwPuzuaml9xk+wM5cyfZT2nlc1QLYFXUepPlpzWpXqowEwu0s1x3ZVB3zrip9ZHfEACVV6kyrVECpUT32uCjduRdV696vWFxZnIVZdiBZlFegq4OTROGz65n5lr+oMiLJn8UvoKG1/1YipUx0HPv1fHvYgFbpwv97nn4NuISu4h+fGCAAFoahapE7zU75xXzlWhU/ApZpqNN59z8NXnixTN3YEDwdFxeU1QrNM3dgefB0B7hLKvdFAvrZQlC2TfGMi0Y5sAPaaerEjeJjmvK2qlQHOQip0YZp2+3quURS/ulnTaOHCrRhItG7H7CphT2B/v3bXxqBbqTT3AkXB7C6rs23oRsemkFvYGZCCUPVaT3mwt27zRWf+GHY3oY7j/BR6FwpCuw6zu4wY236PM0MfpRmgPieAUHTE2/6IXAOwuEso0UXhVvQkWrfTvWQxvwf155C5C04MmnE49JQ2x6kRby5FR5GhBU7FBMLFwexsUHTatfrqcry6WbXzw6Ga8Dmb3Kig6HApOr/2WFWd7V6ymF1BA9gfcA0J1h04VRMudDUOO8k2dSHPmKR1kGjvhRpIsnUrTvTsDEohxrZfc85Xfee1XmVXGRZ3CRtC79LOUaCPrTU02+wupkAfT3q6YGf6dppFxVCQf0K7Nt+z9ETouDRHU9X7Guo45gmrVxS/uqvq9WWaPG1IFTctrbs4Yu4Apzi6q15HgNPjpPO9n4ML3md1xATiremeKGBLVxTh0nrWqxr4m0Nu0eYKCnXkoODGWlmJipN46y6ts2J5xEQi7QexqRaiHQe9ba8HtLbDV9H/oJnjIOvC7sXiLiHEdVK79zY1sLrzh9pnyb8QnPfZsXxT+0tqp0wfSaI1nWOmdjSzH+SosT0u1UCMI5NsUxdyja2JdBz29jTu1wR9bdi92NQgYmz7/byPvsa+r0epas+yTwBA+PW87gxIIdqeydbgEVrPtMVdQjPbYS3vZvaD2NQA4k8J13OiZ0X4Qxw2d/br2YqyZVKqjwThql6JeXsn471hqFUjAH4MGcPvgf1xoyPQXYgbndbjmWnqTkZQqjamtKoAnlrR9Sr5lp1Bg8g1tdEqlU1eJ8dVJQtZFPUs8dZ0rcGS6K2gv496mkSvUHwb+SxOb29zlD2LE8YkP+Fqbt/HIUtX4mw7+TzmlT8MOCEAgcldRqgjlwMBV2nP6b9eI7Nqxbki4mEU7/2MtB9EKAqFuhYIVcGNjoL8PISiQxUO4qy7aFfxk/c5KppXskjfXJvgDOECVMyuUqz6EK0XNcJxhEJDrGbE+a4JRdXEbf8p4eiZpu6khY/DqVoIdRxnQ+hd3ufWmiDnSb/wvk3Bt+BWDJrTINvUhVVhE3CpRspdRVpDMdh5glxTG3YGDKDAEIeCu1pjMMSRq/XK+CpnUKoZ8VbFguq24VaMlOijPd5nRYdLUas1Wjxj6QaCcLEp5HYi7dme60ch2nbA0/tuP8hJY4JfI8t3rxOt2zluuoIwx3HyDQlEObI1T23fkq/5Jehmb2gjWrQKQlCui8CBERVHNY96/8K5fNbiNVTh8IxVtB3wi5YpU0MoMMaiEw4iHEc4YUzSej3CHMfYGHoncdYMjpqvJN66k6Om9ghFR5DzJKX6cEr00Zqh6nNA+Bojvwf1J9PSC5diINa2i02hd5Bo3U7rip9ZFPUXXKpnaZ8SQzQJ1h3a+ap6tNeG3YtDDcDkKiPcebxaI9mt6Al1HGNfQF90bjs/h4wmyfqbZkivjnhAu3++5+xr5MXYD1Ckb+4x2NVAUFS/svwceofWMDtk6kxGUKr2HM3uUpyqAZOrnECvg8+Jnj2WvmwPvk4z9D31XQDhdk9vZ7w1g8GFHzCv+SvEWTM4Yu7gV++uinjQ+3yFZ9iOt7FR0jhycMGRml03QtFpdYbFXUyw8yRbQkYRb00nzHGMRdF/AUVHgKuQQ+bORFkP+h2fbe6GyVWGQCHQXeQX7l5Vk53oWRc+DqHoPEZ3lTq6qgGigLc+9/TAOhUDLsXo59j2GaEtbbtZE/FnIu0Htd4ki7OQSl0wCgoRjkMUGuL86j6fw96mmKn0Gpg9Shbxe1B/Dpq7YFWD0QmbNmyoas+txwn+IHq3Vbu2XQEDNWPdipnV4RP8enk3BN3KQUs3v8iZ5WEPkm3pQYJ1BzmmNrgwIBSFKNtBwlx52L2dGL7zZ1p6sitgoDbu9lTHh8+5sTtwICcNccTYPXXuN1EvgKJicpcR7jhOkKuABVEvIhQdncpWsjn0NlYYPc7MIn0MVl0QQtFRroaTbepCWsSfQVExu8sIcxzTHMBuRaFSF6L1MvsM2QB3MXq3lRJDc3qVfMt3kc8CCm5Fr/XAhzhyyAgeqjln3Oj4IfxRjpo7EuAuJsiZr7Uvamsb+npSA9zFBNvyNaPFekr70eguo1TXDAU3QtFr0YuVaghhrhwyLT0BtGe9z9Ibl2Ik2naAn0Nuw+ew9EVEVdWpb6Of06LjytVg7Log7X3e5O10qapPvvB7X5sq0pbldTwXE+w8QZgrT3NgGd0VhLtytOv3tRU8C3d56mqjuwJFEYQ5crT7FeQq0BwDIY4cvo1+XnPA9y35mk0ht5Jr7uTXWeGbW+CoqSPg0Xafkynemk6pvhnlajgrwx9AoBLoLiTb3E1zIFV1SFWqwZToIynVRf7R2RRym9cZ49+J1KvkW3YH9ve0jRWD1gl2MteJWzVq+utrOwQ5T1JmiMKloN3XeGs6enclWQFXee9jPluDR1TrYCrSReNSTVoeDtUMik5zKDrRs8nbyZRg9UTdbQy9U3sHAXKNrRGKXosC9rXPD5m7sCL8Yc0RsSb8flyKkUTrds120QkHAa4CzTHuGyoQaT9IvjHR01YWbr+2V5apG6W6SBTh1tqPga4CdgYM0obf+Dspcihx1b407oVAbczMOnbsyIIFCygrK6txf2lpKQsWLKBjx46NedozZsuWLdxwww2EhYURGBhI3759mT9/foPysNlsvPzyy7Rt2xaz2UzLli158MEHycs7894Tqy6IUl0ETtXsCRdW9QS4Szipj/VUmq5y8ozJmsHqq4AMbisgsLiLNEFsXfEzewL7k2jdzuDCD9jo7Vl2qUZ6lXzLmvA/4+lR1WlG1OagEZwwJiIAqy74jwawMweLu7hKOHkioornEjwG88fN3+CIuSNR9iyP0WrbT2xlOvnGRKy6EEzuSk3APCJQDsIzoU5Vz+8hU2c+ifkXuwJTiLXuRsFNuS6CJOs2ckxtSQ8YxEpvz5VTMRDqFcAY+wECnAUouLSKzvch/h74R2PAiZ5dQYOIse1nT8A12NUAYm27tN67Kyo2sCjKE/7tM8pcqolmjsO4VCPFhmi/cje3eXofwhzH+Cn0LhyqhWb2Q17jGPTCjhAKQvEY2SBYHjERp2rxeDu9z2R1mOeZJFjT6Vf0OSX6aE4Yk3GqZsyuUm3MT9vyDbgVA1eVLGR1+HhU4UQVDnRuO2vC7md5xETsisUb+gdR9iysumCMrnKtF1WgIrweaaHoKDFEE+Au8fOIpwcO0e7Z5qARrIx4CIEOhJsyXTMSrDtoZf0VmxqEyV1e7f4aXOXkGluzM2AAyyMm4lb1mF3F5JpakxGYglUXrDluNobcrt1Tn4jE2A9wddEXlOgjtYbTqvA/VxtTnhY+nkPmLhTrY7xDQgQ2xdNQM7orKNK31MqWberCf2L+l4zAVCIcxwAFl2qk0NACnXCiCidCUbDqgikwxCEUHTY1gGh7Jr8Ej/A7t10xeZ6paiDfmITR7RkPutfS1+PJRwVU4q0Z6Nx2glwnPU4UQwsK9J7GYFWP+g+Rk0HR4fYaw4HuQi1axoGek8Yk7X0pMURr72NL2252BA8n0bqdIHchQtFjcpfjUk3E2PbhCQD1NDacqmc4ik+MfQ2m3wMH4kZHtD2TzSG3IhQdFlcRqyMeRCccXgdTDjY1yO98wwpnUaCPZXnERIJchYBAxeUX6eJEz5KIRxEolOkiibJngxAcNHflp9C7iLZnao06X2NpdfgEQCHCccTzHQk3KyImens/VEIcuVpZtgcPB4R27LqwezG7S7Xn2MxxGBcmdNi0+mdezAx+Cv+T9u57GlRR1eq31eETsKsBmN1lWiPLZ3gYRCUoao1h802di0mzm6peq8KBTjiJsmdhUwKxqoEeA9FVyPbg6zG6rYQ4jvN7YH8AytVw7Vgneor0zREo6L3v5aowzzvvGQLyR9rNwZ4oFZOzCN83UtUAcagWgp0nPQa8twd2aOFszTA3uiv+GMpj7kao4xgbQ8cgFD0njYkEO0+gum1U6sKIcBxDKDoEOq+Bovg57H1OXF+Uja/ucCgmhKLHVcUp66u7fD2qHs1RKVfDcaIn35BAoKuAbFMXPm/ucWr72hT7TL3ICB7q921VNdiDnSewq4Fa6LXPUDS6K7Te7XkxM0gLH88JYyIKThRcfo6PfaZezG3+BuvD7iHf62gJ9I4/dqgW9G4rqnBpUYu++jTAWYgiXJoxU6qPpFwXQbAjl1xTG9aGj0Px1kduRU+pLlLr7DC5KhCKjqtKFrI2/D6aOY7gUo0EOU/i9E5IujvgWhxex30zxyGtjk8PHqbVS9mmbsxt/gZHzJ01J6xQVL+2oVZf4ukkWB4xUevFNrtKCXQXkmnujk44MLtLsbiLtOgKo7sSt2rU5hzwtHWKKTI0p1wNZ1fAQFRc2rP+JXgkIKhUA3F5z9G64mc2hd5OkPMkLtWIxVXE9uDrSbBmMDr37xjclZR5x9n73ueqjlVf+83XpvK1iwoNsdo1B7qL/HrvnaqRQFcBTvSsCb8fhBPfvCm+e+lQzajChbvK/fI5rpzoSA8eTqT9IAihtRsC3CV+Qzc2B43gPy1e46jpSu/b5OkgWRs+TguhLjTEkWtqwyFzV0zC8w36HEhO9KwO/7PmkAJwKiZcqlEbVvB74EC/d8Xn6FoY+Ry7AlOIsB/B6C6jRB+DVQnCrRgwuso1/fV9fxX6cEyuMk33I+3ZHDW2JzOgj2eYq/fd8TlGPo95hR+934RT9QxLqNCHE+o4Rq6xDUavo9vXltrt7QRsU7GJTaG3Y3RXat+j75n6nvFJQzwqLiKcRxlaMItcY2vmx/yDlREP4ev48NkuvvZNqb6Z9hw2eocKFBpa4nG3qF4nKX/of/g4UBQtYs6mBlKmRpDvHY77R3TkCUzuMooNzQl21j489ELQqAb6Qw89xJEjR7j66qtZsGAB+fn5AOTn5/P1119zzTXXcOTIESZOnNiYpz0j1qxZQ79+/fjxxx+54447ePjhh8nJyWHMmDG89tpr9crD7XYzcuRIpkyZQmRkJE899RRXX301H374IVdffTUnTpw4o7IFO3IoNMShCodnXJqio4V1NyX6GE+orS4UhMDkrqBMjdA8SWX6SEyigjxDa61Xbn34vZqx82nMaxwzXYnJ5TEmc43JuBQ9BneFdwKw1qQHDGJ78HUouCnRRWuN8T4lCyhXwygweAyJQoNnlsmqHjKf8Yai04y+eGs6inBy1NyJBGs6t+T+k1DnUU3AmtkPUqKPAgTRtgPsD+it9ZL5jLlE63aSrL8hFD25xtY0sx9GddvZGHqn944pOBQTZV5jvHXFz1Towv0qOp+hF+As1MR5ZfgDuNFhcRexMyiFUMdxrcHia0y4FKPHWAkehSeETofZXUqoIwe7GgSqJ7Ta1wiyqYGU6CK1BpvHuwfN7Ae94f0WSnTR6IRd6/n0eM09Rl2OMVm75isqNrAh9C4M7nIU4fKMu9IFa2O+fV7fzSG34FLNuFUjbtVIn+KvOWFM9JbX4zX2GSCqcKDDRok+mhj7Acr0Ed5JvsyEOD3GjsFbsWabuvBpzP9y0hBHoKuAA6buWm+wwV2Oz6jtU7KALcEjibEfoEQfrd3fTEtP3OhwqBZU4WBjyO3a+2zVBaEIF+lBqZ73HDegeoxSVfUTZ18vrYInDH9T8K24VLPfs1WEb7IXFbOrDBSPAQdQrnqcOk7FqDUEl0dM9Dhb7AfJN8Z5vjtnHk7Vgks1aktvWJyFuFUDIY5jlOsiEODn4Fobfh/gmdDN7CzGpRhwqkZMriK2BQ9HFQ5UPPM2uL33K8SZh+Jd3sut6Al0FZBl7k6M/QC/W66hwBCPyVXm+bkrKFfD2RmUQrDjGMfNVwIKJtcfhrLZXUa0zTNJla8hu8/Sl2jbAQ4EXIXRVQ7ACWMSVl0oJlGBCxNurxhXbTDFVqbjVIy4AZdqIsRxXAuldKpGVOHC4V2irur5skzdWOUNLavQhWASFX6RLtmmLsyN+RfHTVeiemfFP2FMQqgqFlcxTsWICwWXosfs9jQaNwXfiss7S3CRoTmgkG9MIsiZh8M7YY5NDdScCb7hI1UbWoGuIs+7bttP28qfsekCEUIl19SGFRETCXae8Mzq7jX0m9v3eZ0ysZ76zTtk4ZC5q1Y/+RpZK8MfwK4GoAqBIpx+deHFwsWi2U1Zr92KAZdqJN+YhIKLEn00UbZM9gReS4J1B3bVRKkuyvN+Kp53r0gXrdWvRfoW2FULereDXFMb3Kpn6JRTMfmlzQhKxegux64LAoTmJFobdi8qnuizMn0z7V32GRFlarifY7tIF02xLooyXSQGdyU64dCMbuEdtlVgiNX0Idp2gAJDS81hX+DVfuGNCtgefD1BzpMgXDgVC8HOXHyGykldS3YGpRBtO8CGkNvxDQNBCHJNbcgITMGtGjjpde755rHx9YauiRgPiuq3zWewx9l2sjNoCCZvuLVDMWmGYpDzJLmmtiyPmEi0PZNw+2GEokcoBoSi19KtCJvAmogJ3h5ql3Zd5boIss3dMLrKNYPXVw8bXeVY3MX8FH6PVv9lW3rgVgyeNcCFpz1lUz3jWQPdhTi8bRGfE7BcH0GMbT8njElex18pMbb9BLiLcWJCALuCBmuOWJO7nGh7JltCbsE3lGqvpa/HWa6o6HBox5foojGJSsp0zVgXdi8R9kM4vJOY5RuTNIOnV8m3mqF93NQOl2KgmeMwhfo4zUgr1Uejd1u1iAcnBgoM8bgVA7mmNuQbE1CqtB0rdaEY3RWUemeJ90VECUVPmT7S+13019o3/418gSPmTn7vc1r4/X6O1V4l37I6fLyfU3xD6F24vMMqAtzFVKhhmvMkxJnridrzbnOoAaAaNSeqyV2OTji8czvpvPfLo7PZ5m4EO45xzNyBBOsOSvRRnklkvW2aQ6Yufp0V24JvwOTyODd1woHBXYEinNjUIPKNSUTbM1Hcdu8ydW5CnHnkmNpiVQIp10WwMvwBv2GjecZWOFWzNqzAperxOZ23hIz0c3T56ol8YyJOPOH+QtGhFzb02HAqRsp0zdgZlEKIIxc3qneZWI/unzAm4Vb16IXNMwkwUKKPJrRKB1O8NQOTuxy9sHnuKyplukhU4UCPTXPK+wz4eFuG9rydqlFzwqWF34/eG1VjxUypLtLzTekiSLLtoG35BhTh8ns313ltF/DMr+NznG0OGsHuoEGYnUXe9tNJQGjzdPn039fuVIQTi7sYm2ohz+Tpxfe1L30Os+a2/dyR+1duKHz7jDTgXNGoBvr999/PY489xs6dO7njjjuIiYnBYDAQExPDmDFj2LlzJ4899hjjxo1rzNM2GKfTyQMPPICqqqxbt47333+f1157je3bt3PFFVfwwgsvcPDgwdPm88knn7Bs2TLuuusuNmzYwIwZM1iwYAH//ve/yczM5MUXXzyj8pXqPAarWzEgVD3Rtv0ctHTzGFn6SFScGNyVBLvyyDN5jPECQ0sU3AQ7T1ChC9PGufgmdvop9C7cqt7Ty+r1rG0Lvg6h6LTx6KpwsCnkdu2jsKkBlOtCibEfYEvwCIr1MR4ngSPX0+vLH6FNfxhvnomoLM4iHKqFriU/cNDSXQtrWhj9PHnGNpqAFRpitYa1W1EBBYur0DNpjtewjLPt5Kewu4m2Z2J2lbI84iHcis57Lh0oCg6vF10zmhQFp2rWvP6+kKUKXRjlugg2B43weDTdFRTo47y9es2wuEu0XlJfpepGwamaMLorNC+ywxtCpHq99kavIeVQTLhV4x897HgE3+Pp89wbmxqAJ2zN07ALdBbg8hqPW4NHIBQdvUq+ZX3Yn2hmP6iJnd1bCfYpWcAvwSNxo0MAh81dMLnLMHiNfB2eyd4U72zSeGfatqlBnglmvL2oFlchTsWEVQ1EES6cioFo2wFK9ZFag8nhnfiuTI1gTfj9KECwM9fjJFIUzais1IVicRVSpovQen1+C7oBvbADYHaVeTzxqt5T2Sp6hKKjUg3xVqwKAe5izz11OzRx9vXSRjgOIVAp0zVjV9Ag9O5K7dkGOfOo1IWg4Cbemq6NhQ9x5HobxK0pV4IBxXMdYffjc7acNCaAove+74GY3OWEOHM9PeZKAJW6UAzuckp10d7vL1rzQvuiLkDBpgRgVy1a4yDP2AYUvcdpohjoUbKII+bOxNgPUKkGI1A9TgUUz1qxxtYIIdgRPBwFNyouVFyEuPLINbVBoFKqj/E6HTz7rWqQ5hQRiqItZ5OnT8Ct6PwiNXzeZUW4CHHmYdMFUqKLJsqexZ7Aa0m0bifEkcNRcwdAoUjfEp3bSqm29E6mtwGq04x7z5jzfdoELELREWvbRaUa4j1HEDmmtlUiJ4zees2zwkGwMx+3YsCqC0Iv7BTqPT0izRyHKVMj2BU0SGtQOdQAAFyKwTumVmgOL6sSgEs1oXdXohc2ynUR7AwYRLQ9kxJ9FDYlwFNPuT098JVVhtN4DHE3Tu9M8XnGZIyuUlyqCQWBxVXo8cQjcCseT72vkXXI3NXjnENBFS6/lQAuFi4GzW7qeq1zW70hkxmepb3AG+qsx6EYtbrO5C7H7CxCES4twslTvwrvUI0Y8Dow841JnrGX3qiiFeEPAm5PFBYqJm9v+ObgW7DpgnErBkzucgQKTtWghc8uC3uAEn2U5tg2u0pZE3Y/hYY4by+iBZdioNgQrTlPtXB9l9ewVFQEHkMmxJGLS7WAonrrjv4EO/O836SKglsbeqITDk+PJiolugiEoq/Sg+mZkGpb0PUEe4enNXMcAdCcw55wVR2K99vyNfQ9E116GtieqDEXlWoQKDotUisjaIi3dzudUMdxCg1x6N1WTO4yzM5ico2tSQsZS5alB76w5wjHEVTh9ER3GVuTZ0jyjksS2HRBWj2sx0ahPk6rb8NcefwWdD3R9kxAoVQXhcFr0Ag8kQJ2xaI5wB2KEbc3Cmdn4CCvJoQQ6C4kwZqOXReoOXt8nSkl+mgEeNtdAiEE24OvQ++uRCg6dG5POyTIeRKbGoDR7Ymy9EWAgfA4ZhWDNn78pPEPQ9uhWDQnZrGhuTYETidsnsgrxdMGKDS0pEQfQ7TtAAZ3pVcTVFS3nU1eB4xn9Yo/hoj5nEBmd6k2waY2TExV0Qub5vTcb+mNXQ0gwnGEEn0MMfYD7A64VnPI+9pFQU6PIzTQVaA5nnYGpaAIFzYlkBBnLrmmtuwMGuwxoIVbc6Ke8M4K71SM2NQgbGoAwU6PzuYakijVeZYnbm7fh00XrD3DvaZeVOpCCHQVYMXM9uDhxFvTselCNUeKQzVrxn+CdQflagiiinMAIUC4KDC0JNfYmkPmLtoQNk9PvxuEyzOsQLi1trEAzUn8S/AIbQlHT0eZZwhEM8dRT/SAYkLnduBQTOQZkxGonk4Dr9O8WBft1/nnUgxYXIUUGlpiUwIo9XYw+SJUbGogTsWIUzFoS84ahRWd20GRPsbTzgStPRbgLiHEkYNb0ZNrasP60LHY1QCcXgfayvAHQVE835TXsZPudbr5HFUnjfE4VQvR9kxO6lti1YWg4iZfH+u1M9za3BdWNRgU1fN9e9+jX4OuB+HGrRiIcBwjx9DGcy+FG53brrUvfdHBKYUfkmdsxaqw+89IA84VjWqgA7z11lusXbuW++67j27dupGUlES3bt24//77Wbt2LW+++WZjn7LBrF69mgMHDnD33XfTrVs3bXtoaCgvvPACdrudTz755LT5fPDBBwBMnz7db5zeQw89RHJyMp9//jmVlZUNL6CqQ0FgcpVpHlynasHsLPY0+hUDge5CjxAKQZAzz2PMe40Knzcy29wNg6tcG4chFJ3Wa1eui6BcF06wIxffpBlBznyEqvcaKB6jxaUYcQvItvQg0p4NwoVN5wll9n0MTvSs0kLlVW+YXAgx9gP8EnaLFia7Pfh6/njlFIKdeR7vsKsMnXBSqPeEWRfo4zwVo3cNzp9C70LvdhDkOkmb8g3e8XeesDtVODG6yrQwpBPGJFyqiWh7psfQA83QSw8eBnjGwvjGKYW48igxNAdUXKoRg9um9ZL6KtUib7kcqknzIju9Yc0KgnI13Ouxb0OhvgUmdxkhjlxPD7v3Oj3GiSdMUEHgUvSYvGHxVtUzbq1M1wyrLsRvEhGPA8OzvmS+MVEbH5YRlApAnjEJEJqBHegqYFvQdZ4oBlUPwo3qdmghzS7FgFUXioqbk/p4r+Ef4PlXsXiMOsVAsT4GnXAS5DoJikKeqTVu7zjGUn0UoGB0lWNyFbHDG3JXYPBMWpZrasP34Y9RrI9GxYVRVFChC8XkLsPk8vQA6d2VBDgLPM/QbddC1VRcCEWhRBft1ytsU4M85TAmAwouxaA9W0/j0GNwG7RlOwR21QDChSKcbAm5VbsOz0QxPo93pUcUwROeCTgUI6p3RnvPmyoQqt7jGVcCUHBhcReREZTiNbI9Ic1uRY9DMaAIJ1ZdqPe9dBNj28/68D+B1+Ar0nqgPN7rXFMbrGqwFjYqFB1uPD9VuFGEC52wewVGoCJw4XXYCEGpLpISnaenw+IqZL13nGqJLhqjuwK7atG8y0a3p/GEcGFTA7yT4enpXrKY9OBhKIBRVHh60RU9QvWENmZbunsamLogzbj39SStDfPM7h1tO+DpyUZBEQKTqxTVbeen0Du0MX8mUYEiPIZ2uT4Cs7PY421XPI6MGNt+dMJBnqk1oGpRAHq31TOW01XibfzbtXtVoo/29t4ZcGEg19iafGOC51mqFnyOmR/D78E3nEcoOgxuT4MVVOyKhUBXAUW6KOxqEHq31VsXeZycJu8QCRU3VsX8/9l783C7qvLw/7PHc849d57JnJtBIIQAMooQQiBQq4KAqLWA2lIF7Q+FOvZr0WpVcESpCEoZ2kJLCYKoCAgEJEJASBjCkHkkdx7OfPa0fn+svXfuTXJDhpPkJqzP8+TJvffss+e13nG9b/jOyOVEjp6UKbvDijMeTIx1mT3W5bWvWfiaJeceTZfROKORlvIatiQOj9+VAKRDTwQy3TqaOzSdVmcNRlACZBeAiaVXGDLbEOhsDNOX0YwwVRlqfekkerX6LBABrc4aVlWdhCkcPC1BVTDIs9Xnsz51HGg6VlDk+drzOXnwf8LsKjn/aYhYVsk5zg3HapEeayKgM2COlwq1XkXJqJZGceBSDOVW1mySqeNhBM/Vkth+nhqvhz5rIpYoUDLq4/F6xsDtaIEbBwcSQZ6oRggQR37toIgRlInWdEcRUl1sdeAGmokT1hqRRmOBZ2s/TJO7CaEZHJd5MJT7QjothYamBWjCZUX6vYAWL/+Sy5MKaPhowqVgNEiHZHhMRCCjk8JlyGqPo8qrE8cyZLbGhkpZr0ITAZ4mC591JaaTNZukfPb65DuBbB01ZLaFxtFh5PUGKUlEEM5LGjo+yWCInNFExmgNl8sF9NhTw1RuaVibOOT0RlZWnUzkMEYEpLwBhG5iCicuzutrJulggNeq5lLrbonfz3QwgBE4aGHat6NX4WsJGQwRIpSdsq1fddBPvbsl1hWTQX7EcXS2LhGLnEBV/iAlo06uT6/5EEBsIEZOz1eq54fL2PooaylS/gCvV58RZ0lEelGkA+b1BowwQh0t13P0FI3uRvRAOhd0fOn0Fj4BGq4mrwFNB+GG9ysNwqdoNMisSGc1nfY0eW80Lcz4/GT4LtbzXN0FCM0kYzQBYIfBGtBk5qZm0V5+kz57CokgJx3jbhc9iWlx0CTSO9JB/9ZIv2ZgCD8OZtjB1uw3EAhNC3Vjgxq3E0+z43pIfda4MCijkbVCZ354DOkgkk5zR6+K7YVozPZbE2NZGQWYogwVTfjYQTF01kl9YEppaXiMaAlMEOtj0klULTNphM/KqpPD+y2zat5KHimdWcKPMyujJTuBZsS2ix64+GEhPwBdOGTM9vB3GcxrLa/G12xpJ6HF71EmDGa0lVfRVl5Jyaij1usK52uTIbMtdphFdasWNXyK8hir4l5xAx3gtNNO49Zbb+WFF15g5cqVvPDCC/zqV7/itNNO2xeH220WLVoEwIIFC7b77JxzzgHgySef3Ok+SqUSS5Ys4V3veheTJ08e8ZmmaZx99tnk83n+8pe/7Pb5acJDkwmxmDhkzFbMoIhjpDED2cLD02yyZhs6PgW9DtBIeQNkrbbYuz5ktKJpIh7s0URc1tMyYof0YoHAxCFv1KMJH1ez5cscClSZ+mbQFxqynmYjIB4My9JnyyikpmMERYIwipD2+9liv4uW8ppw/Z08PhB72u0gj4aPr5n4mkxPyljtsScxZzbT5GzA0VPk9EZer54Xe8s0AukRw0cXHmm/n+drz8MMSlT7fTS7G6S311nDktoLw+ijgMDfmjkgkF7NMBosU9Rb0QNpANR43XhaghpXCqKc0USfNQFHT+NpCSy/SFdiOq+l3wtCXocm/LAYVQ6iiILwAUG13yfXkYdRt2QwRNZsxgxKofEpe3Ivrf6r2IERrb0VaKSCwdAgCuT1aCaRUBCaSZ85nqzZKoVC4IXvo8AjIavyhu+XIRw5wQo/nMg9PC0ZL6OIPMJFvSaeTAGS/lA4Qcp3RkaKDTThkTHbpAEovDgSi4BEIPtB68JHpywzEjSLglEHBASaXCZQ0tMEmoEmAsp6VRwVbnXWkDcaMP08UbE9oZlhWvkgkWOorbySzsQM9FAYl7UaKUDQQTfQg3L4fQ0QYTp6Ih53Aul9LmtpAs3CEmU0BAFmqCjKdDNPS9AXKq9CM0OjV77VjiYNXpluJqfXkl5FnzUJjYB+c2IYSZKGd723VUESYWu7pDcUGsIyaiMVaWKFPu3344TFiKRRL5XnQNPptybi67bch16FLYqxMmAHRRKiQI89NXZw5YymMH3u/Hi817ld4f3QYyU0Y7RQH68Dl8a9THGbGFegLulpfD0BSGXuhMwDsl1fqAx4YXq/0M045a5spMN3So7NRDDEhuRRyLoJfpwFEGgGtp+nrKfDsS87IST9ofDWGzJSqZsYQSmO+Nl+PnbMRFk/CT9Hq7OG1VUnhWNIZtv0meMZDKNNgSZbT2asNuwgT63fjafJPtZZs51o+USXJRWuQLPi4owHI2NZZo91eU04f3UmZmD7eWq9bgI0skYjUUq3ToCnyWVIhzmrQgeqHSvRSX8gjL6LsI3Sajw9EaaLEzq+HZm5JGcDNOHFDkkvVOV0PBw9TVZviquPt5ZXgxBsSB7NooZPxfN35OT0dBs7yIXReys0shPkzTYIHbYtZRkddrVEGJmSDik5dsPUcd2UBiE6BmWyZguyanRYmEv4tJVXkTWbEZoZZyplDbkEZdBoA4gjv9LxJZ2JXYnpLK8+Mxz7ggHzMIygHF6HnMOrg34Ozy/G121KoTEazWtS45DGm6NVkfDzRMugouVfk0ovU+v14Gqp8HMNT7PjSByAj0UmjBpGUeXHG/4OwjWwUVaUo6dww1R1KbsNHC1B3qgnkt1d9jQpS0KZIPWIeRjCoyaMvgeawSb7XUi9rQoNZH2UOANL6gspP0N3Ylo4FwscvQorKFA06sLWoFCOnJBmOzmjiR57EjmjSb5LyHoyT9d/HBFmUFnhPRCaKed1EcjWr8hnXzRqaXQ3ouFTMBuwgzzJIEtZS2EKRzroQ0d3a3k1A+ZhSHmv4+lJ6XD1hsLAUgpN+Aya7aT9ft6y3wVoUl6ixVkUy6vOgNC41gOHrsR0nmi4LB5j0f4KRiOBZpIInc0iXIO/1dA1wwBDHhBkrTbsoASaHFdpv18aeWi0OGulPA/lVldiBitTJ9NSXsOQNS6sV6PLdyR8p6Sz+kOAiLvk1HmbQQj5DgsfLfwsZzTxavhuSy1E1noxgjI+ZviOSudHxpS6qR3kpe4e6mnyuvTwvXC3ZhCGeLGu6wNafKzoPZLvtDSiI2eIrAcjwuBNEldPA1Kv131HBgtCPRn0uCBvSZfZhF44ZoBQtwliHSbpy2yzaq8XwjR+uRQkSd5opNeaCBoMmOPkM0E6YND0eEmBjhdm3QrQpKNUE0I6bEIbIRUM8kb6PYCg0d0Yz6WOJs+vfljdqrGY4r7fq7iPBVauXAnAjBkztvusvb2d6urqeJvRWL16NUEQ7HAfw/e9cuXK3VZySo6Prju4AkzhU9KTAGg40ntd7mIw0Uzg5UMDwgBKuMJEeAVq3E2st6eiBT5G2UUwKIVYqFRuVX5NHKEBRUx/gILRBJqHE1iML79JT7Iurvpd7b5FzmwGzSEqOpZwXZwgz7P22YhyGSsoUNZTQBmNgI1+K065xIBvUw5TnYefg4Osai4NItliq6q0ht5EtTRuwm0Log0ch41MAFegiQKe8Ag0OdkEgYerO/S4NQxqCXRc+rxq3lV4nD/V/S2m61IUAkQxjCimqfbeIme1sonxUC5jijJauZtssj2czH1MMYTwBihbNQhh4XlZNurjwfEBGWkpaknwoqiLnBjcwMDERxNFyrqJKwSBViYRFOnz0gxhIjwHIXw2B22Uy2W0IEdZl8pcj1tDn1aHJUr4bgZfs9nMYfhll7f8NrKeDXgk/EHKehIwKGsa1d5Guo0m8IvoQZGSbpAICgjhkzXryIo6Et4AHgYuGr5WDAVdIYzw+5SFTioQ4PZh+1myZistpS7KycMAgYdO4OaxRYlS4FM069DcvDQ6hYPl9VM2W+JnV8bE8Q0cvQSBTEcsm97Wl10IOfmWeulJjodAj6ME3aKeoDhEwXMoB2WEKOGE+7VEiYyWRENDeGXsoIDu9FCwGxFaJoyepkl6PZTMWjThkwgylPV6CKNnNW43WasVM8hLRSxC02kpvx5GmuR7a+DS6Kyhx5pEWTfJUw+egx0UEKJA2bQwgxJlPUki6KespXAQmGKAbq0ezS9iiSI9ej12URav8fUEZcehHDho+ETF8dJuF2XLkg4ooIwRFrOR9wp3gLJVK3sJ6xYJr5+yIX8v6vXoXo6W0hsMJefgC5vAzRJoJlpQJGvUo3t5Wf3UGk+gWWilHtYkj0Er5Wlx1mMEWbygBV8z8fDodavJajpeMIGy44UOBQ3LLzBgtkBJjqsevQ58+U4ZwuUl43jKZXltsh1PK2XHwQny5AKBcAco6ylcdHAy+HqCjWISZcePIxs9oh7fz+BqJgQ5SrqGgU+ATjIo4GsGrlbEEB6BZtDsbiSjN1E2aigjnRAt+dfpsScBhozsCAfTcykHDhDI3tTWRLqpB1/OBY5mknSHcPwa9CBHyZfbe8LF143QsWVQFilstw9HS2EInycTH+TMwV+hA3lnt6Z9xSiMdXntlzLoWje5RDOmyFH25Zguk0TzSmjhUilfs2lxV7LOmoRd6MPVk2jCx9dsNgaTKDtSsW511vCScQIlx6Mk6sAvY4gyvmYCHmgGmxgHjo8dlPC0gE7RgggcgsDB0/Js0seD42L7eYq+Sw4DhIzQg6z5kfb6yJkt+EJHEODrLprwSfo5imYdhHVUeuzJFF2Xcvx9QeRsd9HRnCEMPDwMhjQL4TlogU/JCEI5byCEzATUSj08kvoI5XKRXCBIlDaQMVuwHZey8EEL4vkfTNnJQrch1B90Aiw/S9lIAwJDZPH1JGZQos+rpldUk8itp99spaa0gjXJY6AUyWdNzv1CoGMhPFlHpdrrI2O1cmT2ZZmm7WjoWDQW3pBF40KjTYTZN5pwYgNroz5B6gPasOrPQQF0kzIm4If/CH+Xss/yB+NlO2WtnnR+I3mjibdoRnNcPGHi+A5lrDCA4MbzruzuIULnjqDHraFXa4ZSiZSfoWjUyvdS+HhaOdzOB8r0utUMaQmGtPHghOcsitiiKHUbDxBlpDZmUFNcR9Zsl/oiOv2eRVmU2aBNAC/A8NJM7XuM16tPQw9yFLQkvldG83OUjNrweXoUXJcSMnOhUzTiBw4aAR46mtMvZYdXBM2k16uhT6tB93L06PVo5SK+gF6vhh6zDRwfXZRIBPlwnb8OFLFFCUe4BG4gr6XsUO1ups+aJO8fGoSZHlZQwsOhpNcifPneuwSYjpTdfW6arDBw/AIlt0xZeOiiSFVpDX2JJI5m0eNX44gilihR0hIIitINJDyKnksJId/bwKOsO2wSEymXS7jCJdACdGTQZaMmdVCXACvIUw6j/qXQcE0EfTJYAeS1FBpyuUBJr8UK+mSQQURrsKP3okQuEDh+KUytD9ikjYdQfrv4iPD4cSaBpmMHWVzh0R/Y5KOgktdDzmwBHOngd2votWdBOcpWLAA6ZQzqSn30JCdAIO2IQJfvuxGU8cNlOGU9Hc53HhnfxvHz2EGJPi9NwTfIWYeBJzDdAp6WQKOAJYqU9GrsoB9X+Li6LLrciXyXPOHhaw4btQkY5RK+5qEHWd4SbRRdHYTDgFuFT5YGbws91hSCAAKthvH5F3hPKLMzY0xmV9RAX7x4MQsXLuRLX/oS7e3t232+ZcsWvv/973PxxRdz8sknV/LQu8XQkIy6jNb7tba2Nt5mb/YxfLsdUS6XKZfL8e+ZjGzM8+Uvf3mnx1bsDnsQEVEoFIp3AAeDzB7r8vqar/zLTo+tOJhYfKBP4CDlvgN9AgrFIUdFU9x/9KMf8eCDD+5Q0AMcdthh/Pa3v+XHP/5xJQ970PLd736Xurq6+N/EiRMP9CkpFAqF4h2Cktm7jpLXCoVCodhfVDSC/vzzzzN//vydbnP66afz6KOPVvKwu03kRR/NW57JZGhoaNjhZ7uzj+Hb7YivfvWrXH311SO+M3HiRH78vWtpsMpkTFlMSsNHFz513hb6rUlEhdgCzZbrMDDR8cIKrxAg15bJ1DAPwrUbMs1Jj1NWUv6QTIfS5DqUZJCjqEe/+7JYiG5D4MUpy9VeLzmzGV3I43l6kgCZ0uprJjoBtl+kZNaiBy7jysvZlDxaFtoK187pwsPEQQs8ykYtW1Pm2HquAEKuJRaahhWUMXAo6TUkg6w8z/DuGMLDDooUjWosUcLVUnH6V5TSZggnXkclj6eH6UgyXShntsQFNWLCfcj0wq3rBbUoNYithYaiNTKtYdsLuW7NoMVZR4/dwdbUo4DJpWV02jPiau6N7gb5XNGo8XrImk2k/QHyZrNcsyTKjC+/xqbErPAa5N/kuiKfVJAJlwmY4XqnQC57CCvc64FDoFnDviOL3YBGKsiQNVvRhYcROLiGLC4TvS8ylaoGnYBE9H7EaVECTbgIzQo7C8jWHn5YYLDFWceg2Y6rp7befyAR5HC1pCxoGtZG0OQCKRJ+gZJZu/VZbPsMIH7v0m43ebNFfqYnhz1bbet3ATMocVj5dTYlj8YUJVytSr5vYfERAMvP42kWQrPCd1HDFiV04VHSq+Pna+AhhCwIlwxkP3m5pipHyawl5Q1RDAsMyvsuawTYQR5HTw4bi0JWJ9fscJzKe17tdpMzW0iEafd+WNshfiZAyhukaNbL8RhuL7szeDJVPypAEx1HFPABT6sK1/PXkzebsIICHoa8Zm17X63cdzOgYYqyLDAZVpB2w3WfOj6JIEvBaMQSJTzNwhIOLrLSa0mvid99PXDi3u5mILdNRWM5XLfXY08JZwotXL4jq9bLxFqNBnczA9bE8H1IhM972zEbhGmgppyXwnfDFkUcPR2nisbvgAjQw/V3dlCipKfj/UdjUxc+aIKArePIDqtmR6mqcu3eGk4fvJ0NqWN4XRzOx679r+3u61jiYJDZY11eX3fddaSSNk3uJvqtCST8nCyW5PeFqaGyCNmA2Y6nJWh219NrTSEaF81lWaDMFGXqvS302lPDdcMapnAwhUtJT5MMcnK+CceqEZTQ0OI6GkZQjguaBRjUeL1kzSbknCPnRLluvUwiyJM1WsIUdnkuNX5f2FarjKeZJIICZaOGpvI6+mxZQ8MSco5vdDfRa8lWnltlmy9lsSjgaUlcLREuKZPjI+33kQ+LajW5G8LUYz08Lz+cPxKyDWNYdE8TQhZ/1OytS2WMZpJBDkdLEmiW1Ges1lhmJEQByy+QM+WxNARpf4Cc2YId5MNOFAZC37pGFhGQEAUcLUmTuzG+tkSQDwuLJUA3w5agggZnM732JABsUZKF8YIivmag4+PospieFZTww3kz0Cy5lAlZ38MQLuPKr7ExOSc8CTnPTSi9wsbkMaGeJteItzjr6LUnkwwychlTWHfHwKesJQBZqCshSggEriY7vujCI+31kw07yiACKYvDuVOu2+6nGN0rEdDgbabPmogpXBq8LfSb4+Nivo4u14onRImSXhUuh6iXulYoN7fO5bLWQ6O7iT5r8rDlClLeSz2uDh2pv5X0NDo+iEh39YeNvq361lZdQItT7yEIRf/WdcquZsW1A9BkIeRoSV2kC2oE2KKEFnhhSr6OEThh7Z9Itoh4HwgR66+ulmR86RU2J2fH3ZEiWRDVyqn2+8gZTVR73eTMNlrcdfRaE2l0N9JnT42PYQi53lzT5BIGX7NjPSfaV3wO4f7lfJAOdW8LWxTlAhYtQZXXL8cEhJ0O5JjSEDQ6G+OlG2ZYxyEIOzWIYTqtPP9+ef7hdWy1FbI4WhUGHo6WkrqQUQPh0g8rKMUdbmr8HrJmK03O+nDMS528xVkrC1EOH4cAwscWJXys8J6m4v2KsDichofAQCNgcukleqwppIIMvfbUWCcu6bXYQYGynsYQUheL1rFPKfyFdanjmFJaypmDWwuMZsow7keMGSpqoHd3dzN+/PidbtPe3k5394HtFTt8vdm73/3uEZ91dnaSy+U48cQTd7qPjo4OdF0fde3bztbNRSQSCRKJxHZ/T9oJ6q0ijmViCA8vrBztBeNJ6rJqoyU8SnqaFmcj3fY0IIEuEiRFFivIMmQeFrc/0fGl8RWuZa/TXVw7SSAsEujSuA8gISAwkiT9DCWzTg4KIRChUWiJIm5yIolwDbslNDRNtmhDS2HGhmMLSeEDBprRQsJKArLSeCQUI+FlagIfM2zltJpue7rcR1jFNKq+6etpEt4AgVGFKaAKTbZ7EQGQIBm4BHqKGi9L1pK9W7sTU8O1uwZoSczQQWH7GZzQMWCLAEefQGK4cR4Wu/PDyT0ZlHE1aZRF64KloVLE0+xwfWESMygzlDySGm+IklGLhk8+MYPqwJGFSsLvC72Vc7L/y8ONV8p7YdaTMJJo+IwTXaxLjMennbogFxYFSpI3OzDNNGaoEDW7W+i1JgE2ZiBIUKaop4mMKRB4molUzmSPTPmdKSREHp8knp7EoY5U4BDoaSBNOiiF67E1wCbhuwgjFSpHeQKzaoTAsIQfFtsTQAoTHTNU2DLJIzCET1WQR8OjqNeExnQT0ZRc43aRtba26hBamknlVfTaE2XVXQDk86v1BikYNTS7nfRak/ESE5GjJ4kZOWMgnOCLuJqJwAAtgWa00KINUdbTlIzImJcCvsbvI5Noo94boGCkY2GaCHx8LUUiHDfSqM5Q1uW7Y4VFlWq9bjLJw0gKH9u0CfRkWOOhJq73kAxMrLAbQ6R8p4Iyhp5AD5ywAEuAZaZJaTqB1oAJyCY2Ak0IGr3NDJiH4SbaSAVlAs3CTcjxiCbXYRqhE0MnkGsrzRaa3bfotTswgKHkkSACJjpr6U5OpSqs+tzkrKfPloXvZFVljXFBF+sSso2LIeS6OFdLyPfI7giLWYIQCWw9iR6YpESRktGEJQJ0EiSIKq4G8n0K8tR7nbyr8BRPNX6Sai9LYMlxPJQ4klpvSM494XMkLBAkdIukn8Ew60gYNsmgTFm3sP2sbHNDVHwyKiKYwgyKgBm+z4IaL0PONGOFRkRGOjZ6uK7dCjQMTQOSsg2PPZlEOMaNsMCNp9fJwldaI4kgh6np8vm4Q3TXvZvnEhYnZRYytTj2l9ccDDJ7rMvrKksjkbBJ6Sa2XYUmbJJAvePg2iYaguYgy2R3Pa/ULCChJUjYCSwhHXQtQZaSHWCJgJRhkzLDomaaiS18HL2OhBDYwkfHoMnbRI81CUGNlMkYoWGSYHx5FSUjzZDZhhPK6shwanXW0p3owA5gnLOGdYnxZJJHUO8NUDTqcLSJJIWHIWxMzaTJ7abPaiAw20joFmgmtg8JDVK6TdKK5tfI+R8a0V6RjFVPQgQkAwdNtwCDgPZQ3wio0kyKpsDXbXThEWimlN1mHVVBhoKeQscO14c3YYbyub3UjZOYgC18TKHh6nask0RzQDJwaHekHJVzl4OrT6DF7SKTaMMUPhY+hnClMz8kGTigV+FYE6gOja0W9y167A4SIAvYGtKZjdlIwpTO7Go/R85IglaFEepACTwCDBq8IXrsjrBQ3nBnRoCOScmaSsKM9BhA0ykZU0mY8rpSwkOIgEzyCGzADATN/iBZsxVDODR68vwi50hV4JE1W7Eh3KeFaaWZ5G2ky+4AwAwC6dTRNOmYsNIkRZG80SCPH0wmoSdl1w3DxrRrsIRPIjDRwm40VqCBbpMILDRdJ+kPyYAC0tnSEBTIJJIINKp0i5yVABKhUzqB0HTMQJDSjDCNt4aEnoydTDVuVxg4kEZ97OzWdCCJGR4HTDQhDUxLOFT5gwyZbaCFOkZokNd4vWTMFpJBFg2fop7GDorU+D30WZMRQJUoy2JvIoU53GGt6bKXeVjAVtbbSWDhUzanYIfvgSEc9LCVoC5cfD2FywQSwqdB93FNi0zycGwR4NoTaPEHwz7rAh0dPXBxjaqwCCA0hXpOdA5RoKXFXUePPZlkYEjdnAQmUONlyFptWCLAstIkdCN85ywM4coaEEKQ0BMkrIQ0nBPSiLfDNeLxOxqug69zpK0g57JEaCRbpL0cgVkj+77rCcAiiYbADoMZKRLhe+5oE0kIn1xiJonYpjDJJI+Q+luol8v19pFBraNrFolgKFyLb20NVABtzga67BkycKC3Md7vomjVkTBN0BNSrzCrqPGyYCRg2Dg3hIsZ1JBIJAi0NtKF+CP8bfz9B5qKprjX19ezYcOGnW6zfv16qqsPbCn7uXPnAvDII49s99nDDz88YpvRSKVSnHjiibz55pvb9WAVQvDoo4+STqc5/vjjd/v8ynoVXfY0rEB61AGEZlLWq7BECaHpWGGbklIYfZJeMDNsATIO6U2VFSpNUabdeQPQSIgiWbOVarcLDRkRDzQLR0/JPssIWt1VYQTOoNbvBuFjirL0DgqBHeQQ6LKNWBSFDNtReGHhGzsooolAViYPDSehW3I7EcgKznqVrLgdepU1TccUJUxRlkKQyMcrBUlU/MTR03FLpiNzTwAaHgk0/NDYky0+QEa2q/3eMJouz9UxI4VeQ6BhBA6mkEVLdGRbMls4snAcsgKrEVbB1oX02GoIav1ufM2k3ntLVr41qsI2F2E0OGzj1Oquo87vISqs02VPI2fUA9JzmjXbMEUJnYCiXs+E0mvI9iABCX8IRBC3tJBVfXV0IoUkCKv7uwyvSO1pCdCkcqjHwkUKq1pPVqTWwpYqhnBle53wOdf4fVIoEYTGUlQ1Xd5bK2zVlQgKCIyw/2t0f8MZLpDFBKO+1lbgIiMEsgiQFjggfHzdwvbzVPt9DK/WaokS1X4/sjuAfP4Fs15euwhkSyIhaC2vlvtCRodk5VKNOq87jIbLd7PLnsa7CospGbWyKmtonOvCp9HdiBUUKZgNMjqsV1PlD1I2qvH0pGzZF/Y2LYf936NKoKZwSIoimvCo87rC8ajFVUuj++FqNr5myW4AYRQ6qlhv4lPlD0DYwzQhcvFcoAsfX7MININqv4+5A3eEEYx8fG3J8B3x4gyDcjherXA+Scce66ibgAivwdOT4TskW7xoBAhNOnlKeh2N7hY5isJzBS3enwgjQ37Y5SAIW/gRVjIWQpNt+sKMFTma5fPtTk4DTQt7P8tOAjLabW29prDSfNQuJSo0F713pnBAl8rH8K4TMlLikwqyeHoaLWyzk7XaMIR0lqX9vvA96ZGva5j14egp6r238DSbar8vbmMjNBNPT5IKMkSV7BECR68m0Cx8zaTHnkqzs47OxHTuafsWv2v4/3Y6z48FDgaZPdblddrvJ+oaUOd2EoRZXT2JDqr9fkzhkjOaeKP6dNA0ehNTAUF92C0jbzRyWHklpnDotjuo97aEkT8tlH1yzJb1anzNpNrvoz4cl76WwMKNWxqlgsGwUjhhFpwci1pYPRvAMdIU9XqSQQZDuHhxNXkp2+Rc00+vPYXxpeWyS0xYdd0x0iTCHtszCs8RdTqJsrWEZoadD3KAFsshO8gRhEq/IRy6E9OYWloGBGiarGadtdoAGcEkzJ6J5oeohdWANRHZtaIa10iT8ofi6K0e/nO0KgpRy0NNi3uuN3obwx7IBggNS8jie4TZOlFWUFmvos7vDmVgdB/9uGJ5oFvkjUYpazSdnNkaRxajyu9mWNRPA+kojApxocXfCzRZET7pDcaR3xqvW15zKCfTfr+s9i8ESW8AR0+TCnKAkFkFQoTGvkBDUNKrpLEeONh+Jn4GqWBQajvCxwsL7FlBPv68zV0T9sb28LQESW8IR6+KK3PXht1sEkFBVl035LznaGmZ7RDJ41AX6Lcmhu23ZFV+TbhE87+BbJ3nGGHEnEhv9OJn1eRtRBMegS47CkXGecKTzzvpy2rthvBo8DZB2HmgznsLkFFo2cVGyt9GbyOyhasR6iLy2UYdBuQ2ctxpYdXwRFAI3y9pQArNCI3cQGbQ+dkRz8/Xk9R73WF2hBdWU5eR3267gwZvc9zeraxVxeckdSKBa6RldxPNRGhm+Ey36qQmbpw5ARqOVhXr/rF8C4rxMzWEH3eYkcEO2c9+0JQFf5vcDbEsi7IbowCUjqxkL+cq6El0kAzC6unCC8eqiMegCOcYhmXKys4PkSNFELWIjWwKwne3ys+E1yDCDApZOFO2m01Q73UiHYyyk4Q04qU88vQkXfY07KAo3zNNVq/PmG3ogSNtmsiBKAJsP0+zs5ZNyaNI+hm6EmO780pFDfSTTz6ZX//612zcuHGHn2/YsIH777+f97znPZU87G4zf/58Ojo6uOuuu1i2bFn896GhIb7zne9g2zaXXnpp/PctW7bwxhtvbJce9w//8A+ATH0TYqvr5eabb2bNmjV8/OMfJ5VKsbvogROm2VjoIkBO1mHET8gXPRMaohmrjbbySmblngCQrSFC4zprtoaGJzhGnez77XVR1qpwjDRCMzin/+eYQYkmZwNRSnnZqKfO66bW62LIGke1348WRuH1MOIGEKWSJkRBGhjhYBfoJEReTqphaw4QW3tPDkujkX1GZcuNLnsahvBlOyMEqbDnsYirUxqxsSbQSQcDFMwGqvxBHEO2gJC9rcuyNZ1wCDSDVNiWoc1ZzZG5x7f2lUbg6mmq/d5wQvOkUa7JyviGCLBESfaODBUTT0+GE13oKcVHFyJs4RWETpO6UADLfpoziksYtMbJqw5bUzxb+2GSgawoqYUR36hl2/GZ+5FOBzt2XiAEbeVVJESZqB94u7NG3pNIuRECIyjFykxbeRX17lsEmkXSG6In0RH2vpROkVTYf9bVk7Q6a5HTp0HSz4Ue+TKa8EPlLwivzwz7ZQZx66lqv48arxczKGELKRDq/b74ns8oLgmVDp1As6kPe6fKln0JTMqk/Ky8THTZV94fIBnk5aQa5IjakllBie7ENE7J3AcIqoN+WtyNoSorYqNUE4Kkn6XFWYeMorh02jPQA5cav5eJpZfDZygoGg2x4Vvrd1PWq2h1ZU9dLewFX+92YgnZM72lvDY0QpHtbewOar0eGr3NtDjraHXWhE6MaMz6sg1eOC4IhVRZlw6AQDOo8fvRA9lD1orahAipTNaGxm9er6ejvJRarxsrrLoK0O6uio1iKyiGUXqBo6VB02MHUI3fS53XjY5gyGiV3wmVj0jhFKGTwAxcOhMzpEEaOmgcQ/aiz5ptGKJEFOEGEV+XIVxqvF5AEOhWOPbk3GiLIoFmUNDr2ZA8WgrwsBq6GZTwNSuOaOkEtDmr5XNCC502ZemE8WU/V1dPUdZSJESepCjKey4COZ+EDkDprDPRhaze2xAaNqlAnu+QdRiHld8cdi2gh46sVNgOMeUPxu+/vJeOdBwhIJD7bXHWYQVFeu3JlPVqat0ucubY74t+MMjssS6vM5Zcv1/Wq6SxgIYXttuUDr8U3XYHrp6ixu1ELlFyIDS+u+xptDsryZhtJIJcmBoqQmdrOpR7YfskIK83hA5facS6WoIWbxOJoEi/NVG2E9RCF264xEZDSMU8lJ9diemU9NpwzMmlL0YonwNMkn4OTXjoiNhwi9osZs1WrKBIUa9BE16o6AuqvW5kKyVZCR6Il4KMc96E0OTQhFxatiE1B9Cw/CKBbsv75We39nAO5047KGEgDTx57LxcdicCimaD1E1C2W0Ih0C3wpalGnZ4HUIzKBoNNLqbpMGnW5iBjHLqYWaM1EOkcSH7Ygfh3N6NQKOo13N47k8gBAEajd7G0AgLMINSOM/IZ2QELgKdbruDOq+HNmc1Zw38BxDg6RZ2KGM14dHqro51p0SQD/WBEqCHsli2U3P0NJrw6E5MZ2bhWQC6E9Oo9bpJ+/14elIu39IMThm6Byd0Jjt6mn5zgnReEjltwBJldOHi6Gnyej1VQSZuJRoFacpaFVXBIMfmHsLTkzINPDSuIoO6rbyKklGHKWR72/GlN2S71rDNlxE4mEidRDp6tVD2BGEwwZLZWMJHC7Y+qzMGbofQMQJyWZSu+bHRWut14elJmZgdyPHUbU0nag0ownco2t+s3CLKenXsACkb1XQnplHt95MQBalrCz82/BNBjqLZIPehm+iBI03h0Jmbs1rQhI+ubXV+N3qbhrVBtcLjm3JfRj12UAwdI1DU65mVWyQdvKFjwtNl4InAi/UKU5QjMYtA0GtPiZcM2n6OyKmlCZ8qPxs/cy3M1oh61QvNJNBMKd+FQ9FowBJlaSOEY1+ETnHZAljqX5EeCFDt98XLFOxQP5L3SMf2C1vHLYE853ifMosu7fczZI3jiPyfiBwLhA46GYwzQjEsHVlS7y5Q4/eGWkRAjd/DkNlGY+hg0ITL6tTx8h4gaPQ2kvSzRG2Y28qrqPO6ZeCCMhoaZ/ffJINUwufZ2ovCxSVjj4oa6FdffTWFQoFTTz2VO++8ky1bZPR3y5Yt3HHHHZx66qkUi0WuueaaSh52tzFNk1/96lcEQcDpp5/OP/zDP3DNNdcwZ84cVqxYwXe+8x2mTJkSb//Vr36VI444gl//+tcj9nPZZZdxzjnncPfdd/Oe97yHr3zlK1x00UVceeWVTJ06lW9/+9t7dH41fr/sC45Fd2Ia0wtLIIyYlo1qfD0RpmmUw4jjICdl7wOC0PssjfyyVkW991bc97zZXR8bla6Woq28iib/LeYP3EqfPQk7KNHgbaLLnkYiyNPoyhddKhlpavxegnDN7MzCMwCh0d9NwWxiXOn1OCqfMdvQkWudq4N+ZuceD1ODpHEcRbw8TaYvacIN18lI75+nJ+XaptALmggKcX9GIzRA80YjTmhMRX2q/TAbILp2oZn0JDowRZm038/J2fswg/LWtnMikBkHUfQfsIJi2Ic6LXsuhoJja2QAEHICnV54ju7ENGYUlgCyl/rk4gvI1B7Zd7Sj+EJ4fnLdWzIo4Os2Te7G0AEj5DpDU/YsXVr7fgzh4BhpfGRveJB9IgGanXVowmfIbKXNWc2c7COh0lfCEuUwQiz7oxpI76UUuNK72J2YzvTCcxTMBtrKq2h11oFmML60nLJRTU+iQ/a6DNfap0QxvudtzmqOyT5E5IHW8aVBHfRjijJ1now8DFqHYQgnvv6kn8UKSgToNHqbWdB/k7xGPY0ZyIjKuPIboGl0JaYzpbiUHnsqVf4ghvBpddYg1/vKDI2NyaOo8XrJG42h8JfrkyKjtDsxjeMzD9BrT0EXLs3OWjYmZ2MKh7zRyNkDt6AFXuyBbfQ2U+t1x9dU1Os5c+A2BDLCVeP3IjQjFJYCNJOZhWdkSllQxNFT5PUGLByq/T4Ozy8GzWRc+Q0CPRFGY0QcAdZFQMLPyjoMuux3fvLQvSACMlY7unCp994iQMfTLercTroSMxg0Wjk291DYc15GqYp6PecM/JLIo60JL54nWsurw4yQInm9gXQwJBUIvQrC3qogcxs83cIIynHkKhGteUULFWI/HKs+CVGMs05Ak2mVQQGBNOC10PjvSXRwRP6pcAzLtjidiRl42NQEfdR53bQ5qzlj4PbQASMdPB42ab+fswduASBvNJII8phhT/iEn5WZISDfH7uDk4buI46eCB9HqwoVJ2m0C6DHnkqN10OPPZV35f8UZo04Yfo68bszo7AkjBpkyVltoeIthhn54RIPXOq8bnrtKRzmrOT4zAM0O+tw9Kpw/fzY5mCQ2WNdXuvCiyOxRb2eBvct0EwM4dBnTYqNONvP0+RtQiOg3nuLHnsqaAaJIEenPYOkn6XW7SZnNGGLgnznhGxFmvDztDprAehKTJfRpGFpuHm9gVMy95Ax2zCD0la5EEa1As3C0xJxNpCMSnvowsUKilT7fTS6m+P3vCfRweH5P7EheTSBbtPovsWgNSE+33p3CxuTR2EF5VDRL9HsbpDZJkDWbGFS6WW00HAu6XVMKC2PHX2+ZoVrV3Phcjop58tGTSynZETe4JjcQ7jR2nsh18HLcdcVzhllGR2GOBoZ1ZUw8OM5oMueJhV4V0bSM5a8V4EetjITIjQqZV9sMzZgU2gIuhLTQxkcAHr4rDuxg4KUC8In0KxYLkSO4bxRL+VgeSm1Xo8MBiCdN6ZwKRv1HJv9A6CTNVswhUMiNOLk/PknQCfQbU4ZvAdN+OG8TJgBkRxmyEvH/JHFP2GJIq1lqRtlrHZq3C45D4ZOGzNMH9eER1diRujgkHpY2agPs5/kuzWp+BJRZN4ULoZwYqM0uieRjNFx4yg4yNoG0vEqs0AcIy31BATROnNTyIxQGV2VWYYt3gaq/CGKRgPJIIctivhhXQNZB0FmvnXbHZwydC8gKJl1tJZXk/SzMrMDuTShy57GzMKfsYICRuDI/ufh9XiaTa3XTVdienz/Ak0nZzbF2ZVtzmr5HKI2r0EudrRFS6iibBjpsJJOKDsohvLtDkp6DQIdS5Sp8ofoSkyPz0kLHQMeCdLBAC3uhq3vnpAGrGOk0YTA1yzmZP8gzx+ZXeIZVdR53WTNFiw/H+s2jp4mGeTjAFKUjVPvvUWXPY1qrx9PT4UZf3JfZlDA05P02FNJBDkavC0IkPWfQn0YoM7vjnV62Y65Lt6/0AwyZitt5VXYQSEMiOmx469g1MfBE49E6NgUYW936SRq9OTz7UrMkMsIjVZ0BGWtCqEZzBu4HSsoIzDl2Bi6hwCTol7PEfmn8DUbOyiQDgZCB1MqDjzkjXp8PUmzs56Nydk82vCZMRlJr6gGcfrpp/OjH/2It956i09+8pNMmDAB0zSZMGECn/rUp+js7OSGG27g9NNPr+Rh94h58+bx9NNPc+qpp/K///u/3HTTTbS1tfE///M/u6yM6LrOAw88wDe+8Q16enr48Y9/zOLFi/m7v/s7nnnmGVpaWvbo3Iasdk4duhsjKEpFU09jhpNvZCz6moWry0Ig0kjxaHHWy/Rk5HpxkNGgaFIq62m67Q46Cs/HUSmAyeWXWdB/k1TQEZhBiazZRFGvY+7gnfRZE0EEDFrjSPv9tDmree/QXUTp31G0smzUxFF5OyhQ5Q3ghYbLCdn7sYMC1V4PvmaTDApxFLLW70VgEGDghWk7dpBDFy6N7mYIU3P0UBicNfArQE7iUljVMW/gttCb5tPsrI+vPUrj1vHj+3Tm4G1sFQ5SoLeWV0vDXE/Habpa4JG12uNIpiZ86txwLWY4MRV1uQ5nVdXJcjLw+3lXcUn4JDXyuixeFGgGreXVmEGRgllPW3kVM4pLYmMgY7ahh2nS65NH4yOLVzmGnGBBGimWKFHr9zC1+CJFvZa0389JuftJBRlsUUSEa35bnPXkwzS/hChSNuqp8Xtj72JJr0YXLulggCMLT9JlT+OEzP0QFotLBoVwCYMeCsD/AwJS/gCvp09HE37soOhKTA89oPJdSPjZsEiXQV5vwMRj7uCduHqCyLEypfwyH+/8Uqgotcu1vMJFD0rxvu1QUASagYbGgv6bMIMiAlifnEMQZl3IyIss2BUZpUk/y8bkUZzV/4vQ461zdv9NiPA7OaOR+QO/ioXSs7UXcUzuDyOuqc7r5KjcH8PMDjeMeKfIGDLt771Dd2EHBercTop6LV2J6WjCp6DXkzWbaCuv4tz+G0H4YfbGIspaFbW+VAZOyDwgvfyhorA5eSRHZx+WRmPghOVQAjxNCrCkn2VJ7YVMKb5I0s/G72J0rvP7bwmjuWvjsVAd9NPsbsAUbnx+UWS4rbyK+QP/IccCOh4JrDADwhAutW63HPsQRuyQkQl0TOHiaQlaHJnGVtaqSIgCgWZy6tBd0jEUjpmC0UCtJzMTdOHG2UHDHQYd5aXMyf4BV6+iyh/CMWRUx8Rjdu6xcMlPKY5GnpB5IC7AFzkTNiaPYlbusRHREw2No7MPh89Zpu/lzXo5do16JheXsjE5WxpV4ZygC5eiXiPnMH9QKpvRPIQeprKvl2tbtQSN3ibO7r+JbruD5+suwBAe45w3qfV692j+358cLDJ7LMtrM3Bo8KTTpisxnWSQpc1ZHY8tEZb6MZGGqlwqJSOQbeVVnDFwBxuTs6nxekKHoked1x2mucusNiOM/ERjfIs9M1y6JFOjuxLTaXI2ogeulO1+Pw3+FrYuQZOyrtrvY1b+KdAMAt3mPYP/ixvKaFeXRdemF56Nx22d10Wbs5rZ+T+SMWW23hkDd9BrT6HFWUegmfH8WNTrQ9ksDeuTM/fS4qzHFFIpPj5zf2gI+2G0S9bJ0IRPrdcbyi4wRUmm/wqXNmc1R+WfIOFn49R3M3BxtQRN3ibmZP+Ao1fh6UnKelrKLIQ0mpEZdDrE82ou1GtODzOm6t0tIAKEbqER0ORtxAxlkBUaoUW9Npb/r1WfiSUcDFGmKzGdVJAJg5sGGtBWXiV1I+FR5Q/iaxYlvSbWA47L/V4u0cMgGeRx9RRd9jRmFJ9lUumlMLCwJXRyuvFzSAVD8l4Un2RO9g9sSB5Nws/haxYFvXaYIb/VkW8Il+qgn3kDt8UGsxVIx0/CH4qdOZGRVdJraXbWxs+0zuuODck30qeBZlDj98ripXoCDY1ar4e80Ui1PxDLmKg4VxS1HrQO45Sh/yWaX7XAGxZFlfO0GxqJQ9Y4qvwBjMBhSe2FnJB9gC57GmW9CjN06CeCPI6elvpp+ByHy87qoJ/3Dv43WbMVQodM0s/yl9rzOGPgNnzNpGzUoCPi56MJgRVInTkdDGAGLoFmccrQPXiaRdrvJx8GNCaXXsY1akJH2xYcPR0vb5HZMKsBaHbW4upJ0n4/k8svc1Tuj+FyRIeC2YAVFHm+9nzOGLhNupdCfS+v1zOrICPrRb02XmqHCAh0WwZJ8nK5T6AZYQRcRu8b3U1hGnlPnKHRnZjOyUMLiZzKoKEjg2vRkkMjcKj1eggw8cJlElqo8+giwApke8meRAfvyj9NlM0rHSE9lIyaMNuyJ3zOMvsiHQwwb+C2sMiyFjv+pP5mxEsdjDgN3g+DctqIzMaSXk1ZryLt95O12uLgotTlw+zY4p8YX1pOV2I6r1XPpSocm3m9gY7iC1hBMQ6yPVv7YSaVXua8vus5u/8muuxpY3JZWsVd/FdddRUvvvgin/70pznuuOPo6Ojg3e9+N1dccQVLly7ls5/9bKUPuceceOKJPPTQQwwNDVEoFFiyZAkf+chHttvu9ttvRwjBJz7xie0+SyQSXHvttaxatYpyucyWLVv45S9/SVtb2x6flxE4bErM4pKuLzGx9CobkkfT4G4miqJHwqLZWU+UIjdotDKrsCiMXHqAQZU/RHdiGicN3YevmfRZkzAChwFrAmh6bMABTCm/zHsH76Lb7uDkoXtDg2MG1V4vtpAp8JqQ62HTfj8mHkflnojThI7PPECfNSkeOPMGbiNnNoXe2enkjMbwb61Ue710J6ZR5/VQ63UxaI3j1KG74wmyzVnNvIE7CDDotydhBYVYqBX0eiaXX44VlZJeQ2diBo3eZo7J/gGBTq89hWqvj+7ENJnaAzhaVXyfIoeErGAp101XB/3MHbhj2GTVG9/nrREzQY89Nb4X1V4PG5OzSfh5fN2mxV1HTm/kqfpLmVx6mUmll+hKTOfV9DwEOtVBP2eEE046GIgjyyW9WioUgUOjt5mjco/FFWMRAd2J6aT9frrsaehCRqzPGvwVVf5g/AzbnNWYgUvZkNHYqaUXQ+M1iD3ItV43Rb2euYN3ymhyIKPJ0XksrX0/x2Qfxtcs+qxJ6IEj/wmXDcnZtDrr6LcmSkeMbsZpjnZQoKTXxO/CCZkHCDAQSMVx+D3Xhr2vSUrMG/gPqaC53WxMzqbJfQuBxobk0dS5nThaKo661nudXNr1RU4f/C/sIE/eaEIXLiW9Jlwrr8UCeu7gnWxIHs2KqvcwtfgiXYnp1HudfKzzK1hBURq65WUck/0DASYbkkezJvnuOGpsBwWerb2I47MPkPSzbEnMjNe1lXWZ9mfiMW/gNvrsyTQ769GEF7+PBb1OCno8Gt0t0pGSvU9GekLBtjF5FGf3/wIjdLitT85hyDqMmfmncfQquu0ODiuv3KqMhNf0RMPfx9kB1V4PmvBZUnshU8vL5HloejwW8kYjRxaejNNnS7p8RokgRzoYiJ8LoYc+QK758zUrVsI14TFkHRYqVKDhxxkyGhoTSy8Dck1cm7OaWYWn+JvOr2AGZZJ+hvXJOViiHEe0o+yg4Q4NgBNzv2FW7nEKZgNG4MQZAydk78cKCqxOHR8v/4nunRk6MWvcHjYkjyYbVsCPzrsrMZ3Di39mTvaRODURQGiGjA5qFicN3cOgNY64lgcmG5OzqXM76bcmoImAHnsqLc66sABjQJ89KUyllwrAlPLL/E3XV5g38B9hBdlqkiK7xzJgf3KwyOyxKq8dPYUeOrY14TNgjSft9zO+/Bq2KDGp9DKtztrYUB1ffi1MTe6Jx+DZ/TeRNVtkkSrNjOcIOygRaAZW4NCZmEGTt5n5/bewMXmUdCqFirQuXJ6vPZ9md0PsGF2TPBZDuEwuvcwxYYQ2rzeQNZtI+DnayyupCoaIHAslvZq28ipOH/pvDOGxPjknVoo7ii+gBy7pYHDE+Xp6Iu7oEjkKW521tDmrqfe7R8w9S2vfT7Xfiy6CsEijQW9iKuNLy8mYbWGmmIzEFvV66t3OWNc4Y/DOsDuIzO7RCcjrDZyY+w3z+n+19T6Eqc6aBgk/F8uOw4t/5ujsIxT0OroSM2jxNjCl+GKcLqwJD4FO0Whg/uBtRGvxI6cIYeGugl5LvbcFP8zkKunVYbZddRz0MPFocLfQ6q4OgxK9sRzsKL6AGWboDVnt2EEuNkbPHPhVmIIun32Tuzl2Rgt00n6/HAe533BW/814uhXrgZrw5DIlrzvWCar9AfJGo1x7HV7bmQO3EWBQNuqkI8jtjA0r2XFDH6FbRYbkK9VnUet2MmiNk8a28OXcWniaLnsaU4pL4+ecM5tIBHm67GkcXngaMyixOXEk8/t/SeS8kY6Hes7svwVNOLFhJmv46NT4vWxIHs3a5HGxEyFyKGSsdsygRFeo983J/oH1yTkMWuPQhUdeb4jrKiSCQqzzSH3gVE4duhtdeKFzWRZxjcZjlGFn4MZGX6uzLs7WTAcDzB/4JWZQwgpKWzMuw+UtST8rl9Ihl461hN8FODF7f2gktg/LQpkdn5MWSH2vKzGDJkc6FaSO78WZa1FdAum4fjzMSKiOA3XVfi+OnozltQyaSAdGNAeArAtw4tB99FsT4vGYMeUcqBPVfzLjjLKTwiWFkWO72Vkb6/1ZszXM6pRLwFJh7YMoQBXp64TLGApGA3OyD9FnjSdaGx4v29DC7kNhAC56vn2W7JggI/D+iOBio7spHhvzB34JwqesV3NU7o+xPpwzGrfW7/FlButJmYXoiBGye6zJ7H2Sg3f00Ufz85//nOeff54VK1bw3HPPceONN3LUUUfti8MdcviayfrkHJ5o+HtOztzLMdnfy5YeYZosmqxV3GtPocnZGCvoUWQtFWQpG9Xx5LohOZuz+3+BFbYB6bMmUuN2xYZSxPTic7HhcGb/L9GEx6KGT+LoVcwfvJU52T+M8AafkL0fM0zP2Zg8Sg6UbaLy0dqYJbUXMrH8Cmf33xSnKTt6imRQwA4KbEwcxce7vkS9tyX2OC7ovwkrKIZVwuWaoc5QaZ9WXsr8/lvosybEAu743IOc1X8zuvDImY1owh+mnDBivcmU8stc2vVFZuf/CMjodEd5Kcdk/xBPVrVeV5wW2+ysxxIl0DT6bVkAJWu20eysJ282xmutuxPTKBk1nJRZyFkDv8QOCrxSfRaJoEBh2BriKJofGct1bmecJp0zm2grr+TsgV/F5x0VqyrpNbGwPzF7f/wMp5SWxd5BI3DilMm82RgL/FKYSl3ndW4XTY4E2IA1nsPzTwKyTVygWbEB64dCMlLuzhz4DzYmj6LW7aLPmrCd8QQyzWtJ7YXxPb+k85o4Yh2gxZFT6fhYT8ZqDQ2lQLarQ8T7XVJ7ITo+hxf/zCe6rqHNWUmLszZ+B6LCMXmjMVYiu+xprK06Pn4HbcqcOfAfbEgezaMNn2Fm8VnO6r8ZQzhsSs6irFfHzoGNydmxMVzSa2hx1saR2WgMRMfJmc0IzaTPmogROOTMJvKh4Vnrd8eZBEflHo8FW+RAOL/3e8zKP4GGz4bkbN6snhsXfeq0p6EFMgUxem5d9jSebvhbar1OCmZ9rMQ92vCZ2DEzs/gss3KP02VPi4V9FBE3AifOKAHCbIYvj8jYsIMCTc56aTSEaZB5o4Ez+2+JU8irvAG6EtM5MXO/TIsMlXmAJCXmD/yKolFHjddNnzUBwgUEcl4oxgpuNKYBTsreR9LP0uBujp+Zjs/h+cUy4jd0Tzw/rqh6D+f1fp8j84vCuXA9XYlplPU0PfZUJpRfxwjKPFt7ESfkHoifcxBF6oISm5KzWFL/ERq8zbQ4a7DDDgjx+6fpccHJfnsCnp6kxuvBHLYGPxqPJh4ziktYMHAz7+/7MfND7/7BgJLZe4MsAnVy5j4EWiwj16TejaNXcXLm3hGGqqvJglhR5BoYoSRaohDPEY4uHZRDoVIvHYsvsaD/JvJmE2iGTPEcNkcLzaQrMZ0Bcxy+JjsKnJj7DVW+HK8FvQ4dn2QwxFP1lzKp9AoJP4uvmbGBOT/MUivp1bGsanY3jJgzovNtdtaTM5ri8WrixvNA5Pytdbtjh1htuH4eZJaPQcCU4gtkzRbQjDgSmwoyI+bZBf03oYfRwrTXH4+7GeW/cFb/LTILT4sKY1bLNPWguDUam3uAef2/ivWASKfxww4rQBg5lplTkXHf5G3mrNC4lFk5xJHD4Y5sIL4/tX4PRb0+DlQMl1/vyv85DgTUud0j9L1oydzxmQfosydTGxaxjJ5DREd5KZd1/hOTSi/HeuCG5GwsUY51giPzMjPuyYbLaHI3xNcW6VUBGn32ZKq9HjJmW+xIiJxAkVytd7dQ0mtoDA3QtxJHcEa/dKxHekaU8Vbj9lDQa2Mj9C+15zFv4FY2JGezsuoUTh26e0QW3Kqqk7mg53vMyi8K32Uo6HUMWuN4z9DddNsdcaHWpJ+l3t0SZz5E71uk921JzMTXE3QlprMydRIJPx9nqw2XnYvrP44lykSyyAplUd6oj1O/raAcv8NRhmHkTJbj41acKJtr6NdEy1sifS4dysYppaXx8zDxtta6ceWyqKio6OL6j9PibYrT3f9Sex6nDd4ZOv83xoXjonoxQOy41gPZsrjLnhYuFZBr3rc6QALWJ+fQb03glKH/QQvHUGQXGGHdBI2ASaWXuXTLFzh98L/QhRvf963BhDIbkkeTCnKxbXFW/y/Imc0EuoUd5MN2dTKvJBqj08pLOav/lwi02Jlyfvf3mFB+nSiwEgVGasLlD9E4jZ6vJvyw8GbfiLFQ6/fEulaSUrxsbnjmTRSQmZP9A1mzRdZn8rd2Jolk91iT2WN/kdw7kDMHbo1f/nvavsVbicOZWHo5NEDCSuiagWnICLPQDNYn5/B4w+Ucn3mAnNEYC4CtXrr38MHe73P64H9hijJN3sY4ShgVSIgMxg3Jo1lddRInD/4ffdbE+GWOIlzDFdIj8ovjaFTJqIkHChAbwZNKL7M+OYdHGq6g3uvk411f4aj84xT1WroT0zhx6L7YGEr7A3FEbUr5ZS4JI6bVXk98TZHB11FeFgptLzZQGr3NfKLz88wsPIPQjFg5kQPcY0PyaB5puCI+/1My93L64H/Gk2i0rSGcrQpDUKDPnoSjV1Prdcnqt4E01vvsiXFKYUfxBZmWF96vKMJa0muo9btjQ+TY3EMjovlRNCJafy2jr4Nbo86BR1mvCRWCrQ6JyCGzbdqzr0llrcaTwnJrhsPE+LuTyq+MiCZHzpMuexpvVJ9Bi7M+XIMWxP/6rAnxcoGqYeeXM5tDQ0aPI8Erqt7D8ZkH8TUrNoajqPnZ/beMWPcT3fMhq10W2PK6wmrZshBard8XKzHD1wqlglyc+q4Lj5JRNyJCP1yJrPW64+8PF9b3tH2LV6rPYmL5VVntH0CDXnsyQtPZmJzF0w1/K9dQaUaYBeDFYyB6T6PjtDprEJoeR2oi50m0fbTUIxJsXfY0FrZdS681icmll+R7DjI9T9PitVWRMjKp/Ep8rAavkzZnbViUDTYlj+S5uotip8gJ2V/HqX2nDd65NSKOT1GvG+GgS5NjTvbh2Jt94tB99NmTaXXWcNKQTFXdkDyaVVUnc37P9RyVf5yc2RRH7s4YuJXhjgvYqlS7uixcZIRRtnqvk8u6vsjE0qtxVk80pqM5qM+eTI3XE88b/da4eG1lpFRtSM5mYdu19FhTaHNW0W9PiN8fO8izKXkkvp6I379GbzOXdV7N6YP/RbOzTqbhh2nvpaY5mJNOYVzHLOadOZ9LL/skp82dR3NzM3ayCsMwwggeOEYNpvBIhA67sV5oRrFvmVB+jaSfZUNyNrYoxYbOytRJtJdXUu93jzBUN4X1M+QcsXUeiZTEk4fujZ3eZ/b/Ml52FBm5jzZ8hnqvM54HarxOhs/RUaG2qMZIpIg2u+sxhEvObCLAYMCcQMmo4eTMvZwxeCeulooV3zjLbLjBFxoq257v+X3Xs6D/5+iBlMODZnusB0TjOTJGHC0ZZ8zZwww1oZm8v/t66p3NI7J9tp1n/7bzS7KKtNmyjaN3WTwvRBXQjcChwd0yQna0eBuY338LG0L5867in/n4li9iBmUS/tBWoyD7wDbK/Uvx3N9td8SRQ1lhPHIMaCMc5pFhuK2OMmi1U+91xZ0fZGZOiQ3J2axInxpnrJ3V/wscPb3V2NkmoGLicc7ALzgm+3vZIlPT6bfGhddwIR3F5zGCMmW9mjMGbo91hUnlV2K9qsbrDuW3Rt5siK8/ul5dePTYU7GCkkw5DvXDtVUnxDUKqr3eOMjQa08OMwy9OKspihB32x0srv84DV4nzeEa643Jo+Qcbss5PEITPhsTR/HRrq/S4G6WHUyGyYUoeyySD43eZi7p/CfeO/CfaMKXug5ldBGMuO54zPi9sSz621AfLek16EIuj3D1ZDwWhmc6Rjrc1ixOj03JWXG2ZKRbRP3it9gz4+OPFpCQRUU7ZVApzDBYn5zDm1Xv5T1Dd8f6lRbWExpu8J85cFtovMtI+ZbEzHjNe6THf6jnO8zKP8Gm5JE8U/8xmr3NVHvy2bxZdSof7P0+E8rL42UpNi6HF/9Mu7smvu9RMOG83u8zO/9H3koejqun4r//de+PmDfwH4xzVtDmrKbK64ewsO+2Y9QIHDYkZ3N/2//D0VK0OasQwIbk0WFx1RYmlpZT63XF+nr0fM2gjB2URowFOda2OvmjZXPDM2+isTez+CyN7uY4kDjW0cTwcqaKA0omk6Guro6hr0BVwmRV6kReS88lZzQhqxcOMKW4lOfrPsS8efOYMWMGnuexdu1aXnnlFfp7uwnQqXO3kDFb4jVdLc7aeCJoK68iazZR4/VxTO5hHm68gkmlVzg5c28syNcljubJhsso69WYQZFJ5VfDtWXgYXJX2/doc1Zz9sAv+GPDP1DUa5mTe5gnGj6Fq6e4uOvrI7xTAGsSx/Jkw2W4eorW8mqqgwF6zQlkzRYmll7lXYXF/Kn+EkpGDcAO9/Fc9QdZVvM+ACaXXuKkzELq/W48TJ6vPZ/X0nPxNZtWZzU5o5Ear4/z+r4ff39H21X7A2SNRnqtyUwsvcqCgZvQEXiMvP8iXAsc6Ena2lpJpqqYOnUqEydO5KGHHkLf/Czn9V7Pvc3/j3q/M75fAPc3fQk0jYzREqbv/4r/aftufA+HH29x3cewRYFar4fz+n4Qn/fDjZ9lc/JITh38b56r+RCunmJy6SUmll5lcf3fMKn0cvxzs7OOAeuwuFWFJvz4Hi+q/0T83ZMyCxky23mk8QomlV7mpMxCqv1+1qbezdrkMRT0OnJmEwWjniOOOILu7m76+vpk4RB3Cx8cdn5rU+9mdfJY+qxJFMI2P7LllUuTs5Gs2ULJqKGtvIp0MEifOY6M2YYI1+ZXBwPkzCa6ranomkZ9fR21dfWkUilef/31+Lo9PRF/R2gaPXYHF3d9nWq/n+drz+fV9BmAzqTSK/G9Hf7+vFRzDkIzaS2vpioYpN+cEHZE8Kmtb+S4445j6lTZWmTt2rWsXr2azNAQhWIRx3G4uOvrJP0Md7Vfz7jyG/H7MhwPk2dqL+CN9BlMLL3KmQO/HPG8NyZmx/f8+MwD9NsTWZs8Bkevij3JffZkWltb0TY9y3m918Xv/qTSyyPGKsCg0cbj9Z8Ms2xkRXRPSzCp9DKTSq/E78eE8nJeqPkgJaOGpDdA2agd8c4DPFx/ORtSxzKp9AozC3+Ox2RbeRVyiccUAs2i1VmNbKM4FYHBpNLLeJrNW8kjthu7w9+PTcmjmFB6LT6mvK5zAX3EmF6XOJqn6i+lZNTIPsnodJReGDEPbTs/VvuDNLmy6IufaqGtfRzpdJre3l76e7vxhUabsyZcT9hIl9VB0jaZO28+kydP3vGkPPy5hnPt2rVrccol7ESSqVOnYhgGj/3xj0wqvcRJQ1ufTaYMdd+T1cZra2vfdv+Kg4tIXq//WjOiehwPN14Bms6FXd/kd81XA4JxzpvxO7s+cTSPNF5Bs7MulsfR3Dx8DHqY/Gfb9+N5elzpdZ6p/wigbSfL08Egeb1eFrgSAZpuyAr1YXbH8DGzInUSixo+FTr4ZWymrbwyljN/rrmIV2vOHjF+SyS5u/17jCu/uUO5NRwPk0cbLmdj8mjQ9BH72XY8Tygt58yBX/JC7Xm8kp6PgSdlcnk1fdZEGt1N9NhTMITHhPJrI463PnE0DzdegY5PgDliTozmhReq/1pmGCD1nwFLZhNEskMj2G4u67Kno+HH89mk0is8Xf83gBbPTUk/w93t3+Ow8ooROovl53D1FBrscM4PMLbqHph0lF5geuE5nqj/ZCzTatwu2TFGk10oJpVe5oTM/fTbE1mVPI7NyVkj5s7hlEjyXN0FrKg6JeyeozGp9DJ5owETl/N6r4/fv0jWR8/Gw2R5eh4vV59FUa8Nr/dlTsrcO0yuzkNoJhd3fZ1Bsz1+lnXuFrJmM4FmhXVntv6PEDQ768haLZT16lhmZ4xWynoVoDFp8mSmTJnChg0bcMolTMvG9302b94EAiaVXpZLojSbD/b9YHu5EHboCDQz1uc6rY647knGauO9A/8Vy8DhOuNwPVZHxO//ewf+Sz73Ye9w9M5t+z6uSRzDHxs/zaTSK2xJzOSw8goWDNwUP+9X0mfR7Kylz54y4vjD9eFarwtPs/E0W3ZxMXRmHn4Eb76+HC8grvMyZLbhaLJg4fA5Y13iaJ6o/2Rc4yca88PvVVt5FalgiH5zvCxCG8higIGRIEAnEeSpd7eM0Jcfafg0Jb1mu/u+7b6iAnetzhqqt5GtR8yazbKlS0fIRg+TFamTebHmr0NdUWCYNtXV1WSHBgjQ43dIOi6athunhnDj5xBgbGeTROcdzT3Dx1nCz1HvdY641nhOH2MyWxnoY4hI4A98BeoT238eoPFo4xV01b6bv/nbSzFNc8TnwxXIcqnI4FCGYiEni5iE7Zo83aasVeHrie0m29hQ0hvoTkyTir6epM1ZzXm918fHGT7RF/UaqoN+zhr41QhhPpoAX516N8/XXkDJrGPipClUV1ezfPmrTC69zPFD99NjT2Fx3ce2E8oRaxLH8kTDJ2OvYXzORgPd9jQMXaOpuYWhwX7GDz0zwlAefh6REeroVQyabWg14ykUCtsp2SANoCV1F7IhOYcF55yznTK/YsUKFi1axMVdX+e52g9R1GtHDP5IMRouKIYb1sOFZSQItlVwhguUeQO/4oXa82JHQ527hZzZtN3PNV6XXKO0jcBfkX7PVifFDpSVan9gVAMmulbYsRMlOtdVqRN5JT2fAWs8AJPKr3BYeQVddgeOXoUdFGhx1rEmdTx99iQaG+qpratn6tSpTJ06NX63Pc/jrv+6k7bMC8zr/yVrUieMcJq4ehUTS8tHODoea/h71ieP2aEx221M4o9NnyZnNmMZOlYiyeTJkznhhBNIJpPbXUt8TcPO4+z+m0YY2cOf3/D3ZX1yDiCYXHqZicVXRjzv4eMuUrSjdzi656+8/BLJNQ/G7/COnFyRcm4Ih9qGFo459jjWrl1LZmiQocEBfKFR53WSMxrxNTsW9hmzjbKWArTt7tMz1RfwSs2CEQpiNFYQARmzlZzZTGNDPdU1tQRBwJbNG/GFFivfO1IiAdYmjubRxitHHLNEkscbL2dz4nDpPAnfwchhowG6YdBcXDFiHhqNB1q+TGrGmSxYsGDE89uRcT38Xdsb1q1bx1OLHqfkePH59zhp/uZLPxkzwl5RWYY71GsT0hGracTG0MONV0rZOUwWDFd0a91Oino1rp7ebgzGBkFouNa5b8nlJmE/5kiWR0q9oWvMO1O2owN47rnnWLZ0KW3umnjMRDKk2uul156IBkwtLR3V+T7cII7mutHkFoyc9wxNML7w8naOh7Wpd7O8ai7ddkd8zYNmO0/WX0rZqCHh5xBoOHoVzc46Bq12PC05wnkX3cdFDZfh6NVErRTjeSOcRy1TJwgEge+NMIDdsOUlms748eMxTRPXKeP5AX29Pfh+gIEby9Os2Rzf90hedtnTt5sfy3qajN5E3mzazjk63DB8sPmL6MLjvL7v79DRWOMP0OqsZnXqRKmXhYZPvzWBQaNtVCftcB1FCCHno7IzwkmzraE13MFjCIe6xlaOP+HEeC5rc9eQ9vrJms30mhNjwzDAiHWosp4O76lGxmzF1VNUpZJ4foDnyM4tso+6NcIInTvvzPh93RbP83j++ed57dWX8YXMTIr0jeEO34zZRjmsdB5oJiW9muaWVoQQcTChvbxqO2dzOhik3xzHoHlYfD+r/f74/Z9WWMITjX/HxGGybKshnBrVmYwQO3E0S6Mzkt1Zo5Eeu2NEQGK4TNodh/DWAM9HafY2jRjzw3VdOygwtbSMqcUX+F3LNSSmncG0adN45s+LGTe4eIS+HOmt2973bfdV52zh/rZ/pqWlBcs0tpOtw2Vj9D6Npl9G1xwFRhzXxTYNDMtG13VMQ8cPRDxOdxRoanNW8VzdRdvpz9E4GzLbRg0kKgNdMSqRwL/3e3/PfOc3u2UkjkapVGLJkiWsXbsWz3XRNEhVpSkX84zLL+Ps/pGTbTTwJpeWsTZ1PFvSx+D6wXYv87YTfaSEjOal3dk1bDuACfxYAO5IED1bd5FMh6mtxXHKIAQ1tXUcccQRTJ8+HdM0eeSRRyitfJwP9lz3tvcoUuhnzpy5yxPJcIYbb1OKL/JkwydHNa6HC4o69y1yZvOIaH6kXOwosrLtvR0e7c7r9QxZbTh6moa6WgzLRtM0TEMnkUxRU1PDyjdfj68t5Q3Qb00kY7aia4Km5laam5spFAq4TnlUA8bzPP77P+/Ac4pMKO3YiQLSmfRIwxV0172b955+Bk8/tWi372vE+vXreeThh3foPHktdTpPh0rQ8HdFGrOfCHu8r44L5nTZuxc13dl57IqRHStKjjfCUG51VlPlD454Bs0tbcyaNSu+5zt6h0cTksur51E1Y96oRmm5VMT1/BHvRCTsR3s223nGd3L/omMtX76c7u4uGYEZxdG1PjkH29RxvGC7Y1qGTkNTM6ahj3gH16xZEzvBduQUGn6Me9r+Nc4w2p+USiWee+453njjDRA+gdC44oorxoywV1SWbQ303zZ9gWSQjZXcHUWkYfsxXNKqGLDGIzRju/EQtfSS/bE9XC0RFicU2JZJXX3jCLk3nMWLF7N8+fIRx49kSJOznl57yggDfvjn28rv4Vl1w53Ao82twKhz9qDRxhMNn6TXmhRf87byqKa2nkIui+sHpPxBynr1iChpdDzL0KlvbMJ1HBzXJWGZ1NY30NHREWdCrVq1itdee41cLrtDXWE4kWG4/JWXCdBGve/JVJpiPovri+3nMFO2IHW8YLs5v9ofoNeaRMZsfdu5rM8Yz8K2fxlh+Gwrx9/O2HnwwQfj7L7R3r8dyZAdGYc1NTW8+soruxXE2FvHqOd5rFq1isV/epIJRbkccDR9Y3jwCuC///NOavMr6bUmj5qtljFayJlN8Xs4XPccX3qNZ+o/EmYTjJ6tua0zWSMgQI+ztYZ/VlVVhYDt3tPddRLvzOiF0YMnw5/XcDk5mq6xI4fdzu77aNdRaQf5tg6cVmeNXKMeBpp04Y4I3Iz47k6uSxnoilGJBP4NP/4hyarqXVKM95SdGT3DJ9v5Z53F008tiiOHw19mD5Nn6i7m9fTcUdPZtvXSWobOmWedvd01bDuAPT9goK8X199eid+V+zA8qr07E9WeTiTR/ZxYepkuu4P28qpRoxDDBUVZT1PS0uTNBhwtRWtbO7NmzQLgiSce387QGa4ovV20e1sqNUmuX7+ehx9+eDtv8fB7+mzthWxIHc0555zL5MmT9/rYOxNIwxWiXTX49jRquu15bKtYbmtkw64Zyjs6pz19h3eX0Z7NxIkT2bhx424/s13xmI8fP3633odtMxj2RlnYF4y4Zmc1ab+fHqdaRdAPYbY10IenhMLuKbidNcdx0imnxqm+ezsGYfQxMyLix/bK/I7kdxyVDudTQ9fedh57u3ngvaefge/7o17bns6blWBX5NXOtgFGPXfLTrBl8ybG5Zfu0Vy2O7K00jJkd6KhlWRX9dXhzoHoO83OWjJmyw6XhWjC5+hjjqOxsXGHuueOHCzDnUM70i2Aihqjo7Gj92DSpEk89+yfd1tOjvae7EnAbX+y7T0wLTte1tbT0z1qoOCJhk/SY01hcvnlMb0sTRnoY4hI4F933XW0trbS2NgYD7zJkycza9aseICXSiV83x91X1VVVWhh9eFyuYznedtts379ehb/6UkCdNq9taS9fgZFLVuMybEAnTRpEhs2bOCxP/6RiaVXOK1wP41CFrJyfOjkMH7bcg3jSm8yf/CXcdVBD4POmnezvupYHL2KXpopGXV8+CMf3WEqcTKZxDDkmnnHcXBdF8/zWLduHevXrx9xHw4//HASCbkGwHVdHMfZbn+e53HP/9zF+MLLnDt0MzoC15fnHBEAjzdcTnftsVz80b8hnU6PEL7lcnnU+2vbNpZljdg2up8lxwMhmFR6heOzD9BKD5YRroWpu4ScL/tHp/1BCmYD3dbU+H5PmzYN27YBWL16NY//8RGZNuuupcobiLe3DJ2mllZSyUR8X9rb20cVAJZlxfsNgoBisTjqtZmmGd9fIQSFQmG7bdavX89TTz5B4PuYdpLWsjRK+vxqeuwObFPn9DPOZNKkSfF3DMMY8ezz+fyo57CjbUd7Hzo6OkilUvFEnRkajD+bMmXKiHui6zqpVCr+vVAoMNoUqGkaVVVV2227o/OYMmUKRx55ZHysYrFIEASjXl86nY5/Hm3b6B2eVH41FrYlD/xhm277DtfV1cWfVWKO2JNtU6kUQRCwdu1aVqxYQbGQH/V5pFIpdF3OGtG4H42urq44te/Yvv8j7fbEnw0arfyl9jw2Jmcz/6yzmDlzZjyfjDZHRCQSificdmfb4eP+8cceY2LpFY7P3E992DO+5EHz98eOsFdUlkhev/7FJiaafaxMHc9zbZfHSm7Jg7XWUTzW8PdMLL3K8dkH4ncDwE1tVXBPnzuXCRMmjHqsPR2rK1asCB3HI99ND4Pl6TN4tfF8Jjmvs2DgJjxfysjo83WpY1mfOJouexqOWcu8M2WWmWmabztWI3nueR5vvvkmq1evHjFnD58Hhsv+fT1WR2NH8nxXtvV9n1KpNOq2w+Xu8G2H61TRc7EMsA1pQDxTcwGrjSOYf9ZZI2Tojva7M3nueR733vM/cfRZE4LCNo9tuAz5m7+9NJZNo8n+SP5t3LgRRBAboK2traPqH7sj+7eV0dG2w/WrSB8qWo0Mpt8VOwdaWlpGyPPh36n1ezAS6TjNPvBc3nv63NioHo7v+3R1dcUOllxe3ofIObTtO7wr8jxi+LZvJ6N3Z9to3K9fv57f/fa3jC+8NGLMw1Y52VX7bs45VwZPyuUypVKJe/7nLlozSzlzYKseD9CVns3TjZdRMmpoyK8g6fZtp7dG7+juyPMd6fy7su2ujvt169bx+B8fIV8sb6c/J22Tdx0xi9Ur38T1Ba3OalJOH2+VEnzqn38+dmS2UIwZhoaGZLPtUf4N56KLLtrptrlcLt72sssu2+m2zz77rHj44YfFg795QHzgAx/Y6bb/9m//Ju6/8cvi0Z9cLs6ff+JOt331CsTAv7aJP9xwpXj/+9+/022fe+65+Hyvv/76nW77xBNPxNveeOONO932c5/7nPjDDVeKgX9tFbedN/p2gLjnnnvi/d5zzz073fa2226Lt/3tb3+7023/4cNni0d/crm4/8Yvi6uvvnqn215//fXxfp977rmdbnvttdfG27766qs73faf/umf4m3Xrl27022vvPLKeNvu7u6dbnv++eeLhQsXijvuuF3ccvMvdrrtRRddNOId3tm273vf+0ZsW1VVNeq2c+fOHbFtc3PzqNsef/zxI7adPHnyqNseeeSRI7Y98sgjR9128uTJI7Y9/vjjR922ubl5xLZz584dddtUKiVuufnm+B1+34ydv8PDqeQc0d3dHW975ZVX7nTbtWvXxtv+0z/90063ffXVV+Ntr7322p1u+9xzz4m1a9eKO267VVxwwQU73XZ35ojf/va38ba33XbbTrfdnTni5++T/w8NDQnFoce28rrKQtzx8x+IP/zkCuFfq73tWL355pvFHbfdKtatW3fAxur1131X3HzzL8QfbrhSfO7U0efYPRmrEZWU5/tqrO6OPL/xxhvjbZ944omd39/dkOeXnHOcuP/GL4ubb75Z/Nu3/3Wn2+6OPL/kkktiGbLyy6PLRkBcdtll8X5zudxOtx0L8nzmzJlixYoVwnVdIcTO5fmkSZPEg795QDz88MNixYoVB0SeV1VVjdj2fe97307v23B2Z4648MILd7rtCy+8EG/7tvL8KkTvv44X9/7sa+Lss8/e6bZjbY741a9+tdNt7777bvGf//mf4uabbxb/cPnfx38fKzJ7/+UAKsYsHR0dtLS0APDQHx7e6bannHIKrutSKpcwGwaA50bd9vHGT5FoO4mkbTJtmlXJU95ljj32WLp0uCc5h1drHgB+v9/PwWqdSaljAalEkmPrRk8zOxipq6vjggsuAKSn+x8+/ZkDfEaHFpqmcfaCBTy1yOSe5By67OuANQf6tA4YU6ZMYcLfXsry19880KeiUGzH3ME7eaTxCh5t+AwutwKjR3rmzZu3z1K0d5UPXXARpmny1CKLN6tWAo8esHN5p+M1zCQ140zmTZ1KoVDgn//fv1RkvzU1NbEMedXtAP6pIvsdC9TW1u7ysq7q6mre/4EP7uMzGhtUV1fv9POJEyfu8r4eafwMtB1L0jaZOrV3b09tvxJF3Xf2uWEYMlNEG3tdxyue4u44Dvfffz/PP/88g4ODO0zJ0DSNW2+9tZKHPSQYnuI+adIkPvCBD4z4fE/SXaDy6aujpbBsm/pbXVPLtGnTmDp1KkEQHLB0F5BrglauXEkhnxs13XYsp8S93bZvl7Ze6RT3Pdl2b1PcR2O0lLhd2XZPUtx3ZdtKpLgP3zZaa/Xmm29SKhZGfYfH+hyxN9vu65S43d3W8zx+//vfU1q1iL/u/fF22x4sKe5KZu8Zw+V1VVK2tJykb4ZAFisqe9BUWrXDpUyTJk0aU2N1V1LRD/ax+k6X557nsWbNGt54441Rn7GS5zvettLyPGJfpLjD3s0Re6PHH4xzxH333RfLvfPPP59x48aNGZldUQN9/fr1nH322axevXrUFx/ky7+zF+2dSiTwf/KTnzB58mTOP//8A31KCoVCoRiF3z74mxGt8IYz1grO7Agls/ec4fI6lUoxZ84choaG4mJFGzZsAOS61QkTJ+3TomYKhUKh2D08z+Puu++WDi4R0NLaxgUXXDBmZHZFJcUXvvAFVq1axSWXXMKnPvUpJkyYoISRQqFQKA5J7ESSgtl0oE9jj1Eyu3KMHz+ek046Kf79lltuAaC6pnZE+0OFQqFQHFh21Hmld/XOlwbsbyoqiR9//HHmz5/PHXfcUcndKhQKhUIx5pgyZQqL1nUwaLTutI3RWEXJ7H1PlEqqUCgUigPPunXrePSRR7Zr25cZfWXLAaGiq+KDIODYY4+t5C4VCoVCoRiTdHTI/r9L6i4i4OAzxJTMVigUCsU7Bc/zeGrR40wqvcTZ/TeNacd6RQ30k046iddff72Su1QoFAqFYkximrL/7obkHB5tvIJBo/VAn9JuoWR25VCRcoVCoRjbrFmzhpLjcdLQvehUtEZ6xamogf69732Pxx9/nHvvvbeSu1UoFAqFYkwyefJkzl6wgK7ad3NP27d4oOXL/LHhcn7X9PkDfWpvi5LZ+x5luCsUCsXYYN26dbS7a8Z05DyiomvQf/e73zFv3jw+8pGPMHfuXI477rgdVsLTNI2vf/3rlTy0QqFQKBQHhKg/+9q1a1m7dgqlcomk5wM/OdCntlOUzN73KANdoVAoxgZOuUSV13egT2OXqKiB/o1vfCP+edGiRSxatGiH2ylhr1AoFIpDCdM0mTFjBjNmzABkG66xjpLZlUMZ4gqFQjG2OZg6r1TUQH/iiScqubt3NErYKxQKhWJfomR25fE8jzVr1shfREA2m2XFihV0dHSoFnYKhUJxADmYOq9UVFrMnTu3krtTKBQKhUKxj1Ayu7LsqLdu3m1k0SKHZ//8NHPnzWfy5MkH+jQVCoXiHUlHRwfP/vlpltRdxNn9N43pQnH7xJ27ePFibr/9dpYtW0Ymk6G2tpZjjz2Wyy67jFNPPXVfHFKhUCgUCsUeoGT23tPZ2ckLf/nLdr11AQaNVpbUXcQjD3ucvWABU6ZMOXAnqlAoFO9Qos4rjzzs8WjjFdvN1WOJihvoX/jCF/jpT3+KENIroWkaQgheeOEFbr31Vq666ip+9KMfVfqwCoVCoVAodhMlsyvDy8tejHvrbhuVqfe7Obv/Jh5tvIKnFplM+NtLVbq7QqFQHACizitPLTK5JzmHNncNaa+fHjfNWCrsWtE2a3fccQc33HADM2bM4L//+79566238DyPLVu2cNdddzFz5kxuuOEG7rzzzkoeVqFQKBQKxW6iZHblcLxgp711dQQnDS2k5HisXbt2P5+dQqFQKCKmTJnC3/ztpcybN4/UjDMpdbyf5LTTD/RpjUATkdu8Apx88sm89dZbvPLKK9TV1W33+dDQELNnz2bcuHE8++yzlTrsIUMmk6Guro6f/OQnTJkyhfPOO+9An5JCoVAo9oBoPh8aGtph67KxgJLZe85weZ1KpWhz1nBe73Vv+70HWr5MasaZLFiwYD+cpUKhUCh2hbEmsysaQV++fDkXXnjhDgU9QF1dHRdeeCHLly+v5GEVCoVCoVDsJkpmVwgRkPZ3rbdu2uvHKZf28QkpFAqF4mCmogb6rqDahykUCoVCcXCgZPYuoOnkjV3rrZs3G7ETyX18QgqFQqE4mKmogT5r1iwWLlxILpfb4efZbJaFCxcya9asSh5WoVAoFArFbqJkduXosmVv3Z0xaLTRZXUwderU/XRWCoVCoTgYqaiB/ulPf5pNmzZxyimnsHDhQnp7ewHo7e3l3nvv5T3veQ+bNm3iiiuuqORhDz1EwODgICtWrMDzvAN9NgqFQqE4BFEyu3LYps6SuosI2HHGQYDGkroLSdqmMtAVCoVCsVMq2ufjk5/8JEuXLuXGG2/k4osvBkDXdYIgAEAIwT/+4z9y2WWXVfKwhxxTyssg286iRWWe/fPTzJ03n8mTJx/o01IoFArFIYSS2ZXj2HefwHNLgh321h002lhSdyEbknNYMG++arGmUCgUip1S0SruEX/605+4/fbbWbZsGZlMhtraWo499lguu+wyTjvttEof7pAhriD4FahNwKDRypK6i9iQnMPZCxYwZcqUA32KCoVCodgFxlpF2J2hZPbus20V9/POO49ischTix6n5Hhxb9282UiX1UHSNpWzXaFQKMYoY01m7xM37mmnnaaEegWo97s5u/8mHm28gqcWmUz420uV512hUCgUFUXJ7L1H0zSmTJnChL+9lLVr17J27RRK5RKpRJJ5U6cydepUJb8VCoVCsUsoaTHG0RGcNLSQe5JzWLt2LTNmzDjQp6RQKBQKhWIHmKbJjBkzlKxWKBQKxR6z39usKXafer+LNncNa9euPdCnolAoFAqFQqFQKBSKfcReRdA/9alPoWka3/nOd2hra+NTn/rULn1P0zRuvfXWvTn0O46010+pXDrQp6FQKBSKgxQls/cRImDJkiW8613voqOjQ6WyKxQKhWKv2Ksicbquo2kar7/+OjNnzkTXdy0gr2kavu/v6WEPWbYtEjecB1q+TGrGmSxYsODAnJxCoVAodpmxVnAGlMyuJNHzvev6q2ix8+SNJrpsVQxOoVAoDkbGmszeKzdvlHI9fvz4Eb8rKsug0UaX1cE81TtVoVAoFHuIktmV56/7b4gd6lHnlUce9lTnFYVCoVDsMXtloG/rIVYe48oToLGk7kKStslUZaArFAqFYg9RMnvfojqvKBQKhaISVLRI3IYNG8hkMjvdJpvNsmHDhkoe9pBl0Gjj0cYr2JCcw9x585WgVygUCkXFUDK78kSdV0qOpzIUFAqFQrFHVNRAnzp1KjfccMNOt/npT3+qIsFvwxP1l/FAy5e5p+1f6ap9NwvOOUdFOhQKhUJRUZTM3jeozisKhUKh2BsqGpIVQvB2Nef2oibdO4bylHOpb2hk3tSpTJ06VUXOFQqFQlFxlMzed6jOKwqFQqHYU/Z7H/RNmzZRU1Ozvw87gkwmw9VXX83kyZNJJBJMmTKFL37xi+Ryud3aj6Zpo/77xCc+scfnd+5fvY8FCxYwY8YMZZwrFAqF4oBxoGX2WJfXo5E3G7ETyYrvV6FQKBSHPntt/f3rv/7riN8XLVq0w+1832fjxo38z//8DyeffPLeHnaPyefzzJ07l2XLlrFgwQI+9rGPsXTpUn7wgx/w5JNP8tRTT5FM7rpQnTx58g6F+zHHHFO5k1YoFAqFogIcTDL7YJXXqvOKQqFQKPaGvTbQv/GNb8Q/a5rGokWLRhX4AOPGjeO6667b28PuMddffz3Lli3jy1/+Mt/73vfiv3/lK1/huuuu48c//jFf/epXd3l/U6ZMGXEPFAqFQqEYqxxMMvtglNeq84pCoVAo9hZN7OUCsyeffBKQ69TOPPNMPvGJT3DZZZdtt51hGDQ2NnL44Yej6/s9sx6Q5zhhwgQymQydnZ2k0+n4s3w+T3t7O62traxevXqX9qdpGnPnzt2pcrM7ZDIZ6urqGBoaora2tiL7VCgUCsX+Z6zO5weLzD5o5PVXGNYHvY0ldReyITlHFXdVKBSKg4ixJrP3OoI+d+7c+Odrr72WefPmcfrpp+/tbvcJK1eu5K233uKcc84ZIewB0uk0p556Kg8//DAbN25k4sSJu7TPwcFBbrnlFnp7e2lsbOTUU09l9uzZ++L0FQqFQqHYKw4WmX2wyOvfNX2eFitP3myky+ogaZssmDdfGecKhUKh2GMqWoHs2muvreTuKs7KlSsBmDFjxg4/nzFjBg8//DArV67cZYH/0ksv8elPf3rE384991zuuOMOWltbd/rdcrlMuVyOf3+7frQKhUKhUFSKsSyzDxZ5nZx2OiXTIJVIqs4rCoVCoagI+0yK+L5Pb2/vCIE2nEmTJu2rQ4/K0NAQAHV1dTv8PEppiLZ7O6655houvPBCZs6ciW3bvPrqq3zrW9/ioYce4v3vfz/PPPMMhmGM+v3vfve7fPOb39zNq1AoFAqForKMNZl9sMjr+fPnj4l0SIVCoVAcOlTcQH/hhRf42te+xlNPPYXjODvcRtM0PM/b42Ncc801oyoRO+Kqq64a1Qu/N/zgBz8Y8fspp5zCb3/7W84880yefPJJHnjgAS644IJRv//Vr36Vq6++Ov49k8nsciRAoVAoFIq9ZV/LbCWvFQqFQqHYPSpqoC9btozTTjsN0zRZsGABDz74IHPmzKG9vZ0XX3yRnp4ezjjjjL1em3XzzTeTz+d3efuLLrqIGTNmxJ740TzuUcraaB77XUHXdS6//HKefPJJFi9evFOBn0gkSCQSe3wshUKhUCj2lP0hs5W8VigUCoVi96iogf6tb30LgCVLlnDEEUeg6zof+tCH+Jd/+ReKxSLXXHMN9957L//xH/+xV8fJ5XJ79L3IKx+tbduWt1vztqs0NzcD7JZSolAoFArF/mR/yGwlrxUKhUKh2D0q2jvl6aef5oMf/CBHHHFE/Leoi1sqleLGG29k3LhxfO1rX6vkYXeZGTNmMG7cOBYvXrydMM7n8yxevJipU6fuddrakiVLANlzVaFQKBSKschYltlKXisUCoXinUpFDfShoSE6Ojri3y3LGuE913WdM844g8cee6ySh91lNE3j7//+78nlcnHkIOJb3/oWuVyOyy+/fMTfC4UCb7zxBhs2bBjx91deeQXXdbc7xp///Geuu+46LMviwx/+cOUvQqFQKBSKCjCWZbaS1wqFQqF4p1LRFPfW1lYGBgbi39vb27dLTyuVShQKhUoedrf40pe+xAMPPMB1113H0qVLOe6443jxxRd55JFHOOGEE/j85z8/YvvnnnuOefPmMXfuXBYtWhT//Yc//CG/+93veO9738vEiROxLIvly5fzyCOPoGka//7v/860adP278UpFAqFQrGLjHWZreS1QqFQKN6JVNRAP/LII3nzzTfj30899VTuv/9+nnnmGU455RRef/117rnnHg4//PBKHna3SKfTPPnkk3zjG99g4cKFPPHEExx22GFcc801XHvttaRSqV3az3nnncfg4CAvvfQSjz76KI7j0N7ezkc/+lE+//nPc+KJJ+7jK1EoFAqFYs8Z6zJbyWuFQqFQvBPRRLTgrAL87Gc/4wtf+AIbN27ksMMO46WXXuLkk0/GcRwaGxsZGBggCAIWLlzIhz70oUod9pAhk8lQV1fH0NCQ6quqUCgUBzEHw3yuZPaeczA8X4VCoVDsGmNtTq/oGvTPfOYzbN68maamJgDmzJnDY489xrnnnktzczNnnXUWDz74oBL0CoVCoVAcYJTMVigUCoVi7FHRCLpi7xhr3huFQqFQ7BlqPj+0Uc9XoVAoDh3G2pxe0Qi6QqFQKBQKhUKhUCgUij1jr4rEfepTn9qj72maxq233ro3h1YoFAqFQrEbKJmtUCgUCsXYZ69S3HV9zwLwmqbh+/6eHvaQZaylVygUCoVizxiL87mS2ZVjLD5fhUKhUOwZY21O36sI+tq1ayt1HgqFQqFQKPYhSmYrFAqFQjH22SsDffLkyZU6D8VBiO/7LFy4kN/+9rc8++yzdHd3UygUqK+vZ+bMmZx22ml8/OMf56ijjtqv5zU4OMiTTz7JCy+8wIsvvsgLL7xAZ2cnALfddhuf+MQndvr9Bx98MP7+hg0b6OnpoVQq0dzczJw5c7j44ou55JJLMM23Hz5Lly7llltu4fHHH2fz5s3ouk57ezvHHXcc5513Hh/72McqcckKhULxtiiZ/c5FyevR5XWxWOQXv/gF9913H6+99hqZTIaqqiqmT5/Oueeeyz/+4z/S3t5eyctWKBSKnSMUY4ahoSEBiKGhoQN9Km/LM888I2bOnCmA+J9lWaKxsVHouj7i7xdccIEol8v77dxuu+22Eccf/u+222572+/PmjVrxHdqampEMpkc8bfjjjtOdHZ2jrqPIAjEF7/4xRH3oqamRqRSqfj3OXPmVO6iFQrFmOJgms8Vu8/B9HyVvB5dXq9bt07MmDFjxPZ1dXUj7ktdXZ148sknK3zlCoViLDHW5vSKV3H3PI8f//jHnHjiidTW1o7wWi5btowrr7ySFStWVPqwiv3Igw8+yBlnnMGKFStoamriu9/9LitWrMBxHPr6+nAch+eff56vfOUr1NbWct9991EoFPbrOba3t/NXf/VX/PM//zP33Xffbn33oosu4pZbbmH58uUUCgUymQzFYpHNmzfzzW9+E13XefHFF7nssstG3cdVV13F97//faqqqrj++uvZsmULmUyGQqFAT08PCxcu5IILLtjby1QoFIq9QsnsQxslr3cury+99FJWrlyJbdvceOONZLNZBgcHKRaLPPDAA4wfP56hoSEuvvhiisViJS5XoVAo3p5KWvuFQkG8973vFbqui9bWVjF+/Hih63r8+eDgoEgmk+Kf//mfK3nYQ4ax5r3ZEStWrBC1tbUCEEceeaTYuHHjTrfv6+sT5513nhgYGNg/JyiE8Dxvu7+xGx75t+OrX/1qvL8dXf9DDz0URyieeeaZvT6eQqE4+DgY5nMls/ecg+H5Knm9c3m9bt26+LNrr712h9//4x//GG/zhz/8Ya/PR6FQjE3G2pxe0Qj6d77zHRYvXsx3v/tdOjs7+fu///sRn9fV1TF3IqYq8QABAABJREFU7lwefvjhSh5WsR/5f//v/5HJZEgmk/z6179mwoQJO92+sbGR+++/n7q6uhF/dxyHn//858ybN4/m5mZs26a9vZ3zzjuPhx56aK/O0TCMvfr+23HyySfHP2/evHm7z7/5zW8C8NnPfnbEtgqFQjGWUDL70EbJ653L6y1btsQ/H3/88Tv8/oknnhj/nMvlKnx2CoVCsWMqaqD/7//+L/PmzeNLX/oSmqahadp223R0dLBhw4ZKHlaxn+jq6uLee+8F4OMf/zgzZ87c5e8OfxfWr1/Pcccdx2c/+1kWLVpEf38/VVVVdHV18Zvf/Ib3ve99XHHFFRU//0rxpz/9CZDX1NHRMeKzlStX8uyzzwJwySWX7PdzUygUil1FyexDFyWvJTuT18N//8tf/rLD7z/33HOAbFF47LHH7qOzVCgUipFU1EDfsGHDqF7IiJqaGoaGhip5WMV+4oknniAIAgA+9KEP7dE+8vk85557LsuXL+eMM85g0aJFFItFBgcHGRwc5Ec/+hHV1dX84he/4IYbbqjk6e8VuVyOV199lS996Uv88Ic/BKQB3tLSMmK7p59+GgDLsjj66KN58MEHOeuss2hoaCCVSjFz5kz+8R//kXXr1u3vS1AoFIoRKJl96KLk9dvL69bW1rgWzHe/+13+/d//PY6Su67Lb37zm3jt+jXXXLOdga9QKBT7iooa6DU1NXR3d+90m9WrV283SSoODpYvXx7/vKee5B/96Ee88cYbzJ07l0ceeYS5c+eSSCQAmU75hS98gTvvvBOAb3/723iet/cnvoc8++yzcVSppqaG2bNn8/3vfx9d1/nUpz7FL37xi+2+ExVTamho4Gtf+xof/OAHeeyxxwiCAE3TWLlyJTfeeCOzZ8/mD3/4w/6+JIVCoYhRMvvQRcnrt5fXAL/61a8455xzcByHz33uc9TU1FBfX08ymeS8886jsbGRX/7yl1x//fX7+YoUCsU7mYoa6CeffDIPPvggg4ODO/x848aN/P73v+f000+v5GEV+4m+vr7458bGxj3ax6233grA1VdfjWVZO9zm/PPPp7a2lt7eXl544YU9Ok4lsG2btrY22trasG07/vunP/1prr32WlKp1HbfGRgYAKC3t5fvf//7nHnmmbz22msMDQ2Ry+V45JFHmDRpErlcjosvvpj169fvt+tRKBSK4SiZfeii5LVkZ/IapDP9vvvu45prrolT+4eGhuLsg1wuR29vL77v7/uLUCgUipCKGuhf/OIXGRgYYP78+SxevDj2phYKBR577DHOOeccPM/j6quvruRhFQcJmzdvjg3Sv/u7v6O9vX2H/w477LA4zexAGrDHHXccnZ2ddHZ2UiwWWblyJZ/97Gf5xS9+waxZs/jNb36z3XcioR4EAePGjePBBx/kiCOOAOQatrPPPpt7770XTdPIZrP86Ec/2q/XpFAoFBFKZitG450grwGWLl3K4Ycfzo9//GOuvPJKXnnlFfL5PKtXr+YnP/kJ/f39fPWrX+UDH/hALN8VCoViX2O+/Sa7zumnn86NN97IVVddNcLjXlNTA8hqnT//+c9597vfXcnDKvYTTU1N8c/9/f2MGzdut77/1ltvxT/39vbu0neG92Ntb2/f4TYf+chH9vn6N13XmT59OjfeeCMdHR1cc801fPzjH2fFihUcdthh8XbRuw5w5ZVXUlVVtd2+TjjhBM4880wee+wxHnnkkX163gqFQjEaSmYfuih5/fbyOpvN8ld/9Vd0dXXxL//yL3EHFpAF5K666iqOOuoozj77bB566CFuu+02/u7v/m6fnrtCoVBAhSPoAFdccQUvvfQSn/vc5zjhhBOYNm0axx57LJ/5zGdYunTpdm1cFAcPs2bNin9eunTpbn9/eIrY66+/jhDibf994hOfiL/T1dW1w3/7u4DRlVdeSSKRIJfLcffdd4/4bPz48fHPUeR8Rxx55JHAgY04KBQKhZLZhyZKXkt2Jq//67/+i66uLkAWgdsR8+fPj9fwL1y4cN+erEKhUIRUNIIeccQRR4ypip6KyjBv3jx0XScIAn7961/z13/917v1/eEe9fXr13P44Yfv1veFELu1/b4imUzS2NjIli1bWLVq1YjPjj766F3aR3QtO2prpFAoFPsTJbMPPZS8luxMXr/22msAtLS0UFtbO+o+ZsyYwYsvvsjatWv36bkqFApFREUj6IZh8PGPf7ySu1SMIdra2rjwwgsBuOuuu+KK5buCEIIpU6bEEeYHH3xwn5zj/iCbzdLT0wOMTGkHOPXUU0mn04CMOoxGpBhMnTp1H52lQqFQ7Bwlsw9dlLyW7Exe67pUgXt7e0ek529LFGXf9vsKhUKxr6iogV5bW8vEiRMruUvFGOPb3/421dXVFItFLrjgAjZv3rzT7QcGBrjwwgvjtLbLL78ckNVh3y7trr+/vzInvRvsSpuY73//+/F2Z5xxxojPUqkUH/nIRwD4+c9/vkOh//zzz/PEE08A8IEPfGAvz1ihUCj2DCWzD22UvN65vD7uuOMA6ZAYrQ3bq6++ytNPPw3AKaecshdnq1AoFLuBqCALFiwQ5557biV3+Y5iaGhIAGJoaOhAn8pO+fWvfy1s2xaAaG5uFt/73vfEypUr4889zxMvvvii+PrXvy7q6+sFIAYGBoQQQmSzWTF79mwBiLq6OvGzn/1M9Pb2xt8dGBgQv//978Ull1wijjzyyD0+x56enhH/AAGIn/3sZyP+ns/nR3zv9ttvFx/4wAfEwoULRVdXV/x33/fFSy+9JC6//PJ4X6eeeqoIgmC7Y2/atEnU1dUJQMyfP1+89tpr8T4effRRMWnSJAGI1tZW0d3dvcfXqFAoxi4Hw3yuZPaeczA8XyGUvN6ZvM7lcuKwww4TgEgkEuLb3/52fH25XE7cfffd8ee2bYsVK1bs8TUqFIqxzVib0ytqoP/5z38Wtm2LO+64o5K7fccw1l6OnfH000+L6dOnx8IvEmCNjY1C1/X4b5qmiY997GPCcZz4u5s3bxYnn3zyiG3q6+tFbW3tiP1Nnz59j89v+H529u/aa68d8b3bbrttxOfpdFo0NzfHCk7078wzzxR9fX2jHv+pp56KlZ1IuUmlUvHvra2tYsmSJXt8fQqFYmxzMMznSmbvOQfD841Q8np0eb1kyRLR0tIyYvuamhqhaVr8e1VVlfi///u/Pb4+hUIx9hlrc3pFi8Q9+uijnHHGGXzyk5/kZz/7GSeccAJtbW3bFcLSNI2vf/3rlTy0Yj9z6qmn8sYbb/B///d//Pa3v2XJkiV0d3eTzWZpbGzk8MMPZ+7cuVxyySW8613vGvHdcePG8fTTT/N///d/3H333fzlL3+ht7cXXdeZMmUKs2fPZv78+Vx88cX7/br++q//ml/+8pcsWrSIZcuW0dXVxcDAAKlUio6ODk444QQ++tGP8r73vW+n+znttNN47bXX+MEPfsDvfvc7Nm7ciKZpzJ49mw984AN8/vOfp6WlZT9dlUKhUGyPktnvDJS8Hl1en3jiibz++uvcdNNN/O53v+PNN98kk8mQTqfp6Ohg/vz5fO5zn6Ojo2M/XplCoXinowlRuVKbUcGNtz2opo1o4aGQZDIZ6urqGBoa2mlFUYVCoVCMbQ6G+VzJ7D3nYHi+CoVCodg1xtqcXtEIelT4SqFQKBQKxdhGyWyFQqFQKMYeFTXQ586dW8ndKRQKhUKh2Ecoma1QKBQKxdhD9UFXKBQKheIdiJLZCoVCoVCMPVQfdIVCoVAo3oEoma1QKBQKxdijogb6iSeeyEsvvVTJXSoUCoVCodgHKJmtUCgUCsXYo6IG+je+8Q0ef/xx7rzzzkruVqFQKBQKRYVRMluhUCgUirGH6oOuUCgUCsU7ECWzFQqFQqEYe6g+6GOIsdaDT6FQKBR7xsEwnyuZveccDM9XoVAoFLvGWJvTVR90hUKhUCjegSiZrVAoFArF2EP1QVcoFAqF4h2IktkKhUKhUIw9KlokTqFQKBQKhUKhUCgUCsWeUdEIesTixYu5/fbbWbZsGZlMhtraWo499lguvfRS3vve9+6LQyoUCoVCodgDlMxWKBQKhWLsUNEicQBf+MIX+OlPf0q0W03TRvx81VVX8aMf/aiShzxkGGsFChQKhUKxZxws87mS2XvGwfJ8FQqFQvH2jLU5vaIp7nfccQc33HADM2bM4L//+79566238DyPLVu2cNdddzFz5kxuuOEG1XNVoVAoFIoDjJLZCoVCoVCMPSpqoN90001MmDCBJUuW8LGPfYz29nY0TaOtrY2PfvSjPPvss4wfP56f//znlTzsbrFs2TK+9rWvcc4559DS0oKmaZxxxhl7vL/nn3+e973vfdTX15NOpzn55JO55557KnfCCoVCoVDsA8a6zFbyWqFQKBTvRCpqoC9fvpwLL7yQurq6HX5eV1fHhRdeyPLlyyt52N3i/vvv57vf/S6LFi2ivb19r/b1xBNPcOqpp/L0009z8cUX85nPfIbOzk4+8pGP8MMf/rBCZ6xQKBQKReUZ6zJbyWuFQqFQvBPZ71XcNU3b34ccwYc//GFeeOEFcrkcjz766B7vx/M8Lr/8cnRd56mnnuKWW27hhz/8IS+99BIzZ87ka1/7GuvXr6/gmSsUCoVCsX85kDJbyWuFQqFQvBOpqIE+a9YsFi5cSC6X2+Hn2WyWhQsXMmvWrEoedreYNWsWxx13HJZl7dV+Hn/8cVavXs3f/M3fcMwxx8R/r6ur42tf+xqO43DHHXfs5dkqFAqFQrFvGOsyW8lrhUKhULwTqaiB/ulPf5pNmzZxyimnsHDhQnp7ewHo7e3l3nvv5T3veQ+bNm3iiiuuqORhDwiLFi0CYMGCBdt9ds455wDw5JNP7s9TUigUCoVil3mnyGwlrxUKhUJxMFHRPuif/OQnWbp0KTfeeCMXX3wxALquEwQBAEII/vEf/5HLLruskoc9IKxcuRKAGTNmbPdZe3s71dXV8TajUS6XKZfL8e9DQ0OALPWvUCgUioOXaB6vcCfTivJOkdlKXisUCoViZ4w1mV1RAx3gpz/9KR/+8Ie5/fbbWbZsGZlMhtraWo499lguu+wyTjvttEof8oAQCefRiuvU1tbG24zGd7/7Xb75zW9u9/eJEyfu/QkqFAqF4oCTzWZHlRNjgXeCzFbyWqFQKBS7wliR2RU30AFOO+20fSrUr7nmmhGe7Lfjqquu2qHn/EDz1a9+lauvvjr+PQgC+vv7aWpqOmCFeTKZDBMnTmTjxo3U1tYekHPYl6jrO3g5lK8N1PUd7Gx7fUIIstks48aNO9Cn9rbsS5mt5PWB4VAeb4fqtR2q1wXq2g5GDtXrgh1f21iT2RUx0P/t3/6NfD7PN7/5zVGLuTiOwze/+U1qamr4yle+slfHu/nmm8nn87u8/UUXXVRxgR95V0bzumcyGRoaGna6j0QiQSKRGPG3+vr6ipzf3lJbW3vIDcjhqOs7eDmUrw3U9R3sDL++seCF3xH7U2YreX1gOZTH26F6bYfqdYG6toORQ/W6YPtrG0sye6+LxP3xj3/kX/7lX2hqatpppVXbtmlqauKf//mfeeKJJ/bqmLlcDiHELv8744wz9up4OyJSIHa0bq2zs5NcLjcmowAKhUKheOeyv2W2ktcKhUKhUOwee22g33nnnTQ0NPC5z33ubbf97Gc/S2NjI7fddtveHvaAM3fuXAAeeeSR7T57+OGHR2yjUCgUCsVY4J0os5W8VigUCsXBxF4b6H/+858566yztkv92hGJRIKzzjqLxYsX7+1h9xuu6/LGG2+wevXqEX+fP38+HR0d3HXXXSxbtiz++9DQEN/5znewbZtLL710P5/t3pNIJLj22mt36XkejKjrO3g5lK8N1PUd7Bws13coy+x3mrzeGQfL+7gnHKrXdqheF6hrOxg5VK8LDo5r08Re1pOvqqri85//PN/5znd2afuvfe1r/OQnP6FQKOzNYfeYN954g+9973sAFItF7rnnHtra2jj33HPjbW6//fb453Xr1jF16lQmT57MunXrRuzriSee4JxzziGZTPLRj36UmpoaFi5cyPr16/nBD37ANddcsz8uSaFQKBSKXeJgktlKXisUCoXincheF4nTdR3XdXd5e9d10fW9DtzvMZ2dndxxxx0j/tbV1TXib8MF/s6YN28eTz/9NNdeey3/+7//i+u6zJ49m+uuu46PfOQjlTxthUKhUCj2moNJZit5rVAoFIp3InsdQZ85cybTpk3joYce2qXt/+qv/oo1a9bw5ptv7s1hFQqFQqFQ7CZKZisUCoVCMbbZa7f4aaedxuOPP75dOtmOWLduHY8//jinn3763h5WoVAoFArFbqJktkKhUCgUY5u9NtA/+9nP4rouF110Eb29vaNu19fXx4c//GE8z+OKK67Y28P+/+zdd3gU1f4/8PfM9uxuNj0hnRI6gUBookAUQlHaBbEbUFRQriKolJ+KomBv14IFL+JFLyJ+4XK5IjWhI0UChBpIQkJJQnrdOuf3x+4O2ewmJLAhm/B5PU+eJ5k5O3POZPZ8zjlzZoYQQgghjUQxmxBCCPFsN91B7927N2bNmoW//voLXbt2xeuvv47k5GSkp6cjPT0dKSkpeO2119C1a1ccPnwYL774Inr37u2OvJNGeO+998BxHDiOw/79+53Wl5WVYfbs2YiKioJCoUB0dDRefvllVFRUuNyeIAj4/PPP0aNHD6hUKgQGBuKhhx5CRkZGUxdFtHbtWgwfPhz+/v5QKpVo27YtHnroIeTk5Dika2llY4zh//7v/5CQkIA2bdrAy8sLnTp1wjPPPOMyD55YvpUrV+KZZ55BfHw8FAoFOI6r917RW1GGTZs2YciQIdBqtfD29kZCQgK2bdvWpOUzmUz47bffkJSUhC5dukCj0UCr1aJ///5YunQpLBZLnfv46aef0K9fP6jVavj6+uK+++7DX3/9VWf6gwcPYvTo0fDx8YFarcaAAQOwevXqJiubKxkZGdBoNOA4DtOnT68zXXOVDbix8mVmZuKpp54Sz8/g4GAkJCTg119/9bjyXQ/F7JartcXx1hjDKX57bvymuO2ap8ft2zZmMzcQBIHNnz+fSaVSxvO80w/HcUwqlbIFCxYwQRDcsUvSCMePH2cKhYKp1WoGgO3bt89hfUVFBevVqxcDwBITE9ncuXNZYmIiA8D69u3LqqurnbY5bdo0BoB169aNvfLKK+zRRx9lcrmc+fn5sbNnzzZpeQRBYE8//TQDwNq3b8+effZZNnfuXPbYY4+xyMhItmvXrhZbNsYYmz17NgPA2rRpw6ZPn85eeeUVNmLECMZxHNNqtez48eMeX76oqCgGgAUEBIi/L1++3GXaW1GGf/3rXwwACwwMZDNnzmQzZ85kgYGBjOM49uuvvzZZ+U6dOsUAMI1Gw8aNG8deeeUV9swzz7DQ0FAGgN13330u68S3336bAWBRUVFs9uzZ7KmnnmJarZYpFAq2e/dup/Tbt29nMpmMabVa9tRTT7HZs2eL+frwww+bpGy1WSwWdtddd4n1zDPPPOMyXXOW7UbKt3nzZubl5cW8vLzYAw88wObPn8+mT5/O7rjjDvb00097XPkagmJ2y9Oa4nhrjuEUvz03flPcdtYS4vbtGrPd0kG3O3fuHPt//+//sYSEBNalSxfWpUsXlpCQwF599VV27tw5d+6KNJDRaGS9e/dm/fv3Z48++qjLwP76668zAGzu3LkOy+fOncsAsCVLljgs3759OwPABg8ezAwGg7j8999/FyvppvTpp58yAOzZZ59lZrPZab3JZBJ/b2llu3LlCuN5nkVFRbGSkhKHdR9//DEDwKZOnSou89TybdmyhWVlZTHGGHvnnXfqrVCbugxFRUXMx8eHBQQEsJycHHF5Tk4OCwgIYAEBAaysrKxJynfx4kX25ZdfsoqKCoflFRUVLD4+ngFgq1evdlh39uxZJpVKWceOHR3OgSNHjjCFQsG6dOnCLBaLuNxkMrH27dszhULBjhw5Ii4vKSlhHTt2ZHK5XMyrO8tW24cffsikUin75JNP6gz0zV22xpbvwoULzNvbm8XExLALFy44ra9Z13hK+RqDYnbL0NrieGuN4RS/3V8Gd8ZvitvOWkLcvl1jtls76MTzLFy4kCkUCnbixAmWlJTkFNgFQWChoaFMo9G4rIw0Gg1r166dw/KHHnqIAWA7duxw2t/QoUMZAJdfDHeoqqpivr6+rF27dk5ftNpaWtkYY2zfvn0MAHv44Yed1p09e1YcvWWs5ZSvvgr1VpThm2++YQDYm2++6ZT+jTfeYADYihUrbrB0jQuGNf38888MAHvuueccls+fP7/OPE2ZMsWp7Js2bXJq+Nn98MMPdZa9IRpatlOnTjGlUslee+01lpycXGeg96SyMXb98j3zzDMMANu2bVuDtudp5SOtQ2uK4605hlP8dn8Zmip+U9xumXH7dorZzfdCctLk/vrrLyxevBgLFy5E165dXaZJT0/H5cuXMWjQIKjVaod1arUagwYNQkZGhsM9YSkpKeK62kaMGAEA2LFjhxtLcs3mzZtRXFyM8ePHw2Kx4P/+7//w7rvv4uuvv8a5c+cc0ra0sgFATEwM5HI59uzZg7KyMod1GzZsAADcc889AFpm+Wq7FWVISUkBACQmJjYo/a0ik8kAAFKp1GF5Y/Pb3OWzWCxISkpCTEwMXn311XrTtqSyMcbw66+/wt/fH3fffTcOHz6Mjz/+GB9++CG2bt0KQRCcPtOSykdahtYWx1tzDKf4fU1rjd8Utx15UtlaW8yWXj8JaYkMBgMef/xx9OrVC6+88kqd6dLT0wFYA4srMTEx2LRpE9LT0xEREYHKykpcuXIF3bt3h0QicZm+5nbd7fDhwwAAiUSC2NhYnD17VlzH8zxefPFFfPjhhw55aCllAwB/f3+8++67mDNnDjp37oxx48bB29sbR48exfbt2/Hss89i5syZDvloSeWr7VaUob59NEeZ7f75z38CcK7o09PTodFoEBIS4vSZxpYvJCQEGo2mScv3zjvv4K+//sL+/fshl8vrTduSypaZmYmioiLEx8fjmWeewbfffuuwPi4uDuvXr0d4eLhDfltK+Yjna41xvDXHcIrfznlqbfGb4rYjTypba4vZdAW9lXr99deRnp6O5cuXu6wI7UpLSwEAOp3O5Xpvb2+HdI1N7275+fkAgI8//hg6nQ4HDhxAeXk5du7ciY4dO+Kjjz7C0qVLbyivzV02uxdffBGrVq1CRUUFvv76a7z//vvYtGkT+vfvj4cfflgcuW2p5avpVpShvs80R5kB4Ntvv8XGjRtx9913Y/To0Q7rSktL3VY++2eaqnxHjx7FokWL8PLLL6NPnz7XTd+Symava44cOYKff/4Zy5cvR1FRkfh02CNHjmDSpEkOn2lJ5SOerzXG8dYewyl+152nlh6/KW4786SytbaYTR30Vmjfvn348MMP8eqrr6J79+7NnR23sk9RkcvlWLduHfr27QuNRoO77roLv/76K3iex0cffdTMubw5ixYtwqOPPooFCxYgJycH5eXl2LVrF/R6PYYOHYr169c3dxbJTdiwYQNmzpyJqKgorFy5srmzc8OMRiOSkpLQoUMHLFy4sLmz43b2usZiseCtt97ClClT4Ovri+joaHz77bfo378//vzzT+zevbuZc0pao9Yax1t7DKf43TpR3PZ8rS1mUwe9lTGbzUhKSkJsbCzmzZt33fT2UaC6Rnzs91HZ0zU2vbvZtxsfH4/Q0FCHdd27d0e7du1w/vx5lJSUtLiyAcDWrVuxcOFCzJw5E/PmzUN4eDg0Gg3uvPNO/Pe//4VMJsOcOXNuKL+eUL7abkUZ6vvMrS7z77//jkmTJiE4OBjbt29HmzZtnNLodDq3lc/+maYo3zvvvIPjx49j+fLlUCgUDfpMSylb7XyMHTvWaf2YMWMAAIcOHXL4TEspH/FcrTmOt+YYTvG7/jy11PhNcbtllK21xWzqoLcyFRUVSE9PR2pqKuRyOTiOE39WrFgBABg4cCA4jsO6deuuew9P7fst1Go12rRpg8zMTFgsluumd7dOnToBAHx8fFyuty+vrq5ucWUDgI0bNwIAEhISnNaFhISgc+fOOHfuHCoqKlpk+Wq7FWWobx+3ssz/+9//8Le//Q0BAQFITk5Gu3btXKaLiYlBRUUFcnNzndY1tny5ubkO54o7HTlyBIIgYMCAAQ71jP3c/eabb8BxHMaPH++Q15ZQNgBo3769OK3YVX1Ts66xa0nlI56rNcfx1hzDKX7Xn6eWGL8pbrecsrW2mE0d9FZGoVDgySefdPljP2nGjh2LJ598EtHR0YiJiUFoaCj27NmDyspKh21VVlZiz549aNu2LSIiIsTlQ4YMEdfVtmnTJgDA4MGDm6R89krk1KlTTutMJhPOnTsHtVqNwMDAFlc2wDr9CACuXr3qcv3Vq1fB8zxkMlmLLF9tt6IMQ4YMAWB9enBd6e1pmsr//vc/TJw4EX5+fkhOTkaHDh3qTNvY/DZX+YYPH+6ynrHfm9e5c2c8+eSTGD58+A3ntTn/d0qlEnfccQcA4OTJk07r7cuio6PFZS2pfMRzteY43ppjOMXva1pD/Ka4fWN5ba6ytbqY7ZaXtZEWwdX7Uxlj7PXXX2cA2Ny5cx2Wz507lwFgS5YscVi+fft2BoANHjyYGQwGcfnvv//OALDExMSmKwRjLDExkQFg3333ncPyRYsWMQDs0UcfFZe1tLL9+9//ZgBYt27dWElJicO6pUuXMgBs0KBB4rKWUL7rvbeyqctQVFTEdDodCwgIYDk5OeLynJwcFhAQwAICAlhZWVmTle/3339nCoWChYSEsNOnT193e2fOnGFSqZR17NjR4Rw4cuQIUygUrEuXLsxisYjLTSYTa9euHVMoFOzIkSPi8pKSEtaxY0cml8tZZmZmk5TNlfrep+pJZWPs+uWzv/P2nnvuYXq9Xlx+6tQp5uXlxbRaLSsqKvLY8pHWpzXE8dYawyl+u78MTRW/KW47ailx+3aK2dRBv43UFdgrKipYz549xcpx3rx5YgDt27cvq6qqctrWtGnTxED0yiuvsMcee4zJ5XLm5+fHzpw506TlOHfuHAsKCmIA2L333svmzJnD7r77bgaARUVFsStXrrTYspnNZjZ48GAGgAUFBbFp06axl156SSyfSqVif/75p8eX77vvvmNJSUksKSmJ9e7dW2yY2JfVbJjdijL861//YgBYYGAgmzlzJps5cyYLDAxkHMex1atXN1n5Tp06xRQKBQPAHnzwQbZw4UKnH1eB5u233xbP59mzZ7OnnnqKabVaplAo2O7du53Sb9++nclkMqbVatlTTz3FZs+ezaKiohgA9uGHHzZJ2epSX6Bv7rI1tnyCILBJkyYxAKxTp07s+eefZ0lJSUyj0TCe59nKlSs9rnykdWsNcby1xnCK354dvylu182T4/btGrOpg34bqSuwM2Yd/Zk1axaLiIhgMpmMRUZGsjlz5tQ5MmmxWNhnn33GunXrxhQKBfP392cPPPAAO3fuXFMXgzHGWHZ2NpsyZQoLCQlhMpmMRUREsOeee47l5eU5pW1pZdPr9eydd95hcXFxzMvLi0mlUhYWFsYeffRRdvLkSaf0nlg++7lW109SUtItL8PGjRvZXXfdxdRqNdNoNGzIkCFsy5YtTVo+e9Cr72fIkCEu97Fy5UoWHx/PVCoV0+l0bPTo0ezw4cN15unPP/9kI0eOZN7e3kylUrF+/fqxVatWNVnZ6nK9QN+cZbuR8plMJvbxxx+L55q3tzdLTExkKSkpHlk+0rq1ljjeWmM4xW/Pjd8Ut+vmyXH7do3ZHGOMgRBCCCGEEEIIIc2KHhJHCCGEEEIIIYR4AOqgE0IIIYQQQgghHoA66IQQQgghhBBCiAegDjohhBBCCCGEEOIBqINOCCGEEEIIIYR4AOqgE0IIIYQQQgghHoA66IQQQgghhBBCiAegDjohhBBCCCGEEOIBqINOCCGEEEIIIYR4AOqgE0IaLSUlBRzH4Y033mjurAC4Nfl54403wHEcUlJSmmwfhBBCiDtRvCak5aEOOiFNJCsrCxzHOfzIZDKEhYVh8uTJOHToUHNnsV4cx2Ho0KHNnQ1CCCGkSVG8JoR4EmlzZ4CQ1q59+/Z49NFHAQCVlZU4fPgwfv31V6xbtw5bt27F4MGDmzmHjdevXz+cOnUKAQEBzZ0VAJ6XH0IIIS0Pxeum52n5IcQTUQedkCbWoUMHp6lc7777LubPn4/XXnsNO3bsaJ6M3QQvLy907ty5ubMh8rT8EEIIaXkoXjc9T8sPIZ6IprgT0gyefPJJAMDhw4ed1hmNRnz88cfo3bs31Go1tFot7rrrLqxfv94p7dmzZ/HKK6+gd+/e8Pf3h1KpRMeOHTFv3jxUVFS43Hd5eTnefPNNxMbGwsvLCzqdDnFxcXjttddgMpnE+8MAYMeOHQ5T/n744QcA9d9DlpaWhsmTJyMoKAgKhQJt27bFrFmzUFhY6JQ2Ojoa0dHRqKiowAsvvIDQ0FAoFArExsZizZo1DT2cdebnRrafk5ODhx56CH5+ftBoNBgyZAh27txZ7/537tyJMWPGICAgAAqFAjExMXj11VdRVVUlpjl37hy0Wi3Cw8OdjkV96wghhDQfitdWFK+vv44Qd6Er6IQ0I6nU8StoMBgwcuRIpKSkoFevXnjyySdhMpnwv//9D+PGjcPnn3+OmTNniun/7//+D99//z0SEhIwdOhQCIKA/fv347333sOOHTuwc+dOyGQyMX1+fj6GDBmC06dPo1evXpgxYwYEQcDp06fx3nvvYc6cOYiOjsbChQvx5ptvIioqClOmTBE/36tXr3rLs3v3bowYMQJGoxGTJk1CdHQ09u3bh88++wwbNmzA/v37naa1mUwmJCYmori4GBMnTkRVVRVWrVqFyZMn448//kBiYuKNH+BGbv/KlSsYOHAgLl26hBEjRqB37944deoUhg8fjoSEBJfbX7p0KZ577jn4+PhgzJgxCAoKwqFDh7B48WIkJycjOTkZcrkcHTp0wOeff46pU6di2rRpWLt2rZi/hx56CFVVVVi/fj38/f1vqryEEELcj+I1xWuK1+SWYYSQJpGZmckAsBEjRjitW7JkCQPA7r33XoflCxYsYADYa6+9xgRBEJeXlZWx+Ph4JpfL2aVLl8TlFy9eZAaDwWn7b775JgPAVq5c6bB84sSJDABbsGCB02dyc3OZyWQS/wbAhgwZ4rJsycnJDABbuHChuMxisbD27dszAOyPP/5wSP/yyy8zAOyJJ55wWB4VFcUAsHHjxjmUY+vWrXUeu4bm50a2n5SUxACwt99+22H5N998wwAwACw5OVlcfuLECSaVSlnPnj1ZQUGBw2feeecdBoB9+OGHDssffPBBBoB99dVXDsdm/vz5DSorIYQQ96J4fQ3F62soXpPmQh10QpqIPeC3b9+eLVy4kC1cuJC99NJLLCEhgQFgwcHB7OTJk2J6i8XCfH19Wfv27R2Cvd369esZAPb5559fd9+FhYUMAJsyZYq47MqVK4zjONa+fXtmNBqvu43GBvydO3cyAGzUqFFO6cvLy5mfnx9TKpUOgdcekDMyMpw+ExUVxfz8/K6bz7ry09jtGwwGplQqWVBQEKuurnZIa7FYWExMjFPAf/755xkAtnPnTqftWywWFhgYyPr06eOwvKSkhEVHRzOVSsX+8Y9/MI7jWL9+/RwaW4QQQm4ditfXULy+huI1aS40xZ2QJnb+/Hm8+eabDstCQkKwa9cudOjQQVx25swZFBcXIzQ01Ck9AFy9ehUAcPr0aXEZYwzLly/HDz/8gLS0NJSWlkIQBHH95cuXxd8PHToExhgSEhIcptG5y5EjRwDA5ateNBoN4uPjsXnzZpw5cwY9evQQ1/n4+KBt27ZOnwkPD8e+fftuOl8N3f6ZM2eg1+tx9913Q6lUOqTleR6DBg1Cenq6w/L9+/cDADZt2oRt27Y57UMmkzn8vwBAp9Php59+wuDBg/H8889Dq9Xi559/dpo+SQgh5NaieE3xuiaK16S50BlGSBMbMWIE/vjjDwDWoL1ixQrMnTsXY8eOxYEDB6DRaAAARUVFAIATJ07gxIkTdW6vsrJS/P3555/HF198gYiICIwdOxZt2rSBQqEAALz55pswGAxi2tLSUgBAWFiYewtoU1ZWBgAIDg52ub5NmzYO6ex0Op3L9FKp1KHxcqMaun378QkKCnKZ3lW57P+zxYsXNypPvXv3RlRUFDIyMjBq1Ci0b9++UZ8nhBDifhSvrSheX0PxmjQH6qATcgsFBgbipZdeQmlpKd5++228+uqr+PTTTwEA3t7eAICJEyc26Imo+fn5+PLLLxEbG4t9+/bBy8tLXJebm+s0qu/j4wMAuHTpknsKU4s9/3l5eS7X5+bmOqTzNPaGQX5+vsv1rsplL0tZWRm0Wm2D9/Xyyy8jIyMD/v7+WL16NZKSkjB69OgbyDUhhJCmQPGa4jVA8Zo0D3rNGiHNYMGCBQgNDcVXX32FrKwsAECXLl3g7e2NQ4cOwWQyXXcbGRkZYIxh2LBhDsEeAHbt2uWUPj4+HjzPIzk5uUHb53keFoulYQUCEBcXB8D6CpXaKisrcejQIahUKnTq1KnB27yVOnbsCKVSiUOHDkGv1zusEwQBe/fudfpM//79AVybOtcQ//vf//DFF19gyJAhOHToEHx9fTF16tQ6G0qEEEKaD8Vrz0PxmrR21EEnpBmoVCrMnTsXJpMJb731FgDrFK4ZM2bgwoULeOmll1wG5bS0NHHEOCoqCgCwd+9eh6lfFy9exPz5850+GxwcjIkTJ7q8xw6wjkSbzWbxbz8/P1y8eLHBZRo0aBDat2+PjRs3YuvWrQ7r3n77bRQWFuKhhx6CXC5v8DZvJYVCgcmTJyM/Px8fffSRw7ply5bh7NmzTp959tlnIZVK8fe//x3Z2dlO60tKSsR7/QDrVYmpU6fC19cXK1euRHR0NL799lvk5+cjKSkJjDH3F4wQQsgNo3jteShek1av+Z5PR0jrVt9rWxhjrLq6moWGhjKpVMrOnTvHGGNMr9ez4cOHi0+TnTp1Kps7dy579NFHWc+ePRkAtm/fPnEb9tewxMXFsZdeeok99thjzNfXl02aNMnlU12vXr3KunTpIn5mzpw5bPbs2ey+++5jcrmcFRcXi2knT54svvLkjTfeYG+99RY7evQoY6zup7Du2rWLeXl5MZlMxh5++GE2f/58NnToULE8+fn5DumjoqJYVFSUy+MzZMgQ1tAqqr6nwjZm+5cvX2ZhYWEMABs5ciSbP38+Gz9+PJPL5SwxMdHpqbCMMfbtt98yiUTClEol+9vf/sZefvllNn36dJaYmMgUCgV75plnGGOMCYIg/m/XrFnjsI0nn3zS5SteCCGEND2K1xSvKV4TT0IddEKayPUCPmOMff755wwAe+yxx8RlZrOZffPNN2zQoEHM29ubKRQKFhkZyUaOHMmWLl3KKioqxLTl5eVszpw5LDo6mikUChYTE8PeeustZjQa63ztSmlpKXvttddY586dmUKhYDqdjvXq1Yu9/vrrDq9zuXLlCps8eTILCAhgPM8zAGz58uWMsboDLGOMHTt2jE2aNIkFBAQwmUzGoqKi2AsvvMCuXr3qlNbTAj5jjF24cIE98MADzMfHh3l5ebG77rqL7dixgy1cuNBlwGeMsQMHDrAHH3yQhYaGMplMxgICAljv3r3ZvHnz2KlTpxhjjH3wwQcMAJs2bZrT5ysqKljHjh2ZXC5nf/31V4PKTAghxD0oXlO8pnhNPAnHGM3RIIQQQgghhBBCmhvdg04IIYQQQgghhHgA6qATQgghhBBCCCEegDrohBBCCCGEEEKIB6AOOiGEEEIIIYQQ4gGog04IIYQQQgghhHgA6qATQgghhBBCCCEegDrohBBCCCGEEEKIB6AOOiGEEEIIIYQQ4gGog04IIYQQQgghhHgA6qATQgghhBBCCCEegDrohBBCCCGEEEKIB6AOOiGEEEIIIYQQ4gGog04IIYQQQgghhHgAaVPvYNWqVVi/fj1MJhPuvvtuTJ8+HRzHNfVuCSGEENJIFLMJIYSQ5tWkV9A///xzPPLIIygoKIDRaMSLL76IOXPmNOUuCSGEEHIDKGYTQgghzY9jjLGm2niXLl3w97//Hc8++ywAYNOmTZgwYQIqKytpRJ4QQgjxIBSzCSGEkObXpB10pVKJ9PR0REREOCw7f/48wsLCmmq3hBBCCGkkitmEEEJI82vSKe4mkwlKpdJhmUwmg9FobMrdEkIIIaSRKGYTQgghza9JHxLHGMO0adOgUCjEZXq9HjNnzoRarRaXrV69uimz4WTlypXYtWsXDh8+jOPHj8NoNGL58uWYMmVKo7YjCAK+/PJLfPvttzh37hw0Gg2GDRuGxYsXo127dk2TeUIIIaQJUMwmhBBCml+TTnGfOnVqg9ItX768qbLgUnR0NC5cuICAgACo1WpcuHDhhoL9U089hWXLlqFbt2649957cfnyZaxevRoajQb79+9HTExM0xSAEEIIcTOK2RSzCSGEND+3dtADAgIwY8YMvPXWW+7aZJPYunUrYmJiEBUVhXfffRfz589vdLBPTk7G3XffjcGDB2PLli2Qy+UAgI0bN2L06NFITEzEpk2bmqgEhBBCyM2hmE0xmxBCiOdx6xR3o9EIQRDcuckmMWzYsJvexnfffQcAeOutt8RADwCjRo3C0KFDsXnzZmRnZyMyMvKm90UIIYS4G8VsitmEEEI8j1sfEhcfH4+LFy+6c5MeKyUlBWq1GoMGDXJaN2LECADAjh07bnW2CCGEkAahmG1FMZsQQogncWsH/eWXX8Zvv/2GjIwMd27W41RWVuLKlSto27YtJBKJ03r7fWzp6em3OmuEEEJIg1DMtqKYTQghxJO4dYp7eno6Bg8ejCFDhuCHH37APffc487Ne4zS0lIAgE6nc7ne29vbIV1dDAYDDAaD+LcgCCgqKoK/vz84jnNTbgkhhNxqjDGUl5cjNDQUPN+kbzS9YRSzrRoSsyleE0JI6+VpMdutHfRZs2aB4zgwxpCYmIgePXrgvvvuQ9++fdG7d29ERES4c3ct3jvvvIM333yzubNBCCGkieTk5CA8PLy5s+ESxeyGo3hNCCGtn6fEbLd20FevXo3U1FSkpqbiyJEjOHbsGI4dOyaOLvv7+yMuLg59+vTBkiVL3LnrW8o+Cl/XaHtZWZlDurrMnz8fs2fPFv8uLS1FZGQkcnJyxBF9QgghLU9ZWRkiIiKg1WqbOyt1opht1ZCYTfGaEEJaL0+L2W7toE+aNAmTJk0S/7569aoY+O2NgG3btmHr1q0tOtir1Wq0adMGmZmZsFgsTve02e9ju947VRUKBRQKhdNyb29vCviEENIKePL0Z4rZVg2J2RSvCSGk9fOUmO3WDnptgYGBGD58OIYPHy4uq66uxrFjx5pyt7fEkCFDsGrVKuzZsweDBw92WGd/l2rt5YQQQoinophNMZsQQkjzu+V3watUKvTv3/9W7/aGFRQU4PTp0ygoKHBY/vTTTwMAXnvtNRiNRnH5xo0bkZKSgsTERERFRd3SvBJCCCHuRDGbEEIIubWa9Aq6p1q2bBl2794NADh+/Li4LCUlBQBw5513Ytq0aQCAL774Am+++SYWLlyIN954Q9xGQkICpk2bhmXLlqF379649957ceXKFfzyyy/w8/PD559/fkvLRAghhLRGFLMJIYTcTm7LDvru3buxYsUKh2V79uzBnj17xL/twb4+33zzDXr06IFvv/0Wn332GTQaDSZMmIDFixejffv2bs83IYQQcruhmE0IIeR2wjHGWHNngliVlZVBp9OhtLSUHjpDCCEtGNXnrRv9fwkhpPXwtDq9+d/ETggh1zFhwgT4+vo6PHEaAKKjoxEbG4tevXohISEBAPDhhx+iW7du6N69O1auXNkc2SWEEEJuS3XF67pic2ZmJhISEtC1a1f06NEDlZWVtzrLhHgc6qATQjzeCy+8gB9//NHlur179yI1NRXJyck4fvw4fv75Zxw+fBgHDx7EF198gZKSklubWUIIIeQ25Spe1xebp0yZgkWLFuHkyZPYsWOHy9cZEnK7oQ46IcTjDR06FFqt9rrpTp06hYEDB0KpVEKlUqFnz574448/bkEOrQoLCxEUFISsrKxbts/6PPjgg/joo4+aOxuEEEJuE67idV2x+cSJE5DJZLjrrrsAAH5+fpBKb83jsTwtXteF4vjt6ZZ20Hfu3Im9e/dCEIRbuVtCSCvFcRyGDBmCvn374qeffkL37t2RkpKCkpISFBcXIyUlBZcuXRLTT5kyBRzHOf2MHDnSZRqZTIa2bdvilVdegV6vv25+Fi9ejHHjxiE6Otpp3bvvvguO4zBr1iyndV9++SWio6OhVCrRv39/HDhwwCnNpUuX8Oijj8Lf3x8qlQo9evTAoUOH6s3Pq6++isWLF6O0tPS6eSekNorZhBB3qCs2p6enQ6PRYMyYMejduzeWLFni8Lma8Vgul6NDhw5YtGgRzGaz03qO4+Dv74+RI0fi2LFj182Tq3h9vTi7dOlSxMbGwtvbG97e3hg4cCA2btzosN033njDqY3RuXPnGz52FMdvT7e0gz506FDcddddiImJwTfffOPwLlJCCGms3bt34/Dhw1i/fj2WLFkCs9mM559/HnfffTf+9re/YcCAAZBIJA6fGTlyJK5cueLw8+9//9tlmoyMDHzyySf45ptvsHDhwnrzUlVVhe+//x5PPvmk07qDBw/im2++QWxsrNO6X375BbNnz8bChQvx119/oWfPnhgxYgTy8/PFNMXFxRg0aBBkMhk2btyIkydP4qOPPoKvr2+9eerevTvat29P9+KTG0IxmxDiDl27dnUZm81mM3bt2oWvvvoK+/btw5YtW7BlyxaHz9rjcXp6OubMmYM33ngDH3zwgdP6K1euYNu2bZBKpbjvvvvqzY+reN2QOBseHo53330Xhw8fxqFDh3D33Xdj3LhxOHHihMP2u3Xr5tDGsL8msi5Dhw7FDz/84HIdxfHb0y3toA8ePBh33nknSktLMWPGDJdXmQghpKHCwsIAAG3atMHo0aPx119/4ZlnnsFff/2F5ORkyGQyxMTEOHxGoVAgJCTE4ad2R9eeJiIiAuPHj8ewYcOcGg21/f7771AoFBgwYIDD8oqKCjzyyCP47rvvXHaoP/74Yzz11FOYOnUqunbtiq+//hpeXl745z//KaZ57733EBERgeXLl6Nfv35o27YtEhMTG/RqqDFjxmDVqlXXTUdIbRSzCSHu4io2h4WFIT4+HhEREVAoFBg9ejRSU1MdPmePx1FRUZgxYwaGDRuG9evXO60PCQlBr169MG/ePOTk5ODq1at15sVVvG5InB0zZgxGjx6NmJgYdOzYEYsXL4ZGo8H+/fsdti+VSh3aGAEBATd17CiO335uaQc9JSUFO3bsQEFBAY4dO4bXX3/9Vu6eENKKVFZWory8HIC1E7x9+3Z069ZNvPJ85swZHDhwACNGjLip/aSlpWHv3r2Qy+X1ptu1axf69OnjtPy5557Dvffei2HDhjmtMxqNOHz4sMM6nucxbNgw7Nu3T1y2fv16xMfH4/7770dQUBDi4uLw3XffNSj//fr1w4EDB2AwGBqUnhA7itmEEHdxFZv79u2L/Px8FBcXQxAE7Ny5E126dKl3OyqVqs7ZPBUVFVi5ciU6dOgAf3//OrfhKl43Ns5aLBasWrUKlZWVGDhwoMO69PR0hIaGol27dnjkkUeQnZ1db5muh+L47efWPInBhe7du6N79+7NtXtCSAsybNgwHD16FJWVlQgPD8evv/6K4OBgTJgwAYA1UD711FPo27cvBg4ciNLSUqjVaixfvtzpgTMbNmyARqNxWLZgwQIsWLDAKY3ZbIbBYADP8/jiiy/qzeOFCxcQGhrqsGzVqlX466+/cPDgQZefKSgogMViQXBwsMPy4OBgnD59Wvw7IyMDS5cuxezZs7FgwQIcPHgQzz//PORyOZKSkurNV2hoKIxGI3JzcxEVFVVvWkLqQjGbENIQruL1wIEDMW7cOJexecmSJRg8eDAYY0hMTKxzejpjDNu2bcOmTZvw97//XVxeM6ZXVlaiTZs22LBhA3i+7muQruJ1Q+Ps8ePHMXDgQOj1emg0GqxduxZdu3YV1/fv3x8//PADOnXqhCtXruDNN9/EXXfdhbS0tAY97NYViuO3H7d20LOzs+Hj41PvC97Ly8tRXFyMyMhId+6aENKKbd261eXyo0ePOi2reeXZlYSEBCxdutRhmZ+fn8s0lZWV+OSTTyCVSjFx4sR6t1tdXQ2lUin+nZOTgxdeeAFbtmxxWH4jBEFAfHy8+ACduLg4pKWl4euvv0ZSUhJ++uknPPPMM2L6jRs3ik/FValUAKz33BFSE8VsQoi71RWv64rNo0aNwqhRo+rcnr0DbjKZIAgCHn74Ybzxxhvi+poxvbi4GF999RVGjRqFAwcO1NmZrR2vgevHWbtOnTohNTUVpaWlWLNmDZKSkrBjxw6xk16zLLGxsejfvz+ioqKwevVq8Z73JUuWODwQr7q6Gvv378fMmTPFZSdPnhTrXYrjtx+3TnFv27YtPvvss3rT/OMf/0Dbtm3duVtCCGkwtVqNDh06OPzU7qDb0/Ts2RP//Oc/8eeff+L777+vd7sBAQEoLi4W/z58+DDy8/PRu3dvSKVSSKVS7NixA//4xz8glUphsVgQEBAAiUSCvLw8h23l5eUhJCRE/LtNmzYOI/QA0KVLF3Ha3NixY5Gamir+xMfHi+mKiooAAIGBgY04SuR2QDGbEOLpEhISkJqaivT0dFRXV2PFihVQq9Xi+poxvW/fvli2bBkqKyvrnZ5eO14D14+zdvanyffp0wfvvPMOevbsWW896uPjg44dO+LcuXPisunTpzvF7EWLFjksq3mFn+L47cetV9AZY2CMXTcNIYS0FDzPY8GCBZg9ezYefvhhcSS7tri4OIenrN5zzz04fvy4Q5qpU6eic+fOmDt3LiQSCSQSCfr06YNt27Zh/PjxAKyj+Nu2bXMYSR80aBDOnDnjsK2zZ8+KVwe0Wm2dU+fS0tIQHh5+0w+pIa0PxWxCiKezd8AbiuM48DyP6urqOtPUjtfA9eNsXQRBqPfe8IqKCpw/fx6PPfaYuMzPz8/hwoBKpUJQUFCd5aQ4fvu5pQ+JA4CLFy/e8D0YhJDbT05ODoYOHYquXbsiNjYWv/76q7huw4YN6NSpE2JiYrBs2bLrpgcAg8GA3Nxch5+CgoJ683D//fdDIpHgyy+/rDPNiBEjcOLECXFUXqvVivft2n/UajX8/f0d7uWdPXs2vvvuO6xYsQKnTp3CjBkzUFlZialTp4ppXnzxRezfvx9LlizBuXPn8PPPP+Pbb7/Fc889d93jt2vXLiQmJl43HSGuUMwmhDSUu+N1Q9SM6adOncLf//53VFRUYMyYMXV+pna8BhoWZ+fPn4+dO3ciKysLx48fx/z585GSkoJHHnlETPPSSy9hx44dyMrKwt69ezFhwgRIJBI89NBDjS6bHcXx289NX0FftGiRw98pKSku01ksFuTk5GDVqlVOryEihJC6SKVSfPrpp+jVqxdyc3PRp08fjB49GgqFArNnz0ZycjJ0Oh369OmDCRMm1JnePiXujz/+QJs2bRz20alTJ4eHsrnKw8yZM/H+++9jxowZDtPr7Hr06IHevXtj9erVDveDX88DDzyAq1ev4vXXX0dubi569eqFP/74w+HBcX379sXatWsxf/58LFq0CG3btsWnn37q0ChwRa/XY926dfjjjz8anB/SulHMJoQ0FXfH64aoGdO1Wi06d+6MX3/9FUOHDq3zM67idUPibH5+Ph5//HFcuXIFOp0OsbGx2LRpE4YPHy6muXjxIh566CEUFhYiMDAQd955J/bv33/D09Mpjt+eOHaT89dqPiWR47jrTocLDQ3F2rVr0bdv35vZbatUVlYGnU6H0tLSeh/aQ8jtrGfPntiwYQNycnLwwQcfYO3atQCAWbNmoX///k6j1Pb0ERERTZ63f//733jsscdw9uxZtGvXrsn3dz1Lly7F2rVrsXnzZoflDz74IPr27Ys5c+Y0U85aP0+tzylmu4en/n8J8SQUr29efHw8ysrKcPbs2ebOSqvmaXX6TU9xT05ORnJyMrZv3w7GGKZMmSIuq/mzc+dOpKWlITs7mwI9IeSGHD58GBaLBREREbh8+TLCwsLEdWFhYbh06VKd6e2mTJkCjuPAcZz4sJdFixbBbDY7rec4Dv7+/hg5ciSOHTt23fwdPHgQffv2hUwmE5ddunQJjz76KPz9/aFSqdCjRw8cOnTI5effffddcByHWbNmOSzfuXMnxowZg9DQUHAch3Xr1l03LwAgk8nw+eefOy1/9dVXsXjxYpSWljZoO6RhzGYzzp49i82bN+OPjb83d3ZcophNCLkVKF43Ll7XZcyYMcjPz6d4fZu56SnuQ4YMEX9fuHAhEhISMHjw4JvdLCGEOCgqKsLjjz9e75NZG5p+5MiRWL58OQwGA37//Xc899xzkMlkmD9/vsN6AMjNzcWrr76K++67z+lprjVVVVXh+++/x6ZNm8QGRnFxMQYNGoSEhARs3LgRgYGBSE9Ph6+vr9PnDx48iG+++QaxsbFO6yorK9GzZ0888cQT+Nvf/tag8g8dOhRTpkxBp06dnNZ1794d7du3x8qVKxt0Hzu5vqysLOxM2Q690YwQUwYUFVeaO0suUcwmhDQ1itc3Fq+nTJnitG7hwoXYsGEDxevbjFuf4r5w4UJ3bo4QQgBYHwIzfvx4zJs3D3fccQcA69TbmiPwly5dQr9+/epMX5NCoRBfYzZjxgysXbsW69evFwN+zfUhISGYN28e7rrrLly9erXO+8h+//13KBQKh/t133vvPURERIiNBwAuX1lVUVGBRx55BN999x3efvttp/XXe0/sjRgzZgxWrVpFAd8NsrKysGXzZkTqj6J/6Rr4WPJRVvdDfT0GxWxCiLtRvKZ4TW6eWzvoAGA0GrFu3TocPHgQJSUlsFgsTmk4jrvuO4UJIQSAOA337rvvdnhNSb9+/ZCWloZLly5Bp9Nh48aNeO211+pMXx+VSoXCwkKX6yoqKrBy5Up06NAB/v7+dW5j165d6NOnj8Oy9evXY8SIEbj//vuxY8cOhIWF4dlnn8VTTz3lkO65557Dvffei2HDhrkM+E2hX79+WLx4MQwGAxQKxS3ZZ2tkNpuxM2U7IvVHMbxoKXi0rNeSUcwmhLgLxeumQfH69uPWDvqFCxcwfPhwnD9/vt4Hz1CwJ4Q01J49e/DLL78gNjZWvJfrX//6F3r06IGPPvoICQkJEAQBr7zyCvz9/bF79+4609fGGMO2bduwadMm/P3vfxeXb9iwARqNBoB1ulqbNm2wYcMGhwds1XbhwgWEhoY6LMvIyMDSpUsxe/ZsLFiwAAcPHsTzzz8PuVyOpKQkAMCqVavw119/4eDBgzdzmBotNDQURqMRubm5133PK6lbRkYG9EYz+peuaXGdc4rZhBB3onjdNChe337c2kF/8cUXce7cOTz22GN44oknEB4eDqnU7RfpCSG3kTvvvBOCILhcN3bsWIwdO7bB6e3sAd1kMkEQBDz88MN44403xPUJCQlYunQpAOt9aV999RVGjRqFAwcO1Bkcq6uroVQqHZYJgoD4+HgsWbIEABAXF4e0tDR8/fXXSEpKQk5ODl544QVs2bLF6bONtWTJEnE/9vzs378fM2fOFJedPHkSkZGRAKxXIQDrvXjkxmVlZSHElAEfS35zZ6XRKGYTQtyJ4nXDULwm1+PWSLx9+3bcc889WLFihTs3SwghbmUP6HK5HKGhoU6dErVajQ4dOoh/L1u2DDqdrs57zgAgICAAxcXFDsvatGmDrl27Oizr0qULfvvtNwDWp9bm5+ejd+/e4nqLxYKdO3fiiy++gMFggEQiaVCZpk+fjsmTJ4t/P/LII5g4caLDQ2pqXjEoKioCgBt+NyuxMhr08DK7nm7p6ShmE0I8HcVrite3I7d20AVBQFxcnDs3SQghblc7oF8Px3HgeR7V1dV1pomLi8PKlSsdlg0aNAhnzpxxWHb27FlxVP+ee+7B8ePHHdZPnToVnTt3xty5cxsc7AHAz88Pfn5+4t8qlQpBQUF1ljMtLQ3h4eEICAho8D6IM7lCiSpp3fc6ejKK2YQQT0fxmuL17eim34NeU//+/XHq1Cl3bpIQQjBhwgT4+vpi0qRJDsszMzORkJCArl27okePHqisrARgnRLXqVMnxMTEYNmyZY3en8FgQG5uLnJzc3Hq1Cn8/e9/R0VFBcaMGVPnZ0aMGIETJ044jMq/+OKL2L9/P5YsWYJz587h559/xrfffis+iVWr1aJ79+4OP2q1Gv7+/ujevbu4nYqKCqSmpiI1NVUsd2pqar2vkbmeXbt2ITEx8YY/T6yio6ORK2uHEklQc2el0ShmE0Lcra54HR0djdjYWPTq1QsJCQni8k8++QTdunVD165d8fzzz9f7PAxXKF6TVom50aFDh5iXlxf79ddf3bnZ20ZpaSkDwEpLS5s7K4R4lOTkZLZ+/Xo2ceJEh+WDBw9mO3fuZIwxVlhYyEwmEzOZTCwmJoZdvHiRlZeXs44dO7KCggLxM0lJSWzcuHF17ispKYkBEH+0Wi3r27cvW7NmzXXz2a9fP/b11187LPvvf//LunfvzhQKBevcuTP79ttv693GkCFD2AsvvOBU/pp5sv8kJSXVu53ly5e7XFddXc10Oh3bt2/fdctE6mcymdiK5d+zPz57llkWcowtBGMLwUrnwePrc4rZN47iNSGu1RWvo6KiWHl5ucOy/Px81q5dO1ZdXc3MZjO744472N69e8X1FK8pXt8qnlanc4w1cqiqHosWLcKBAwewceNGDBkyBL1794a3t7dTOo7j8Nprr7lrt61GWVkZdDodSktLXR43Qm5nKSkp+OKLL7BmzRoAwIkTJ/DCCy9g69atDun27t2LDz74AGvXrgUAzJo1C/3798dDDz3U5Hn897//jcceewxnz55Fu3btmnx/N2rp0qVYu3YtNm/eXG+6Bx98EH379sWcOXNuUc5apgsXLmDzpk1O70HXvQuPrs8pZt84iteE1K12vAasV9DT0tLEJ64DwNWrVxEfH4+jR49CqVRi8ODB+Pe//4327ds3eR5bYrymmNx0PK5Od2tvn+Ma9MPzvDt322p42ugNIZ4kOTnZYUR+7dq1bNy4cey+++5jcXFxbPHixYwxxn799Vf23HPPienef/999sEHH4h/1x5xt/+MGDHCab1UKmXR0dHs5ZdfZtXV1dfN44svvsgGDBjAsrOzxWU7duxg9913H2vTpg0DwNauXev0uaioKJd5evbZZxljjH311VesR48eTKvVMq1WywYMGMB+//13h200ZD923333HTt9+vR1y3P8+HHm6+vLSkpKrpv2dpeZmclWLP+effPNN2zt56+wde8meXx9TjH7xlG8JqRuteM1Y4xFR0ez3r17s/j4eLZy5Upx+T/+8Q+m1WqZr68vmz9/vsNnWmK8XrJkCYuPj2cajYYFBgaycePGOcXbsrIy9sILL7DIyEimVCrZwIED2YEDB1zms2a8ppjcdDytTnfrQ+KSk5PduTlCCKmT2WzGrl27kJqaiqCgIIwcORJ9+/Zt0GdHjhyJ5cuXOyxTKBRO600mEw4fPoykpCRwHIf33nuvzm1WVVXh+++/x6ZNmxARESEur6ysRM+ePfHEE084PKG1poMHD8JisYh/p6WlYfjw4bj//vsBAOHh4Xj33XcRExMDxhhWrFiBcePG4ciRI+jWrVuD92M3bdo0AMDQoUMxZcoUTJkyxWW67t27o3379li5cqV4Hx5xLTo6GuGPPo7k5GRkZgLV5pDmztJ1UcwmhNwqu3fvRlhYGK5cuYJhw4ahR48eiIiIwIYNG5CVlQWVSoVRo0Zh586dGDx4sPi5lhavd+zYgeeeew59+/aF2WzGggULkJiYiJMnT0KtVgOwxuC0tDT861//QmhoKFauXIlhw4bh5MmTCAsLc9ifPV4DFJNvJ27toA8ZMsSdmyOEkDqFhYUhPj5eDK6jR49GamoqBg0ahEuXLonpLl26hH79+jl8VqFQICSk7g5UzfUREREYNmwYtmzZUm/A//3336FQKDBgwACH5aNGjcKoUaPqLUvtV6e8++67aN++vVin1n7YzeLFi7F06VLs379f7KA3ZD83YsyYMVi1ahU1BhpAKpXC398fmZmZAOfWZ7A2CYrZhJBbxd7xbNOmDUaPHo2//voLZ86cQYcOHcQnmt97773Yv3+/Qwe9pcXrP/74w2H9Dz/8gKCgIBw+fBiDBw9GdXU1fvvtN/znP/8Ry/nGG2/gv//9L5YuXVrnq+HsKCbfHjy/BUEIIS707dsX+fn5KC4uhiAI2LlzJ7p06YJ+/fohLS0Nly5dQkVFBTZu3IgRI0bc8H7S0tKwd+9eyOXyetPt2rULffr0ueH92BmNRqxcuRJPPPEEOI5zWm+xWLBq1SpUVlZi4MCBN72/6+nXrx8OHDgAg8HQ5PsihBDS+lRWVqK8vByA9Snn27dvR7du3RAREYG9e/dCr9fDYrEgJSUFnTp1uuH9eFq8BqzPIQEgDkKYzWZYLBYolUqHdCqVCrt3777uPikm3x7c3kE3m8345JNP0K9fP3h7e0MqvXaRPjU1Fc8++yzOnj3r7t0SQlqxYcOG4f7778fvv/+O8PBw7Nu3D1KpFEuWLMHgwYMRGxuLmJgY3HfffZBKpfjoo4+QkJCAXr16Yc6cOfD3d3xP9YYNG6DRaBx+lixZ4rReqVSiR48eyM/Px8svv1xvHi9cuIDQ0NCbLuu6detQUlLiNO38+PHj0Gg0UCgUmD59OtauXYuuXbve9P6uJzQ0FEajEbm5uU2+L3LrUcwmhLiTq3idl5eHO++8Ez179sSAAQPw+OOPo2/fvhgwYABGjx6NuLg4xMbGon379hg7dqzD9lpivLYTBAGzZs3CoEGDxFexabVaDBw4EG+99RYuX74Mi8WClStXYt++fbhy5cp190kx+fbg1inu1dXVSExMxN69exEQEABvb2/xvcQA0LZtWyxfvhx+fn7XncJBCCF2tZ/UblfXdLSxY8c6BfmaEhISsHTpUodl9tHtmusrKyvxySefQCqVYuLEifXmsbq62mlE/EZ8//33GDVqlFPjoVOnTkhNTUVpaSnWrFmDpKQk7Nixo1Gd9CVLljg0bKqrq7F//37MnDlTXHby5ElERkaKf6tUKgDWe/ZI60IxmxDibnXF66NHj7pcvnjxYixevLjO7bXEeG333HPPIS0tzenK+L/+9S888cQTCAsLg0QiQe/evfHQQw/h8OHDAICffvoJzzzzjJh+48aNuOuuuwBQTL5duPUK+pIlS7Bnzx688847yM3NdXiwAQDodDoMGTIEmzZtcuduCSGkUdRqNTp06ODwUzPg29f37NkT//znP/Hnn3/i+++/r3ebAQEBKC4uvql8XbhwAVu3bnWqOwFALpejQ4cO6NOnD9555x307NkTn332WaO2P336dKSmpoo/8fHxWLRokcOy2g2NoqIiAM733ZGWj2I2IcTTtcR4DQAzZ87Ehg0bkJycjPDwcId17du3x44dO1BRUYGcnBwcOHAAJpNJfN3b2LFjnWK1HcXk24NbO+i//PILEhIS8Morr4DjOJf3Y7Rr1w7Z2dnu3C0hhDQZnuexYMECvPrqq6iurq4zXVxcHE6ePHlT+1q+fDmCgoJw7733XjetIAiNvgfNz8/PoZGjUqkQFBTksKzmFGfAek9feHg4AgICGrUv4vkoZhNCWhNPiNeMMcycORNr167F9u3b0bZt2zq3oVar0aZNGxQXF2PTpk0YN24cAOs0+Nqx2o5i8u3BrR307Oxsh1EeV7RarfjABEIIaQ4GgwG5ubkOPwUFBXWmv//++yGRSPDll1/WmWbEiBE4ceKE06h8RUWFOAoOAJmZmUhNTXXq9AiCgOXLlyMpKcmpkzx//nzs3LkTWVlZOH78OObPn4+UlBQ88sgjjd5PY+3atQuJiYk3tQ3imShmE0LcbcKECfD19cWkSZMclmdmZiIhIQFdu3ZFjx49xNtpNmzYgE6dOiEmJgbLli1z2l5Li9fPPfccVq5ciZ9//hlarVbMc80Bg02bNuGPP/5AZmYmtmzZgoSEBHTu3BlTp06tM892FJPdw2w24+zZs9i8eTM2/Hc9tm3b1txZcuDWDrpWq0V+fn69ac6fP0/TMgghzeqPP/5AmzZtHH7uvPPOOtNLpVLMnDkT77//vsM9ujX16NEDvXv3xurVqx2WHzp0CHFxcYiLiwMAzJ49G3FxcXj99dcd0m3duhXZ2dl44oknnLadn5+Pxx9/HJ06dcI999yDgwcPYtOmTRg+fHij99MYer0e69atw1NPPXXD2yCei2I2IcTdXnjhBfz4449Oy6dMmYJFixbh5MmT2LFjBxQKBcxmM2bPno3t27fjyJEj+OCDD1BYWOjwuZYWr5cuXYrS0lIMHTrUIc+//PKLmKa0tBTPPfccOnfujMcffxx33nknNm3aBJlMVme5AIrJ7pKVlYWfV/6IlJQU6NO3Q5nxXxjO72zubDlibnTfffcxf39/VlxczBhj7I033mA8z4vrs7OzmUqlYg8//LA7d9tqlJaWMgCstLS0ubNCCLkBGzZsYF26dGEWi6W5s+IWX331FRs+fHhzZ6NFOXz4MPvmm2/Yp59+6vH1OcXsG0fxmpC6JScns4kTJ4p/p6WlsXvuuccp3Z49e9j48ePFv1944QX2888/35I8/vzzz0wikbDz58/fkv25Q30x+YEHHmAffvjhLc5Ry5OZmcm+/eYb9sdnz7LiRUGMLQRjC8FK58Gj6nS3XkF/+eWXUVxcjHvuuQd79uyB2WwGYH3S4LZt2zBixAhxtIwQQlqbe++9F08//TQuXbrU3FlxC5lMhs8//7y5s0GaCMVsQsitkJ6eDo1GgzFjxqB3797i20QuX76MsLAwMV1YWJhD/JwyZYr4fIyaPyNHjnRaL5PJ0LZtW7zyyivQ6/XXzdPBgwfRt29fh6vWO3fuxJgxYxAaGgqO47Bu3Tqnz0VHR7vM03PPPQfAegU9NjYW3t7e8Pb2xsCBA7Fx40aHbTRkP67UF5NfffVVLF68mG5JqofZbMbOlO2I1B/F8KKl8LHUP4OsObn1NWuDBw/GF198gRdeeAGDBw8Wl2u1WgCARCLBV199hT59+rhzt4QQ4jFmzZrV3Flwm7qeTktaB4rZhJBbwWw2Y9euXUhNTUVQUBBGjhyJvn37NuizI0eOxPLlyx2WKRQKp/UmkwmHDx9GUlISOI7De++9V+c2q6qq8P3332PTpk2IiIgQl1dWVqJnz5544okn8Le//c3lZw8ePAiLxSL+nZaWhuHDh+P+++8HAISHh+Pdd99FTEwMGGNYsWIFxo0bhyNHjqBbt24N3k9tQ4cOxZQpU9CpUyeX67t374727dtj5cqV4mABcZSRkQG90Yz+pWvAgzV3durl1g46AMyYMQNDhw7F119/jT///BNFRUXw9vZG//798eyzz4onJyGEEEKaF8VsQkhTCwsLQ3x8vNgZHj16NFJTUzFo0CCHK+aXLl1Cv379HD6rUCgQEhJS57Zrro+IiMCwYcOwZcuWejvov//+OxQKBQYMGOCwfNSoURg1alS9Zan9TI53330X7du3x5AhQwAAY8aMcVi/ePFiLF26FPv37xfr04bs50aMGTMGq1atog56HbKyshBiyvDoK+d2bu+gA0CXLl0a/X5eQgghhNx6FLMJIU2pb9++yM/PR3FxMXQ6HXbu3IlnnnkG/fr1Q1paGi5dugSdToeNGzfitddeu+H9pKWlYe/evYiKiqo33a5du9wyM8hoNGLlypWYPXu2y9dUWiwW/Prrr6isrMTAgQNven/X069fPyxevBgGg8FhlgGxMhr08DIXXj+hB3DrPegtycGDBzF69Gj4+PhArVZjwIABTk9zrM8PP/zg8h4U+09KSkrTZZ4QQgi5jVDMJqRlGDZsGO6//378/vvvCA8Px759+yCVSrFkyRIMHjwYsbGxiImJwX333QepVIqPPvoICQkJ6NWrF+bMmQN/f3+H7W3YsAEajcbhx34Pe831SqUSPXr0QH5+Pl5++eV683jhwgWEhobedFnXrVuHkpISTJkyxWH58ePHodFooFAoMH36dKxduxZdu3a96f1dT2hoKIxGI3Jzc5t8Xy2RXKFEldT/+gk9wE1dQX/iiSfAcRyWLFmC4OBgl68bcIXjOHz//fc3s+ubkpycjBEjRkCpVOLBBx+EVqvFb7/9hgceeAA5OTmYM2dOg7c1btw49OrVy2l5dHS0+zJMCCGE3CSK2RSzCWlqW7dudbm8rmndY8eOxdixY+vcXkJCApYuXeqwzM/Pz2l9ZWUlPvnkE0ilUkycOLHePFZXV0OpVNabpiG+//57jBo1yqmz36lTJ6SmpqK0tBRr1qxBUlISduzY0ahO+pIlSxwGIqqrq7F//37MnDlTXHby5ElERkaKf6tUKgDWe+yJs+joaKRktUOJJMjjp7nfVAfdPiI9d+5cBAcH44cffmjQ55oz2JvNZjz11FPgeR47d+4UA/Xrr7+Ofv36YcGCBZg0adJ1p8fYjR8/3mnkjBBCCPE0FLMpZhPS0qjVanTo0KFB6//5z3+iZ8+e+P777/Hkk0/W+ZmAgAAUFxffVL4uXLiArVu34v/+7/+c1snlcjFPffr0wcGDB/HZZ5/hm2++afD2p0+fjsmTJ4t/P/LII5g4caLDQ+VqDwwUFRUBcL5Pnli1a9cO+/fuxp+6SRhetNSjHxR3Ux30zMxMABBfkWD/25Nt374d58+fx9SpUx1G0XU6HRYsWIApU6ZgxYoVeP3115svk4QQQoibUcwmhLRmPM9jwYIFmD17Nh5++GHxinJtcXFxWLly5U3ta/ny5QgKCsK999573bSCIMBgMDRq+35+fg4zBVQqFYKCguodrEhLS0N4eDgCAgIata/bhVQqxZCEe7B5kxlb/Gagf+kaj72SflMd9Noj1g0dwW5O9vvMEhMTndaNGDECALBjx44Gb+/IkSMoLCyE2WxGdHQ0hg0b5nT/DCGEENLcKGZTzCakpTEYDE73VEul0jo7offffz9efvllfPnll3jppZdcphkxYgTmz5+P4uJi+Pr6issrKipw7tw58e/MzEykpqbCz8/PYSq5IAhYvnw5kpKSIJU6dqXmz5+PUaNGITIyEuXl5fj555+RkpKCTZs2NXo/jbVr1y6XdSW5JioqCsMTE7EzRYrVyp4IMp6HxlKMq0Y1gE+bO3uiJnmKuydLT08HAMTExDitCwkJgUajEdM0xD/+8Q+Hv1UqFRYuXIi5c+de97MGg8FhRK2srKzB+yWEEEJaO0+J2RSvCWkef/zxB9q0aeOwrFOnTjh9+rTL9FKpFDNnzsT777+PGTNmQK1WO6Xp0aMHevfujdWrV+OZZ54Rlx86dAgJCQni37NnzwYAJCUlOdwStHXrVmRnZ7t8jkd+fj4ef/xxXLlyBTqdDrGxsdi0aROGDx/e6P00hl6vx7p16/DHH3/c0OdvJ9HR0Qh/9HFkZmYiORnIZwJ4tWd1id36FPc9e/Zg9uzZdT498MqVK5g9ezb279/vzt02SmlpKQDr9DhXvL29xTT1adu2LT7//HOcPXsWVVVVuHjxIn788Uf4+flh3rx5+Pzzz6+7jXfeeQc6nU78sb8fkhBCCGlqFLMbHrMpXhNy6/3www9gjDn92DvnP/zwA9atW+f0uXnz5iE/P99l59zu9ddfx2effQZBEMRlQ4cOdbm/2p3mxMREMMbQsWNHp+1+//33yMrKgsFgQH5+PrZu3erQOW/MfmpKSUmp9/kZy5cvR79+/Zze7U5ck0ql1wZ+Od4tT/V3J44x5rY75CdOnIhjx47VO5rdsWNHxMXF4ZdffnHXbhslMTERW7ZsQXp6usv7OMLCwlBRUdGggO/KiRMnEB8fDy8vL+Tl5TlNfanJ1Yh8REQESktL4e3tfUP7J4QQ0nz++usvHDp0CNXV1Zg1a5ZH1+cUsxsesyleE9L6fPrpp5g4cWKrGHBbtmwZ7rrrLnTq1Km5s9KifPvttwCA8PBw3HvvvR5Tp7v1CvrBgwdx55131ptm8ODBzToabx+FryuYl5WV1TlS3xDdunXDnXfeiaKiIpw6daretAqFAt7e3g4/hBBCyK1AMbvhMZviNSGtz6xZs1pF5xwApk2bRp3zVsStHfT8/Hzx6bB1CQkJQX5+8z0xzz6dwdUVg9zcXFRUVLi8160x7A+uqKysvKntEEIIIU2FYrYVxWxCCCGexK0ddB8fH2RnZ9eb5sKFC9BoNO7cbaMMGTIEALB582andfYnLNrT3AiLxYJDhw4BaBlPyCWEEHJ7ophNMZsQQojncWsHfcCAAVi7di1ycnJcrs/Ozsa6detwxx13uHO3jXLPPfegXbt2+Pnnn5GamiouLy0txZIlSyCXy/H444+Ly69cuYLTp087Ta87fPiw07YtFgvmzZuHc+fOISEhwempk4QQQoinoJhNMZsQQojncWsHffbs2aiqqsKgQYPw448/4sqVKwCsAXPFihUYNGgQqqurMWfOHHfutlGkUimWLVsGQRAwePBgPP3005gzZw569uyJs2fPYsmSJYiOjhbTz58/H126dMHatWsdthMfH4+ePXvisccew7x58/D000+ja9eu+PDDDxEeHo5ly5bd4pIRQghpbhzHNXcWGoxiNsVsQgghgBufme4Wbn3p2+DBg/Hxxx9jzpw5mDp1KgBrY8VeaJ7n8dlnn2Hw4MHu3G2jJSQkYPfu3Vi4cCF++eUXmEwm9OjRA++99x4eeOCBBm1jzpw52L9/P7Zs2YKioiLI5XJ06NABr776KmbPng1fX98mLgUhhBBy4yhmU8wmhBDiedz6mjW7Y8eO4euvv8bBgwdRWloKHx8f9OvXD9OnT0f37t3dvbtWw/40Wk95xD8hhJDGOXLkCA4ePNgiXrNmRzG78SheE0JIy2d/zVpYWBjuu+8+j6nT3XoF3S42NhZfffVVU2yaEEIIIW5EMZsQQgjxHG69B50QQgghhBBCCCE3hjrohBBCCCGEEEKIB7ipKe5PPPEEOI7DkiVLEBwcjCeeeKJBn+M4Dt9///3N7JoQQgghjUAxmxBCCPF8N/WQOJ7nwXEcTp06hY4dO4LnG3ZBnuM4WCyWG91tq0UPnSGEkJbNkx8SRzHbfSheE0JIy9cqHxL3ySefYOTIkWjXrh0AIDMz0y2ZIoQQQoh7UcwmhBBCPN9NddBnz56NsrIyvPbaawCs7yp98cUX8fe//90tmSOEEEKIe1DMJoQQQjzfTT0kTiaTwWg0in9nZWWhuLj4pjNFCCGEEPeimE0IIYR4vpvqoEdGRmL37t0O96ZxHHfTmSKEEEKIe1HMJoQQQjzfTU1xf/jhh7Fo0SL4+fnB398fgPUet+XLl9f7OY7jcP78+ZvZNSGEEEIagWI2IYQQ4vluqoP+6quvQqlU4n//+x8uX74MjuPAGMP1Hgx/Ew+OJ4QQQsgNoJhNCCGEeL6b6qBLpVLMmzcP8+bNA2B9hcuLL76I119/3S2ZI4QQQoh7UMwmhBBCPN9N3YO+fv16nD17Vvx74cKFGDp06M3miRBCCCFuRjGbEEII8Xw31UGfMGECVq1aJf69YsUKpKam3myeCCGEEOJmFLMJIYQQz3fTr1kzmUzi31lZWSgpKbnZPBFCCCHEzShmE0IIIZ6PXrNGCCGE3AYoZhNCCCHOPO1hqPSaNUIIIeQ2QDGbEEII8Xz0mjVCCCHkNkAxmxBCCPF89Jo1Qggh5DZAMZsQQgjxfDd1D3pt9MoWQgght7OWdE83xWxCCCHE89zUFfTaFi5c6M7NEXLLmM1mZGRkICsrC0aDHnKFEtHR0WjXrh2kUrd+TQghxCNQzCYtEcVrQkhr59Yr6IC14vzkk0/Qr18/eHt7O1SWqampePbZZ3H27Fl375aQG5aVlYWfV/6IlJQU6NO3Q5nxX+jTtyMlJQU/r/wRFy5caO4sEkJaiJZ2vzbFbNKSULwmhNwO3DrUWF1djcTEROzduxcBAQHw9vZGZWWluL5t27ZYvnw5/Pz88Pbbb7tz14TckKysLGzZvBmR+qPoX7oGPpZ8cV2JJAh/6iZh8yYzhicmIjo6uvkySgghbkYxm7QkFK8JIbcLt15BX7JkCfbs2YN33nkHubm5mDZtmsN6nU6HIUOGYNOmTe7cLSE3xGw2Y2fKdkTqj2J40VKHYA8APpZ8DC9aikj9UexM2Q6z2dxMOSWEtBQt6R50itmkpTCbzUjZvhUR1RSvCSGtn1s76L/88gsSEhLwyiuvgOM4lw2Vdu3aITs72527JeSGZGRkQG80o3/pGvBwPS2VB0P/0t+gN5qRmZl5i3NICCFNh2I2aSkOHDgAo1nAgDKK14QQ9/O029Pc2kHPzs5GfHx8vWm0Wi1KS0vduVtCbsjJkycRbDzvNBJfm48lD8GmDAr4hJBWhWI2aQnMZjNOnjiBYMM5iteEkNuCWzvoWq0W+fn1V57nz59HYGCgO3dLSKNlZWXhal4u1JaiBqVXm4tgNOibOFeEEHLrUMwmLUFGRgYEwQK1UNyg9BSvCSEtnVsfEjdgwAD897//RUlJCXx8fJzW5+Tk4Pfff8eECRPcudtWp7q6GhKJpM71arVa/F2v18NisbglrZeXlzjF0WAw1HsPV2PSqlQq8Lx1LMhoNMJkMrklrVKpFI9TY9JWV1djy6aN4KoLUWj2QqXRMa1CCkhtQ1cmC2C0AIUWDVQMDg9QAgCFQiE+9dhsNsNgMNSZB7lcDplM1ui0FosFen3djQ2ZTAa5XN7otIIgoLq62i1ppVIpFAoFAOs0oaqqKreklUgkUCqV4t+1j/+NpuV5HiqV6obSVlVV1TkViuM4eHl53VDa6upqCIJQZz5qfpcbk5bqiMbXESaTCUajsc60Nb/3tdNWV1fDYDDU+/32FBSz3YO+j037fTx37hygL0GRyTleA84xu8CsgZeLeA1QzLajmG1FMfvG0npaHXEzMdv+va7ve9gsmBvt2LGD8TzPevfuzXbv3s1effVVxvM8q6ysZFu3bmVdunRhMpmMHTp0yJ27bTVKS0sZADZo0CAGwOWPl5eXw2dGjx5dZ9ra/95JkybVm7aiokJMm5SUVG/a/Px8Me2zzz5bb9rMzEwx7UsvvVRv2rS0NDHtwoUL60174MABMe37779fb9rk5GQx7euvv15v2g0PgbGF1p/l4+pOB4CtXr1a3O7q1avrTbt8+XIx7YYNG+pN+8UXX4hpk5OT6037/vvvi2kPHDhQb9qFCxeKadPS0upN+9JLL4lpMzMz60377LPPimnz8/PrTZuUlCSmraioqDftpEmTHM7h+tKOHj3aIa2Xl1edaYcMGeKQNiAgoM608fHxDmmjoqLqTNu1a1eHtF27dq0zbVRUlEPa+Pj4OtMGBAQ4pB0yZEidaamOuPZzo3XEF198UW/aDRs2iGmXL19eb9rS0lLmqShm3zh7vC4tLaXvo01TfR+nP/N0/d/HGjH7ywne9aalmG39acqYbTKZ2JkzZ9imTZvqTUsx2/pDdcS1H4rZ17j1CvrgwYPxxRdf4IUXXsDgwYPF5VqtFoB1tOyrr75Cnz593LlbQhqlsLCwwWnrHu8khNyuLBYLzp49i6ysLKSmHmnu7Nwwitkt27Zt29C5c2e0a9euubPSpCRSWYPSCeBwXtkHQHLTZojUqbKyEj+v/BF6oxkhpozmzg4hLRbHmPsfW3fq1Cl8/fXX+PPPP1FUVARvb2/0798fzz77LLp16+bu3bUaZWVl0Ol0yM3NhUajqTPd7TQVprq6GpmZmcjOzobRoIdcoURkZCTatm0LjUZz3akwZrP1aa5XrlyBxWyCXKFEwdV8aC9txd0lK5Ct6I5tvtMQoU9DfPl/4GO5Kk6XK5EEY496HDJk3TBs2HBERkY6bZ+my1nRdDkrmi53Y2lb0nS5Cxcu4M99e2CyMISYMiA3XEUZdMiTtYVSLkVYRBTOnz+P6upqzJ07F6WlpfD29q5zv56AYnbj2eN1aWkpZDJZk38fL1y4gD27dkBvNCPYlAmVuQiCVzDy5O2hlEsx4I47ERYW5rAte/zLzs4GBwaFUoXo6GindLV52vfxxIkT2L59OwaWrMI+3WRE6E+gb/k6+FiuArBOca+QBWO/90RkyrqhU+fO6N+/v8vtUsy2aoqYnZmZiR07UtDBckp8T739loQSSSAOeY9HjrIH7r7nHkRFRVHMriMtxWz3T3GXSCTIzs5GVlYWqiorwEukYl/ixx9/BACEhIRg8uTJHhOzm6SDTm5MzYDfmJPDbDYjIyMDWVlZYic2Ojoa7dq1EwNRS5SVlYWdKdvFkVgvcyGqpP7IlbWDUi7FkARrJV+XjIwM7EjeBpOFIdh4HmpLESol/siTt0Ow8TzGFbyPLEUskn2mwswrwDgJggznoRGKUSHxRb68PXhmRkBwKO67775WeYzJjWmt37nbif1/mJGRgbLSUhhNJshlUuh8fNG2bVuX/8usrCxs2bwZkfqjYgPUrkQShD91k3BBGQuAQ3V1NWbNmuUxwZ64143G6xvRkPMuW9kTwxMTER0dLX7mZuLnrXS972JkZCRWr/oZ2op0XJVFQQIzLJwcwYZzUAslqOR9kKfoAAkzwgIZhg0fft1ZBe6swykeWB8muX3bZkRUpyGxeCkESJCh6oMsZS8YeS9IhWp4CeW4oOwJg9QbEZHRddazrVFrPUdaQrmuVxfqjdaBiDZt2mDs2LEeE7Opg+5B7AG/sLAQBQUFDTrhW0IQbugXuGa6stISFBUXI1J/HCGGs8iXt4OR94JcqEKQMQO5io7IUcY6NEhqOnDgAFKPHEGk/hgGlF1r0GQpYrHd90mYeSUGlfyEvbqHEKk/hviy/6BIHoFMWzDhmAV6XoNCWSSioqORd+VSvcc4LCzM7ZVU7eMmlcnh5eWF6upqmIwGj6wIG6u5K/cbPTdLS4phYRyCTRlQmwtRKQ1AnqwteI6Dj48O3jqfRpXDbDYjPT0dp06dQnl5GQSLBRwvgZdKAZ2Pn8uGTGOO3a0+zu7aX2O309D0NetNnpkgcDIoLBXgYYHASWDgNVDIJBh69zCx/jSbzfh55Y8ILjuM4UVLXb6LWQCHLX4zkK3ojiq9kTrorZi7O+h1nbv2zmlDzrs87z54+NHHcfHixUZ36N3xndXr9Thw4ACys7NhMRshkcoRGRmJfv36OVwpranmd1HCTLBwMlvHuxiVEj/kydtDIZMguE0Yci5kIlJ/HHcV/4BDugnIVsbCAhkkMFnjeOla7PKbijzvPpj84MPiFTODvhoms/Uqo0zKwyIAxYVXxVkw9bWbrndcWkIbzF3qOhZSqRRbt24FAEzOew0l0hDs9HkceokWIYZ0MAAF8mjr/7bWxZKGHCNPjF+NyVPNcyTYlAmBMZRJg2HgVOB5Cbp1746+ffs2azvuRo6xu879pvz/NmhQXRELcNzt0UHfs2cPfvjhB6SmpqKsrAze3t7o1asXkpKScOedd7p7d62GPeB//dUX4CSy657wNzKqXtuNdFBqNx7sQdDV8pMnT6Lwap61M2PMgNriujxZWVnYkbwNBpMFcqESZk4BP2MOKqQBYiXvJZSgivdBriIGSks5tJYClGti8PCjjzvk9fz589i+dTMi9ccxvPhrsUGTpYjFFr8ZiNAfR66iPSyQI9xw0iFNTQI4rPOfiwJ5NKIMx+q5YtYTcikPo1lw+p8pZBJ07NwV5eXljap4ald8TLA4BThPbgQ05Lxq7oZNQ/dfM52PORclkiBE6Y+hf9lv8LHkI0sRKzZGgg3noBJKUCSLRJk0CDzHEBAYjK5du4pXdGofF41GgzOnT8JsMoFxkjobqXXl6VqDxzldcxzn2vtTmotQLItEqTQIHBg0Wm8oFArIpDwUSq86Gz6u6o76BkIuXrzYoEaQvfMSYMy0Xo1jZlh4+bXjzfteuxrHyZFoqz/Pnj2LlJQUTM57TawHzJA6XCWyDiBm4oBuYou6gk4xu/Hs8frw4cMoKChoUFysq96vrwHPcdboVPO8c6VEEozVwYtw55134s99exBameqyQ2+GFOdV8TjoPQF6qQ4RkdFQq9VIP3MKJgtDkDEDDKizA1FX3V5cXIxjR/8Cg8Tpu8TBgl5x8ejbt69Tue3fxQJZFCJt9arGUiR+r4qlbVAuDYTAWY/boJKfcFg7ts52QXzZeuz2fQQyCQ+TRYCPORflvB8svBxBxgzoOS+USYOdBu+txzAI+3X3I1sZi6CgIJhNxmuDsS7q2S7detguBNx4G6wpXC/+3sjgf31xhIMFKks5tOar6FmxGVv8Zoj/yxJpiMPfNevONHUC0jTDUM17IzA4RIyTNfNYXxuydvvKHRcxGhIvGWMNiqlmsxkHDhxAWtpxROmPIVyf5nTu2r8jcimPhHuGN0s7rmb7WyFUgmdmCJwUBl4NqYSDn38gpBLe4fiWl5Ve9yJatjIW3bt3R0VFRZ31YEZGBlK2b4VZABRCBXhmEfddc5C89uAfL5HBx8cHMpkMZpPR5bb1ej3+/dO/6qwLAWs7f7PvDOQouyMoJBTjx4/3mJjt9g76iy++iH/84x/iPRwcxzn8/sILL+Djjz925y5bDXvA/+29abjbsB4+lnyxAZiu6o9CWQT0Em90794dvXv3rndU3VUQtk8VszccXF0JdHVl+MCBAzh14rgYpFSWYrEDwjELGCeBtzkPZk4GM6eAkVeLy8EYovRHxYrZVXn8/PxQVFRo65jIoTPlolQWAo4JTpU6ABRKQpHiOwWFskgADIFBwejWrZvYAfrXih9gsggODRo9lPg55H2EGk4jsXgp/tROxHHt8HobPWZI8VPIewg2nEdi8bVjbC9DhjIOhbJIVEr8EKE/jjZGx0pKJlQjw6svLJwcQcZMCABKpKEwc3JwYNDqfNCrVy906NDB6epezYGXImkYtvo97dAptGvKqyEuj0kDO951VfZyKY9OXbohLy8P+fl51jK5aNjUbCTZA4NSqURhYSEqKysAxqDWaBEQEAC9Xt/oYOxqcMvVuRkZGYmc7GxE6o8ivnQd/hcwG8HG8+Kgjn3Qp2Zj5FpnPd06/dLWoOMBMAhg4MXGXqEsAqWSYABAoDETBfJol+d8zWNivWpXgsjqaw1MM6RIV/VDmvoelMiCwSCBVCaHXCZFVXV1ncfZ3edOzeMaX7oOZ9R34JTXEFh4OXSmy6iQBFg7w3VcRanZ8Kldd9QeCLEOXlg/L5PyMJkt120EySQcOI5DSEUqLss6wMyr6m6oe09CtjIWMpkEjz0+Bdu2bYM+PRnjCt6zltVVfmz74ZkJlXpzi+igU8y+MfZ4/emnnyJactnhfOZgsXZU6xgoiouLQ3Z2NjIyMlBYUIDKykpE6o8hwuB87l6Sd4GPJQ/jCt53ykPNWFQmDUapNBgMHMDxLmOb4zlrrZ9yZR1QJfFx2n+w4RwEjkeZJAgG3gsczyMyMkqcTaYz58PESWHhFDDwaqfvq12JJAh/ek/EBWVP9IqLQ79+/ax5t81ICSr7C/mytmK9mq3oIebRx3QZJdIQROmPwczJUCnxRak0RJz1ViiPEAfHrs16iwDAIcpwDKH6k9ine8BaLxhO4JB2LIy8FyL0aQ4x3dXx0ZmuiPsaULZGHDTIUMahWBqKCqkvAAkiDWmNaoM1ZIbTzXQ06+tgKmQShISG42J2FiyMqzFgEQBwUvCCEQInBQcGxknAAQgIDITFbEJRcbHLOJKqHo4DukkIMpyHl1CMXHkn8X8pQIKfg991iJl1nYe1Bz5OnTjuMg7Yz/lj6mEoloWCcVIEG88DTBAvYgQZMyCAq7O9BTgPlEdERKCoqAgnTqTVGy8vKHsCYNeNqT179cKpE8dhNBoRoU9Dp6o92Oo33eVAxTH1PTiqHQET5wWZTAK5QgWO42AyGiEIjrPpIiMjwXGcw3OZIiIinJY1dDad2SIgPz9PbH/bv/fFkjaw8HIwTgKtOQ/VvDcsnPXvIGMGCmUR8DVerPMimsxSBQsvg8DJ6uxf5OXlIfXIEeu+eWvb38TLYYECBokaHDODcVK0bdsWWZnnxME/gDn8rxmAUmkwjJwK4HhovFRQeqlRVFgAgaHBg+parRYPP/ywx8Rst3bQV6xYgalTp6Jjx45YuHAhEhISEBwcjPz8fCQnJ+PNN9/E2bNnsXz5cjz++OPu2m2rYQ/4xfMAH4VzA9AhWNYzql7zc962E97IqWHhFWLHWWfKQ6k06LqjyBwYGINYQdbsgIAxBBizUC4LhIHXIMhwHuVSf1TzOkTojyNf0R4hhnSHzkztaU9X5dEQwAPgxX0k+0xFkTwC4foTYiVv/0KVSYNQKgmyjoYbzoNxHMqkQTBwXgDHQyaTwWQyIdiQjnGFH4rHY5vvNFh4hXi8Nvs+g2reG+MKPxC/sOeVvVEoi7JVDBZwEGDi1Q7HuGYZeGYCAw9/Y7ZTJVUkDUOJtA0i9ccQZjiJA95/g8BJrYMZpjyYeRlMnAIm3vqwDz8fHTTeOsjlcmScO4vw6uNILF6KTEUvbPebhgj9CacGRc2KJlfeAUapDnfedRfkcjl270xp9BXTm5nKJ5Pw8PUPgNlkRFFxsVjZ1+4g2c8/CTO5/P8aeS8YIUexPAIWTgZvcx70nBeMvO3BLJwECksFGDiYeIUYnNWWoutOM695n+OlnAsIrz4mNqxqn5teQgnKeX8UyKPExtw5VT+k+D4hng9mSB0aH9mKHi6vFPypGY+j2kSHc9z++X+FfAABUoQZTiHf9mwE+/fF3uk+pR6CUkkQzLwcjJOCZ2aE284HARIc8B6Pk15DwTgejJOIAyLepisolwY5NEbt2zypHopSaRDMnAwAD4ADx3OQcDwEwQIB1kE7lYur33K5HGazEUajGWACLAIDEwRwHGA2GRFefRydqvYgxWcKTLwKUfqjCDecEG8nqWuQyd7widQfR568HUIM58RjkaGIq3OQKl8SgfVBcxGuP1lnI8i+n22+T6FQHon2lfuQ4dXPqaFeO3gXSUOg572h9dahoqwUbfWHMax4GbIUsdjsNwOR+uPoW7bORUdBi4vmAMx68UWPCfauUMy+cfZ4nbkgBEbvKDE+FUnD6uxs164H7TEkUn8cHav2ujx31/vPhpdQhmHFy8R9myHFAe/x4uCXfdYNGIOXUAqt+aoY/+xqDyZqLEXY630/zqjvctp/uOGEmHedKRdGXg4Dp4XASR1ivs6UCwMvh4HXiTPWjFBgv24islR9YOYUALNAxgywcFKYOSVkcgVge2OmyWxBv9I1OKCbJE6Ntucxvuw/DgOiG/xfxFVZW4QbTqJj1V7s8nnMYXCsnPfHVUU7cMyCCH0aOlTtR7Lfk4jQnxDrBbW5EBWywDrbTVv8ZiBcnwYJM+CCKk6MuzUHDezH2tuchzJpsEM8cFVf1zWrqlOnTuA4DqdPn3a4QgzWsNlyruK1RqPBibQ0l1f0T3gNxj7dZAiQinXyAe0EmHgVOGYBOA6Mc+4Aac15qJT4izGndmwqlIUjyHQBKkspiqWhKJWFiMfktOoO7PRNcmpD2f/HcWUbcFpzFy4oY2HiVBA4CRgDGCe1tSGvxQEjFNjm9xSuKDpbZ1PU6LjXPG/s5bI/V6j2TDQpz4HnORjNgti5K5a2sXXkIZ7H9naJffDLyKsgE6pQJg122R6zfy/PqAZin+4BCJwUGnMBKmSBmJj3ptPgvv1Y1HwGks50GeWSQDGW155NVygNR5k0yHZRLB9mTgoj5wULJ7OW1ZgBleVazOY5Bv+AIPj6+qKgoAClpSUQzCaxky2AQ4EsEva2SajhFA55j4eJVwGMIdCYiWKZ9djUbL+c9BqMNO1wlxfR9FBik/9zyJPHiBeucuXtxWMoFYww8UpUS3QAswDgEWjMRJksCAZe49TXAawPrbPvu+YFq5r1lP1Yac15qOR9IHByqIRSeNeoCzMUcdjhmwQTr7rWbqwxqG5mEsyYMcNjYrZbb3hYunQpwsPD8eeff0Kn04nLg4OD8eCDD2LUqFHo0aMHvvrqKwr29eDhWInVPAm1pjwwDjDCC8GmzDqDTIAxCwLHoUwWIo5CgTHbdJQzOKCbhEj9MZeVTIk0BFdkHQDGwDOTOA3c3gHxN16AgfdCgPGCeMVPZSnBafWd4MAhSn8UGnMBclSx6F/2m0MDO1J/HAPK1ogVqq8pB8WycETqj4qVYoEsEoyTon/Zb8hW9MAOn8dhkGhto7syp8aPj+kyTBIFGBhMJkAuVEItlIjHY7PfDABAsOGceLwMvBfUQrFDx8zeaAo2nIOe90KptA2CjeedAkuAMQsGXg21uRjlsiAUyqPEBkW+PFrs/ETqj8HXdAn7dA8CgK0SCkaZLBg602UYJNYn9QcbzwN5Ai4Wt7UOVnA8BpStQbaiB7b5PS3+XbMTsd97Ik6r74JgayhwMAMWPXbu3Gn7P7seePlTNwmbN5lx9z33wGg0ivc8m0wmMItZrLgZgEJpMLIyM5CSkgK1Wo3KigqnqwlpXkPAMzNMFilwcT+KZZEAJAjXnxQbgQe8xyNL0QtgDBH6NEiYEZlefcX/77UrFrko530h8HKxEVgmDbY15mCrgCVQCmUolbZxmLVQLG2DUqntSrThHNSXi1CZ54eUrPbYuWMHeIkEFpMBjJNAZS6BReqD/qVrnK6C26/KnPQaggJ5JBgnEY99pjLO4RzKUPWBXqJF/7LfIECCnT6PI1J/zKGDvd5/Dgrkba0DEgbHWy62+D4Nk23gIcSYjmxVT/H7Ujtw2wfDimVtYOGV4vmR7DPVGkwBscEYrj+BCEMa9ugecjh3MhRxSPadCgvnWO1br5bwUJpKUC3Ricc1QxmHbGVPCJwMOtMVVEj8UV5eLg4A8MwMBs7WsLiCMkkgGC9FhCENW/ymQ8LMiNIfRULxMqwKfgeR+mPivaPXGmQ8JIIRjOPEhnVb/V/IVl6rO84r4rDdb5pDw+mU6g6xIWziFQAnQd8y6wyHmv+Dmnws+eCZGTrTFZz3GgBwnHhsand4gg3nwMBg5DUAx6O8rAwqoRyVvC/MkCLFdyoi9daBiP8FzHa6il4oj4TEVNqA2r55Ucy+eZv8Z4LTBCLYcA6ltqnTdQ0UHdCMRZ68PfyN2SiUR8HXdBmF8iixM1r73D2gGYtceQyCTZkArtX9p9SDwSBBgDELhfIohOlPIk/RHiGGcyiX+Ivxz84MqUP9lKXohTWBr0LgZADHO+zf3lEPMGaBcRxKZSHiQIJ9lk+AMQtlMus6maUKjJOgf9lvOKQZg1TtSHCA2OGokATAIPEGz8zgwGAymRBkOI8SWQiCzbnWgUlDOjSWIqwPeEXM4zlVP7F+zVb0QJ68PRgnRbjhBLb4TRfbEj6WfBzQjEWmNg6w7TfCkIbtfk8BHC/WC/7GCyiQRznU4fZjk67qh726h6A15+Oisqu1vQSI9aw97ut5NcL0J9G3bB1SfKeI23JVX9tjZc2LGkGGc2Acj6JcPXbnXXGZtvYgr33QUKKqRoElAps2bYJKpYK+uhIMPBRCBThmgZFT2jq2aRhea9DxgPd4pKmHQcJMiDIcRceqvdjiNx2c7UWyjJM4dXYDjFkolQWh3BZXXcYRTgKOWaC2FCFSfxxZvr0RbEgXj8lun4cd2lB6KJHs+wQi9cfgY7qM/wTNsw06W58D4m3KRbk0EJH6Y2ir/0tsQx7UjBMHuWt33AVIxPPGXi7Y2qG1b5cQZ0VUOrYhwRj8TdbvZO12ib39rBAqoJcEgnFSp/ZYuqofUjUjUS4NAGDtUgYaM3FV3hbBhnMolEeI53LNzrm1bcohUn8MUqEaGV7WNw/Yv2fh+hMObZJSaYjYmS2TBkFlLoaZV7g814LtF8HyBVzNz7Wd7Tyi9Mcd+hQcsyBSfxQ+psvYp3vQdgtoDHSmXFyVRwPgHNov1VAjTXO3w0WWmvVVqnYEOHBi+XNUsU4DDRUSf1TzWusMjRozB2sOEOhMl2Hk5AAnEWP/WUU/7PJLchhQtH8vfY0XUSILQbkkABysHXojr4JKKANgv1AyEpH6Yw6D6jws8DVeRKXUD5X6up8C3xzc2kE/ceIEpk2b5hDoa9LpdJg4cSKWLVvmcj2x0kMhVmL2CifAeAFmTooKaQAYJ4HcUgm1pcjhc/YgHGDMwlV5NHhmsXWKTojB28d0GX/qJjs0Tmt+3lqR3wMeFvibclAojxQ7IDt8HkeE/jiuKDqCcRKUyYLEivaodpRYwYUbTmCP7mExeKUr4pHi9wQi9darwkYosD3wVUToj6NKohODuwAJ9uomg/HWUecSaQg2+82wlcMiBhH7FzNCfxwKoQLpXgMBcFBaSqCXeEPKDA4NaX/TRRTKwqEWigFYK8ZceQd4m68i068PtOZ86HkNIvXHrcFAa21EKYVy8Rjbj22E/jjy5e1sx7itWEl1rNqL9QEvXwvQAMIMJ7FPNxkSZoKf6SKuyqMRqT9uW26ddhdf9h+kqYfgjHoIAEAuVMHXkis2VqTMCH/TJYdBgm0+02Cp1YnlmRkCrnVy7i7+DudVfbFVPQ2l0jawcFJwEKz/bcGMbVs3i40o+yhmhP4ElEI5MlR9YeHl8DbnwcJxMPMKVFWUIdJ2tTFL0Qv/F7gAZtsoqz047POeBMisgdE+oLM2YD5MvAoSZkKgMRNX5DHi6GXNhgDjeNttDRYxOEXoj+OyoiMESCFwUoQbTiLUcAr7dZPF45+jirU+pE3i5zQocUAzFvmyKOvnTSZE6tPQxnAaf+omi42Gmg2GjlV7xc4WGLONvhaIjY0cRXdEG1LF78tJryHidk6r7nAIwBmKOGzznQpwUofAL0CCM6p+OKgdB71EB4WlAr7mK8iXt0NIjYaNPXBbG+CRYoNewozisdvsNwMcBEiYCb6mSyiURyJSfwx3F3+HVcHvwEsog9Z8VWzApmpHu6xvAoyZKJUFQy/ROhxXa91xHEqhHOleA+FtzkcZFww/Yw4K5FEQIBFniOzTPQCAQ5DhPA56T7B+52x1R5aqN/QSLVSWEvzU5kNxFoC9k2/mVeJ3ZkDZGiT7TBWPa5Yi1mGQKkvRC9t9p4LZZqPUvGJYsxEkQIJztaaxKS1luCqPgsQ2OybImCXuY7vPVIfp7mdVA5CqHW2r7zrBx3QZpbIQ5Ck64Jh6mHWarG0gIkKfhmDjOWSq+iBH0R0WTgqZUA0z6n71jaegmH3zAk2ZuDvvHzjpNRh5ig4uB4rMkGK392Skq+9EpP4Y8uTtEKk/hmpei2DjeZcNePt3ViZUIU/eHie8BmO/dhIsvBw8zAjXH8dVeVtE6o8hWn8E2aqeYuyVwbGhWXMw0dqJttUFHOew//iy/+A/gXNtnVlrR7xA7iUOJJTJgsT2RYDxAiALhEFivepl/84AQIT+mBibA2wdYwES8crtn9oJMHMKqC1FKJGEwMeS65DHmgOi9rpOzvTwMWXjoPcEsS3Bg4kNb2vciEKg6QIOek+ASiiDd416QW+brWZvB1wb7LgLjLO+Hq2MC0aU/ihKpUFQsGoxDts7LZH64+hQtR/rAudB4KRoq//LRX0dIV5hzVL0Eq/2hRjO4LD3eJh56wwCjTkfldIAcRaPEQokBy4QzxsBEuz1niQOGqrMJeJMsuqqKvHZGRLBhGqJt3hrQ812XZYiFjt8HoeR9xLbc/bBGI25ABVSf3AQxA5QBXTYFvQ0/I0XrJ0zxgDGxPrYIY4wAbBNha/kfdCu+jB26h6DWigRB70VQoXYhqo5k1FlKcFR7ShbJy4a4fqT8LIU47R6iNg2PeA9AcGGczioHYtMVbztnE9z6LgLkGCT3wzx3N0QMBs8LAjXn0RC8TIc8h4nHr8gw3lUSAMcBtAi9MfFtjEHAVKDSWyX2NuFPBNg4ayHQuBlDgM89oEZE6+A9dIaxHhfJguCXKiyXghS9nL4nB5KbPOdBgkzw890ERflnSHwUkiYCWGGU8hVWK8+d6zaiw0Bs2GwDRRYv4/W72WRTGK9Dc92oa32DL6a30cAYie75kyZXHl7GCRasV0VqT8GrfkqclSxKJMFQsLM8DFfEdsv9gE4gIOFkznUV/bvob389nwaeDXC9ScQV7YBJzWDkaXqI05FZ4BDP2Kf7kGE69Ng4hXIk8dAYSmHQeqN/mW/YZvPk8hUxQMcJ9ax9u+lvY6xDo1YLziEG05gn24yAk3Z2K8Zj+PaRETqj6FD1X78J/AVmHmV7aKfxDozU6iASqj71X3N4ZY/MtD+jj1StzVBb0LKqxBf9h/8N/Blh5PPHuD26SajUuInfsYMqVhRmTkpAA4crFOAIvVHka3qKX4J7Z1Aewdlv24iMlT9YOZk4AD4mS6iSB4JpVAuVip/+M6AQaIVr/R5m3JRJgtBXNkG/CdoHqL0R8UK7qD3BGvnVii+VqHbKt1sRQ+xkh5QtgZrA+eLQXh9wCvQS7SQCnqohBIk+0wFwEHgpA7B5b+BL8PfeAG5tvu9JcwML0sRyqVBADgwxiFP0QEb/WaKAU3BqlDF+zgE0zJpEML1abio7Cpe6dvvPRFZqt6I1B8DDwsqeR8AwAHteOtURVv5TZwcAIOFk4kj+vb/T5nEHzKYcMD7bwAngYWToETWRgzuyX5PiiOA/xewAIzna3Tio6A2FomNFfvoNHBtxJUDEzux/sYLMMi9IMA6km2/gvlT8Psw8QqxE27vEFlnCVgDicacj3JpkDiKmSvvABOvcrp6rbSUQi/1wYCyNWLjjmNmcTDA3rjIUVqfhGkfgd7sNwMSZhYrbPtorFyogspSbB08sTUE/Iw5MMhVDgM/GnMBzKqe4JhFHJjZ4jcd4Hhx1kKQIR2HdH8Tg5QRCqToHsE51QAItulOFdJAROqPw9uUiz91kwAIUFuKHBoM9v+hvzEbBl6FCP0JVEj8xFkWW/xmQCWUoZL3Fb9vBfJIROtTkaWIxS6fR1w0YgSAk0ApVIjnuHXAQgF7IOFhgZdQAj2vhZdQAjOk2OHzuBi4r8qjrVdwZYFiw1hlKcZOn8ehsU3XtHBAiayNeLXf3iEOMpyHWijBeUUcUrUjwbNr7xNlHAeeMXEfGnMhjDI1CuVR0JjzxRky+fK21sadMRtF8gjbAFVbsRHUoWo/tvs9CQkzQ8b0EDgORt4LSqFcHHA4oJwAL3MhTquHiFf5a3fyyyX+kMOAs6oBuCqPRjv9YXFQzD7Q4NgBsDes0mHmlVAK5eKASc26JMCQiXKpPwy8BvapchZeAl4wiueA/TtlP4fOK/qII+0CrANUhfIo+BsvoFAegWPaEQgyZuCg9wQEGC8gV94BOcpu4ndNYS6FUaKGiav7nbctCcXs+t1d8j2UCiVOaO52ebUsSxGLrT7TIPDWq9UKoRIGidZ228eD1k6eiwb8Ue0IsUHOMzP26B4GB0GcNtvGeFbsqBzwnoAgw3kc0o4FxyzIk7dHiSToWoz3nmjtiEvDkKodCQkzQcGqYOSUUFuKcEQzCsHG8zjoPQ5mXolSWQjC9WniAECxNET87pbIJAgwXkChPMo2iNoJCqFU3K6f6SJy5e1gstUbBfIISJhZnJpuj5UAUCgNR6k0BDIYHQY87QOikYaj4myVMkkABABG3kvshJ5VxOOYNlHs6HFg4i1RQYYrUAslOOE1FBJmgkQwguOY2A6wD3Rbr+7BdiXxOHxMl3FBGYt2+sNi3A8yZiBb1RNelmJs93sagHUwvULi77K+HlC2xnZ72lOI1B8Hx8z4UzfZVo+GQ2MusLZXarSLtvs+ATOvEuOnfXZUoDEThbIwVEt00JjzUSENAMDDz3QRxbJQVEl8xHPR1Yw/jbkABolWXG8/P8GrxU7StQ5QH4DjUSwLBcCB4xgUtrbctThibUtY/4UM3qZ85ClicMbrDjCOQ4XEX5ytUcV7o1Li59DuCjRk4IxtoKrmoEey3zTbYKt1UDxX3h5acwGyVL2hNV9FuSwIA8rWIMVniljP2y8A2L939nJeawNZb7GKK9uA/T6TYOFkDgNo9oGt/mW/YavvM/C25GKnz+O2AapIANb2cIksCCZeJbZr7cfXXiYwMzjOOj2+mteK3xWOWVDJ+8LEKeBjyb32f/F9Goy3DgrZ20XgOFg4CRRCpcMAsIRZXwHGOKlDO8D+mQFlayBAghTfqYiwDbScUQwUYz4HiJ3smjNlGLOIt6Ye8P4bmG0W2tqgBfA25aFMZp05oRQqEGJIF+OvXKiCiVciqEZ9Zf8eRumPgoGhhIUiTH9SHGjwMV3GuqD51pPUNrDOMQu05gKUyYLFvom3OQ8XlV3A2Qa7CuTRCDacw2nVHchU9QbAEGy4dg7bv5dlskDbjD4ejJdCZ7qMvbqH4GfKQZ68PfJkbQGOF7+/PDMDzAKBk9lmb0jg4vlxzY5358a6deuG3377DRUVFS7Xl5eX47fffkO3bt3cudsbdvDgQYwePRo+Pj5Qq9UYMGAAVq9e3ahtGAwGLFq0CDExMVAqlQgNDcXTTz+N/Py6n7Z6PTJmQLAhHVfl0TDyXtaTD4J4lW+P7iFrJ9QWhLMUsfhX8Ae4pOgGrTkPFk4Of1M2LLwc4YYT2O3zCIKMGTjkPR6Mk8DIW4PyAc1Y/NjmY5z1GgQzpwDHrKOhjLM+xKqK14md7GxlTwQbziFP3t76lHXeen/xQe/x4nR0I+8FC8db33nJDCiQhttG2+AwEm6/t6pEGgITpwTAsMVvBoKN5xFgyIScVaNQFgETrwAPMyL1x2DmrA+WOuN1B4y8FwrkUdBaiq0dYF5uC3Y8wHGolniDE0y4ougMnekKCmVh8DbnI1cRg+2+T9iCaQ4YJ4GM6cVpc/8Ofgen1UPEjo7GXIg8RQxOeA1GmmYYgo3nkS9vB40pzzZNmBMbRfbpvD6myyiWhUEAYOEVkArV0JrzYeJV4rQ7xl2bBsx4qViGElkb2zRaH2Qo42xTq6yj02ZIkew7FRwTxE6sNYhEOExT05muYI/uIdu0Zx5a81WAMfgaLwLMegWdg2DthEsDxGn9V+XRsPAyccokBJOtAs2HXqKzBkBb486Kc5j+vc33afH/rLEUYbvvk/A3XYSFl0PPe4FnJkiY9X9p4pXIk3WAkfdCqSwEAcYLKJJHABwPb1MuDLwG8WX/wUnNUEgFPRgnQXzZf5DiOwWAdSQ4Un8MGlM+Duomivk4pBkjns+Mk9jKaL1fS2UpwXHtCFhbFTwKpWG2c1Hu0NkqlFtvr+hbtg5FslCHxkbbqkPIU3RAiSQI+7STIHAycTsAB7WlCOcVcTiqHWk97rbbJQROAoBhs98M2/+FA8BBIVRB4CSo4n0gF6qs/3dVHxgkWlh4OYplbQBYp64beA3KZEHgIKBIag1OlVI/KIQK6Ey5MPPKawME2vEINp6Hl1CKCt4PO3yTAE4CgZeLP4yTiedchD4NlVIfSJgJ/sYL4jErkEdDLlSDcRKUyELAOAnaGM/CINFC4GQ1ppFKYeHlUFtKUCINRbDxPBgngZdtmm2JJBDVEh/b/8M6fbFcGgAeFutAGDNZH/bDGI5qR8LLNhBiH6TSmAvBwNmmzgqI0h9FiTQIRl6NAWW/QSZUo4L3s95LxwRs9puBIGMGwqrTUCCPhIFXgwODhBnFK4bgOFTwfuIgoP0cylT0QrLfk2CcBGGGk7io7AEJM4nfC39jDoycUuwoFMijan3XLDBKNGCcFEGmCzccA26VlhSzPTVe58i74d8h74KBE6+W1Z4NI/BygOOhM11GutdABBkzcFg7FhJmQqXED4WyCLHhDwDbfK1xokTWBtaWIxPr6iqpL4IN5xxm3RTKIsA4DgaJFozjIBGM+NN7Iv7UjMOPbT6CntdYB/ZsdYGFl1u/VxyPct4fZdIgKCwlyFb2hMpcDBOvQhvjWeglWigsZSiXBsLMyeBtyoOJV4kdhXx5O5h5JfJlHcTtXpVHQ26rtwvlkWL9EF/2H2zznQYOFusAgaXc9mwL64BCvjzaYdBM4CQolEbAyHshzHASJbJQsX6xH9sU23e1TBYEjbkADDzKpEFi/VfJ+6JAFgkLJ4OZl4vtgM1+M2Dhrden/Ey22GiLE0e1owBwKJSGWeO+4RzOet0Bb9MVnFbfJcYfxvHIl7cT6+syWRC8hDKxrbPN72kwTgKlpRQXVHHwNufZ4osEFVJ/yIUqh9lQAiSOf3NSceCBcVL4Gy+gQhpYY/p0tG1mnNk6YG4beAaASmiw3XcawvVpqJD6IciYgWJpG+vxVfaC1pQHgAPPzA5XqQEOSnOJrX3DbDObmDUO2uMIx1uvnttmPfmZcyAVDNijexhqczHy5e2gt12VvSqPQp68PVJ8k8DDArlQDb29fjRmwMh72W4XmGptjwnVUAvFWOv/MvS8t63sElRK/cTjmi+PFut5Cy8TO817vScDTIDOdBl7dA9B4KRim+w/QfOQq+jsNFslVTNSHLgqkoWiSGZdVyRrIx7nghrns0ooQ6XET2yPWduS2QAnAeMkCDecQL48GmZOBi9zMRgnQZ6iA4ploajkrw1UME4KuVABjpnAgUEuVEEhVCDIcB7nvfpaO83aCQA42/nJxHZAqSwIsHXa7YN6B7TjxYGrLT7TsMvvMTHmW3g5AMeZMgpLGbJVcQAYBI4XHw5XKI+AAAnMvPW1oyGGdOuMXaEMR7UjxLY4B8FhoML+Pexf9hsKbd83+0CDl6XY9p2ydjc5ZoFMqAIDYLbNSLD3TcqkwVBaKsA4CcplgeAgQCGU4pg2UTzf1EKxOJiXZfteGXmNtV3DSyGzVKJCYp0p0b18i+1c5cXvLwDb7D1ru9k+/KwUKsB52Kw3t3bQn3nmGVy8eBEDBw7Eb7/9hoKCAgBAQUEB1qxZgzvuuAMXL17EjBkz3LnbG5KcnIxBgwZh9+7dmDx5MqZPn47c3Fw88MAD+Oijjxq0DUEQMG7cOCxcuBABAQGYNWsWBg4ciGXLlmHgwIG4evXqDeVNYamAWihBqmbktZPP1mlI9n0SAAeNpQAcs2C7zxNiZS5lBhh4ta1S5cTOGrNNQjHxKvDMBJVQjlxZO9vVKB6cbehIAusrm6p5LVSWYpTI2qBcEoCj2hHiVJ1SaRCkzAALFGAALim7iZVEiSQIJdJQeNvuVy2TBsN+pVAllGCnz+PWygaAylKMHT7Wexrt95/4mC6jQB4NCTNZ73viJBA4GcIMJ1EqDYTKUow0zT3gmQmR+uMwc3IohAoozKUAOHDMDKXZ2mnnbY2acol1tBmMA5gFZl4FCy+HgVcj2Hjedq+NdbTN+qAUXgySaZp7AGbBXt0DAJj41G37iDUHQWwUWXg5Qg2ncEw7AhwYSqShkAmVsHAyGHg1gowZYoVr/X0s7A0vhaUCWlvDp0fFVuQpYlAstT6d1NuUizxFDDb6zYSJ9wLjpfA2WSvqAnkUwEnBwNmujlpQLvEXg7W9Q6Qx56NQHgFAgL0zUiQLswYV27Qqf9NFCJwM5TJreoPt1oMKaYD1irdQgh2+SeBgncLFeKnYUDqviMMlZVfwzAy1UIz92r/BzFvfeRtozESlxB+CrUNorZg5VEt00JqsAxdlskAAHOSWmgM/48DAQ7B1cs943SHer23hZDBDghPa4eL/69rVVesDBxknQaEsHOCs902eUd8FOasSB3FKpcHgYJ3qbO9slcsCxQbWQe9xACcRGxvxZf/BafWdkAhG/OH3HE5phkJrGyXXmgusx8rWiGGcBOVSf4BZoBaKYeRUtqs7FvEcAxjkrAoGXmN94qmgR54iBsfVw6AQKqEyl8DMq8CBwczJbA9j0oBBgjJZMLxNebb/uwUmXg6OmaG2FGG/ZjyqJTqoLUXQmAuRr2gvTuVSCBWQWyoAJkBhqRAb20qhAgwSWDiZ7bzgxU5puTQQ3qY8WGwDAGe8BkEq6MVBDblQDYVQiSBjBkqkwTBzcqgtRZAJ1eKVkxJZuK2Tb73KH2JMFzv59sYrB7PYGLPeT9sBx9XWQTEGztoos5275bwPyqXB4vf0oqIr8hXtIfAy8TYSPe+FS8pusD8Aj3ESWDg55JZKKCwlECCxHRsFVEKpuK1tfk+L39FD3uNhnyVjn9pbYqvTiqWhtqsT1s6G/YqJ9VaRNEzOew33Fn12Q/X/rdRSYrYnx+tk3ychZUYomPWcN/Je4myYFJ/HwcF6G4bMUmm7P9ICBthmu8mRJ2+PckmAOCMuSxGLS8putoeJKm1XLK0PgfI25UEAb61XbPvRQ4lyiT8KpWGQCHqAk2Bg6WpcUMbiqHYUOAaAk6BIFgETrxIb3gbeC2AMVxXtwDgJ8mXtATBU2wZk8+XtoDNdxln1nWCcBGYooJdoxI5CgTwaQcYMyC0V0Et1kAsV4JkJAcYLqJAGQMJMtvrBur/93hMcBgcNEo2tYyMVb7OyD4j6m3JsM4eCoTNdsd5Cw3Fi/WKGFNt9nwQHQcxPpdQfsM32UFuKEK1PRZ6igxgzBU4GPae07osJDh3dmld2lZZSgONQJg0WY1+ZNADlkkBxECLEmG5rT5mtdaktD2CCNVba2jaBhgzx+JVJAwFYZ6QxTgozL4fKUoztvk/Cz5hjGyAoFstv4eUosg3SMk6CUlmI9Yq3rS5VWsptt/rIbBdWrIP5BzRj8VObD2DmFQg2ngNsLTyBl6GS90WZxHpbAg8zOCZALpQhU9UbHDMDEKCXeFs7QxwPreky9LwW+fJ2MPEqSG3nF3jrw1oVQhWKpaGw2B7qViXxBhiDznTZ9j+TQCIYbW1YGYy8CpUSa2c7SxUnztoQbFPQy6UBuCxrh6vydtb/ZY1zXiWUYKvPNAC8dfagrc3ib8rBRXkncbZkhSRAPH72ARd/Yw7ABIfZIkpLGUqlQQATxNuoyqTB8DbnQeCVDrP5jLwXgo3nYYYMefL22KV7BCbey3ZxKBDgeAQZzmO/dhIAHiYoUCXRWWOEYLZ11Ntju+8TsLbDrG9zsf/vzLwcjHFgHAcB1kEQ+73lpVJrR9U+QGbkNQBvncGpFophhhQnNAnWY6kdiwu2WRAKSwUUFmunv0gWCrWlCJnK/8/em4fZVZWJ+u/a0zmnTs1VqQohYyVBA4R5nkIYgm2rtIKC+lPAFhW1LzZqt9LtBVuvoK0otldEsRluq60tCooDc0CDDDIFECTznKpUajh1xj2t3x9r7Z2qpBIyFEmFrPd58qSqzj57XHt94/q+o5ngr+DV/GlaDxEMOAel+/pL3TwyskxIJs3u8+Iym1xV/2Giv4TYcpGI1FGxsOUyLMLUgVKyW+moLWNp3QlMqC3nlfzpSu8B2oK1SGErXU7YhCJDLKy0UGG7v5Kq3ZTquBIrdf45cZWMLFO0WlWmadRHwVaOw+RavaiEEDINTj7S+iF1nTKkYE8AwEIF6GKdSdoarCUTFxl0J9IQjlw2vK8ZUwP9sssu45Of/CQvvfQS73nPe+js7MR1XTo7O7nooot46aWX+OQnP8kll1wylofdZcIw5PLLL8eyLB599FG+//3v841vfIPnn3+eQw45hKuvvppVq147+nH77bdz77338t73vpfHHnuM66+/njvvvJPvfve7LF++nH/913/drfPr15G7IaedilDtSzprS3m57jSipIqqMwFkrNan6skoFBkCkdUv5EEU7HbQMdOC04Ed14iFy5ziQsq2iphZsgYIGnSbNOWBtehzpujI6gykcAisDCW7laLdihMH1Ow8Pd6M1JP2eP3fUbabCYWnXgRhpf8ysrwl6me3YukoYJKOFAl3i+daxioaLiVW7NPhL+eJxncBFuu8NwEQC5e6SDkLpBS62JqKMCQvt/IaoopfRYNsysxI15k0B+sp2S1a0LsU7fY0UixklArJbFTQXjvlaR6y2xmy23VhHVt76zvxtIGSeAElSpGQKOUjxCNG6JRzFcUO7IbUIyhR19DpL+PNpT8gZETZacGLSrSGa3GiMhsyb8aJKzhxhcBysWWgil9oT7aK0Djai+ilRrgysju0wHWU0A2VspKJizhxjUi4lOzmVMlIBE42KujJNEufOyVdK5yNi9jDUoSVURPj4FO02/hL/ZnKY+8epNb9CQsnrtDhL2dZ3QmpgVqz86kDKvl+KDLECFZnjyQjyyAhFw+k0fREaViXPTR95ploQBcmCdM0bi8aQlouTlxlyGpBCpsYSztxBrViqITjgDNphIKViQdZnT1S3VsZb3n3rCyzyo9rRSsmE5fSaIiIg1SJyYX9qPQzm5LdSslq0Qq2qzImtPe7JlRmgRUHqo6CjOjT2RcVuzGN6oRk8HUqZr2O0oaWq50LNgEZJDZDVhuLGxaoc7JaeKXuVL2GUKVwWcOWN1hEVO16moINLKk7GYuYXNhPbHlYsZ8apV5cJrRcrDhASqkqyCLSNFLfyirlD5UxAuj6D0qRUQoJqbHRWVuSGvlKUThVL8GQKqpSW8rq7FyEDOhzJ5GL+lVkXI/dttoK+rwpytOtoygxVroUIxYunbonq7rPEoSFkAEgcahpga++o6I2NXJRPw82f5jEoZg4NJNzr1n1bPKmq7oLQCS89JlGlkfBaU+zfRb037TDftXjif1BZo93ed3mr6Zq1ePFJbq9mSBjSnYry3PH4tsNSGFTH25GCKkNVEdFjmWox2EMQmXEbbYnacNTOd7suKqc73ENkAQ6LbZktbDZmUzJbuXJpneBsIiFqtXR6S+jq/IUSc6mFBZOXE1llYXq0jDodKp3Vkfnqk6zNtJUlKpm5SnYHWlmk2/nCYVHINzUgbfae7MyjGSsHarKyWvpolCBlVF9jRGsy87Fiat4cYmGUEVwnbiqDWIbhEgdoomTDKmczoD6XV/7Ay2XayewkrWNYbcqmBYVEUhKditdlacRMsSJq4RWUoBsojYwVQ0LlaUkUIapiuxW7UZtRNuEVoY+Zwro1NnEufHXulOVgzrYgBSCULh01JZRtltG6DZDdqt+xlEq7wMrlzoMNrvTCK0s/dp52edMpmo3kI2V0z4SajlUY6jmTyHDNCOvqmWEFfvqGYXddGdma0e1ipgurlfyoGB3UBf2p9HcUHg40kcKi43em9MI8HB9RzmUOkFYWDLEi0rEWoey4gCLiIZoE4POxFQviK0MlvQp2u3UxQU6asuI9Bi3pMrKi3WmyYDTmWZteFFJGafCpWq3qGciY4SWdY706XWnqGUi2mla1UGWqZXn0mKejvSJLI9sXNQOl9PT2gQg0myRfNTHb9qvAp0pVhcXcCNVbC8ULsg4nfdz0QCByJKL+inarVixz5K6k7STez2ByGHFqoBtbDk0hJsIbFXvIBYu+XiATDQIMlbyQxfXi4SHJcN0LPhWjkG7A4ABZ4szO5lDfJGjbDfixarNbCZWyzYfb3gXEgsvGkzTwJP3XCKIhIUUDiWrhUGngyFLjUk7rmmnV4ZMXE6z0BrCHnw7TywcSnYr06vPUXGalVMlqyLWUjipo0J1LpGpY0oQEwuBxKKS6LlCLf8MRCaVxdlwAF/PMSIO9Pt4MCAJLVdleQhB1WlSmZQIMlGRnsxMJDZFqxXfyqXOBIuIWNjEqOyMJxvfCYAblQD1zidBvxhrRIbExNpS3tP9Bd7a/x+7JQNeL8bUQAf49re/zSOPPMKll17KUUcdxfTp0znqqKO47LLLeOSRR7jxxn0fVXjooYdYtmwZ73vf+zjqqKPSvzc1NXH11Vfj+z633377a+7nBz/4AQDXXXfdiHV6H/3oR+nq6uJHP/oRlUplt86xx+tCYumooUyNlJHRTzedGN2oBPqliIVIjQ/0OpWaqFPRSB0FSzzBscjoiF9HalDUR5spuJ04cUkJ72DLCxmKjFqbIhMP4BbDIHEGYKniT8k65Yawh4LbSUdtKTWrDlv6ev/VYRHO02gLVoOl1qdArF82iK0MCEGgJ+EJ/gqdqiLwdXqppaPDgFJidFqLFLYu+hWn56McF0KtJxYi9YJ6cQUJqTOhajelSnwsHDZ5M7SHXuhzF9REjhg7VeiVUa88k6HwyIYDxMJRXkotBAt2RxrF9OKymmR0ZOCZhrepaB+qF2nZbk3TzNI+8yJPJFwiVJp94j1Uyo+avBv0pC9kRF08qM5XX79ajyuV4iRUtc2qVU9N5FNlSW1Xp7oGINL1VJ21pToa6agU4ZbLALBQ7fh6vC7QSfexcCnZrdhxlVAoJ4XKZoixiAiFRyiUEW0hiaWFb+V1REPSGPYQWy59rkq7ioSDFde00rDFuaEMLhVJiC0PiPGteoQMiYRD1W7SioKnIs62igQ4cVUpPvo8GoP1lO0WNnhvJlFukwhK4nRYWneiPrbFkN1BQ9iDqmSuFAo3KlGxm7BQilO3NzOtq6AcIhWEVEajb9XREG7Sntw4HWuByOlZQCiPuZ1Pn3nZbgAsvSQlpmbXa2VARcIQNo1hNz2ZWYTaIQRK8YpRHmtHqsIoAR5Fu00rTiEVuwmRVtNVyklgZQnJIAVphDsStnL46fS8UGQYcCYxwV8BqPoP67Nv1spVDogJLRcvKlG18sowEI523qhKz5Hw8OISUli6II4y2De6KgImtIJYcCemUbdeb7peqmJppcDRjrJ3aqXATg0gVQRK4MiAqtOkUzxVimDNytPrTCG2HJIsk37noFTJCSy1Ts1KDf4tc0AmLmqHj0Ms3G0Kb+4PjHeZPd7lda83FYlFTdRhy4BNrkrr/XPD29MU4rp4kBBPZ7GU8EUdUjgjjHRLBtzb+nFCK4vEpiaUkgzotallfKEcnt2ZWdSsOrq9mazMHp06HdFLbR5o+Uia7QRgy5pqHSolkbDTtdJJoa/mNM3bwZG+ygQQWZ3eWsKLyyBjYhxqop5IqGwV9Lp6gFBkUkdnLFxyYT9SOFuOh0SiIoSJDFLtMnPqPmiHaJKOLXRUPbZUH+v6aDOWDOnOzGJ19khtKCjDJRAuoOQKSLq9mdrYEVrWZLT8EVhxLZWRqn2U0hyKdquSf+qoKpIqHApuJ4I4nQ+8WEVe81EfjdEmQpEhJEPBVhH8gqscIbb0qdpN6ngoJ7VqWyu009NXGUphN1IXZS24E9NlUVVbPeskemrHNQSSmpVXBp+eZxI53xSs09kBERATS/CtvJ7L66ha+TSaG6OcDbFwCOy6VBdL2t+BRAgJlspgaw42KJtZZ20JIdVzFKoNlnK+H48blYZly1WUXNRmRpw4qFHLKkKhl0YgQaCj2VsyzFBnoQ2wkKLTmQZ9moINaZDl5fw85USIfSwinQXaSMWuH+aEUSTZIkNWK5vdqakz2o0raZaKL3TmmuWS17VTQNDnTlFOf1nTYybSWVPqXqmsR1vJaCmxUM59X+QIrRy2dhYhY5y4qgMG8Qh91bdUu+BQZOisLeXF/NlKhw66CUWWSHiEKB2nMVLLNf5SfxYWcepoSTJiI2HjWzn63ck0hD10Z2ZRtFuo2o142l5QxmtMQ9STZqHVrDzImJqVp9ubyV+zJ4KMyMUD9LpTaQ3W6HcoYkndSTQGG4iElzqmpLDpdyYBKP0i9tPlI6pFnHIyKsdeSM2qQwqbhrCHyPJwZI1QqAwE9FrxSM8jKjNRyeCezEx1z+w8gfCIhK11OY+qqEszLoVQ9yNx1nX6yyg5bWkmypTqC8zvv4UebwYPNl+2y/P/68nrUiTu9NNP5/TTT389dj0mLFy4EIAFCxZs89l5550HwCOPPLLDfVSrVZ544gne9KY3bdNTWgjBueeey80338yf//znXb4Xfq2MZVkk6VpeVGKdnEitFlAfrqfodpCJNxPi0hauYzM5itgIX63d6JZtxJUhbayghTDK4PN9+rwGnHAzoZ5cBRFSOFixz2prMtNKT1Kr6yCWVQIhKMaSMBxQ3tzU42+l+14rDgY/1L8rESxkDEKJzMHQxY/LVIKQmvQJZUAkyvjEQJmByKUqIwZDBz8uIWSszl1KNso24mqZTFRSRdOI6Y88ajIccW2urBJYdVhxiRCHyApSI7jmNKqidk4HoYTQkoDPaqbgVYtYlKnajdQkSKpsEs1QLZGkxybFvpJoJMIhIKIuXEPRmUANSSCbCKplfGzy1bUUdYZDTboQ1lBTepX6qJeC3YagghVXsGWNmqP61/aGDfS6c6CqUo5rWBTEwRCAFZf081SpQu21V3TxoBJCKqUyxkYKQSAqSOngR0roirCKb1nEqCJyNSmQ+BCHBMKnP3apxT5+kg4clFFLH2Ji6eDr9egAVrWHGBs/rrDGmgwBIGvko80U7XYIKghi1ssJUC0htVEUWoKNcStRXNWjXAIWUQyR8MnFvQw6EyAsg7CxZI1a4ONHRTZZzXh+P7Vk/bYIceIiNiG+yFETWZxgEEFIIPKQGkhC/+xTCQKqqAk6Ek4aTW6trmBTtok4hlA0IWOfmrQBH0fW8IlYF0+kVvMpBz5lCV60Gd+qo4aNJx1E0I8vsrhxlYpwiEQNW/o40lcKjLAIZYAra1SteiBkgr+UXm8Km2hCxmH67meifmpWg1I0pSRbW8GmbCMIi/pgjSoQJHxqJGmhZYb7WS1CstUt30neSVv61KwMyJqu/pvRypBIHWJQ0xkeIcVYYvndVJxmqjhYcZXY8shG/TpyE6Re+EgLXBG51KSfvpOgijMGIkspBoshhqxmiFTWjk8e2+9js2hARiWsuMgmmvD8NQy5HThRH4NWHYSqYrGQZSpWs5r7hKuuJ9wyF/ixJBP6VGWEE5cIraw+P7VmDhmxyWpGhGVKscSPyojqJgqZSWA1qzlMxvrcJNl4iEDk8HGILH1N0tf3CgJinNgntDJYwSCt4XrcSg9JHdjS+OrYskPGs8we7/LaKXdTsw6ihk27v4RerwsRFOkjjwiqWLUeSnhURIiMK3oO8LGlT2RlsOMykTayKqIBEan2WUrWqtT5msjhRAOUnQl67p8GwsKNKwxhI4QgDlRGT2+gsj3wQ6j248cTiCSEVkhVWtqQjxCyRtJ+dUPUQa3mAxIpy6y2JpML+6nFVax4iHXWRKhtGdCCoj5H1VFGKdAuIpZEfh+hlaNGFjsYpGZlgUjNGdqJLxDYcoiacLGIdXqvMswqgU9FxqyTBxHVKqg536I3yFMhABEhkBRihyAYomZ52LFDZIUQR/iiiiUl/9PwDwR+SBiHKtouGyFK5E9Vycg4cQwoI9HHIsZHSoktJV51JUWnA1fWCKWPLxzWxFOp+SGbw3pml//EX8UcFRWVNhMqr6g17zIkIkaKxOCtUlOLqUBYRBH4lg9EFGNJLSzrebsBq9pDtzeLirQAJQ+jCAJLAmGabSRFMGKuXRtPoZbMYcJirTwIalXqqsvZlG3QjncfNx5U8ks0Q7UMqLlMygJSKAOpJjI4MiIWRaxqDwNuF0EUEloOMgoRskDBaQCaoVZVzywOcWRIaKmOLT3uVDIyQxBXkAjcuKICKsJmLQeD71MjS8bvpyQ8XXguBOkrh4isEeBSszzcuEQgqgiUcbtJ1CMjX4110Y5VKarU5jhA+D1szB4JMeSrayi6HaCNahA0RJtY60yGWgWLmLZgOZvcychIko/WUrLbEdSUrihyEFTAstlEM9laN0N2E+jPI0vd72xcpGo1kIu6KTvNIKt4skI1qDEkbSx9TSqoFWvdWhnxVekQC5/6sJui04mQAVI4xNXN9GcnIcIa+aCfmtesLkHL66rv48dlQOJIn4pVh+MPElpZajG6CJ0aI3VBPzW3nhoCqCBljZgQV1aoWTabo3pqcRWIqYlmnKBAKDJAxErRBX7I+qiTShDTF9YTUiYQKmNuk36vlN5coT7aTNFug2Hjs91/hcXeCchalYysEmFTs7J0lRaxvO5E5eyQDjLoo0xGZxrGIKIt+okOyiBrqnCiNwVV6M1T+rVw0+e8iSYywWYQUMJDijKWjPCFhVXtppSdSDbqpug00zb0PLc3X6vaWA++tEtz/+vNXq/iPh5YsmQJALNnz97ms4kTJ1JfX59usz2WLVtGHMej7mP4vpcsWbJdgV+r1ajVaunvhYLq1/dPn/uX176I153/2tcnYDAYDIYDnPEurz/5L1997YswvIF5Yl+fgMGwH/PjfX0CwKJ9fQKjMqYp7osWLeKqq65i48aNo36+YcMGrrrqKh5//PGxPOwuMzio0pi21/u1sbEx3WZP9jF8u9G47rrraGpqSv9NmTLlNc/dYDAYDIaxYH+Q2UZeGwwGg+FAY0wj6DfccAOLFy/mhhtuGPXzgw46iHvuuYd169bx05/+dCwPvV/y+c9/nquuuir9vVAoMGXKFP79+i+TqWvEiSu6oqNO7UjSrHXho/qgR7fdCKmLBik57SM+T35O+iWr9F4XS6/N9WQFX9TpdaqqyrkULp4sY0mfqqUqs/pWA7ZMUkUlrqzqImgW2bhAzWpA6EqzrcFqNnszVA9DdxoWITGO/n4mTakV0kcKN00NQq/hTdJyhQyxZajWiCV9u4Mena6UpOQKPFnBi0sU7Qk4soZFiC/q9D1Q9yvpoWnHVSKhCkq0+avZ7B5MnK5BU+vX7DggtDxibLWOWJ+DRYSl18JMrS5mVfYolT4uI4SMEYQ0hxvZ7Or0SWHhRSUCK0M2HlLXCEgs2oJVbPZmpM/d1s9F6PNwpI8tI0JhqXX3sQ/CJSNL+CKn1ypbw1KYI5I0QGScPjOVUiXIh72UnAmoKuLxlqUPoNb4YOt1PyoVuC7qp2S3pWPIkxWVIi1yukDeltRpixA3KlOzG2gPVtGrr0vIiLZgNb3eDDXuUOvvLUK1ZhsHT6q1mOn+9D4z0ZBah0yMG1cJdDEuW/pEQq1tC+w6vX281X0gTbsMhYeDr5K2RT5dMqLS5fQYQVAfbqLotJGLC1Qtpag7cU0dQ6c858NNlJwJZKMhqnY9nqwQ4qre8ki8qEjNbtTH12OcUD/vNWx2VU9VVTlX6hTzWD+jLfcfJK3BGvrcqSOXk+hUsVw8SCByat2crKjiODImFxepiaxeGhJhy2StoRiWGibVchZUTYNkfCAFWJYaNyKPK8sEIqfvt4utx36MlRa2EUKCvo4tPUU9XZhGvVGgUjFBFe0LrDokAoFUY8xpR1XW3awrWG9Z1pOMabVcRv0cC0e1mtJr9lT/YrUeLxuXda0JmY4TSwbElqfS3K0MDWGPLkCp3xdds8KLS/hWHqGvE2By7SVWZY8EYVMX9lG1G5GQ9nu3ZUDRmaDWpcpIpf0D7+r5Es2RqgZeqMGk0UXhuMHI7J1ne/L6q1/9Ku3OECVdPNKVNQKRwZNVnLhM2W7X83qVUGRVi7F4iJLdTn3Umy6HArUMLXlHrWQpCuBGRQIrn76ToAo9tgdrcKOS6lgwbJ4ASUO0mSFdjC5Z7y6FWnscCg8pVGnOdJ6Py9RHm+hzp201h6n5w5MVIhyksIixcGSAIE7XeqbofUVCEIksntRr5/V8q+qu1IFQnVdUu9AuLRskEjd9d5FxKuNLdhuTq4tZkz1Sz7+2lt8CR1ZVfQmrXusa2TSlOBcVqNj1OLpYZoytesnrquqAanmJqiMjkLrInbr3uXiQqtWQ3ofk/no6ZVtV2VdFOGNd2C/SXUzyQQ8lRxXNc1A6TYyFJQMqdiP5qI+S3aqW6Ik6LOnra0r0OLU2d8huT2WOLQMCq06PE6FkpOUBTnrNlq4loqrUqwJprqyo+ibC0vpZImNCVKxO6rGbVfLIyqXyTxUWtGgIexly1RzapnU9IfUY0Tqcut9NShZIdLqyTJ9/R7CCAadzy7w5TIZnooKuT4B+LiUCkdHXnEvHuEWEG1eoWflhc3+cjuWMLKXr45PWWW3BWnqHjW0nLqdFPwEtT5Q8bww3Meh04Mkavsil5+HgE2FruaPkU6LnWDIgxsGLy3iyQtFp1wUKs+l7Ycuaqh0k7C36nK4HlMhWhOpyVLLbUO1Ba3o5qhp39WGv1oNjbEKcqKo7ImzRg9SywqzWtQO97ltiE5IJ1VKZRAdwZRXfqseK/fSdG74vWy+3S+YipW8MUhX1uv4LShcZplMlY9XC1+cuycUFKlZzuk1DtIkhp4NMVCQQbjrubRkggVh4dAQrVKFFCRWnWT+3CuEw/c8iIhMXqVhNW+lMaq16Iv+duKLT9kVaRyC0suNaZo+pgf7UU09x9tln73CbM844g/vvv38sD7vLJF707XnLC4UCLS0te7yP4duNRiaTIZPJbPN3N5OjzRqg6E3QIkFoAV8ZtsZW0iAiAtdD4JCNyoR28jjV+t70OI5HYDtkY6haWW2QdOBIC0s4ai1ZUuANqIvLhDQg7RxOLBDCw5ORLsgGTmwh9KTjRJK8LCnFF6gTLiXPYkJcIHB9VbDKmwV4qCPFxNICPXl4MgLhIGUMuie6umRVXdbWhriQEUFmCtlYrc9BCF24qY7AaiUrIzJxDVdGDDl60tVFZvzsFHIywIshFOpqM1YG19MGlVTHtGRIVgZUrOyWNYCArV94T6/3kVYHLVaZst2KmngGVUEtOYU6BJHI0Bj2UMh0kpERTqyOlzSzC9zJNKKEgQQiqyl9EVWLNLWeGZGhKe5jyOvQhksWb9jkkwhoUBObJXWfUWeCuk+Wailjea3ktWkUWA00BN2qUjvgyQDfygJZHKnajlmymYwuqqWMpixWXKVRlqlYDVgyZEK4mh53mj5GHRkkWeGR8dQatkh41LzJZISDJ21tSMp03WU27Kdqt5ABMrJChK2dK3kQWTJSGUsZCRVdUMjWRVVCq4XMMEeUUl5zgHIwZKIi1UwrroxxpKPWIqOqAPc6U8hKqFhOWmnYdfNkrBxeFBA7qrK6F1ep6gJIIg4Js1PIAJIsGRnjSJG+AwBeHIN2JrlxeYTSWiccip6nx5hNRhapWA2qT6jI6sI5WWw9Xi27mYyTTa9PyEgJUZEjE2WJnSZsQEiPHODEIULkcCT4lgsig4h9bRxLJvirhilpVQLtiFH73KIoS9Gm7qvIko0DLCwiK4MblQnsBizAkRGejIhwiYRHnV4/ayEJxDDHT6r42XQGy+nPTERYudQpYMdNtMlBivYEIg4iI2w1VmWoepTq+UsisGVIfaSq/k6uPs9a7wi1jl404Oi1aZI62sNu3QopiyOlfi/UXOLICMfJMzVcQ3emKxXkAkk2dvAICex6VcQHiO1OMm5OtdZxHTa7OaXAWXmcWLW0zAuJRYaJtVdY7R2NQPJi+4Wc2/89LCTRflArbn+Q2eNdXmc8Fy+TxyLCt/N4UYxl5RB42NLTc6mFJV2yskZo1ZGNfEInS8BkMiOccDI19NyoRCiELhLaQhaJG4f4Vlb3RM/QJot057rIOMpx2xRuYNA5CFv6+NYUNY8qkxOJhyCiPRhkk9eVKuSNYTcFewJ1cZl86FDyVCGvEY5YGeKS0caJo99Lm8jKkJExmVitZQ71WnREK27s4whXzZXCJSMrhHhEVisZmRgHITkrS8b1QGTV3CnUz5YMceMAV0YUnSl4QNWeTsbNYUkHW8bEWvF2Yqg6E8jIGIGHcmGoF7A1KNHrTgAy2MJWxaLcPBldsAwgF6uaI0OOKpjmyRoV3TlD0EBWKKc96X4FiBz5uEpoNSBkgCVtHfhwCIWlZHFmCpk4BN0uz4mrBFaWWDhkpKQ5CAndHA1RkSFb6XJb6g8oGednppCRMW4cY1kZsnFIRfe2Vmtz68jKSI8TpUNYWEQ4FLJztowvcupnJNgtZJycNl7yqa7kxTGWlaUhLDDkqIKkSidQpS8nyh58bzIWERVvOllhI3G1UyMksnLE0iOTyBqrjmxU0Ia4MpgGs3Ow9djLxjWkdgjUxYNKZ9JjTjlBYmxhE1kN1EdFAitD4vx1pANWlrZaN72eqvSfOLpzcQ1HRMo41ON4KPsmff3ov2WVbqfJxRUqOrAxUfZSzUxFkCGLVO+MO5262Kds1eOiHNTSyuJ7k8kJGy+uUrNyZGKHqn0wDXGJQOSpi6vaIdOEJyOkCgXRFg6yyW3G084ZTyodzSZU7y5oY9vGTgJVMqbRighdR2t0Lq60wMrpdycLuLQFPTpYJMnENWqWCkx5kU9V6zKZuKiDDE00RSWqmSay4SBVpwlkrB31eSwZpDoLSXglbiAnnLQLhMAjk9ocgmzkU3UacHWQSunw9jC9UuKLKdTFNVpEQTtOrHRfQs+Bg9k5Sl91O8lIqR1HLdhSYstq6kQT0iVjZVTxPe3Ij7TBn4tL1KwcLf4Am72pgCQb14iFQ0u4loPtTSSv9niT2WOa4t7T08PBBx+8w20mTpxIT8++bUEzfL3Z1mzcuJFisbjdtWoJXV1dWJa13bVvO1o391oIICtLwwzEqjbEdIRJqF7PA84k1MCPKTodaSTcSSrDaoO7bLfqV0J55YtuJ0hJKDxcmRRNUUJBEGPHAb5VRzYcUK09dDsnJ65ixzrSp6uu+naeTKQqh9txjZ7MTFqDDZTsVhrCXh1Z0oVhpCQWLrMqTyhPmKylvQ4RbnptTWF3qqzUR6ovYUYOgUwMUgkypiVYSyg87FgVr5HY+KKODn+5rpyq0REzia0i07gUnA4sGdJRW6auRQhiy8VJHQC6NUoygccRvlVHRrfSiYWLre+dK31i4VITOVrC9YCkOUyq4tr4dl5fo3Is1Ky6tCWE0NW7k4riUjjEWNTsemJhK6eAENQH3SQR4qRfqSVVtD2NOgrSySm5Xypm6+HJKkmhrJZwbfpMMlGJpHqu1FEAX9SpZ5A4bqQktLK4cQCo3u/5qE95ppOoNUJVEUdF922ZZDJYSCkQsaqAnRQnqzpbFGpLhipjQVefVcLZ0i3rEheVRMiY5nBDqjACuu+lIBNX8HSP9Y5gaepFVWNVVUiui/qQQuiCRA51uo2eKnYiqTpNunKvSywyOLKmlDlqylsdV9PrHf4OJK3iVMSsSiCyqkq4lKr9WmYmrlQVeGPLS+9jJlZFHdPKu7odyZDbqdrF6fZIQkZkYjUfVOyG9LhSOyyaIlU52bfr1XsWh2mlVIGkId5MLhpK32/1rljq2aMiyBP8Fek7R6wibbGwsdNMAv0uCJtMXNLedNW2TAoLiZO2TgKhf1bjOxepInpqbNi4cZWaVacrVEskFp21per5C6HVTjUeLBkRWlkGdCXeQCtQuVhVMXZlNb1/SXaQympJCu9JXSlbVbCPdOZJp7+MXFxIlaVQKxqhlSW0srobge4zq6MlsX5WvpUnJKOiBCLDoKNaNTWF3azOHsH9LR9jQLfLGe/sDzJ7vMtrUJ0MHF1407frUR1VbAKRVVJYqAwQ5aJ2KNst6RwBav4XbGmZ2Rh0E9h5cnGJpBtB0vISkRRUExStVkq2asnpyCpt4TqmVBenGTrK6KqkzjqhJaiIQ2LLU608gzVK6ZZqrqqPBkjacap9xLSEa6lZeVVhPm0TpZyHXlxmS5sjh0xcVPNTWpHZw5M1GnWV5qStnMQiE5f0u6bOKelak8w3jVGPzjBQ3WQK7kTVeg7VNcGLSriyQtVuRMgobQ0qtVsCYMiegC19dR+lKoirHMGqC0rybvuijmykimw5MkAisAgJrHyaOZbIIQAh1TVP8FcgsXVmg9LZvLhMh78EISPqo15UBXwLX7dyS+5Br65unwQ40BlGdlwlDVZox3lg5/W5D8s6E3Yqu91I33fhIGSMI8skEXBbVw+3pQ9YlOzWtBONF5VoiDaDEOnYHXI7AQtb+mrU6HlzwJkMSPJRH5FQLQNFGu0XujWW6iag2l9GBJZq/QsSNy4hYj+tPJ+Vqoq4I2u6Cr3Ei0rYskZSoTvSOk1z1MPwCu9JEdDezAwcqe5XnB7b1nJWpPIyaU0mkFv+Jrbova4M0nHZ50xR7xyWvkaFIwPQf7O0/lMTdcRYSFSL3Zql5KUta9qIjlSHFK1HByJDVhb1PlUXHomlsv2EraeEWOlMujI5COq1fE3a2rm6yGMgMlhxoDO7dAFW3QnG0ePelr5qQ+w0pfpmQ7iJSLhaN1XXIkQ8THZaWi/21L1JnrPW+wVSdS3SMlzNX+r5JEZ+YOepiwZR3ZIyeLKsx62Vyuyi1TLMoa+7JunCgHbsU9UdeZRevUHJd6LUOAfV4tWLSniyorsTOelc58QBMRabk8Ka0td6F7qt9PhlTA305uZmVq9evcNtVq1aRX19/Q63eb2ZN28eAPfdd982n917770jttkeuVyOE044gb/+9a/b9GCVUnL//feTz+c57rjjdvn8krZnjUE3CItIV6+OhJcayeiekWpSckjS0xGWTm2JU4M3RlAfbVZGn06BTVoFKSVdTSJeXMKVVT05S93fUCvJwkMi8KTa3pVBKsB7M11AjCdL2PpF7vZm0u9O0r1Xk8izQ2dtqTb6I21sRel1q7ZjJdrCtRwxdC8gyMVFQODFAQhVrVYJGYGdRsCGkNqorVl11EV9Oi038Y6qe1Cz67Xh61IT6trq4z4mBGtwdBuZgtuJiP0RhieglC+perS7cYVIOGRkhVw0qFptaCeApSMDA+5k9fV4mCCQSUVKkabaJWnBWwRUstwgRE3GB+l0P1cbzWhly0qVtIZwE6pXqXIiqPud9DRV40O1MKsHYatz09725FknacpJb9mi08G06vPk4iHQPacLWmhLLIpWa9qSRwmBxPsZp4aOchbVCOw8jVGPGmfaWFLKlHq2EaqNXSgy6TmjI0dVuwmh709oZbHQXQJEkiivWnJ4cQnfzgOCmt1MY7iJDn85Qgt/iW6TIhzVYzyO1LXLmED3akdGtAZrsOMavpXHkjEWMbausu5K1S4ncX65MkgV0E5/GXXRAJ5UrXTawjVYMiQjh7Q3103vsbqPQrUMAXU/IO0NrhwsxVQBRKgWTomBLFB9cdGKk9DLAkTs63unloAkDp+SbtVnx9W0XyzC0s8+1ktDVPQhE5f1M1dGvIWq4K+ErJW+A8opJnTaqKNaCsqKnldi7VAYpuxYSZp9rJcnCAISAasMYYcAJNRHmwGlgKkU+iBtR9WdmUW7v5qik7RQUkqIAEIyOAQ40sfDJxcVAJE6H3wrz4AzCS8ukY/6OL5wd6qUSuGq/qwy0v+r97Bkt+o2UCry4cVlhAzx7TxOXCPGouB0YsmQ1nAd5/bdRLc3k591fonftPyv15rq9zn7g8we7/I6H/Vrp42HENrBKAO1byyV0q7bd6mxL4kRtIVrdMaUSh+XqTER0RquwY0rlJ0WMlGRjtoybJ0VI/S7B1K1GgIcatgyomS1MK26eIvMQep2oWq5liUjerwuMrKEkBEONSpWM4cWF1JwOsnERXwrp+RwsAa1lMxSpkciFxPjBtVLXAjlUFMRZkHNbkLN9VrG6yCCADKRmls6/OVYMtQp+BGZuExj1KPOSQbq6vS8mKSxtoZrtCGSON+ldp5uMYql5aq5UetHllTtQj1ZHuGIjKyM0q+QZCOVAVez6ujwl6o52ukEUEuEdFqto41mabnUaUcACN0uMlmapxx4Epua1cQRQ/fppQ/JKcdpP/eO2jKdrVXGloFO7VXZklK31XO0weVFuuVt2E1kZfR3/XSe8uISDhGN4QZUv+2scu6QRNmtdF/J+PNkRRny1JQDV4894lDL5yGVQSVVVHJLyzlJVu+7s7aUKdUXUqdAZLn6PsVEVlb1WkdQF/ejHKq11NhTS9iUXiex2eTOTJ+pLcNh40wZf0KqpQepkScjLEJ13/T9QqKW49n1Ss7rDM3kXWiMetJgly0D9Sz03F5wOpUjI2mVFxXVCIhD9c7EJT0uYogjtYwhbWVspWnmyTIuKW0SxzCQLg0FcGKfHq8LIWMth1U6vxQOgZ3HItZBFqUH2joI5MbFtAXbjMpTJI56hDJEIyuHJQPt5A9pDtdTs+qJrEzaKcKRNTyplgckTqdAqJanSftHgEh42DqAk7wPqsWp0uOSpZ9KH1eO/mQ8Jka0kCFlpyXVg5tC5ehVDkWlN1btJjprS5ngr1b3UqpAkitr1Ee9BFZOLc2RZdV+VWuBiR4DUi2DE0oXSHRPV1ZVVoyr2vK2BWvw4hLN4QYd0MirVsvjmDE10E866SR++ctfsmbNmlE/X716NXfddRennHLKWB52lzn77LPp6urixz/+Mc8991z698HBQb7yla/geR4f/OAH079v2LCBV155ZZv0uI985COAWpsm5ZbciJtvvpnly5fz/ve/n1wuxy4jY2qijtBy6awt3WKQ64HpyZJSIknWYqOFXzGNCIskKqejqNmoqP4eK2V2anUxQkapgSZRE3hGCwJHqhSk1mBdugY+FolXUhJYOYbcg2jx1yiFRH8WCZfN7hSVFmxldXpMOTWA8nE/vlWHK2tYSNxYCY1kDbgja5StZk4q3sXk6gts8mYwqfayEgw6jevYoXtI+iDOLD9B2W5mSvUFPZmpPuaBVccpgz8l9foJW1+/7mUMCKRa/4WvPbDodOIAV/rkda9R1Ss7gxuXsWOf5mADgcjhyICK04Kj+5NaOgIxu/yEVnbKNGnDtMNfrq9VHVutsxJ6LV8NKbSASjzEwsGWgV4XLnXETrVNy8RF3LicGkaRsFWfTD0xZWSZqt2kFRX1iledJhWVjZXy0VlbQl3UpyMgVdrCtSQRBmRMJFxOLNzJjPKflYBDps4XhEVPZmbaH94iShUuV1a3GFUkEe+YQXcSk2qvaEEe6bS3Bhzpp1770MrS6S/DJmRCbbk2lkIdfVae3R6vi3zUT9IzPPGOJsY2QtDtKaW1PtrM4cWH9Toz1cs98fCfNPg/6lnHFZIoOMKmbLXod0d5id2orLzBkPajV9Fh9Q6EVg5f5MhHfdhSGYdS2FSsZtqD1XhaeYhxUoXFlgFuXNMONaGFrHJmNES9NIY9uOn31D32LVUrolH3pW8P19LmryAWDj2ZmRxfuDvN/LB1ND4jVdSk25uJRDkYLBlgxT7IIH32jgzYmJmNpSNWFadFe6yVC8SRPpGl1sc1hRuV4h2sB6DgdOJqJ1rB7qCzthSwGHI60l7jBbczzRBJU/bjsurfrp0dJbuVGZVndCu3IkBqmMfCRaIcDEJGDDlteizGOqqXSzNVkJCLBqlZebVmTVgIYSmHn4xVXQJZo2S1MKvyJEL3RO7wl4OwyUeDSFRkzZY1ur2ZOLGvDC8AYaVKfsGdqOZOoeqElKwWptcW877uzzG//z/JyqFdn/v3MvuDzB7v8jqnFVPfzmNLtdY8q/sMKydSTKe/lESRbNDZSRWrmfqoT81j2umMdr5W7BbmFBemTrr6uI/WYC2d/jIOKz5MMg8nUUFHBtTserozs3ipfr7OQpNp5MyRPq3hWu28j/SaarWOvDszizeX/6iiasEmne0CFbuF1mAD2WiQHq+L1nAjzWEPW9qPssW41c5vtXxFpYsLneUlZETNrqfH61JOMVRP87P6f6jnghqNUQ+D7iTqoz4sYuqjzUhh0+N14cgajqxRsVtoD1brTC8VCXbigIrTTEaWycYlaiKnMgLiABFvWcMfod57G8m0yjOoyK7KMmqI+1OHfM1q4sih+xAyUvLXUksKI+Fqg1bJhrLTnGbVlexWvKikHaJqSVTyLDJStb7rqvw5lcXJyKuP+2gONpKRaplQpA2jJM+hMeohtHIIGVNzmoBY9aCWIfVxH2f130qiAzqyRoxNXVxmgr9cO1I7070pp3luS1Yelm4RmU0zJ+aU/qCerbCRkK7rDqwkgypKDbxNes11Lh5Q8lY7BUKRQaLWu6tsvQ3EwlVOWv28fDuvnKhxmYLbiRUrg7rqNKmxHAdaJ3B0UELVLejJzKQh7FVGnkjOU2UuRNg0Rj3ElotNmAYCThr8uX5Hiip6nrz3wiISLvXRZuUMAO0kiagPu9XzJ0IAjdEmlXItbKVD6WejlmQFCPQ7rZ0byvgPqTpNKuPUyqrxqQMSddFgKhOlpWpD1IeqXoSSzTGxcPCkn+pekZUhFBkO9v8KxOTjfk4avFO/h6o3faIjx5annW+qca4blyFWjn4pbDr9ZTixz5Cj5PWhxYW63WMtdf4oJ45FhpoKoWjdryHsAeFoI14Q4qmsUWFpx5zStxOHSaLveUnveB3EcVB6f0PYQ+KgP6y8kC0Zwsr5P+hOQgWfAhrDHpWlKVRdHUuGdNaWclhxYaorFRx9X7HSYyFVP/qMVA4vS8Y4kQrIdWdmjetstzE10K+66irK5TKnnnoqd9xxBxs2bACUwLz99ts59dRTqVQqfPrTnx7Lw+4yjuNwyy23EMcxZ5xxBh/5yEf49Kc/zZFHHsmrr77KV77yFaZPn55u//nPf545c+bwy1/+csR+LrnkEs477zx+8pOfcMopp/C5z32OCy+8kI9//OPMmDGDL3/5y7t5hirKGpIhH/fTFqzFi5XSmhjJUq/lyMbl1GtnESGF0C+QjXq86hFvynQxp/QHpHCRwuakws918a+A+rAXEDix8rwJna7W6S9jbukBJFYajUuif5YMsGMfS+f+ZEM16WTiIhP8lSCg019Gu78a38qnSknJbsWL1WTV43VxYuEXKCeDSk9yYmUsDNgdLOi/WWUM6LVbIOmsLeXw0sM4sRKW/e5kpLA5ufA/HK2j7gVXGaCHVv7Agr6bAHUuRw/dqyYOWaZOp7J1ezN1dCyDK2vURYP4Vo7mcAMlp5X6aDNZWdGmNDREvfR602kIN6URh5ZgHRIrnRirVr2aULTSkY/6lUIycCtqQo3URKyfcyYuUbOUgOqsLaUu6kfIiJZwHSBwowq+nadgdzCxtoQz+29Xa6511D4kQ1u4Rk3ESB3RC2gN1uBFQySK4QR/BWq9cUQ+HqA9WI1IMyUk2WhIRR11CnB91MeyuhNI0q+T4kRJulhD0K2KDOmoZ3uwWkVOZayNKgsLmaZpO9LHjcvUh5uo2M04skZzuF7tSwu4fNRHQ9hLQ7yZprAHRwZqrbZVn072mbicpsorj76ahF1Zo8Nfjh37FJ0WSlYLxw/dhR3rVDMZEmmn1xGVh5leeYbAqsORNa3UhfRkZhLadbyp9EeQMVWnOVVKkuI1bcEaNR5llDqiSlYLQt97EYd0Z2YxvfpsOkYy0aBWYlSBt8DKkomLdNaW6rGtMgZKVgtHF3+XCppQeGnETEhJaLlk4jJlq5nzN39DOdxkxJrs4XT4K2gIe9IMmk3eDJJeyVKoIn2N4SadWq7SbX2rLj3HyHJVlCIOcPGxtIOoOdygM05i2sJ1HDn0e5UupsdVU7AJkNSsOvJxP5OrL1ETdUSWixuXtYCukJVqGYIbV7TSJ9MIRrc3kznFR9R5Z7qYVHslHUPJ/XdlDSFjqlYj7f4K9S5J/S7FW5bcFJ22VNFpCLrp9mby5spjzB26P53nujOzKNqtnN1/KxArtULYlJxW3lx6BJC06HS6wMoq50XYrYvJwRFD96bRvsTxkAh7h5DZlSc4e+DW3Zz/9x77g8we7/K615vGm0p/SI0UmwjfrtcOKjW/KsPvXiQWOf1OdGdmEQtHrQF31Dxmy4BsNEi3N5MXGs7D1oXNylYzLj65qJ+l+VPIRoN6/ldONZWpVsSOfQp2B23hWm2QRjSFPYQigyW1si7RBo5I3/0/N57P/P4f0utNw9Mp5N3eTHJxgQbtyC3ZzbSGa1nQd1OacqoKKyqnn6WXmjVEm1VWU6SMqpZwfaovqHlqJSW7la7asxw59Ht8K5fKn6SAnAooRDprwCYTFen2ZjK9+iw1q57Yymwx8LTyPuhOxCKmYjUzIVhNY7SJJJNAZbz4bMzM5sShu8lFBZ3mbrHJm8Gc0qOAoDszizdVHmN65Rkl7/QyMikclTFjZUgKV7raARojcKiRjcsIYhq08WbHPi/Wn0NnbQmnDfwodQIU7A4c6VOyW2mMNlETddi67kkuKqge56jsATeuIC1HO38DKnYLbf7q9P4dNfR70I6Wml3PxsxsDqmotm9J9mN91JcueZBYKmigo8ROXE3HQNlu4cih35EEfRTqWlU2ksqeU46XAJuQPncKNbuB1mCtyiyy8sTCVg4qVAExO/bVsWQtNSKbw/UqO06GtATrU+O/MepR0eu4iJAhbeFaplQXp9sGeqxkoqE0imvHPl5c1VloFZXBIBw6/WVkUTqRpffdk5lJPupPl2OVrBZVOE2WaQg34VtZ2oM1yu2hjcBB9yDeXPoDgcgqXVlYFNyDmFz9C7GWo23BGhWA0U78UNeJ8HSmSmPYQ8GdiCUDyk4LbqxSsTv9ZRw1dC9Fp13pfIFaIplErTNxURmxOgOsYjXRGPZSslvJUiUbD5GL+tPjOXEVK1ZZC8nykRMHf0GyXK7TX8bsyhPpe5OP+zlx6BcIGabnKkVSWFYZyVK4qe7XFqzGims6yDKIb6tMQzcuY8lQZXPqKHjyzNR9VfVnkvvvaN0iEg6ZuKzGc+Xp1LGG2JKZ1llbSru/WuU9yICO2jKVeSTjLecfbxkLzYGSYTW7XmUMAvm4X+sePt2ZWQghaPNXI2TEE40XqEyZcciYGuhnnHEGN9xwA+vXr+eyyy5j8uTJOI7D5MmT+dCHPsTGjRu58cYbOeOMM8bysLvF/Pnz+eMf/8ipp57KT3/6U2666SY6Ozv57//+751WRizL4u677+baa69l06ZNfPOb32TRokX8/d//PX/605+YMGHCa+9kFBrCXgCdgtGMg/LsDTeSldI/pItvqIk/FnZqxC3ou0lFB1FryISMKNstNIXddPrLaI56aIg2qzUgTjsQp/t19frtfNRHV+VpLCJlpOoXsyHcRKw9vpvdqWotd7AUIUMagx56velk4jL5qI9Dy49Q01Wn6yLlbe3wl1NwO3HjCquzc+nwV6ZGanIOTzRegEXE2f0/ZE32cJqDDUgsnQobcmb/7UhgszuFztpSmqMeji/+iiOGfp8aoADTa4tpDjeqlNbir9IIZdlpwYkrWDKgajVQs/MIGdMZLKMp7EYA2WiITFymx+tidvkJanY9A+4kThn8iVYqIhqCTfR602nzV5OsBVuTnauibnofUlgq9bC2mMOLD4BwaIx69dNW688Sh0M+7leTqfSxtHdcredRqXp18QDTaotZ0HdTmnrt22riTjzqduzjxD4Vu4X5A3egJlq1FmlB301IHbHsqj6brgPuyczkuMLdVO0mVQAr6mN57lhqdgMnDfwP6EiII31y0QAQ0xaqFMgkVejQ8iMMOZ3Ycss46fG6OKnwCySC1dkjaAq6KTodtPsr0+Jilgxp0+sgS3YrTWE3JbuVo4u/U5ka+v7YsU9DuEllaAxLla8P1ToiR/rUR5s5p/8HSsHURtj8/ltJhE0olNML4NyBW5hSXUxo5dKId+JtnVf4EXOH7k8jKYI4VUArdos2vnQBJ+2JFTLGjn1agnUIGbHRm002GqIx6KGm10gmipsXl7H081b7ktQsFXVp89eQjYa0oBE0Rb2AJLZcQpGhMephY2Y2RbuVBf0/QCJYlT2SgjOBtmB1ahQjlUPrrP7/xBdZapYav6cO/mSbuaEh2ESEoxXqDWTiUlrtX0ipnX9qHJ9Q/BWHFR/SjkG2jH+t8JzV/wMSx9FB/is6UqdS+k4Y/AWBVac95ypSNiFYjSUDnml8O41hd6qMOnGVdn8VVhzqyIytlG6UAnFm3w/1vOemilHiHDpl8GeAWmrgxWUeb7yQE4u/VEtShs0x02vP0RT2UNDRBC8uU7Zbtnja4xoVq5HQypKVFey4RndmNm+uPMYRQ/cRCo9QuKnSMJ6F/WjsLzJ7PMtrISMqdjNTK8+CjJUBiUphd/Ta38Twqw830ZOZyYmDPwcZUbabaA3U+14f9hEJN11PPbW6mFMHf0LNUoaXkBH9zmSqdgPv2HwD0yvPkRhB2WiIpqCHSBdpK1kt6ZKo1nAthxcfoCezRVlPsu2S+Wl19gherTuVUwd/ghQWoXDT9Z+bMl28ufQoVashzRL5wMbPoCLLGSboTJ5YBw0G3IOYXf4TVadJp/DLVF9YlT2SSCjjf8DuSOeSRP4k2XebMl00RJuVjoLDkNYXNniH6OU8apmJMkq2yNp82Jc6Rwfdg7SjVWViFdyJ6Xt/wtBdabQwGw1RtluYq51ujzdeyNkDP2SCv0ov/1G6V8GdqKJzukheoAtzJZHhNHvOnaQd2g5lq5F8PECWKk1hD3VRgZpVR3O4PtWFfKuOdn8FvpVTWT+xqonT43Vx/OAv04y2UHh0ezOZUX1mm/uXOGis2OfxxnczrbqYKZXniYWj0tHllqWEAtVVQ2VCKSdkMgYG3En8Xc91zC4/prM0lYyr2M3kdEahb6llgoHIptl4R5QeSNfWS+GkdVTUNfwiXe6gOnJIrKRrQNjLZm+ackzoqGcyliU2JbuVc/u/jxNXqQ97KVtNWzLGdCZHJh7Ct+q0fPll+rzzUR8rs0dh6bXfloxV2r5waQvWYEtlrGWiIo1hDwPuJNqCdVTsFuYWH0pTwy0ZULJbmOCvpGY30FFbpusuxMzVQaGK3aIDMDqrVeoK+zoTLhmfrVo3aAo2ElhZ8lEfRxd/iyNrqrOQNzU1chO5XHQ6qNdGendmNoeUH0uff6e/jIZ4ACv2ETrbIdEtk+WYq7NzaQ3WIhGpTp+NhnBi5SRyCGn3V6fnmshCW/ojHH9eXFXX2X+rzrBQ73dPZhYnDv5CZTI6nWlUXOmAvXoflbQ+TCYuK+ObWGeGlun2ZlK0W4c51pTjz4l98nE/h5YfocfroiHspT7uo91fneojDqHS3VABtM3eNB0QiVKdrWS1ML36HIP6HQ6sHGcP/JAjh37PquyR3NdyxbiMpI+pgQ5w5ZVX8swzz/DRj36UY445hq6uLo499liuuOIKnn32WT7xiU+M9SF3mxNOOIHf/e53DA4OUi6XeeKJJ7jooou22e62225DSsmll166zWeZTIZrrrmGpUuXUqvV2LBhAz/4wQ/o7Ozc7fMacjrS9d3dWjDH2OTiUuq9Ukp/fWoIgUjXUdXFA0qIdn+WMwb+i7ZAFSxblT1SRbl0YYQ5pUd0ZHWlStPWE4Jv5fCtfDr4DysupMfrYmblaaQ28ry4rJRnGeLgU7ObOWroXjbpFmtJ6ldi4Idk6AjUxLbBOyQ1QFZn52qlpCk1AhNhcX/Lx2gKN7Kg7yblRBCWbsfEMO+xTA0ugJOKd9GuPcwJicEHKvop9ETdEmwgxk6VgsQhcnTxd/R4XanCkCgqSYr72sxhvLf78xxeeohebxrt/kqKbnsaeT637yaksNJ9lK3GNLp2wtBd2LHPgDuJk3UKvhKUG5GoCceLyzSHG+jxuphVfmLEM07WzEyvLeaS7quYqtcbdmdm0xRupMNfSUO0Gd/K0e3NpCncSGuwluZwA93eTJrDjZwx8P/o9mamhmC7vwohQ1Zn53JO3/dUuq7dysrsUUysLeGIysNMqzyDBEKRoeK04urJ+rDiwlQBTfbXGmxAIhhyJqRRk3P7vocTV9jsTUUKiz5vcprC2BJuoGK3cHjxYbq9mXT6y9Lzy0RD2ujdQCQcCk4n7f5KhB4r2aiQVqSPUZGmabXFTPBXYssgNcKmVp8nSMd1czo2lPCv0J2ZxYzqMwDpeDq5+AtthGUIrHwq+JL7uqDvJpy4gkqHDig5rTREvfR7U7RgPIKGUDlwJvgrsVHpb5Fw8a26Eed7dt/3U+P9z43nc/rAHWz2ppGNBreMFe1FT8bvE40XMKX2gnbW+FSthi0CVBus+bh/m/2vzRzG+7v/adjcENLrTafVX5MqUOk6c72cYVb5SWLhpOO45LTQWVvC0UO/B2DAm6SWF2RmUbUbmVZ9Ht/OU7PUz0k0YE32cM7p+56KoOtxdlh5IbFwWZ2di6sr66/JzqUlWM9mbxoH+6/gxuXUQTa7/Cel3IarOXJIrUG2SArbCDr9ZRxa+QMd/krlpOq/ldXZudzXcgWHlR7aZo55U3kRNaGi/8m2QjutVIaPMvxVNOLO1Ot+fPFuJvgrCUWG+riPo4buZVX2yP2qSBzsPzJ7vMrrQ8qPsTp7BAiHWaXHSJaVVazmNIsiGTN/t+krCBmxIftm2v1VqiaG1cy8gTsYctqxZEB9qNK7TyzcyczKn9M5sGrVM+hOpLO2hOaohwUD32eOls3HFe5O5xmQdGdm0RhuSuX4CUN3kY2GWJM9HFdW07T5eQN30OtNp91fycbMLBY1vz91DDZEvan8K9stTKk+n77/WarMLT6Eb6m6H8MDAkkWWSYaoiHsZbM7FTv2meCvxI0rbHYnj4hcnTj0i/Tczu37XpqW78UVBtyDOFEvR2oONrAmezgNYa+uvRHp6Fxdeg+Se5joGFW7kSOG7lcR6WHv/YrsMSq1WN+D1dkjKLgTOWHg5+lcMaP6tG41RupESQzaCf5K5bQVpJH8TFxMC1p11paqTAPiVPc4uvg7yk6zXg4nU13IQo2Xs/u+ryOZKhPMi8uszR7G4dpRnMjp5Nq2vn9NQQ+xcIgsjxMLd/KWgZt5U/FRNnkzlKMCQU4vVzihcDcSkWYDbvJm0OavYmNmFnd1/isF5yBm1BbT4a9Mx3nVbiBZqmjHvj4fFQxJjL4k2itklBqj67NzyEWDOpuuhsSmJzOTEwZ/oXXdHr1vkTpqkvNKDLez+3/IkDZUhYxYlT0CT1bJh71U7GatE4SszR7GUUO/T41736pL16R3Z2apIITVQMVqZn7/rQgZ6ZpIyoAGVT/pkPJjytEdh6lsioVDTdRRH/elcmLQPYhjCr8aoRNk4koagU4y4VJ90puW6gRuXKVkt7I8dyyhleWsgf9kQd9NuiaOGOb8XkWg17cLqWpIJE7n6dXn6PG6OGXwZ+lS1ERfSBwBq7NzqdgN6TIsh5B5A3ekOuKA3cFh5YXpuQ6Xheqd2USkl9l1ezNpDddp3RsS/TV5d924onV1GxEHallh2INvZYmsbBpUs2RAXdivdASdQfJE4wXMKT/KoHsQc0p/IMbBt3KUrJZ0fAX6d6UzbNFHXFTHqCSAltRYSpyGw/XTJHOhOerhhOKvOKfvZjZkDuFnnV/inpYrd1sOvB6MuYEOcMQRR/Dd736Xp556ildffZUnn3yS73znOxx++OGvx+HecMwt3pcapImwSyaYkwbvRAKbvBlKSMiQIadTe9iUlzQx4hxC3lx5jAt6v8LlGz/JUUO/pWrVpwJjduVJnFitJ5rkL+Gg2l+HRYOjdPAfP3QXXlxmXfZQOmtLaYvWM7//VuWpkqU0/Wx25XGOGvotvd5U9fLoyfWw4sI0yju//1bWZg8fYbgMOW1pdLYp7BmhMPys80s8X38eE/1XyYYD6YQCcELxV0zQ6XLDOaz88IjtZlSfTX+fXn2OHj1RJ8d3ZFWl9WhDN3mRk0nHkiGrs0fQHGxMowAPt3yYOaVHWdB3E0POBGqWatGUj/qYXlvMezd+DjeusCZ7OGf1/QAhQx5vvBCLiDP6b1eCKzOHs/t+kApKIVVqdF00mAoM38pj62fsxuURa2YcQt7S/13O6Ls1VXjmlB9lwD1IT9DqmGoN1RajrqvyFNloaIQh2OavYXV2Lq/WncIxhXvo9mZStpqo05kI5w38QEds0Klom1XqcPmPKsIso3R/w+9rJGxWZY/k1bpTOL/33zl94L9o91fixlVsnTUApEJxuAPnz43nc8bAHUTCSce7I2ts9qbqKp8VKnaz9tiSpvglAicSbmqEHV+4OxW43Xqb5B6eqZ/HRm82FtGIwiEnFu9ift8tIOMRgu/xxguZWnuBD3Z/lnqdiVK2GlMBYaEK3fV605DCYrM3hdDK6SiEWtIx/Hxn1p7lnL7vp+Pr1bpTOWXwJ8r7LiPWZQ5VEWMZp+M3ubbmcCOXdF/FIeVFIxSF4crh1vt/uOXDTPSX6rnhf7Gg77uU3DaksFOFuiVYl3qyK1YDjo7MP9F4Ab5VRz4e4Pjirzhq6LdEbCmS9HjjhczvvwUr9unOzOa4wt3p+lYVqTuFv+29gTmlR0Y4iib4KxmyW7QyupIhZwJSWKzNHqoK5+g02ZqVJ6PHcnL8pN+7IEodkIeWHxlxP3q8Lv7c9C5Apo7EjZlZPNl0YTpvJtkpUkcwUqNBL9NYlz10hNd9RvWZ1OmTnMvq7OHjUtjvCCOzd5+y3cyRQ79jTfYwltafptOBoTsza8u7GIesyh7Joy2X8ebSo6zKHknZaaUx6B6xnR0HFJ32NCvMIeRMPQdudqeqyKCekwFOHvo52WiIxfXnIJH06krFQkZszMxKZUrRbk0N0aRAaeIcPHeYDGsMNlJyWtL57tTBn2BJde4CVYwsMQyT5UPdmdk0hxvTgEB9uJk12bmqZ7bToQqbCZtN3gwO8pdwfOFu6sPe9B0afm6JnJhaXZzOQxszb2Lu0H2pDBhyO9LsnYLWfYSMWJ2dq9/VgDXZudSHvazOHsGgO5GTB/8boZf9tPmr6M7MTAtoJveg25vJEy0X0RRuZF12Dk82XUhSEDJxoiQG1iZvBi3B+rTYVGL8r8nOxY1r5ON+ptcWc/rAj1LdIzEy6sPNqYG6Jns4deGAMiDCdZzd9wN8K0t9tDk1AgvuRCZVX9a62RrtpNiUzv/J/ev1puPFldT4ADh16Gd4cVkbsSvSmjlb7pWvHNxC0OdNUWMg7GbIaWNtZo7qQGJbnHPuuVz295czf/58OjoPIrLcEUZmYvQl0d7EuEzOMxcPX9I40qgLLFWYzAsH07+f0/e9NEvx8cYLU0d0aNWlWYq+Vcec8h+Rwuasgf/k7L4fsDo7l373YGaVH0+XLwoZj1hicVjxQbozs2jVy7UqVuM2AZk/N57Pmf23po6gRDYlQZJETvR4XTzTdD6WNjCn1l7g/boGSb2u19IUbNzqupQBHugllktyJzJRO92G1zCZWl1MXdTH5mHPxY59VmePoDHoZnV2Lsuzx6aO7yQIkugLZ/X9gF5vGhP8lQRCFVpL9MfEaZ/oiNMrz4zI2itZLekSFKWPr8KW1fR5HFf8Nef03YwtQ6TW8f5adyrvGKbjeQQ4wwx2ZDiscDM6rT9MM0gSx5labtHMWfr8hs9fSbCrzV+TZoE80XgBXlwmF5fw4jJrMofz3u7PM7f0EKBy+YSMeKrx7zh94I40cyGhq/YsH9j4Geb3/yc5WXh9hcUuIuTwaimGfUqhUKCpqYn+z0E2k+WppnexJHtCWmxNAJNrf6ElWMdzDW/FJiASHp7uA63SbZVh8J7uL6ST9HBeyp3GopYPpJ+vyhzBva1XYBMSCY+mYANDTnvaBmNq9QXO7f8eazJzua/1Y8yoPsM5/bcAsDJzBA+3fEinelU4qPYqC/pvwifDE00XsKTuFCZXX+Ks/h/w/yZ+g8jK8J7uLzDgTOTR5g9StRtUhXLhkgv7qdhNdFWfZlb5yfTzxmAjoZUhxEsF4ZTqiyzovwkLyau5E1nY8qER1xvi8OPO61U0u/97xNjp7/P7b+G/O6+j01/GIeXH+EPzB6jaDTQEGynarSBsplZf4JDyIh5ovYKp1cUcV7ibV/On8Jf8PCLhkRbQEjYdtWXUxQP0uZNVupe/jPN7vwbAqswR3Kf3Man6Mn9qvohp1cWcWLiTpxrewYrccUyrPs/k2ks80fBOVRCGmNZgLZu9aZzW/18san4f7f5KNnnTsQiR2COuP+HJ+nfwXMNbmVJ9gZ5MFxNrS5lVfpwHWz9CW7BmxP6mVhczpfpi+vPk2ks83fCOEc/DkgHZuERDuInzN389Pc6SzHE80nIpsS5iN7n2Fw4pL+L+1isAofZdezHdX0OwkYrdrNp5CJsOfxn1UT8lp5VutwvXsQhClUY+ufqX9L63+yvp9aan5/dkwzsJrQxSF8Sr2fUEIkPSTkdqAWDLmMm1v6TPuSHcxJAzgardQHOwngFnIgKZjuvkHib3rz7spehO2Ob9WZI5loWtf8/U6gvpfZ1afYGTCj9ngzeLPzb/fzpFbQpT9JhflTuGJdlj6fFm4Vs5kpoDQkZIy9Vp8yGTa39Jz2Vl5ggebr4svdYJteXU9DrxqdXF5KJBXs2fqsfolvHbWVtKLh5kTfYIDq7+hQX9N/Fq7mQebblkxLVsvf+O2jLq436Kdgs93kxsS5DJ5iiXhkDXnkgquE7wV7DJmw4I6uLBEWOjipqvlmWPxbfy6rlVX+JPzReNeJ/a/ZUU3A5qVj0dtWVsdqekY+iB1iuYUn2BbFzk1bqTmVp9gYP8JWzwZtLrTlfVYHWV2An+inR8nFi4k2xU4Kmmd/Fq3cm0B2s4v/dro84DK3LH8lLdPHq8rnT+bAw2UrKbiaxseq+qZPnRxK8RCY9p1ec5rnA3f258B6uyRzG1upiDa3/hz41/p9dEqrZ0w7/7VNO7eEUewkc+fS2Dg4M0NjbuqXgwjDMSef2tb36TN4tXObpwD3+tP51V2SOokkVaXjrPxNg80XgBL+dPJxYudWEfFbuJadVn2ei9acQY/VnHF+kIVqRyFra8t4GVozNYnsoYgAeaP8xyLUuOK9zNJm86f2x6H7Gebzd5Xel5rM7M5cGWy1W7M0jHbIjDityxrMgehW/V0e904lv1TK6+xPz+W3i68fxU/iEl06rPc2LhTvqcg3mw9fJt5tOVmSO2kfFuVNJt2tR5KYN5OrFwR/0dqRxpEkt1FIkG+Gv+NKRwVBs6y6Oqq08nus/U6mKOL9w1Ql4nx59QW07VylN02pHCJhsNUrWbRr0HNStPIDLURE4bsNY2uouQIaofvHIKFpxOJvgr2OxNZUKwatQ5aE1mLve2XoFFxOTqX3hTeRGPNn8A36pL5fqv2j6LEHB+79dG3Mdc2E/VbtRF8rbI6ThZYoPK8hmuowGpjjel+iIbM7NpCjbS601javUFji/cRbfXxXMNb6FkN4NMWvhB+4QO5s6dy4wZM3AcZ8TYX7lyJQ8/9ABBEKb3pjnqGXG+SJnOsYnOlMitB5v/ntjaMrf2eVNYkT2KXncqRbst/fur+VN4IX92qjfVR32syB3LY43voTnqJhcNUrEaOX/zv4867pIsLCCVHVOri+nOzGJibQnn9n+PZZljWdj6IaZUX+RN5UUsbL6UwMqlutnjDRcSWR5Tqi8QWFk2Zg7ZZswkMiV5LxJ5uyRzLA+3fpiGsIchLcOPL9xFnzeFpdljWJc9DC+uMMn/64hnNpzh47Lbm0mQaYM4JIxJn3/yTh5XuJtX8qfxUv6sbXQx1a6PEe/q8sxRPND6UbUkQuuEmahA1WlOr3F55mgeabmEwMppPb2ZqdXFnFT4efo8XqibR583jVg4W3Q8u5Vur4uMa3PImw+lu7ubnp5ukGAREAsvzTbq9JdxZPHeEWNnWvV5ji7cw28mfJpJtb9ybv/3WJE5iodaP8yU6ku8qfzHVO9sC1Zvo+OeWLiTAWcijzR/kJre59TqYkp2Cw7BiDk0ndNr0HQ940ZmGwN9HJEI/Duv/3vO8n+dvuTLM0fzcMuH0kIN06rPM6n2Mk81/h2hlVN9yIkIRC4tVDaaEQfbGq+JUZAM4kxURBDhi5xOmbHSl3Fh86Wp4EiokuUnE6+nOdjAJm96arQkxn9ioB5c/UuqrA9Xlpdlj6bgdOJbOWqijvZwbSrYhisMXlxmRvU57LjGA60fTY9TH/Vtcz0w0jg+sXAng87E9Pfhxulw4eBbdRSsNopO+zaTW2IA9TmTdaG8GMfxVBEU26KhsYnW1lb++te/bmMQJZNOU7CeotNOJDw6/GXURI6C05kaYhW7Ie35usX43WKECV2wI5lokvuc8ELdfJ5oumDEhD259hJ/bngHvlW3jVE3/Hwm6NYvg07Hlj6r23H2hDg81fh3vJQ/kxhnhJMhSgxLvb+C06FahAmLyZMnY9s2gV/Dy2SZMWMGM2bMYO3atVrYR+m+tnYYTKgtRwrBgHMQocgghKShsZmjjjqK6dOns2bNGl566aVUAEyrPp8+5yna0Ov2uig4HfQ7E5HY29zD5ZmjWdhyKZFwd+gE2XpsTKgtZ7M7hVg42rEwLVUoht+3AbuTxxsvYE3uSBacdx6g20QNU3gTob80dwIv5M9m0O1Uy1vq8oR+lSCS1EX9lK3mEcI+Gb9VkaPPnZp+9pv2q7Z5N5L9/yU/j6LdRiAyxJbHqaedxiGHHILjOFSrVR566CHWr11NrAu1AaR92xEjFLPhDB/zdeFmynbrNvcscbz55AitzDafb/2u1EUDrMkeQYu/lkGnM3UwDFdQ6+N+NrlTGHI6Rzggh88Dw9/LhS2X4Fv1ZGLV0q5m1Y947ls7LztrS9PIUCycdIz3OZOIhbuNkTLehL1hbEnk9YNf+huWTXgbUjhbHF5Wi2qBNsq7vSJ3LK/mTmR95hA6gtUcNfT7EWP0ycZ3UrEaRjhGQb23i5ou5q/500c4g/7fQTdsM/bU2P04ncFyDqq+ks5bJxV+jhuV+dFBX8OW0Qjn4HASx7eQcXpeiTL+Ut08nSWnDGlf5BhwDtpmPg1xeCk/n8X151CxGslkc+QyHrbrYVkWjm3hehny+TzlcpnAr+G43ja/x3HMhnVriKSg3V9JTS+fS7JmDj74YGbMmMGrr77K5k3dRFLQ6S8nF/XT506h4HQgkHiZLHXZDA1NzeTzeUqlEuvWrGJyRUXQt74HoNqs/XTCtRSdCaPqLpvdqWmWkoo8t6dtqrY3Bw04E1Nny3CHwgv5c5hafZ6J/lKebLpwVMdB1aqnaLdQ00ukIiub3ses51L1AxoHX9zG+NjacJ7gr6DgdlKz8tuMWSEjjjrmOI4//vgdjv8wDHn11Vd57I9/YHJlcTpvJuf7Qt08vaTNxYuLRLhEwkuv+c+N57M6O3eko3jYOSR/F4x03NRH/azNzGFy7S9UrQay8dAI43ZrozkJbrUGaxlwJqayY6SjaVJqqG4dkNnasWPpYMLW+sHwe5xcTxKIEKgCfZYMRxixm52DGXQmqsCOdjLsiLsn/DO52Wdx1llnsWLFCpYtW0ZhcJBypULoV4mx6NSFV5N7NlxOKRvCGjEnjdRRNzDktG0TCBo+BgtOB4NORyqbRwRcbIuWtnYc2xqh4yUOni2OHdVez4uKBCKLtJSDe/gcs9mbSiTcNLCS6FTDn9UWB4qTOh9GC1z0OQdTcCem42r4+zmc8SazjYE+jkgE/n9882t4dU3beKJsSxDHcVqMbEJtOYgtRpCwLA4/fC7t7e08/PBDakAP/nwbI+HhlsvY5E5nWm3L58MVhx53hvIg1hYzqbolUtQQdDPkdm4zsBMBpKJjIyf9zc7BFJwOpLCpC/spD/O+bX1eD7Z8mM3e1O1G/xNeqjuDx5ou1p745QgZ0e3N2ma/KzNH8EjLJSpat5WHvinYQNFpGznJ6Pvs2KrfcxirqCG6OndN5LAsm8MOP5zjjz9+G69yGIb8+L/uoLPw9AiBv7VnfrM7mcDK09nZgetliKKIgYEBwqBGGATUB5soOO0kE2niREicGSWrORUynf5y8lFfOkEO91YmykqHv4KqdgZsbdTVrDxVkafktOCLHB2dEznssMOYMWMGq1at4qEH72NKZfvOnica/46X8/O1wbICCaMa0bNmzdrmfm1975566in+8uJiIinS+z7odOKLHAiL+rocbRM66OrqGtWrD1sEQBiogiejPeei3UaPN2OLEjDKexbFMVMrO3aCbHFCqLEBIo0YbG04JhFqz7GYf/a5TJs2bdTz3dH2YRiyYsUKVqxYweBAP4MDA8SoFn71UV96/q6jCkf5YUxzuFGltG3HYfBE0wWsziqHQXJOWz+XRBEYHBigUq0SRxFxHCHjHTsCl+WO5anGd1G2m7BQyu5o79OUqVPp3rCOqh/SEaxAyi2fC2HR0NhIvi5HFEt6erqZWn2BztpSVuSOYchuS9feAaoqvwUHl59P38HhCkhnbSn5eCBVBIcrFGEU09PTPWLe3Np5aRHp9Xh5LKH6iDc2NSOlZNXKlSPmoPEm7A1jSyKv77r+EuL6SWxypwPg2hZuJsu0adNwHIcXX3geibWt8a57jG8dmW0MuimMImdhWwf7H5reP8JgH85jDRfyYsO5vKf7C/Q5B6dRsI7aMnxLGdXANlE/gM32wdw14XO0BOsoOu0j3p2S1Ux3ZhZurLqbhHYdrW0TGOjrJYzZZj7Keg7z5p896vyyswyf+/xadVTlf1e2S1i1ahX33XsvU6vPj6orJfPjtOnTWblixai6y0t1Z/CnpvcgUW2sMuEgvj3S2bf1HJSLB+l2Z1K1G0boMYl+YsmAKdWXRnWegJpL72+9gu7GY3nf//fB9NpeffVVFi5cuN2xs7WDpTHsIdQF6Hwrj2tbzJt/Fl1dXTv9bHZ0DzfbB7Ow5RI2e9NobWnGcT36N/cSRDGdwXIy4QA93kxVcIwYL5Ojq6uLI488kueff55Vq1YRhT6W7dLS0oLjOISBz8BggYaBF8lFA1StBt6xlTMrYXjmCaj2wp3+MlbkjmHQ7iC0vNSxtrUjoC4aSB08lpC0tXfQ3t5Ob28vmzb1jKpfb329jU3NzJgxgylTprBmzZrUoPaDgIzr0NjcQhRFrF279jX13gG7k591/hvz589n9uzZ23y+9djf2tnlZbKpnEr0lK3lIToFPVeXp1Ipj6oDDdidPN50IauzR9DR0bFdY3x7hGHI0qVL+ctf/kKxOISMYwK/xuTKCyN0ia2dAgPORGLh0Bksh3ikAyLGos85GCmcUQMXyVLhzd40DjvsMF75y4ujOubGm8w2Bvo4IhH4//2TH+N6GYQQOLZFJptLBz8wYnAjJQ2NTcyZM2eEEbRy5UoeXfgQVT+kM1hOPtxixGU9hzmHzeXll14Y9XNBxNTqi+ngTV6UZdmjWZc9nMmjCI7hAqgx6Ca0vHTSdyzBm+YcSqlU2qFhkXFtpJQcVHx2hx7t+1uvYGPDMZx48qmsXr0av1YljOIRE//w6xmuhA+ftPxalSCMtnufd0XQJ+yswN+eQZR8f3L1BQKRocfrGuFx3WJYCN586OEMDQ1t9/y2nrB3dI+2p0QtX76cBx64f7vOnieaLmBV9kjmzp27w3PZWXZVwdrePrYWAF4mSyaTwXXs9DknQnO0Y61du3a770/iBNn6em3b5g+PPEwtiPDikmpCJDxiLCzL4rDD527XsbMz7/Su3CvYMn4LgwMMDvSryNJOPvedYVfG+sEHH7zD57qzz/215rV5888G2Oa8hjsgN7tTqNqNzJ277fMYbf9Fp40edwaWEDQ3N6VK19bntnz5ch55+CGCKFYKd2kjf/e528eNsDeMLYm8/ul//4TmltbtzlPVapWnnnoqNTZsx2PatGkcc8wx3Pk/P00dusMjs9uTszAyO2x95hBag/WjRt+2t8QjUVpLVhODTgcCRnUOWgJiqZYDHVR7lW6vK81m6/SXsyFzCGuyR6SybCzm7n3Bzswp06ZN2+b93lp3mXXIm+nu7qZYHCIKI4IwGCE3R5uDDjvsMNra2lI9JtFPdmQE7kiP2F6QYDgxgvtaP86G/FFMmjxlm4y23XlWO3sPk3Pc03GSOCJOGPz5iGyD0Qhx+GPT+3i17qRtxvqQ3comrwshoKW5mfqGxm2M2t2VQzsrU3f2mY3mkNkdli9fzsKHHiSMJZm4lEb1a1aejGtz5lnnMG3atDG9xtdiZ3SJrfXM0RwQDQ0NLPnry695zts7njHQDdslEfhjNTheayIc7fNcLsfLL7+83QlveymjsH3v4a54udetW7fbBu54URD2dGIb/v2tI4o7iuDvDLtzj/bmRD2e2J17NV7G4N46r30xNnbmWvbkvPbkXg3/7kB/Hxdd/N5xI+wNY8tYyOvtKYo7krNJFlyvOxUJdG215njE/l9jP39qerdqC+o4xFGEEFCXr+fII4/kkEMO2aGj8o00978eEfqx1AN25ft7GiTYXfam7EuM2o7CM/S4M7ZZxjWc4UGd4088mVdeeWWXHOE7Ooexut69/cxer4yUPWGsdIndcfYnAbBNQZ73ffZb40ZmGwN9HJEI/I0bN1JfX7/d7fL5fPpztVoliqIx2bauro7777+f6pKHOG/DVwnj0bdblTmcpyZcQs1pVO1AapsYEk30uDPIeg6nnXEmU6dOTbfP5XJYlio84vu+Wn+yHXK5HKtXr+bRhQ9RLFdpqy5VqfFOyzb7z2az2La9U/sdvm0QBPi+v91tM5lM+iLvyrZhGFKr1dKfV65cyapVq9JJYtasWeka3+HbjoZlWaxdu5YVK1ZQKZcQls20adOYPn36NhOj67p4nir6E0UR1Wp1u/sdvm0cx1QqlZ3a1vd9Xn755RHXM/x8HMchk8kAIKWkXC5vd7+7sq1t22Sz2fT3Uqk0JttalkUul9utbcvlMtubNoUQ1NXV7da2lUpFLWHZDsPf5V3ZdqznCCFUn+9arUYYhqOO9WnTpnHooYfiuu6IbbfHrs4RO7NtGIZs2LAhjU4Jy2by5MmjvkMw9nNEoVBg0qRJ40bYG8aW4Qa667q7/T6uWrWKRX94JHXIttnFVDENgxpRDB3Bim3k4Mmnns5jjz1GZ20p52/+d2oho8rsVZnDWdT0XuJcG53BcuqjfgZkIxvsaaPKaxj5jpXLZZYsWbLduX9X3t3xLLNHw/O8dA7blW0TOby9uXH27Nnp3L8jmR2GIWvXrmXdunVp1PCggw7a7hyWyOyVK1ey8KEHGCpVRh07p51xJl1dXfu1zH755Zd58IEHaPNXstmdypTqixw3dDfN0SYsATl3i3G7xJrD2Wefvc04h/Ejszdt2pQajC3lV8n6m0fVe7fe7+7I7LHY9o0gs8Mw5OGHH2bNmjUgYyZ0dPLe944jp7o0jBsGBwclIE899VSJKvm8zb+6uroR33nrW9+63W23frwXXnjhDrctFovy17+6W97/rQ/LS47c/naAXP8ZW/7iP/5Z3n77bfKtb/2bHW67YsWK9Bw+85nP7HDbF198UUopZRAE8pOf/OQOt33yySfT/X7ta1/b4bYPP/xwuu13vvOdHW57zz33pNveeuutO9z2Zz/7Wbrtz372sx1ue+utt6bb3nPPPTvc9jvf+U667cMPP7zDbb/2ta+l2z755JM73Paaa65Jt33xxRd3uO1nPvOZdNsVK1bscNuPf/zj6bY9PT073PaSSy5Jty0Wizvc9sILLxwxhne07Vvf+tYR29bV1W132zAqRUEAAEH3SURBVHnz5o3Ytr29fbvbHnfccSO2nTZt2na3PfTQQ0dse+ihh25322nTpo3Y9rjjjtvutu3t7SO2nTdv3na3fb3niIRLLrlkh9v29PSk23784x/f4ba7M0dIKeU111yzw23HwxwxODgoDW88Enk9ODg4pu/jr391t7z33nvlq6++Kt/5znfucNsf/vCH8uabb5b9/9bxmjL761//urzlllvkr391t3z7299+wL6PB4rMXrJkyQ63fSPL7EOmtMtf/sc/yZtvvlnefusP5cEHH7zdbceTzA6CQL766qvyhBNO2OF9G46R2Yo3osx+XfqgG/ZfXC+zTV/x0XCIEEg6OycyffqMMT8Px3Foa2sb8/0aDAaDwTBeedvb38GCBQuYPXt2Gh3aHnPnzk17AcvX2K+QESeffDJve/s7mDJlytidsGFcMp7X/b/eRG4judlnMX/+/D1es703cRyH2bNn097evq9PxTAOGPMUd9/3ueuuu3jqqacYGBgYNfVCCMEPf/jDsTzsG4LxkOL+hz/8gVdeeYXz1/0r9cGm7W7rZzv4n4lfYs6cOZxwwgl7PRUGDrx0ue2xN1LcX2tbk+KuGC/pcnszxX0stn0jzhH7S4q7kdm7x1iluO/Jtp7nccfttxFFMQcVn+GYgV/SHG2R2wN2B39ueAers3PJ5bJcetmHcBzngHwfR9vWyGwjs43M3r1t3yhzxFNPPcULL7wAwIUXXjiuZPaYGuirVq3i3HPPZdmyZdsd4KAG+Y4G1IHKWBeJ2x1+//vfs27Vsu1WkAVddKPlY6zJHsbkaTN5y1vesg/O1GAwGMYv42E+fy2MzN59xsvzXbVqFffee++I3tGj9ZQ+b4yLghkMBsP+zuOPP87ixYsBuPjii8fFnJ4wpnkf//iP/8jSpUv5wAc+wIc+9CEmT56836SWGBRh4NPur2B19gjub/nY6L2TG9+leiD6ywgDkypnMBgM+yNGZu//TJs2jQULFrDwoQfww5hebxqb5RSkUBEr13WZf/a5xjg3GAyGYYRhSH9/v/pFxjz44IP79oS2Ykwl8UMPPcTZZ5/N7bffPpa7NexFvEyWquVwbt9NPNr8QX7W+SU6a0vJxwOUrGa6M7PIRkMs6LuJ5xr/Bi+Tfe2dGgwGg2HcYWT2G4Pp06fz/33w0nHZ4tFgMBjGGyPauvnLyEd99C7b/tLifcGYztpxHHP00UeP5S4Ne5np06ezcGUXZ4QbeV/351iRO5YV2aOoWvXk4gLz+/+TGZWnKdptdLtdzJ8x9gXiDAaDwfD6Y2T2G4ekwNTs2bP39akYDAbDuGXlypXcf9992/SdL2y/xMQ+YUwN9BNPPJGXX355LHdp2Mt0dXXx+GN/5ImmCzm37yZmV55gduWJEdvECJ5ouoCs5zDDGOgGg8GwX2JktsFgMBgOFMIw5NGFDzG1+jzn9t00ap2t8cKYtlm7/vrreeihh/j5z38+lrs17EUcx2He/LNZnT2S+1uvYMDuGPH5gN3J/a1XsDp7JPPmn21S5wwGg2E/xchsg8FgMBwoLF++nKofcuLgz8e1cQ5jHEH/zW9+w/z587nooouYN28exxxzzKiV8IQQfOELXxjLQxvGkGnTpnHuggU8utDhZ9kj6QyWkw/7KDmtdLtdZD2HBfPPNkVnDAaDYT/GyGyDwWAwHCisXLmSicHyEcWvxytj2mYt6XP3mgc1LVtGZby0bUkIw9AUnTEYDIbdYLzN56NhZPbusz88X4PBYDBs4Z5f/4rs8l9zTv8t23xWqEHT9YybOX1MrayHH354LHdn2MeYojMGg8HwxsXIbIPBYDAcKHiZLGWnbV+fxk4xpgb6vHnzxnJ3BoPBYDAYXieMzDYYDAbDgULSqWrA7hj3ae5jWiQuYdGiRVx++eUcf/zxvOlNb+L444/nIx/5CIsWLXo9DmcwGAwGg2E3MTLbYDAYDG90urpUHa0nmi4kRuzr09khY7oGHeAf//Ef+fa3v02yWyHEiJ+vvPJKbrjhhrE85BsGs6bNYDAY3hjsL/O5kdm7x/7yfA0Gg8GwhVWrVnHfvfeO2gd9PK1BH9MI+u23386NN97I7Nmz+dGPfsT69esJw5ANGzbw4x//mEMOOYQbb7yRO+64YywPazAYDAaDYRcxMttgMBgMBxJJp6ruxmP5WeeXuHvCP/NAy+X8pu1T+/rURjCmEfSTTjqJ9evX88ILL9DU1LTN54ODg8ydO5dJkybx+OOPj9Vh3zAYj7zBYDC8Mdgf5nMjs3ef/eH5GgwGg2F0tu5UFYQR73rXu8bNnD6mReJeeuklPvzhD48q6AGampq44IILuOWWbcvbGwwGg8Fg2HsYmW0wGAyGA5GtO1UVCoV9fEYjeV2KxO0IIcb3onyDwWAwGAwKI7MNBoPBYNi7jKmBfthhh3HnnXdSLBZH/XxoaIg777yTww47bCwPazAYDAaDYRcxMttgMBgMhvHHmBroH/3oR1m7di0nn3wyd955J729vQD09vby85//nFNOOYW1a9dyxRVXjOVhDQaDwWAw7CJGZhsMBoPBMP4Y0zXol112Gc8++yzf+c53eM973gOAZVnEcQyAlJJ/+Id/4JJLLhnLwxoMBoPBYNhFjMw2GAwGg2H8MeZ90AH+8Ic/cNttt/Hcc89RKBRobGzk6KOP5pJLLuH0008f68O9YTBVYQ0Gg+GNwf40nxuZvevsT8/XYDAYDDtmvM3pr4uBbtg9xtvgMBgMBsPuYebzNzbm+RoMBsMbh/E2p+/1Ku4Gg8FgMBgMBoPBYDAYtsUY6AaDwWAwGAwGg8FgMIwD9qhI3Ic+9CGEEHzlK1+hs7OTD33oQzv1PSEEP/zhD/fk0AaDwWAwGHYBI7MNBoPBYBj/7NEadMuyEELw8ssvc8ghh2BZOxeQF0IQRdHuHvYNy3hb/2AwGAyG3WM8zudGZo8d4/H5GgwGg2H3GG9z+h5F0FesWAHAwQcfPOJ3g8FgMBgM4wsjsw0Gg8FgGP/skYE+bdq0Hf5uMBgMBoNhfGBktsFgMBgM458xLRK3evVqCoXCDrcZGhpi9erVY3lYg8FgMBgMu4iR2QaDwWAwjD/G1ECfMWMGN9544w63+fa3v82MGTPG8rAGg8FgMBh2ESOzDQaDwWAYf4ypgS6l5LVqzu1BTboxo1AocNVVVzFt2jQymQzTp0/ns5/9LMVicZf2I4TY7r9LL7309Tl5g8FgMBjGgP1BZht5bTAYDIYDjT1ag747rF27loaGhr192JRSqcS8efN47rnnWLBgAe9973t59tln+frXv84jjzzCo48+Sjab3en9TZs2bVThftRRR43dSRsMBoPBsA/YlzLbyGuDwWAwHIjssYH+b//2byN+X7hw4ajbRVHEmjVr+O///m9OOumkPT3sbvO1r32N5557jn/+53/m+uuvT//+uc99jq9+9at885vf5POf//xO72/69Olce+21r8OZGgwGg8EwtuxPMtvIa4PBYDAciOxRH3RgRB9VIcRrpsNNmjSJX/7ylxx//PF7ctjdQkrJ5MmTKRQKbNy4kXw+n35WKpWYOHEiHR0dLFu2bKf2J4Rg3rx521VwdpXx1oPPYDAYDLvHeJ3P9xeZbeS1wWAwGPYW421O3+MI+sMPPwwoYXrWWWdx6aWXcskll2yznW3btLa28uY3v3mEgrA3WbJkCevXr+e8884bIewB8vk8p556Kvfeey9r1qxhypQpO7XPgYEBvv/979Pb20trayunnnoqc+fOfT1O32AwGAyGPWJ/kdlGXhsMBoPhQGWPDfR58+alP19zzTXMnz+fM844Y093+7qwZMkSAGbPnj3q57Nnz+bee+9lyZIlOy3wn3/+eT760Y+O+Ntb3vIWbr/9djo6OvbshA0Gg8FgGEP2F5lt5LXBYDAYDlTG1C1+zTXXjEtBnzA4OAhAU1PTqJ8nKQ3Jdq/Fpz/9aR577DF6e3spFAo89thj/M3f/A2///3vedvb3kYURTv8fq1Wo1AojPhnMBgMBsPeYDzLbCOvDQaDwXCg8rpVcY+iiN7eXmq12qifT506dbf3/elPf3q7+x2NK6+8crte+D3h61//+ojfTz75ZO655x7OOussHnnkEe6++27e9a53bff71113HV/84hfH/LwMBoPBYNgVXi+ZbeS1wWAwGAy7xpgb6E8//TRXX301jz76KL7vj7qNEIIwDHf7GDfffDOlUmmnt7/wwguZPXt26onfnsc98Yhvz2O/M1iWxeWXX84jjzzCokWLdijwP//5z3PVVVeNOP7OpuoZDAaDwbCnvN4y28hrg8FgMBh2jTE10J977jlOP/10HMdhwYIF/PrXv+bII49k4sSJPPPMM2zatIkzzzyTadOm7dFxisXibn0v8cona9u25rXWvO0s7e3tAK+plGQyGTKZzB4dy2AwGAyG3WFvyGwjrw0Gg8Fg2DXGdA36l770JQCeeOIJ7r77bgDe+c538rvf/Y6VK1fysY99jBdffJFrrrlmLA+708yePZtJkyaxaNGibYRxqVRi0aJFzJgxY4+94k888QSgeq4aDAaDwTAeGc8y28hrg8FgMByojKmB/sc//pF3vOMdzJkzJ/1b0mM1l8vxne98h0mTJnH11VeP5WF3GiEEH/7whykWi6likvClL32JYrHI5ZdfPuLv5XKZV155hdWrV4/4+wsvvEAQBNsc47HHHuOrX/0qruvy7ne/e+wvwmAwGAyGMWA8y2wjrw0Gg8FwoDKmKe6Dg4N0dXWlv7uuOyK9zbIszjzzTH7yk5+M5WF3iX/6p3/i7rvv5qtf/SrPPvssxxxzDM888wz33Xcfxx9/PJ/61KdGbP/kk08yf/585s2bx8KFC9O/f+Mb3+A3v/kNp512GlOmTMF1XV566SXuu+8+hBD83//7f5k5c+bevTiDwWAwGHaS8S6zjbw2GAwGw4HImBroHR0d9Pf3p79PnDhxm/Vj1WqVcrk8lofdJfL5PI888gjXXnstd955Jw8//DAHHXQQn/70p7nmmmvI5XI7tZ/zzz+fgYEBnn/+ee6//35832fixIlcfPHFfOpTn+KEE054na/EYDAYDIbdZ7zLbCOvDQaDwXAgImSSzzYGvOUtb8H3fR566CEA3ve+93HXXXfx4IMPcvLJJ/Pyyy9z6qmnMnPmTJ566qmxOuwbhkKhQFNTE4ODg2mPV4PBYDDsf+wP87mR2bvP/vB8DQaDwbBzjLc5fUzXoP/t3/4tjz76KBs2bADgn//5n5FSctpppzFhwgTmzp3LwMDAPluDbjAYDAaDQWFktsFgMBgM448xNdA/9rGPsW7dOtra2gA48sgjefDBB3nLW95Ce3s755xzDr/+9a955zvfOZaHNRgMBoPBsIsYmW0wGAwGw/hjTFPcDXvGeEuvMBgMBsPuYebzNzbm+RoMBsMbh/E2p49pBN1gMBgMBoPBYDAYDAbD7rFHVdw/9KEP7db3hBD88Ic/3JNDGwwGg8Fg2AWMzDYYDAaDYfyzRynulrV7AXghBFEU7e5h37CMt/QKg8FgMOwe43E+NzJ77BiPz9dgMBgMu8d4m9P3KIK+YsWKsToPw37Ctddeyxe/+MURfxNCUF9fT2NjI1OnTuXoo49m/vz5vOMd78DzvH1ynhs3buTRRx/lmWee4emnn+aZZ56hr68PgIcffpgzzzxzh98/88wzeeSRR3a4zcEHH8zatWtf81zuvvtu/uu//osnnniCnp4e8vk8kydP5uSTT+aSSy7h5JNP3unrMhgMht3FyOwDCyOvt/Ba8nrt2rV8+9vf5r777mPZsmVUq1Wam5s5/PDDueCCC7j88svJZDK7fG0Gg8GwO+yRgT5t2rSxOg/DfkhnZ2f6c6VSYf369axbt44//elPfPe736WtrY0vf/nLfOxjH9vr5/a9731vG8Vkd8jn89TX14/6WUdHxw6/Ozg4yHve8x7uu+8+QClGzc3NFAoFFi9ezOLFi8lms8ZANxgMewUjsw9cjLzevry+7777uOCCCygWi4DKNGloaKC3t5eFCxeycOFCvve973H//fdz0EEH7fF5GgwGw2thisQZdpuNGzem/wYHBwmCgMWLF/ONb3yDGTNmsHnzZq644gre//73s7ebBQghmDJlCueffz7/9m//xg9+8IPd2s9nPvOZEdc5/N8zzzyz3e/VajXOOecc7rvvPmbMmMFPfvITCoUCfX19VKtVVq5cyc0338yxxx67u5doMBgMBsNOYeT16PK6r6+Piy66iGKxyNSpU7nnnnuoVqsMDAxQKBT41re+heM4vPTSS/vEeWEwGA5MxtxAD8OQb37zm5xwwgk0NjbiOFuC9M899xwf//jHefXVV8f6sIZxgG3bzJ07l6uuuooXX3yRiy++GIAf//jHXH/99Xv1XP71X/+V1atXc9ddd/GFL3yBc845Z68e/5prruHPf/4zXV1dPPHEE1x88cWpZ9+2baZNm8ZHPvIRPvCBD+zV8zIYDIbhGJl9YGLkteLXv/41AwMDANx+++387d/+La7rAtDQ0MCVV17J5z73OQDuueceyuXyXjs3g8Fw4DKmBnqlUmH+/Pl85jOfYdWqVTQ2No7wxM6YMYNbb72VO+64YywPaxiH1NXVcfvtt3P00UcDcP3116dryi6++GKEELz1rW/d4T6WLl2KZVkIIVi4cOEuHd+27d0677Ggv7+fb3/72wDccMMNTJgwYZ+di8FgMGwPI7MNcGDL6w0bNqQ/H3fccaNuc8IJJwAQxzGVSmWvnJfBYDiwGVMD/Stf+QqLFi3iuuuuY+PGjXz4wx8e8XlTUxPz5s3j3nvvHcvDGsYpnudx9dVXA6o64l133QWQponde++9rF69ervfv+WWW5BScsghh7xmkZjxxM9//nMqlQrNzc287W1v29enYzAYDKNiZLYh4UCV111dXenPf/7zn0fd5sknnwRg+vTptLW17ZXzMhgMBzZjaqD/9Kc/Zf78+fzTP/0TQgiEENts09XVtcNJ3vDG4i1veUvqHU+qrJ555pnMmTOHOI6321s3CAJuu+02AD7ykY/slXMdjR/96EdMnz6dTCZDc3Mzxx13HP/yL//C+vXrt/udP/7xjwAcddRRSCn51re+xdFHH00+n6exsZHjjjuO6667jqGhob11GQaDwbANRmYbhnMgyuu3ve1tTJ48GYBLL72U3/72twRBAMDQ0BA33ngjX/3qV3Ech29961t74zIMBoNhbA301atXbzdFKKGhoYHBwcGxPKxhHFNfX596qJctW5b+/aMf/SgA//mf/zlqf91f/epXdHd3k8lkuOSSS/bOyY7C0qVLWb9+Pfl8nkKhwNNPP81XvvIV5syZwy9/+ctRv5Os12xoaODss8/mH//xH3n++efJZDJUKhWefvpprr76ao499ljT9shgMOwzjMw2DOdAlNd1dXX89re/ZebMmaxatYq//du/JZvN0tzcTGNjI1dddRXz5s3jwQcf5Pzzz9/LV2QwGA5UxtRAb2hooKenZ4fbLFu2zKzJPcBobW0FSNe0AVxyySXU1dWxdu1afvvb327znaSK67ve9S7a29v3zokO48wzz+TWW29l3bp11Go1+vr66O/v59Zbb6Wjo4NCocBFF13E448/vs13+/v7AfjNb37Do48+yv/6X/+L7u5u+vr6KBQKfO973yObzbJkyRLe9a53Ecfx3r48g8FgMDLbsA0HmrwGmDt3Lo888gjnnnsuoNaaJ06pOI4pFots2rRpr12PwWAwjKmBftJJJ42oiLk1a9as4be//S1nnHHGWB7WsB/S3NzMRRddBLBNS5VVq1Zx//33A/suXe7aa6/l0ksvZdKkSWnaZ1NTE5deeimPPfYYzc3NBEHAP/3TP23z3cTgjuOY888/nxtvvDFVcHO5HB/96Ef58pe/DKgqyXffffdeuiqDwWDYgpHZhp3hjSyvAf7rv/6LWbNm8eSTT/Ktb32LZcuWUSqVeOGFF/jEJz7Bk08+yYUXXsh11123Ny/LYDAcwIypgf7Zz36W/v5+zj77bBYtWkQYhgCUy2UefPBBzjvvPMIw5KqrrhrLwxrGOYknfuviKknxmd/+9resW7cu/fstt9xCHMe86U1vGlFsZs2aNUycOHHUf1//+tdf/wvRzJw5k0984hOAWm++efPmEZ83NDSkP3/2s58ddR//8A//QC6XA+C+++57nc7UYDAYto+R2YatOdDk9ZNPPskHP/hBarUav/jFL7jyyivp6uqirq6Oww8/nO985zv8y7/8CwD/+3//b/7617/utXM3GAwHLmNqoJ9xxhl85zvf4YUXXuCMM87gK1/5CqAMlgULFrB06VK++93vcuyxx47lYQ3jmGKxyPLlywElKIdzwgkncMwxxxBFUVp8Jooibr31VgAuv/zyEdtHUUR3d/eo/4rF4l64mi2cfPLJAEgpt1lHfvDBB6c/z5kzZ9Tve57HrFmzABWBMBgMhr2NkdmG4RyI8vob3/gGUkqOPvpozjrrrFG//5nPfAaAMAxNxpvBYNgrjKmBDnDFFVfw/PPP88lPfpLjjz+emTNncvTRR/Oxj32MZ599dps2LoY3Nr///e/TojKjtV5JvPL/+Z//SRzHqXd+tGIz06dPR0o56r9rr7329b6UneaII47Yqe2SfsOjVU42GAyGvYGR2YaEA1Fe/+UvfwG2dUgMp7Gxkc7OTgBT2NVgMOwVnNdjp3PmzOHGG298PXZt2I/wfT+NyDQ1NfF3f/d322zzvve9j8985jOsWrWKe++9d58Xm9lZkmIzQgimT58+4rMFCxbwf/7P/wHg5Zdf5tRTT93m+77vp1VyZ8yY8fqerMFgMOwAI7MNB6q8tiwVp9pRJlutVkvrNAxfwmYwGAyvF2MaQbdtm/e///1juUvDfkqlUuHSSy/l2WefBeDzn/88zc3N22yXz+f5wAc+AMCXv/zltELsvuylmkS2t8eKFSv4v//3/wJwyimnbKOYnHbaacyePRuAf//3fx91H9/+9repVCoAvP3tb9/TUzYYDIZdxshsAxzY8vqYY44B4Omnn+bJJ58cdR+33nortVoN2JIubzAYDK8nY2qgNzY2MmXKlLHcpWE/Io5jXnzxRW644QYOO+wwfvKTnwDwgQ98YLvVU2FL2txjjz1GFEXbFJvZ3XPp7e1N/yWtzwAGBwdHfJYI3oTrr7+eSy65hN/97ncjqhsXCgXuuOMOTjnlFPr7+3Fdl69+9avbHNuyLG644QYA7r77bj71qU/R29sLQLVa5eabb+YLX/gCoNIIzzvvvD26VoPBYNgdjMw+cDHyWvGJT3wCIQRRFPHOd76Tn/70p5TLZQB6e3v50pe+xJVXXgnAIYccYhzqBoNh7yDHkAULFsi3vOUtY7nLA4rBwUEJyMHBwX19KtvlmmuukYAEZGdnZ/qvublZWpaVfgbI9vZ2+b3vfW+n9nvaaael3/v617++x+e5YsWKEeeyo3+33nrrdq8RkA0NDbK1tXXE9TU1Nck777xzh+fwzW9+U9q2LQEphJCtra3Sdd10H8cff7zs6enZ42s1GAzjj/1hPjcye/fZH56vkdc7J69vvvnmEbJZCCEbGhpG7Hfq1Kny5Zdf3uNrNRgM45PxNqeP6Rr0a6+9ljPPPJM77riDD37wg2O5a8M4pLu7G1DruvL5PBMnTmTq1KkcffTRnH322bz97W/H87yd2te73/1u/vjHP45abGZv8+53vxspJX/6059YunQpmzdvplAo0NLSwpw5c1iwYAEf+chH0qIx2+NTn/oUp512GjfeeCOPPPII3d3d5PN55s6dy3vf+17+/u//fqfvj8FgMIw1RmYfOBh5vX15/ZGPfITTTz+d7373uyxcuJCVK1dSLpdpaWnh0EMP5R3veAcf+9jHaGxs3ItXZjAYDmSElK+xgGcX+Ld/+zcWLVrEAw88wDHHHMPxxx9PZ2fnNlWqhRBpiq9hC4VCgaamJgYHBw84QfD2t7+de+65h/e+9738+Mc/3tenYzAYDHvE/jCfG5m9++wPz/f1wshrg8HwRmO8zeljaqAn1TBf86B6vY9hJONtcOwtli9fzuzZs4njmEcffZTTTz99X5+SwWAw7BH7w3xuZPbusz8839cDI68NBsMbkfE2p49pivvDDz88lrszHAAUCgWuuOIK4jjmxBNPNMLeYDAY9hJGZht2BSOvDQaDYe8wpgb6vHnzxnJ3hjcwn/nMZ/if//kfNm7ciO/7OI7Dt771rX19WgaDwXDAYGS2YWcw8tpgMBj2LqYPumGf0Nvby+rVq/E8j5NPPpnf//73nHTSSfv6tAwGg+GAwchsw85g5LXBYDDsXcY0gm56qhp2lttuu43bbrttX5+GwWAwHLAYmW3YGYy8NhgMhr3LmEbQTzjhBJ5//vmx3KXBYDAYDIbXASOzDQaDwWAYf4ypgX7ttdfy0EMPcccdd4zlbg0Gg8FgMIwxRmYbDAaDwTD+GNMU9/vvv58zzzyTyy67jP/4j/8wPVUNBoPBYBinGJltMBgMBsP4w/RBH0eMtx58BoPBYNg99of53Mjs3Wd/eL4Gg8Fg2DnG25xu+qAbDAaDwXAAYmS2wWAwGAzjD9MH3WAwGAyGAxAjsw0Gg8FgGH+MaZE4g8FgMBgMBoPBYDAYDLvHmEbQExYtWsRtt93Gc889R6FQoLGxkaOPPpoPfvCDnHbaaa/HIQ0Gg8FgMOwGRmYbDAaDwTB+GNMicQD/+I//yLe//W2S3QohRvx85ZVXcsMNN4zlId8wjLcCBQaDwWDYPfaX+dzI7N1jf3m+BoPBYHhtxtucPqYp7rfffjs33ngjs2fP5kc/+hHr168nDEM2bNjAj3/8Yw455BBuvPHGfdpz9bnnnuPqq6/mvPPOY8KECQghOPPMM3d7f0899RRvfetbaW5uJp/Pc9JJJ/Gzn/1s7E7YYDAYDIbXgfEus428NhgMBsOByJimuN90001MnjyZJ554gqampvTvnZ2dXHzxxfzN3/wNc+fO5bvf/S4f/OAHx/LQO81dd93Fddddh+d5HHLIIfT29u72vh5++GHOO+88stksF198MQ0NDdx5551cdNFFrFmzhk9/+tNjeOYGg8FgMIwd411mG3ltMBgMhgORMY2gv/TSS1xwwQUjBP1wmpqauOCCC3jppZfG8rC7xLvf/W6efvppisUi999//27vJwxDLr/8cizL4tFHH+X73/8+3/jGN3j++ec55JBDuPrqq1m1atUYnrnBYDAYDGPHeJfZRl4bDAaD4UBkr1dxF0Ls7UOO4LDDDuOYY47Bdd092s9DDz3EsmXLeN/73sdRRx2V/r2pqYmrr74a3/e5/fbb9/BsDQaDwWDYd+xLmW3ktcFgMBgORMbUQD/ssMO48847KRaLo34+NDTEnXfeyWGHHTaWh90nLFy4EIAFCxZs89l5550HwCOPPLI3T8lgMBgMhp3mQJHZRl4bDAaDYX9iTA30j370o6xdu5aTTz6ZO++8M10v1tvby89//nNOOeUU1q5dyxVXXDGWh90nLFmyBIDZs2dv89nEiROpr69PtzEYDAaDYbxxoMhsI68NBoPBsD8xpkXiLrvsMp599lm+853v8J73vAcAy7KI4xgAKSX/8A//wCWXXDKWh90nDA4OAmx37V5jY2O6zfao1WrUarVt9lkoFMboLA0Gg8GwL0jm8THuZDqmHCgy28hrg8FgMOyI8Sazx9RAB/j2t7/Nu9/9bm677Taee+45CoUCjY2NHH300VxyySWcfvrpe3yMT3/60yME5Wtx5ZVXjuo539dcd911fPGLX9zm71OmTNkHZ2MwGAyGsWZoaGi7huF44PWW2UZeGwwGg2F/YbzI7DE30AFOP/30MTHEt8fNN99MqVTa6e0vvPDCMRf4ycPbnte9UCjQ0tKyw318/vOf56qrrkp/j+OYvr4+2tra9nkxPVDXMGXKFNasWUNjY+O+Pp3d5o1yHfDGuRZzHeOPN8q1jJfrkFIyNDTEpEmT9tk57Cyvp8w28nrvMV7G/p5irmN88Ua5DnjjXIu5jrFnvMnsMTHQ/8//+T+USiW++MUvbrfaqu/7fPGLX6ShoYHPfe5ze3S87RW02ZskCsSSJUs49thjR3y2ceNGisUiJ5xwwg73kclkyGQyI/7W3Nw8puc5FjQ2Nu7zF2cseKNcB7xxrsVcx/jjjXIt4+E6xoMXfjT2psw28nrvMx7G/lhgrmN88Ua5DnjjXIu5jrFlPMnsPS4S98ADD/C///f/pq2tbYetUDzPo62tjX/5l3/h4Ycf3tPD7nPmzZsHwH333bfNZ/fee++IbQwGg8FgGA8ciDLbyGuDwWAw7E/ssYF+xx130NLSwic/+cnX3PYTn/gEra2t3HrrrXt62L1GEAS88sorLFu2bMTfzz77bLq6uvjxj3/Mc889l/59cHCQr3zlK3iexwc/+MG9fLYGg8FgMGyfN7LMNvLaYDAYDG8E9jjF/bHHHuOcc87ZJvVrNDKZDOeccw6LFi3a08PuNq+88grXX389AJVKJf3bpZdemm5z2223pT+vW7eOOXPmMG3aNFauXJn+3XEcbrnlFs477zzOOOMMLr74YhoaGrjzzjtZtWoVX//615k+ffpeuKLXj0wmwzXXXLNTz3Y880a5DnjjXIu5jv+/vXuPirLO/wD+HmJmuAz3ARW1QRGUrUyJtHIFsRXNSjvJanZw0VXDlLUCFXFVvGu75NZamba76snajrbVcVOzDPBSmIuybSoKhBqWhqmIeIFx5vP7w99MjjMgl4F5wPfrHM7B7/f7PM/3M8zMe77jM/MoT3uppb3U0VLaUmYzrxunvdz3WYeytJc6gPZTC+to/1TSzO+T9/Lywosvvohly5Y1aPycOXPw6quv4sqVK805bJPl5eUhPj6+3jE33yQnTpxAt27d7ALfYv/+/cjKysJXX30Fo9GI++67D2lpaRgzZoyzp05ERNQsbSmzmddERHQnavb/oLu5ucFoNDZ4vNFohJtbs8+sb7JBgwY16hp3YWFh9Y7v168ftm/f7oypERERtai2lNnMayIiuhM1O3VDQ0Nx6NChBo8/dOgQOnfu3NzDEhERUSMxs4mIiJSt2Qv0gQMHIicnx+HpZLc6ceIEcnJyEBsb29zDEhERUSMxs4mIiJSt2Qv0adOmwWg0IjExET///HOd486dO4ff/va3uH79Op5//vnmHpaa4eWXX4ZKpYJKpcK+ffvs+quqqpCWlgaDwQCtVouwsDDMnDmzzuvZms1mrFq1Cvfddx88PT0RHByMsWPHoqyszOlz/+ijjzBkyBAEBQXBw8MD3bp1w9ixY1FeXt5mahARfPjhh4iPj0enTp3g5eWFnj17IiUlxeHxXF3Lxo0bkZKSgpiYGGi1WqhUKpsvZnLFfHfs2IG4uDj4+PjA19cX8fHx+OKLL5xSh9FoxL/+9S8kJycjKioKOp0OPj4+6N+/P1avXg2TyVTnMd59913069cP3t7eCAgIwBNPPIGDBw/WOf4///kPhg8fDn9/f3h7e+Ohhx7Cpk2bnFKHI2VlZdDpdFCpVJgyZUqbq+P48eOYPHmy9b7VoUMHxMfHY/PmzS6ro61hZrctbTmvgbaf2czr5s/3Ts7rxtTiCDP7Ds5scYKXXnpJVCqVBAcHy7x58yQnJ0eKi4uluLhYcnNzZe7cuRISEiIqlUrS09OdcUhqom+//Va0Wq14e3sLAMnPz7fpr66ulj59+ggASUhIkIyMDElISBAA8uCDD8rVq1ft9jlp0iQBIPfcc4/MmjVLkpKSRKPRSGBgoBQXFztl3mazWZ577jkBIOHh4TJ16lTJyMiQcePGyd133y179uxRfA0WaWlpAkA6deokU6ZMkVmzZsnQoUNFpVKJj4+PfPvtt4qqxWAwCADR6/XW39etW+dwbGvM95133hEAEhwcLKmpqZKamirBwcGiUqlk8+bNza6jqKhIAIhOp5ORI0fKrFmzJCUlRUJDQwWAPPHEE2I2m+22W7JkiQAQg8EgaWlpMnnyZPHx8RGtVit79+61G5+TkyNqtVp8fHxk8uTJkpaWZp1XdnZ2s+u4lclkkoEDB1of+ykpKQ7HKbWOzz77TLy8vMTLy0vGjBkjmZmZMmXKFHnkkUfkueeec1kdbREzu21oq3kt0n4ym3ndvPne6XndmFpuxcy+szPbKQt0s9ksmZmZ4u7uLm5ubnY/KpVK3N3dZc6cOQ4fKNQ6amtrJTo6Wvr37y9JSUkOA3/+/PkCQDIyMmzaMzIyBIAsW7bMpj0nJ0cASGxsrNTU1Fjbt23bZn3Sd4ZXX31VAMjUqVPl+vXrdv1Go1HxNYiInD59Wtzc3MRgMEhlZaVN38qVKwWATJgwQVG1fP7553LixAkREVm+fHm9T8otPd/z58+Lv7+/6PV6KS8vt7aXl5eLXq8XvV4vVVVVzarj1KlT8sYbb0h1dbVNe3V1tcTExAgA2bRpk01fcXGxuLu7S2RkpM3ftbCwULRarURFRYnJZLK2G41GCQ8PF61WK4WFhdb2yspKiYyMFI1GY51rU+u4VXZ2tri7u8tf/vKXOsNeqXWcPHlSfH19JSIiQk6ePGnXf/Pjv7XraIuY2crXlvNapH1kNvOaeS3S/HxgZjOzm8IpC3SL0tJS+eMf/yjx8fESFRUlUVFREh8fL3PnzpXS0lJnHoqaICsrS7RarRw+fFiSk5PtAt9sNktoaKjodDqHT3Y6nU66d+9u0z527FgBILt27bI73qBBgwSAwwdnY1y5ckUCAgKke/fudg/qWym1Bov8/HwBIM8++6xdX3FxsfUdX6XWUt+TcmvMd82aNQJAFi5caDd+wYIFAkA2bNjQrDrq89577wkAmTZtmk17ZmZmncceP368XY07duywe3FnsX79+jprbGodRUVF4uHhIfPmzZPc3Nw6w16pdaSkpAgA+eKLL267L1fW0dYws5Wrrea1SPvJbOY181rEufnAzHaMmW3PqddOCQ8Px5IlS5CTk4MjR47gyJEjyMnJweLFixEeHu7MQ1EjHTx4EEuXLkVWVhZ+9atfORxTUlKCH3/8EQMGDIC3t7dNn7e3NwYMGICysjKbz47l5eVZ+241dOhQAMCuXbuaNffPPvsMFy5cwFNPPQWTyYQPP/wQK1aswFtvvYXS0tI2UYNFREQENBoNvvzyS1RVVdn0ffLJJwCARx99tE3UcqvWmG9eXh4AICEhoUHjnU2tVgMA3N1tr1DZ2Hm1Zh0mkwnJycmIiIjA3Llz6x2rxDpEBJs3b0ZQUBAGDx6MAwcOYOXKlcjOzsbOnTthNpvbRB1KxMxWprac10D7yWzmNfO6KeObi5mtjDpcrdnXQSflq6mpwe9+9zv06dMHs2bNqnNcSUkJgBuh5EhERAR27NiBkpISdO3aFZcvX8bp06dx77334q677nI4/ub9NtWBAwcAAHfddRd69+6N4uJia5+bmxteeuklZGdnK7oGi6CgIKxYsQLp6eno1asXRo4cCV9fX3zzzTfIycnB1KlTkZqa2iZquVVrzLe+Y7R0fQDwj3/8A4B9KJSUlECn06Fjx44Nmld9dXTs2BE6nc5pdSxfvhwHDx7Evn37oNFo6h2rxDqOHz+O8+fPIyYmBikpKVi7dq1Nf9++fbFlyxZ06dJF0XUQNURbz2ug/WQ285p5ffPvrZUPzGxl1OFqTv0fdFKm+fPno6SkBOvWrXP4xGpx8eJFAICfn5/Dfl9fX5txjR3fVBUVFQCAlStXws/PD/v378elS5ewe/duREZG4pVXXsHq1asVXcPNXnrpJbz//vuorq7GW2+9hT/96U/YsWMH+vfvj2effdb6bm9bqOVmrTHf+rZp6frWrl2L7du3Y/DgwRg+fLhN38WLF51Wh2UbZ9TxzTffYNGiRZg5cyYeeOCB245XYh2Wx39hYSHee+89rFu3DufPn7d+O2xhYSESExMVXwdRQ7T1vAbaV2Yzr5nXrZkPzGzl1OFqXKC3c/n5+cjOzsbcuXNx7733uno6TWI5HUaj0eDjjz/Ggw8+CJ1Oh4EDB2Lz5s1wc3PDK6+84uJZNtyiRYuQlJSEOXPmoLy8HJcuXcKePXtw7do1DBo0CFu2bHH1FOkWn3zyCVJTU2EwGLBx40ZXT6dBamtrkZycjB49eiArK8vV02kyy+PfZDJh8eLFGD9+PAICAhAWFoa1a9eif//++Prrr7F3714Xz5SoedpDXgPtK7OZ121PW8xrgJlNtrhAb8euX7+O5ORk9O7dG7Nnz77teMs7UXW962T5DJZlXGPHN5Vl+5iYGISGhtr03XvvvejevTu+++47VFZWKrYGi507dyIrKwupqamYPXs2unTpAp1Oh1//+tf497//DbVajfT09CbNrbVruVVrzLe+bVqqvm3btiExMREdOnRATk4OOnXqZDfGz8/PaXVYtmluHcuXL8e3336LdevWQavVNmgbJdZx8/YjRoyw63/yyScBAAUFBTbbKK0Oovq0l7y+eR9tPbOZ18zrm39v6XxgZiurDlfjAr0dq66uRklJCf773/9Co9FApVJZfzZs2AAAePjhh6FSqfDxxx/f9jNBt37mw9vbG506dcLx48dhMpluO76pevbsCQDw9/d32G9pv3r1qmJrsNi+fTsAID4+3q6vY8eO6NWrF0pLS1FdXa34Wm7VGvOt7xgtUd/WrVvx9NNPQ6/XIzc3F927d3c4LiIiAtXV1Thz5kyD5lVfHWfOnLH5+zdVYWEhzGYzHnroIZvHvuW+t2bNGqhUKjz11FOKriM8PNx6qq+j54CbH/83z0tpdRDVp73kNdB+Mpt5zby++feWzgdmtrLqcDUu0NsxrVaLiRMnOvyx3HFHjBiBiRMnIiwsDBEREQgNDcWXX36Jy5cv2+zr8uXL+PLLL9GtWzd07drV2h4XF2ftu9WOHTsAALGxsc2qw/LkVFRUZNdnNBpRWloKb29vBAcHK7YGi9raWgDA2bNnHfafPXsWbm5uUKvViq/lVq0x37i4OAA3viW4rvGWMc21detWjBo1CoGBgcjNzUWPHj3qHNvYebVGHUOGDHH42Ld8Hq9Xr16YOHEihgwZoug6PDw88MgjjwAAjhw5YtdvaQsLC2vyvFrzfkXkSHvJa6D9ZDbzmnndlPFNxcxWVh0u5+rrvJFrOLquqojI/PnzBYBkZGTYtGdkZAgAWbZsmU17Tk6OAJDY2Fipqamxtm/btk0ASEJCglPmm5CQIADk7bfftmlftGiRAJCkpCTF1yAi8s9//lMAyD333COVlZU2fatXrxYAMmDAAMXWcrtrX7b0fM+fPy9+fn6i1+ulvLzc2l5eXi56vV70er1UVVU1u45t27aJVquVjh07ytGjR2+7v2PHjom7u7tERkba/F0LCwtFq9VKVFSUmEwma7vRaJTu3buLVquVwsJCa3tlZaVERkaKRqOR48ePN7sOR+q7pqpS67Bcz/bRRx+Va9euWduLiorEy8tLfHx85Pz58y6vg6gltLW8Fmkfmc28Zl6LODcfmNnM7IbiAv0OVVfgV1dXy/333299sp09e7Y1aB988EG5cuWK3b4mTZpkDbFZs2bJuHHjRKPRSGBgoBw7dswp8y0tLZWQkBABII8//rikp6fL4MGDBYAYDAY5ffq04msQEbl+/brExsYKAAkJCZFJkybJjBkzrLV4enrK119/raha3n77bUlOTpbk5GSJjo62viixtN38Aqw15vvOO+8IAAkODpbU1FRJTU2V4OBgUalUsmnTpmbXUVRUJFqtVgDIM888I1lZWXY/jkJpyZIl1vtjWlqaTJ48WXx8fESr1crevXvtxufk5IharRYfHx+ZPHmypKWlicFgEACSnZ3tlL+HI/WFvVLrMJvNkpiYKACkZ8+eMn36dElOThadTidubm6yceNGl9VB1NLaWl6LtI/MZl4zry2akw/MbGZ2U3CBfoeqK/BFbrwD9eKLL0rXrl1FrVbL3XffLenp6XW+02kymeS1116Te+65R7RarQQFBcmYMWOktLTUqXP+/vvvZfz48dKxY0dRq9XStWtXmTZtmvz0009tpgYRkWvXrsny5culb9++4uXlJe7u7tK5c2dJSkqSI0eOKK4Wy32lrp/k5ORWn+/27dtl4MCB4u3tLTqdTuLi4uTzzz93Sh2WMKzvJy4uzuExNm7cKDExMeLp6Sl+fn4yfPhwOXDgQJ1z+vrrr2XYsGHi6+srnp6e0q9fP3n//fedUkddbhf2Sq3DaDTKypUrrfcTX19fSUhIkLy8PJfWQdTS2mJei7SPzGZeN3++d3JeN6aWujCz78zMVomIgIiIiIiIiIhcil8SR0RERERERKQAXKATERERERERKQAX6EREREREREQKwAU6ERERERERkQJwgU5ERERERESkAFygExERERERESkAF+hERERERERECsAFOhEREREREZECcIFOREREREREpABcoBNRo+Xl5UGlUmHBggWungqA1pnPggULoFKpkJeX12LHICIicibmNVHbwwU6UQs5ceIEVCqVzY9arUbnzp0xevRoFBQUuHqK9VKpVBg0aJCrp0FERNSimNdEpCTurp4AUXsXHh6OpKQkAMDly5dx4MABbN68GR9//DF27tyJ2NhYF8+w8fr164eioiLo9XpXTwWA8uZDRERtD/O65SltPkRKxAU6UQvr0aOH3alcK1asQGZmJubNm4ddu3a5ZmLN4OXlhV69erl6GlZKmw8REbU9zOuWp7T5ECkRT3EncoGJEycCAA4cOGDXV1tbi5UrVyI6Ohre3t7w8fHBwIEDsWXLFruxxcXFmDVrFqKjoxEUFAQPDw9ERkZi9uzZqK6udnjsS5cuYeHChejduze8vLzg5+eHvn37Yt68eTAajdbPhwHArl27bE75W79+PYD6P0N26NAhjB49GiEhIdBqtejWrRtefPFFnDt3zm5sWFgYwsLCUF1djRdeeAGhoaHQarXo3bs3Pvjgg4benHXOpyn7Ly8vx9ixYxEYGAidToe4uDjs3r273uPv3r0bTz75JPR6PbRaLSIiIjB37lxcuXLFOqa0tBQ+Pj7o0qWL3W1RXx8REbkO8/oG5vXt+4ichf+DTuRC7u62D8GamhoMGzYMeXl56NOnDyZOnAij0YitW7di5MiRWLVqFVJTU63jP/zwQ/z9739HfHw8Bg0aBLPZjH379uHll1/Grl27sHv3bqjVauv4iooKxMXF4ejRo+jTpw+ef/55mM1mHD16FC+//DLS09MRFhaGrKwsLFy4EAaDAePHj7du36dPn3rr2bt3L4YOHYra2lokJiYiLCwM+fn5eO211/DJJ59g3759dqe1GY1GJCQk4MKFCxg1ahSuXLmC999/H6NHj8ann36KhISEpt/Ajdz/6dOn8fDDD+OHH37A0KFDER0djaKiIgwZMgTx8fEO97969WpMmzYN/v7+ePLJJxESEoKCggIsXboUubm5yM3NhUajQY8ePbBq1SpMmDABkyZNwkcffWSd39ixY3HlyhVs2bIFQUFBzaqXiIicj3nNvGZeU6sRImoRx48fFwAydOhQu75ly5YJAHn88cdt2ufMmSMAZN68eWI2m63tVVVVEhMTIxqNRn744Qdr+6lTp6SmpsZu/wsXLhQAsnHjRpv2UaNGCQCZM2eO3TZnzpwRo9Fo/TcAiYuLc1hbbm6uAJCsrCxrm8lkkvDwcAEgn376qc34mTNnCgD5/e9/b9NuMBgEgIwcOdKmjp07d9Z52zV0Pk3Zf3JysgCQJUuW2LSvWbNGAAgAyc3NtbYfPnxY3N3d5f7775eff/7ZZpvly5cLAMnOzrZpf+aZZwSAvPnmmza3TWZmZoNqJSIi52Je/4J5/QvmNbkKF+hELcQS+OHh4ZKVlSVZWVkyY8YMiY+PFwDSoUMHOXLkiHW8yWSSgIAACQ8Ptwl7iy1btggAWbVq1W2Pfe7cOQEg48ePt7adPn1aVCqVhIeHS21t7W330djA3717twCQxx57zG78pUuXJDAwUDw8PGyC1xLIZWVldtsYDAYJDAy87Tzrmk9j919TUyMeHh4SEhIiV69etRlrMpkkIiLCLvCnT58uAGT37t12+zeZTBIcHCwPPPCATXtlZaWEhYWJp6en/PWvfxWVSiX9+vWzebFFRESth3n9C+b1L5jX5Co8xZ2ohX333XdYuHChTVvHjh2xZ88e9OjRw9p27NgxXLhwAaGhoXbjAeDs2bMAgKNHj1rbRATr1q3D+vXrcejQIVy8eBFms9na/+OPP1p/LygogIggPj7e5jQ6ZyksLAQAh5d60el0iImJwWeffYZjx47hvvvus/b5+/ujW7dudtt06dIF+fn5zZ5XQ/d/7NgxXLt2DYMHD4aHh4fNWDc3NwwYMAAlJSU27fv27QMA7NixA1988YXdMdRqtc3fCwD8/Pzw7rvvIjY2FtOnT4ePjw/ee+89u9MniYiodTGvmdc3Y16Tq/AeRtTChg4dik8//RTAjdDesGEDMjIyMGLECOzfvx86nQ4AcP78eQDA4cOHcfjw4Tr3d/nyZevv06dPx+uvv46uXbtixIgR6NSpE7RaLQBg4cKFqKmpsY69ePEiAKBz587OLfD/VVVVAQA6dOjgsL9Tp0424yz8/Pwcjnd3d7d58dJUDd2/5fYJCQlxON5RXZa/2dKlSxs1p+joaBgMBpSVleGxxx5DeHh4o7YnIiLnY17fwLz+BfOaXIELdKJWFBwcjBkzZuDixYtYsmQJ5s6di1dffRUA4OvrCwAYNWpUg74RtaKiAm+88QZ69+6N/Px8eHl5WfvOnDlj966+v78/AOCHH35wTjG3sMz/p59+cth/5swZm3FKY3lhUFFR4bDfUV2WWqqqquDj49PgY82cORNlZWUICgrCpk2bkJycjOHDhzdh1kRE1BKY18xrgHlNrsHLrBG5wJw5cxAaGoo333wTJ06cAABERUXB19cXBQUFMBqNt91HWVkZRAS/+c1vbMIeAPbs2WM3PiYmBm5ubsjNzW3Q/t3c3GAymRpWEIC+ffsCuHEJlVtdvnwZBQUF8PT0RM+ePRu8z9YUGRkJDw8PFBQU4Nq1azZ9ZrMZX331ld02/fv3B/DLqXMNsXXrVrz++uuIi4tDQUEBAgICMGHChDpfKBERkeswr5WHeU3tHRfoRC7g6emJjIwMGI1GLF68GMCNU7ief/55nDx5EjNmzHAYyocOHbK+Y2wwGAAAX331lc2pX6dOnUJmZqbdth06dMCoUaMcfsYOuPFO9PXr163/DgwMxKlTpxpc04ABAxAeHo7t27dj586dNn1LlizBuXPnMHbsWGg0mgbvszVptVqMHj0aFRUVeOWVV2z6/va3v6G4uNhum6lTp8Ld3R1/+MMf8P3339v1V1ZWWj/rB9z4X4kJEyYgICAAGzduRFhYGNauXYuKigokJydDRJxfGBERNRnzWnmY19Tuue776Yjat/ou2yIicvXqVQkNDRV3d3cpLS0VEZFr167JkCFDrN8mO2HCBMnIyJCkpCS5//77BYDk5+db92G5DEvfvn1lxowZMm7cOAkICJDExESH3+p69uxZiYqKsm6Tnp4uaWlp8sQTT4hGo5ELFy5Yx44ePdp6yZMFCxbI4sWL5ZtvvhGRur+Fdc+ePeLl5SVqtVqeffZZyczMlEGDBlnrqaiosBlvMBjEYDA4vH3i4uKkoU9R9X0rbGP2/+OPP0rnzp0FgAwbNkwyMzPlqaeeEo1GIwkJCXbfCisisnbtWrnrrrvEw8NDnn76aZk5c6ZMmTJFEhISRKvVSkpKioiImM1m69/2gw8+sNnHxIkTHV7ihYiIWh7zmnnNvCYl4QKdqIXcLvBFRFatWiUAZNy4cda269evy5o1a2TAgAHi6+srWq1W7r77bhk2bJisXr1aqqurrWMvXbok6enpEhYWJlqtViIiImTx4sVSW1tb52VXLl68KPPmzZNevXqJVqsVPz8/6dOnj8yfP9/mci6nT5+W0aNHi16vFzc3NwEg69atE5G6A1ZE5H//+58kJiaKXq8XtVotBoNBXnjhBTl79qzdWKUFvojIyZMnZcyYMeLv7y9eXl4ycOBA2bVrl2RlZTkMfBGR/fv3yzPPPCOhoaGiVqtFr9dLdHS0zJ49W4qKikRE5M9//rMAkEmTJtltX11dLZGRkaLRaOTgwYMNqpmIiJyDec28Zl6TkqhEeI4GERERERERkavxM+hERERERERECsAFOhEREREREZECcIFOREREREREpABcoBMREREREREpABfoRERERERERArABToRERERERGRAnCBTkRERERERKQAXKATERERERERKQAX6EREREREREQKwAU6ERERERERkQJwgU5ERERERESkAFygExERERERESkAF+hERERERERECsAFOhEREREREZECcIFOREREREREpABcoBMREREREREpABfoRERERERERArABToRERERERGRAvwfJq2psLPy8ZoAAAAASUVORK5CYII=", "text/html": [ "\n", "
\n", "
\n", " Figure\n", "
\n", " \n", "
\n", " " ], "text/plain": [ "Canvas(toolbar=Toolbar(toolitems=[('Home', 'Reset original view', 'home', 'home'), ('Back', 'Back to previous …" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "ifig=2;plt.close(ifig);plt.figure(ifig, figsize=(10,6))\n", "\n", "# Define the isotopes you want to analyze\n", "isotope_list = pnuclei\n", "\n", "# Create a full list of isotope names in the format 'Element-MassNumber'\n", "iso_full_name = [iso_name[i] + '-' + str(int(iso_a[i])) for i in range(n_iso)]\n", "\n", "iso_name_plot = [\" \" for x in range(n_fac)]\n", "i_sub = 0\n", "kmin = []\n", "rmin = 0.15 # Minimum value for the correlation coefficient\n", "\n", "# Loop over the isotopes in your list\n", "for isotope in [\"Ce-136\", \"Ce-138\", \"Dy-156\", \"Dy-158\"]:\n", " # Find the index of the current isotope\n", " try:\n", " i = iso_full_name.index(isotope)\n", " except ValueError:\n", " print(f\"Isotope {isotope} not found in the data.\")\n", " continue\n", "\n", " k_plot = -1\n", " i_sub += 1\n", "\n", " # Calculate the abundance ratio for the isotope\n", " y = iso_abu[:, i] / iso_abu_0[i]\n", "\n", " print(\"\\nIsotope Index:\", i, \"Isotope Name:\", iso_full_name[i])\n", "\n", " x_plot = np.zeros(n_fac)\n", " y_plot = np.zeros(n_fac)\n", "\n", " for k in range(n_fac):\n", " x = mc_fac[:, k]\n", " r = stats.pearsonr(x, y)\n", " x_plot[k] = k\n", " y_plot[k] = r[0]\n", "\n", " if np.abs(y_plot[k]) >= rmin:\n", " sign = '+' if r[0] >= 0 else '-'\n", " kmin.append(k)\n", " k_plot += 1\n", " iso_name_plot[k_plot] = f'$^{{{mass[k]}}}${name[k]} ({k}{sign})'\n", "\n", " print(f\"{k} {name[k]} {mass[k]} {rtypes[k]} {r[0]:.4f} \")\n", "\n", " # Plotting\n", " plt.subplot(2, 2, i_sub)\n", " plt.plot(x_plot, y_plot, color=CB_color[6], marker='o', markerfacecolor=CB_color[1], markersize=8)\n", " plt.xlim(min(kmin) - 5, max(kmin) + 5)\n", " plt.ylim(-1, 1)\n", " plt.xlabel('Reaction index', fontsize=14)\n", " plt.ylabel('Correlation coefficient, $r_{\\\\mathrm{P}}$', fontsize=14)\n", " plt.text(min(kmin) - 4 + 0.1 * (max(kmin) - min(kmin)), -0.8, iso_full_name[i], fontsize=18)\n", "\n", " if k_plot > -1:\n", " for kk in range(k_plot + 1):\n", " plt.text(max(kmin) + 2.5 - 0.475 * (max(kmin) - min(kmin)), 0.7 - (kk - 1) * 0.1,\n", " iso_name_plot[kk], fontsize=10)\n", "\n", " # Add threshold lines\n", " plt.plot([-0.5, n_fac - 0.5], [rmin, rmin], 'k--')\n", " plt.plot([-0.5, n_fac - 0.5], [-rmin, -rmin], 'k--')\n", " plt.plot([-0.5, n_fac - 0.5], [0, 0], 'k-')\n", "\n", " plt.xticks(fontsize=14)\n", " plt.yticks(fontsize=14)\n", "\n", "plt.tight_layout()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "#### Plot the histogram" ] }, { "cell_type": "code", "execution_count": 18, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "The mean spread is 0.56\n" ] }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "4268303ba9ad42aeb222aaaa82cc886e", "version_major": 2, "version_minor": 0 }, "image/png": "iVBORw0KGgoAAAANSUhEUgAACDQAAAPoCAYAAAArrzxnAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzdd3gU1f7H8c+mN5LQe5EWQQVBAZEiUgSxAIJYL0XFFi8qFrDQBCxXvSrFBoKKIFjAAoJ0pSmIBEQhSu8ltEBC2mZ+f+SXvVnStmZ2k/frefZhZ+fMme+eDDOzM985x2IYhiEAAAAAAAAAAAAAAAAfEmB2AAAAAAAAAAAAAAAAABcjoQEAAAAAAAAAAAAAAPgcEhoAAAAAAAAAAAAAAIDPIaEBAAAAAAAAAAAAAAD4HBIaAAAAAAAAAAAAAACAzyGhAQAAAAAAAAAAAAAA+BwSGgAAAAAAAAAAAAAAgM8hoQEAAAAAAAAAAAAAAPgcEhoAAAAAAAAAAAAAAIDPIaEBAAAAAAAAAAAAAAD4HBIaAAAAAAAAAAAAAACAzyGhAQAAAAAAAAAAAABMtG7dOr3wwgu64YYb1LBhQ0VHRys0NFS1atVS79699e2335odImAKi2EYhtlBAAAAAAAAAAAAAEBZdeedd2ru3Lm26XLlyikzM1NpaWm2z/r27avPP/9cwcHBZoQImIIeGgAAAAAAAAAAAADARNddd50mTpyozZs36/z580pOTtaFCxe0b98+DRs2TJL09ddf69VXXzU5UqBk0UMDAAAAAAAAAAAAAPiwe++9V7NmzVL9+vW1a9cus8MBSgw9NAAAAAAAAAAAAACAD2vdurUk6fDhwyZHApQsEhoAAAAAAAAAAAAAwIetW7dOklS/fn2TIwFKFgkNAAAAAAAAAAAAAEqtEydOaNGiRXrppZd06623qnr16rJYLLbXxx9/7Fb969at04MPPqimTZsqOjpa0dHRatq0qR588EFbIoIrzp07py1btujhhx/W3LlzJUlDhw51K1bA3wSZHQAAAAAAAAAAAAAAeNrRo0d1zTXXaN++fV6pPyUlRUOHDtX06dPzzdu+fbu2b9+uqVOn6r777tPEiRMVGRlZbJ07d+5Uo0aN8n0eHh6uUaNG6aGHHvJI7IC/IKEBAAAAAAAAAAAAQKmTlpbmtWQGq9Wq2267TUuWLLF9Fh4erssuu0xBQUH666+/lJycLEmaPn26Dh06pIULFyowMLDIeoOCglS1alVJ0qlTp5SZmang4GC9+OKLevjhh73yXQBfxpATAAAAAAAAAAAAAEq1ypUrq0ePHnrxxRf17bfful3fyJEj7ZIZhgwZooMHD2rjxo1av369Dh8+rBdffNE2/8cff9SoUaOKrbdevXo6evSojh49qgsXLmj79u26++679cILL6hly5bavn2727ED/sRiGIZhdhAAAAAAAAAAAAAA4EnJyclasmSJWrVqpbp169rNs1gstvczZszQoEGDHK730KFDatiwodLS0iRJ//rXv/Tpp58WWHbkyJEaP368pJweHHbu3KkaNWo4+U2kJ598Um+//bauuuoqbdy40S5+oDSjhwYAAAAAAAAAAAAApU50dLT69euXL5nBXRMnTrQlM0REROjtt98utOzIkSNVu3ZtSdKFCxf0zjvvuLTOxx9/XJK0adMm/f777y7VAfgjEhoAAAAAAAAAAAAAwEHz5s2zve/fv78qVKhQaNmQkBANHjzYNj1//nyX1lmzZk3b+127drlUB+CPSGgAAAAAAAAAAAAAAAckJiZq586dtukePXoUu8yNN95oe//PP//o77//dnq9e/bssb2PiopyennAX5HQAAAAAAAAAAAAAAAO2LJli91027Zti12mZcuWCgkJKbSOrKysYut4/fXXJUlBQUEOrRMoLUhoAAAAAAAAAAAAAAAHbN++3fY+JCREtWvXLnaZi8vlrUOStm3bpmuvvVYzZ87U4cOHbZ9nZ2dr8+bNuueeezRt2jRJ0tChQ1W+fHl3vwbgN4LMDgAAAAAAAAAAAAAA/MG+ffts72vVqiWLxeLQcnXq1NGuXbskSXv37s03f/369Vq/fr0kKTw8XJGRkUpOTlZGRoatzP3336/XXnvNjegB/0NCA3xSdna2Dh8+rHLlyjl8IAAAAAAAAAAAACgtDMPQuXPnVKNGDQUEuN/pelpamt3NcX9iGEa++0WhoaEKDQ0t8ViSk5Nt72NiYhxeLjo62vb+3LlzdvPi4uI0a9YsrVixQhs3btTRo0d16tQphYeHq3Hjxmrbtq0GDx7MUBMok0hogE86fPiwQ130AAAAAAAAAAAAlGYHDhxQrVq13KojLS1NVcuVU3JWloeiKllRUVE6f/683WejR4/WmDFjSjyWlJQU2/uwsDCHlwsPDy+wjtx5d999t+6++273AwRKGRIa4JPKlSsnKecgnTdjrbTZv3+/6tSpY3YYpRpt7H20sffRxt5HG3sX7et9tLH30cbeRxt7F+3rfbSx99HG3kcbex9t7F20r/fRxt5HG3ufP7VxcnKyateubbtn4o6MjAwlZ2Xp1SuuUFhgoAeiKzlpVqtG/PFHvntGZvTOIEmZmZm290FBjt9qzVvWX3vKAMxAQgN8Um63QdHR0aU6oaFcuXKl+vv5AtrY+2hj76ONvY829i7a1/toY++jjb2PNvYu2tf7aGPvo429jzb2PtrYu2hf76ONvY829j5/bGNPDs0dFhiocD9LaMjlK/eMIiIibO/T0tIcXi5v2cjISI/GBJRmJDQAAAAAAAAAAAAAZcDJxESFeTBBoiSkGYbZIdiJioqyvb9w4YLDy6WmphZYB4CikdAAAAAAAAAAAAAAlAFV4uL8roeGC1arlJBgdhg2lSpVsr0/cuSIw8sdPXrU9r5ixYoejQkozQLMDgAAAAAAAAAAAAAA/EFcXJzt/cmTJ+16XijKgQMHbO8vvfRSj8cFlFb00AAAAAAAAAAAAACUAacYcsJtTZo0sZtOSEjQtddeW+Qyhw4d0okTJwqtA0DhSGgAAAAAAAAAAAAAygCGnHBf69atFRoaqvT0dEnSmjVrik1oWL16te19WFiYWrdu7dUYgdKEIScAAAAAAAAAAAAAwAFRUVHq0qWLbXrWrFnFLpO3TJcuXRQZGemV2IDSiIQGAAAAAAAAAAAAAHDQoEGDbO+3bt2q77//vtCyv//+uxYtWlTgsgCKx5ATAAAAAAAAAAAAQBlwOjFRFywWs8NwSpphmB1CPv369VPz5s21ZcsWSdJDDz2kRo0a6dJLL7Urd+TIEd17772yWq2SpCuvvFJ9+/Yt8XgBf0ZCAwAAAAAAAAAAAFAGVIqLU0RgoNlhOCXVapUSElxefsiQIZo5c2axZR5++OF8n6elpRVY3mKxaNq0aerYsaMuXLigI0eOqE2bNnrkkUfUsWNHBQUFacOGDZo8ebKOHTsmSQoPD9fUqVNl8bOEEsBsDDmBUmPv3r2yWCwOvT799NNi65syZYqtPN3/FOzAgQMaOnSoLr30UoWHhys0NFSXXHKJBgwYoM2bNztcD20tHT58WI8//rgaNWqksLAwVahQQddff73mzJnjVD20pWNcbW9PbfP+LjExUZMmTdKgQYN0xRVXKCgoSBaLRWPGjHFo+S+//FKdOnVS+fLlFRkZqebNm+s///mPMjMzi1wuIyNDEydOVPv27VWhQgWFhYWpVq1auvHGGzV37lwPfDPf52rbu7rcjBkzdO+996pZs2aqWrWqQkJCFB0drZYtW2rUqFE6deqU576cCUq6PQtS2vfbrrRVZmamli9frmeeeUatWrVSbGysgoODVa1aNd16661auHBhset1dT/jT8xq27K2Ly7J/acn/j7+xqzjU2ndjn3h+FTaj2t5udregwYNKvaaRWEXzaXSu/06yt3t3Jn2K0v75ZJs11xl8fe1O+3sTnuV9nNjs9o1r9J+/HOnjd255lnWj3nwrMzMTKWnp+d75ZWVlVVsmYtdffXVmjVrlsLDwyVJycnJeu2113TTTTepe/fuGjlypF0yw6xZs3T11Vd750sCpRg9NKDUiIqK0sCBAwudv3v3bq1evVoBAQHq1KlTkXXt3LlTzz77rCwWiwwf7MrIF2zcuFHdunXT2bNnValSJXXp0kVhYWFKSEjQzJkzNXv2bM2cOVN33XVXkfXQ1tKmTZvUo0cPJSUlqWrVqurevbvOnj2rX375RatWrdLy5cs1derUYuuhLR3jant7apsvDd577z298847Li37xBNP6J133lFQUJA6d+6sqKgorVixQsOHD9f333+vJUuW2H4A5HXw4EF1795df/31lypVqqR27dopMjJSBw4c0M8//6zIyEjdcccd7n41n+dq27u63DvvvKM//vhDTZs2VcuWLVW+fHkdO3ZM69at0+bNm/Xhhx9q+fLluuyyy5yu2xeUdHterCzst11pq59++kndunWTJFWrVk3t27dXZGSk/vrrL33//ff6/vvv9eCDD+r9998v8IkGV/cz/saMti2L++KS3H+6+/fxR2Ycn0rzdmz28aksHNfycre927Vrp4YNGxY4L7CQJyZL8/brKHfa3dn2K0v75ZJsV6ns/r52tZ3daa+ycG5sRrvmVRaOf662sTvXPDnmwZ/06dNHmzZt0r///W+tWLEi377AYrGoS5cumjRpUr7hKAA4yAB80NmzZw1JxtmzZz1W56BBgwxJRvfu3YssZ7VajbZt2xrlypWzLTNw4ECPxZHX3r17vVJvSWjevLkhyejZs6eRkpJi+9xqtRqjR482JBnR0dF28y5WEm3t622clpZm1K1b15Bk9OvXz669/vrrL9u8jz76qMh6SnK7vZivt3Fe7rS3J7Z5V/laG0+dOtV4+umnjVmzZhnbt283/vWvfxmSjNGjRxe53Pz58w1JRlRUlLFp0ybb5ydOnDCuuOIKQ5Lx1FNP5VsuNTXVuPTSSw1JxpgxY4yMjAy7+SkpKcbmzZvd+k6+1saFcbXtXV1u3bp1xpkzZ/J9npSUZLRv396QZLRu3brYuH21fUu6PfPy9H67NLXx8uXLjb59+xo///xzvnlz5swxAgMDDUnGJ598km++q/sZR/haG5d025bVfXFJ7j/d+fs4oqy3r2F4fzs2u43NPD6V1O8Rs9s4L1fbe+DAgYYkY8aMGU6tryT2w4bhW21cEFfb3ZX289Z+2RfbuCTb1TC8+/vaF9s3l6vt7Gp7eevc2NfauKTbNS9vHf9KQxu7cw2urP72KIwn75Xk1vVaeLgxMSLCr16vhYcbkozGjRsbTZo0MSZPnuyB1vW8/fv3G3PmzDHefPNN48033zTmzJlj7N+/3+ywAL9HDw0oE86dO6cvv/xSkvTAAw8UWfb111/X+vXr9d577+no0aMlEZ7fOXnypLZs2SJJevHFFxUREWGbFxAQoJEjR+o///mPkpOT9eeff6pVq1YF1kNbS/Pnz9e+ffsUExOjDz/80K4tmzRpojfeeEO33367XnrpJQ0ePLjQpz5oS8e42t6e2uZLi4v3owEBjo1g9fLLL0uSRowYoZYtW9o+r1Spkt5991116NBBkydP1siRIxUTE2Ob/8orr2jHjh168MEHNXr06Hz1RkRE6Morr3Thm/gfV9ve1eXatm1b4OcVK1bUyy+/rI4dO2rDhg06ffq0ypcv71CdvqSk2zOvsrLfdqWtOnfurM6dOxc474477tDSpUv10Ucf6dNPP9WAAQPs5ru6n/FHJd22ZXVfXJL7T3f+Pv6qpI9PpX07NvP4VFaOa3l5or2dUdq3X0e52u6utF9Z2i+XZLuW5d/XrrSzO+1VVs6NS7pd8yorxz9X2tida54c87yvclycIgrpEcpXpVqtUkKCNm7cqOjoaLPDKVTt2rXpPQTwAu/+2gJ8xOeff66UlBRVrlxZt956a6Hltm3bplGjRqlz58566KGHSjBC/xIaGlpsmdyT0EqVKhU4n7bOsWHDBknSVVddVeDNwBtuuEGStG/fPm3cuLHAOmhLx7na3p7Y5su6Q4cO2dr07rvvzje/ffv2ql27ttLT0/XDDz/YPs/MzNR7770nSXrmmWdKJlgvGTNmjG1MzY8//tjscNyW2xWyxWJRSEiIydH4F/bb7mnRooWknPFu83J1P4P/KaxtS9O+2Be4uv8s7O8De4W1L9tx8Vw9PnFc8z62X/d4q/3K+n7Z1Xb1td/Xe/futf1OK26IWjO42l6cGxeNa5ve5+o1OI55AICC0EMDyoSPPvpIkvSvf/2r0IuGmZmZGjBggEJCQvTRRx+5NP7hyZMnNXv2bC1dulRbt27VyZMndeHCBUVGRqpq1apq0KCBWrRooWuuuUbXX3+9W9/JTFFRUerQoYNWr16t8ePH68svv7Rl2RqGoXHjxik1NVXdunXTJZdckm/5kmzr+vXr64477lC5cuXc/t7ecP78eUmF/zgqV66cQkJClJGRoU2bNql169Z2891py3r16mnfvn226ejoaB05csQuY7oob731loYNG2b32XvvvaeHH37Y4RhKmqvt7e42L+Vv77wCAwMVHR2tmjVrqkWLFrrtttt08803Kyio9BymN2/eLEmqUKFCoW109dVX68CBA9q8ebNtjMrff/9dSUlJqlGjhho2bKg//vhD8+bN0+HDh1W+fHl16NBBN954o9NPxK1Zs0Y//vijfv75Z+3fv18nTpxQZmamypcvr9q1a6tVq1a64YYb1LNnT27WFyA5Odn2lETnzp0VGRlZYLm82/3KlSt98gJhSTPjfMNXj4Gu+ueffyRJ1atXt/vclf3M3r17Cy3rioEDB/p1wlJhbevuvviee+7R7NmzJeXsM5YtW+bQtv/tt9+qd+/eknKOxVu3bvXo38sMju4/C1LY3yevos43JCk4OFgxMTFq2LChrr32Wg0YMEDNmzd3OAZfV1T7lsQ5xe7du3XmzBllZGT43TmFq8enkj6uNWjQwOn6fdXKlSv1xx9/6Ny5c6pYsaJat26tnj17FniTzRPbb2H7B4vFosjISEVHRysmJka1a9dWu3bt1KZNG3Xp0qVU/Cbx1v9/T+yXC1O3bl3t3bvX6eVKkqvt6srv6+zsbHXo0EHr1q2TlPO0+NSpUx2OdfXq1erUqZOys7MVEhKijRs3qlmzZh5qCe9y9XoE58ZF84Vrm7mysrK0YMECLV68WOvXr9exY8d06tQpxcTEqHLlyrrqqqvUvXt39enTx6lzR7O5eg3O08c8Z65FrFq1ynbN3h/2w+44k5iodDe2WzNcMAyzQwBgIv//VYJSZcqUKZoyZYqsVqvH6ty2bZstI7So4SZeeuklbd68WVOmTFG9evWcXs/kyZP1/PPP69y5c/nmJScnKzk5Wf/8848WL14sKedi4tq1a1W3bl2n1+ULpk6dqp49e+qHH35Q3bp1dc011yg0NFRbtmzRvn37dPfdd+vdd98tcNmSbutHH31U+/fvV7Vq1Zxel7dVqVJFkrR79+4C5x88eFAZGRmFlnG3LfNKTk7WV1995XBXmTNmzHBrfWZwp73d2eaLY7Vadfr0aZ0+fVrbtm3TzJkz1axZM82ePVuXXXaZS3X6mj179kiS6tSpU2iZ2rVr25WVpK1bt0qSatWqpREjRug///mPjDw/YF577TW1aNFC33zzTZF151qxYoVeeOEF/fLLLwXOP3bsmI4dO6bffvtN7733nipUqKBhw4bpySefdDjZpzT6/vvv9fXXXys7O1vHjh3TunXrdP78eV111VV+uS8wkxnnG756DHTF0aNHbRdF+/btazfP1f0MchTVtu7uiydNmqSVK1fqyJEjWrFihaZMmaLHHnusyHiSkpL04IMP2qbfeOMNv0xm8NT+s6i/jzMyMzOVlJSkpKQk/fLLL3rrrbc0ZMgQTZ48WcHBwS7XaxZn2pdziqK5enziuOa6Tz/9NN9n1atX1/Tp09WjRw+7zz29/eZlGIbOnz+v8+fP6/Dhw9q+fbuWLFkiSapWrZoGDx6sESNG+HTXzsXxRvt5ar/sz9xpV2d/XwcEBOiTTz5R8+bNlZqaqmnTpum2227TjTfeWGycKSkpGjx4sLKzsyVJY8eO9ZtkhlyuXI/g3Lh4Zl7bzPXll1/q+eef186dO/PNyz1n2759uz777DNVrVpVI0eO1KOPPupWAkVJcfUanDePefifin485ASAsomEBviU+Ph4xcfHKzk52WNjt02bNk2SdO2116pJkyYFltm4caNeffVVXX/99XrkkUecXseoUaM0btw423RMTIy6dOmiSy+9VOXKlVNKSooOHDig33//Xdu2bZNhGMrMzPRo4kZJi4uL0y+//KIBAwZo8eLFWrBggW1e48aN1a5duwKfCDWrrbOyslz7ol7WpUsXTZgwQZs2bdJvv/2mq6++2m5+bhdrUs4Fvbzcbcu8LBaLDMPQjBkzHEpo2Lhxo/744w9JORcWci8M+Dp32tvVbb4gDz/8sN3TZVlZWTp69KhWrVplG8Nx69at6tKli3777Tenv6cvyr1IXdTTBFFRUZLs2/7kyZOScp4u2bBhg+Lj4zV06FBVq1bNNr1582bddNNN+v333wu9GWMYhsaPH6/Ro0fb/RBu0KCBOnbsqIiICNWoUUNJSUnavXu3VqxYoXPnzunUqVN68cUXderUKb355ptut4O/2rJliz755BO7z7p27aoPPvjAdhEMxfPmMTArK0shISF+dQx0VlZWlu69916dPXtWV1xxRb5uXV3Zz1SoUEGvv/56ket9+eWXdfr0aUn5998Xu/zyy4v/Ij6ouLZ1d19coUIFTZ06VTfffLMkafjw4erRo4caNmxYaEwPP/ywjh8/Lknq3r2733bj64n9Z3F/n8JcvL2ePn1a4eHhOnDggJYsWaK9e/fKMAx9+OGHSk9P99knKIviTPuWxDlFy5Yt1ahRI0VGRvrVOYWrxyd+27mmefPmeuedd9SlSxfVqVNHFy5c0NatWzV27FitWbNGt956q5YsWWL3NKmntt9cF+8f0tPTdebMGR09elTr16/X7t27ZRiGjh49qldeeUWzZs3Sxx9/7Lc9TXq6/dzdL58+fbrA7tfz8tQ1MW9yp11d+X3dsGFDvf7664qPj5ck3X///dq2bZsqVKhQZJzPPvusdu3aJUlq27atX3Zh70p7cW5cPLOubUo5vY48/fTTeuutt2yfBQYGqn379mrZsqWCgoJkGIa2b9+u5cuXKy0tTceOHdNjjz2mVatW6dNPP1V4eLhL6y4prl6D8/Q+GwBQOpDQgFItIyNDn332maTCe2dIS0vTgAEDFBoa6lIXYb/99psmTJhgm37qqac0duzYQn8wHDlyRPPmzdOHH37o1Hp8zdq1a9W3b19ZLBbNnDlTXbt2VXh4uDZt2qRnnnlG8fHxWrRokb777jtbm5rR1tOmTdNXX33l+hf1suuvv16dOnXSqlWr1KtXL02ePFmdOnXSuXPn9Mknn+j1119XcHCwMjMz7bpSc7ctL9a5c2ctX75cP/30k3bv3q369esXWX769OmScpIZrrnmGlu3j77O1faWXNvmC3PHHXcU2t3d7NmzNXDgQGVlZenYsWMaOXKkxowZ46EW8D+5yTKZmZm66667NHnyZNu8rl27aunSpYqLi9O2bds0Z84c/etf/yqwntys/lydO3fWa6+9ZvtBvW/fPrseczIzM/Xdd9/ppZde0tatW/06Ac0TXnzxRb344ovKzMzUvn379O2332rChAm64oorNHfuXNtNShTO28fAi7fh0nK+kdfDDz+s5cuXq2LFivrqq6880nV7dHS0nn766SLLTJ482XbRtqj9tz8rrm09sS++6aabdN9992n69OlKTU3VoEGD9PPPPxfYVeysWbP09ddfS5JiY2Ntw8f5I0/sP13d9i/eXvPuJ6xWq8aMGaPx48dLkj755BMNHTpULVu2dP5LmsiZ9i2Jc4qL98W56/PlcwpXj09m/Y7O+3fzV08++aTddLly5dS1a1d16dJFffv21fz58/XEE08oIc8TiJ7afnMVdTzbt2+fLBaL3n33Xb399ttKT0/X/v371bNnTy1btkzt2rVz7YubyNPt5+5+uaB9hT9yp11d/X39yCOP6JtvvtHSpUt15MgRxcfH6/PPPy80xuXLl9tumkZEROjTTz9VoJ89kSx59npEUcraubEZ1zZzDR06VFOmTLFN9+3bV2+99ZYtITPvfuL06dMaOXKkrfxXX32l1NRULViwwKd7anD1Gpyn99kAgNLBucHhAD/zzTff6OTJkypXrpz69+9fYJnnn39eO3bs0GuvveZSN7ZTp061nWj169dPb7zxRpHZz9WrV1d8fLy2bNnit91knjlzRn369NHx48c1b9483XvvvapWrZpiYmLUuXNnLV26VFWrVtWCBQs0c+ZM23JmtPWAAQO0ZcsW1axZ0/kvWkK+/PJLXXfddTp8+LBuu+02VahQQXXr1tWoUaPUt29f3XTTTZKkihUr2pZxty0vdt9990nKeeKsuKfz0tLSNGfOHEk5PySKGi/UF7nS3q5u8664++679fjjj9umv/76a2VmZrpVpy/IfaohJSWl0DK54yvm7c4279MQBT35VKdOHdvfbNmyZQXW+/XXX9vdeHj88ce1dOnSfE8H5BUcHKy+ffsqISFBL7/8Mhn//y84OFgNGzbUU089pUWLFunChQu67777CuwmGvbMPN/w5WOgox5//HF99NFHKl++vJYuXarGjRvnK+Pqfqasc6ZtJdf3xZL01ltv2bqFXbt2bYFPqR8+fFj//ve/bdMTJ04sFduwq/tPR/4+rggMDNS4ceN01VVX2T5buHChR+o2gyPtyzlFwVw9Ppl1XFu8eHGp2CcUxGKx2BKZt2zZogMHDtjmeWo/7Kg6dero1Vdf1fr1623tnZaWpl69etmenPUnnmw/b+2X/ZGr7erO72uLxaLp06crNjZWkjRnzhx9+eWXBcaXnJys++67z9abzuuvv15k71C+ytX24ty4aGZd25SkuXPn2iUzPPPMM/rqq68K7b2rfPnymjx5sl2PBj/88INee+01l9Zfkly5BlfSx7yy6mxios5s3+5Xr7OJiWY3GwATkdCAUi13uIm77rqr0Isj8+bNk8Vi0RdffKFOnTrZvXJv7C5evNj22cU2bdpke3/XXXc5FZ+jWbS//vqrhg4dqmbNmqlixYoKCQlR9erV1a1bN02aNEkXLlxwar3uWrhwoU6cOKFLLrlEbdu2zTe/QoUKtnEMc8felHyzrffu3SuLxSKLxWJbZ2ZmpmbMmKEePXqoTp06CgkJkcVi0d69e51ap6MqVaqkVatWafny5XrhhRc0ZMgQjRgxQqtWrdKcOXN07NgxSdIVV1xhW8bdtrxYy5YtbWNIfvLJJ0UOIfH111/rzJkzkqTBgwc7/X3T09P14Ycf6qabblKtWrUUFham8uXL6/LLL9fQoUO1efNmp+t0hivt7eo276o+ffrY3p87d0779u0rsNyqVats2++gQYOKrXfMmDG28iXdrXTumJJ5L8xeLHde3vEn8/YWUljPIbmfHzlyJN+8zMxMPfXUU7bpHj166K233irwieCCWCwWPffccxo9enSR5Q4fPqzhw4eradOmioqKUvny5XXllVdq7Nixtm2qtGnTpo2aNm2qEydOaMOGDS7XU9B+2DAMzZ49W927d1eNGjUUGhqq6tWrq0+fPh75P2YGfzkG+mLbP/XUU5o4caJiY2O1ZMkStWjRosByru5nSoqvnc9Jjretu/viXNHR0Zo+fbptmxw5cqT++usvuzL333+/7am/3r17O/XElS+2cUEc3X86+vdxR979zaFDhwotZxiG1q9fr9GjR6tbt26qXbu2wsPDFRYWpho1aqh79+56++23bTdGzFRY+/rLOYVUstuyq8cnfzmuZWVladq0aercubOqV6+u8PBwXXrppYqPjy/weLF161YNGTJETZo0UWRkpCpUqKAuXbqUWK9/l156qe39wYMHbe89tR92VosWLTRv3jxbDwQnT57UG2+8YVfGMAxdcskltrbfvn27Q3UvWrTItkzHjh09FnNBPNV+JbFfLo4vXMPI5Wq7uvv7ulatWpo0aZJt+pFHHtHRo0fzlRs2bJj2798vSerWrZtTQwOkp6fr/fffV8eOHVWtWjWFhYWpXr16GjRokFu/fVzhanv54rmxL51PmHVtMzMz064XjK5du9olSxbl4Ycf1oMPPmibHjduXLFJZps3b9Zjjz2mFi1aKDY2VkFBQYqIiFDt2rV1/fXXa+zYsVq3bp3XepBy5RqcWcc8Vx04cEBPP/10vutBL730km0IPTOvxxWmYlycKjVp4levinFxZjcbABMx5ARKrX379mn58uWSCh9uIpdhGPr5558LnX/s2LFCb0jlferH0918nT17Vvfff7+ty928jh49qqNHj2rZsmV67bXX9NVXX+maa67x6PoLk/uDsKgxHXOz5S8+sfbVts61f/9+9e3bV7/99ptX6i9K586d1blzZ7vPkpOTlZCQoODg4Hw/hNxpy4Lcd999euKJJ7R//34tW7ZMN9xwQ4HlZsyYISknQ7xPnz5OXdzbsGGD7rjjjnwXVnLHbP3zzz81efJkPfTQQ5o0aZKCgrx3mHKmvd3Z5l1RpUoVu+mzZ8+6XafZci/2nTx5Unv27CnwSYbc/3d5u7tu2bKlLBaLDMNQUlJSgU8sJCUlSfrf+J95zZ4925YQEhAQoMmTJ7u0/yio7lzfffedBgwYkO/vdObMGW3ZskXvvfdeoU8N+bvcZMHcv4EnnDp1SnfeeaeWLl1q9/nRo0f1zTff6JtvvtGwYcN8bvxxR/j6MdAX2/7ZZ5/Vf//7X8XExGjJkiVFPgXt6n7G23z1fM6ZtnV3X5xXly5d9Oijj2rKlClKT0/XwIEDtX79egUFBWnWrFlavHixpJyLnx988IFD38VX27goxe0/nfn7uCPv/iTvk3EX69ixo9asWVPgvCNHjujIkSNasmSJXnnlFX355ZdevzlZnILa1x/OKczall09Pvn6ce3YsWO67bbb8g2Pl5iYqMTERH322WdasmSJ2rRpI0kaNWqUxo8fb3uaW5JSU1O1YsUKrVixwrbv8qa8vyXyPqHqyf2ws1q3bq1//etftuF/Jk+erDFjxig0NFRSzt/v/vvv18iRIyXlDE/4+uuvF1tv3uGEirtm4y5PtF9J7ZedZeY1DFfb1RO/r++9917Nnz9f8+bN08mTJzVkyBB9//33tvmLFi2ybWOxsbF2CZXFOXTokHr16mWXeCXlXGf85JNPNHPmTI0YMcJu2BxvcrW9fPHc2JfOJ8y6tjl79mxbwprFYnF6KKXXXntNs2bNUkpKilJTUzVp0qQChyk1DEPPPvus3nzzTbvjmiRduHBBBw8e1MGDB7Vq1SqNGTNGf/zxhy6//HKnYnGGM9fgzDzmOeurr77S4MGD8yXh5L0e5MtDIQOAP6GHBpRaM2bMUHZ2tpo1a6ZWrVoVWm7v3r0yDKPAV+7TMwMHDrR9drGqVava3udegPWE06dPq127draLWREREerTp49Gjhypl19+WY899pitq7xDhw6pc+fO+X5seUtul5M7duywPal/sV9++UWSfSatr7Z1rrS0NPXu3Vu//fabqlSpovvuu0/jxo3T8OHD1b59e1PGpZs8ebIuXLig/v37231/d9uyIPfee6/tyZvcpIWL7du3TytWrJCUMzRC7kUsR/z666/q3LmzLZmhXLlyuvfeezVu3DiNGDFCrVu3lpTzo+v9998vdJgYbyqsvV3d5l118Q/f8PBwt+s0W61atWz74tmzZ+ebv2bNGh04cEChoaHq2bOn7fPq1avbnpYoqCvBzMxM/fTTT5Jk24bymj9/vu19t27d1KBBA/e+yEVWrFihfv362ZIZKlasqPvvv1/jx4/XsGHDFBcXp2PHjql37962CyalxYkTJ7RlyxZJ8lhXu1lZWerXr5+WLl2qatWqaciQIRo/fryGDx9u60VGkv773/8WuB35Ml8/Bvpi248YMUKvv/66YmJitHTp0iLP5yTX9zPe5Kvnc862rbv74ou99tprtv3xb7/9ppdffll79uzRyy+/bCvz3nvv5UvwK4ivtnFRitt/Ovv3cUfu302yfzL8YidOnJCUc0502223afjw4Xr55Zc1duxYDRgwwPa3On78uG688cZ8PW+UpMLa19fPKczall09Pvn6cS0zM1N9+/bVunXrVKdOHT366KOaMGGChg4dqho1akjKuZFy0003KTk5WRMmTNC4ceMUGhqqvn37asyYMRo1apQ6dOhgq/Pdd9/VrFmzPB5rXrlD+0VHRysuz1OInt4POys+Pt72/vz58/r111/t5t93330KDAyUJM2cOVNZWVlF1peUlKTvvvtOUs7NxH79+nk4Ynvutl9J7pedYfY1DFfb1VO/rz/44APbvmTBggWaPn26pJzksLxJMpMmTVKtWrUc+k6ZmZnq16+fNm3apEqVKumBBx6w+20nSdnZ2Xr55ZcLvInsDa62ly+eG/vS+YRZ1zbnzZtne3/99dfb7esdERsbqzvuuMM2/c033xRYbtKkSXrjjTdsMbRr107Dhg3Tyy+/rJdeekn//ve/1alTJ6eu63laYdfgzD7mOWrx4sW66667bMkMlStXtv2Ofuqpp3TZZZfp6NGj6tWrl12vSwAAFxnweRkZGcYvv/xi/Pe//zUGDRpkXHPNNUb16tWN8PBwIygoyKhQoYLRvHlz4/777zcWL15sWK1Wr8aza9cuY+TIkUbLli2NSpUqGWFhYUb9+vWN3r17G19++aWRlZXl9jrOnj1rSDLOnj3r0vJWq9WoU6eOIcmYOHGiy3GMHj3akGQMHDiw0DLjxo0zJNle48ePN5KTkx2qf+/evYXOu/nmm2113nPPPcapU6fylbFarcZ//vMfW7kGDRoYmZmZDq3bHcePHzciIyMNScZtt91m93eyWq12bbJmzRqH6vRWWxfVxoZhGHv27LGrMzeG8+fPOxS3J/z555/5tvXs7Gzj/fffN4KCgoxKlSoZR48edbg+R9rSMAyjbt26tu+8fft2wzAMo2/fvoYkIywsrMBtLrduScZvv/1mt4wk47333itwXampqUb9+vVt5Tp06FDgd/rss8+M4OBgW7nJkyc7/L0d5Up7e2Kbz9veK1euLDLGJ554wlY2LCzM2LFjR4HlVq5cabfdFifv32/GjBnFlnfUwIEDDUnG6NGjiyw3f/58Q5IRFRVlbNq0yfZ5UlKSccUVVxiSjKeeeirfcosXLzYkGeXLlzfWr19v+zwzM9P497//bUgyypUrl+/vZrVajfLly9u+82uvvVZobMXtKwpy/vx527FGktGjR498/2+sVqsxcuRIQ5JhsVg83v6Otr0ry/3222/GF198YaSlpeWbd+DAAaNjx46GJKN169aF1uHIdl/Qfvjhhx82UlNT7cplZ2cbjz/+uK1MXFycQ9/VGd5sz6J44hjoyjZsRts72lYvvPCCIcmIjY01NmzY4HD9ru5niuLM/vtiJXk+5+22dXVfXJjVq1cbAQEBhiQjODjYaNasma0N7rrrLofjKulzZm/vP139++QqanvNu5+4+PylRo0axoULFwqtd9SoUUXGk56ebjzzzDO2+jp37ux07Ibh/fb19jmFK/viXN7Ylkvi+OTqcq7+ji6qjQs6rj3xxBNGenq6Xbnk5GTj6quvtpW54447jMDAQKNZs2bGnj178tU7fvx4h46BjrT35s2bjW+//Tbf381qtRrTpk0zwsLCDEnGiy++mG9Zd/fDjh7PCmrj7OxsIyYmxrb8uHHj8pW59dZbbfPnz59faP2GYRj//e9/7c493OHodu5q+3ljv+zOvqKkrmF4s109eU3p22+/tZWNjo429u7da/Tp08f22W233Vbsd83bprm/2W6++WbjzJkzduWsVqsxZswYW9nAwEBj48aNxdZfFEfa2Z328rVzY186nzDj2ubF5xOvvPJKoXUVtZ/4/PPPbXUEBAQUeM5Qu3Zt23n20qVLC63r/PnzxowZM4yDBw8W/sUK4Og+wtVrniVxzCuojfNeZ6tbt26h3ys5OdmoWbOmrWyvXr0K/J6vvfaa3b5Fcu16kLv3Sgqq693wcGNGRIRfvd4ND/dYOwDwPyQ0+IGnn34634+Vol5XXnml8fvvv3sllrfeessIDQ0tcv1t27Y1du/e7dZ63D1I5570FHZT1lGOXIg5ffq0UatWLbs2CA8PN7p3726MHDnSmDdvXoEXRQyj8JPTZcuW2erq06ePkZ2dXWSceW9+zpw509Gv55bZs2cbQUFBhiSjYsWKRo8ePYw+ffoYl1xyiS2WkSNHOlyft9ra2YSGDh06FNvenvb4448boaGhRtu2bY3+/fsbffr0sX3PGjVqGFu2bHGqPncSGhYuXGj7bMqUKXbls7Ozbcs0a9bM9rkjCQ3vv/++rUzNmjWL/L/9zjvv2MpWr1493wVId7na3u5u847+6P/000+NwMBAu4tThW3HZiU0bNq0yWjTpo3tValSJdvfNu/nhw8fzrfs0KFDbT+qe/ToYfTt29eIjY01JBnt2rXLdyP14tiDgoKMa6+91ujTp4+tTcPDw40FCxbkW+bQoUN2/7+L+hHvykXFKVOm2OquX7++kZKSUmjZe+65xy4WV9vf1bZ3Zbm8F786duxo3HnnncZdd91ltG3b1vZ/4dJLLy2y7VxJaLjpppsKrS8jI8N2YUaSsW3bNuca8CIl2Z5F8cQx8P333y/0fKMwJdH2rrRV3gvTV199tTFw4MBCXwVxdT9TGFcv2nr7fM6MtnVlX1yUp556Kt9vierVqxsnT550aPmSOGcuyf2nu38fw7DfXh9++GHj9ddft72ef/55Y8KECcbDDz9sNGjQwFauWrVqdheK3ZH3huY///xTbHkzjk/ePKdw9Salp7ZlM45Pri7n6u9oZxIa+vTpU2jZNWvW2JWNiYkp9GaO1Wo1GjVqZCv7559/Gobh3vZbvnx5o0uXLsbdd99t9OzZ0y5J9q677io0UcWd/bA7CQ2GYRgdOnSwLf/AAw/km//999/b5t98882F1m8YhnH55Zfbyjp7Q9id7dzZ9vPWfvn555+32z8X9CrsXMtb1zBKsl0Nw7PXlAYNGmRbJu/xrUqVKsbx48eLXf7iNo2LiyswaS5X7o3c4vYzBXG1nd1pL185N3ZGSZxPGEbJX9u8+HxiyZIlhdZV1PEuMTHRrp5169bZzU9KSnJ4f+woV9vYnWuenjrmXXxOnPfc+OLPHn74YdtyRSU0TJw40eF9xkMPPWT39/KVhIY5V15pfHfVVX71mnPllR5rBwD+h4QGP3Dxhb7IyEijWbNmxnXXXWd06tTJuPTSS21PN+W+oqKiHM4eddRLL71kt46AgADj8ssvNzp27GhUr17dbl6tWrWMI0eOuLwudw/St99+uyHJuPvuu12OwTAcv4Czfft2o0mTJnZtcPGrevXqxr333mssXrzYtlxhJ6e9e/e2LZeYmFhsnAcPHrSVv/322536ju7YunWrcf/99xsNGzY0wsLCjODgYKNmzZpG3759jeXLlztVl7fa2tmEhqJueHrLjz/+aPTq1cuoU6eOERYWZpQrV85o0aKF8dJLLznc20de7iQ0ZGVlGTVq1DAkGVdddZVd+aVLl9rKv/XWW7bPHUloaNu2bbFlcuXtYUWS8f333xf/pZ3gTnu7s80X9WPqlVdeMZ544gm7p1OlnIvxR48e9bmEhrzrLepV2M3VuXPnGh07djSio6ON8PBw4/LLLzdeffXVYpNXFi1aZPTo0cOoUKGCERwcbNSuXdsYNGiQbfu92NatW+3i2bx5c6F1u3IDIu92/dFHHxVZdu/evR7pocHVtndluUOHDhljx441unXrZtStW9eIiIgwQkJCjOrVqxs33HCD8f777xf5o90wXEtoKOrvZBiGER8fbyvrbhJfSbZnUbx9vlGYkmh7V9pqxowZDi0jFf5TxtX9TEFcvWjr7fM5s9rW2X1xUS5cuJDvhqYzSRElcc5ckvtPT/x98m6vxb2Cg4ONZ5991q0E8IvlfWJw+vTpxZY36/jkrXMKVxMaPLUtm3V8cnU5V45rziQ0bN26tcj1531KtrgnlPP2VPTZZ58ZhuFae+/evdt44oknjPbt2xs1a9Y0wsLCjNDQUKNOnTpGv379jIULFxYZh2G4vh92N6GhV69etuULeuo9KyvLtk8PDAwsNHHm119/tdXTvHnzImMuiLvbuTPtV9L75byvwn4veOsaRkm2ay5PXVM6e/as3TWE3Ne3337r0PIXt+msWbOKLL9//37bb7vAwECnjqPutLM77eUL58bOKInziVwleW3TU9coTp06ZVfPxdfNjh07Zpvnai8XF3O1jd295umJY56rr6ISGlq3bm0r9+mnnxYZy+HDh+0eXCKhgYQGAK4hocEPvPjii8bNN99sfPjhh4V2O378+HHjhRdesDs41qlTx2Ndzi1evNjuRkzbtm3tLrRYrVbj888/N6Kiomxl2rVr5/L6PHmQLinp6enG1KlTjbZt29q1VUGvNm3aGDt27Cjw5NRqtdoypS+55BKH11+5cmVDklGvXj1Pfi2f5ExbX3nllYX+vzEM+x+u4eHhHhkyxV8UlNBgGIYxYsQI2+d5M6XvuusuQ5IREhJinDhxwvZ5cQkNaWlpRkhIiK1M3mUL8+STT9rKDx8+3M1v6huc+TEVGBho9O/f39Z1nq8lNPiLi5+827lzZ6Flnb0BcfF27chFrFatWpWp9jcM5xMaqlWrVmydeXtxefPNNz0cse9z5XyjMLS9Y1y5aMv5nGNWrFhhtx1bLBaHk7Jp44K5cvG2ffv2RkJCgsPrOHjwoPHDDz8Y06ZNM956661Cn2orLedwhuH4OYUrCQ1lfVt29rhW1M2lvMe16tWrF7vuli1b2sr/+OOPRZbN+yTmG2+84fT39AXuJjTk7XGsa9euBZYZNWqUrUxhXak/+OCDtjLuDBHqL7yZ0FDWrmEUZfny5Xb7kEGDBjm8bN42DQgIMM6dO1fsMnlvZjqSSFyaeCqhgfMJ169RZGZm2tWTm2iXKzs726hWrZrt/Prtt982MjIyPPY9/IE3ExouXLhgGy7XYrHkG56mINdcc41b14O8kdDwYXi4MTMiwq9eHzLkBFCmBQk+b9y4ccWWqVy5ssaPH6969eppyJAhkqT9+/friy++0ODBg91av2EYGj58uAzDkCTFxcVp2bJlioiIsJUJCAjQnXfeqUqVKqlbt26SpLVr12r+/Pnq06ePW+v3FyEhIXrggQf0wAMPKCkpSevXr9dvv/2mhIQE/frrrzp27Jit7K+//qo2bdroyy+/VN26de3q2bdvn86cOSNJ2rNnjywWi1NxnDhxwu3v4uucaeuEhAS1adNGa9eu1WWXXVZkvY0aNVJgYKC3w/d5gwcP1quvvipJmjFjht566y2dOXNG8+fPlyTdcsstqlSpksP17du3TxkZGZKkWrVqObRsy5Ytbe//+ecfZ8IvFa677jq9+eabqlq1qtmh+LXo6Gi76fPnz3us7r1799q26zp16qh8+fLFLtO8eXNt3LjRYzGURhcfEwtSrlw523tP/k39RWHHwHXr1umPP/4o8HzDkWMgbe9ZnM8V79y5cxo8eLDtN4aU87tj8ODB2rJli8LDw4tcnjYu3sqVK9WpUyfb9L59+1SrVi2dPn1aCQkJmjZtmubOnas1a9aobdu2+uGHH+zKX2zu3Ll6/fXXtWnTJofWn/v3KQ28eU5R1rdlZ39H9+7dW+vXry/2uFanTp1i1x0VFeVw+bxlU1JSiq27NDp37pzt/cX/J3Ldd999Gj9+vLKzszVjxgyNGDHCbn5qaqrmzJkjSQoLC9O9997rvYB9UO5+ed++fQ6dexWHaxj/07lzZ9WpU0f79u2TJA0cONCleho2bGj3/70wzZo104YNGyRJiYmJ6t69u0vrK4vK8vlE3t9TkuvnExcvFxMTYzdtsVg0fPhwPfnkkzIMQ0888YTGjRunHj16qEOHDmrTpo2aNWumgIAAl9bvby4+J85V0L541apVuv7664usb9++fcrMzJQk1a5dO1/7F+SKK67QL7/84njQJaBCXJwi/OwYkmq1SgkJZocBwCRl46hVhjzwwANq0KCBbXrVqlVu17l48WJt2bLFNv3OO+/YJTPk1bVrV91xxx226dybomVNpUqVdMstt2js2LH69ttvdfToUW3YsEH9+/e3lTl79qyeeuqpfMuePHnSrXWXtYsrjra1Iz9mHTkBLQsaN26sdu3aSZI+++wzZWZm6vPPP1daWpokOZ0kdfr0adt7RxMh8pY7deqUU+vzBytXrpSR00uSsrOzdfToUS1btkw9e/aUJK1YsULXXnutdu/ebXKk/q1ixYp20+7uX/PKu11fvJ7COJMIVFaFhYUVWybvjZ7s7GxvhuPz8h4Dp02b5tYxkLb3LM7nijds2DDbTYd27dqpWbNmknISGZ9//vlil6eNXRMYGKhKlSqpa9eumjNnjl555RVJ0oULF3TXXXfZ3bDMZRiGHnjgAd15550O33yQZDt3LA28eU7Btvw/jvy2O3funFeOa8WV5xho/7ussPPfunXr6oYbbpAk/f3331q9erXd/K+++krJycmSpD59+jiUFIzCcQ3D81z5bZf3tyEKx/lE/u3L1aTEi5erUKFCvjK5SQy5x7eTJ09q1qxZevjhh9WiRQtVrFhRAwYM0Lp161yKoSxz5XqQo+XgmFatWqlp06aaMmWK2aEAKEH00FAKtWzZUrt27ZIkHT161O36vv76a9v7Sy65xPbjtDAPPfSQ5s6dK0nauHGjDh48qFq1arkdh79r1aqV5s6dq2bNmunFF1+UJP3xxx/auHGjWrVqZSuXlZVle1+zZk098cQTJR2q3yuorTdt2pSvrS9WVjKTHXHfffdp7dq1SkpK0vfff6/p06dLkqpXr64ePXqYHF3pYrFYVLVqVVWtWlVdunTR0KFDNWnSJB04cED9+/fnx6UbqlWrptjYWNsTHb///rs6d+5sblCAl7l6DIRncT5XtEWLFmnatGmSpIiICH388cc6d+6cWrduraysLE2cOFF9+/ZV+/btC62DNvaMp59+WhMnTtSRI0d09OhRffbZZ3rkkUfsynz00Uf66KOPJEnBwcG67777dMstt6hJkyaqUqWKwsPDbU8Ir1y5slQea715TsG2XDSOa74hOztbW7dutU0X1bvAgw8+qMWLF0vK2X906NDBNi93XyLlPJAD93ANA/6E84mca2oXn0907drV6Xp+//1323uLxaJLL720wHIvvviiHnjgAc2ePVvLli3T2rVrbUllZ86c0cyZMzVz5kwNGjRIU6dOVVAQt4rgHzZu3Fhob1EASi+OUqVQ3gsintixL1y40Pa+e/fuxXaB2aFDB0VGRiolJUWGYeiHH37Qgw8+6HYcpcXw4cP19ttvKykpSZLyXYjJm7EZHh6up59+usRjLC2GDx+u//73v7YnSbjo5bj+/ftr6NChSklJ0ciRI/XXX39JkgYMGOB0l5Z5n7px9Am03P8fUsGZ5qXZm2++qVWrVumPP/7Qpk2b9N///ld33XVXgWXz7o/zdtldmNTUVI/F6Q8CAgJ03XXX6dtvv5UkLV++3GP7VHe3a8DbijvfgHdxPle4M2fO2N3Eeu2119SwYUNJ0qOPPqqJEycqOzvbNvREYT3D0caeERQUpNatW9uOlWvWrMmX0DBx4kTb+y+//FK9evUqtL6zZ896J1CTefOcgm3ZMRzXzJWQkGC7CSblDJFXmFtuuUXVqlXT0aNH9dVXX2nSpEkqV66cdu7caeuxoX79+sV26Q2YwZXfdvQ04hjOJ3LOJzp06KDvv/9ekrR06VI9++yzTtezbNky2/srrriiyOtm1apV07BhwzRs2DBlZ2dry5YtWrFihb744gvbsCkff/yxatSooQkTJjgdS1kUGxtre+/oPsOTvXt5SnJiorKcHOrMbKkOXPsEUHqRylvKZGZmav369bbptm3bulXf8ePH7Xp5cKS+oKAguwsLeYerQE77NGrUyDZ98Ul63bp1bRdu9+zZU2C3r3BMUFCQ6tWrZ5surT+IvCEqKkq33367JNmSGSTnh5uQcrbpkJAQSdKBAwccOonfvHmz7X3jxo2dXqc/Cw4O1ptvvmmbfuWVVwpts7xjezoy9uL+/fvdD9DP9OnTx/Z+yZIlHhvGo169erbtev/+/Q51M8rxECWpuPMNeBfnc4V77LHHdPjwYUnS9ddfr/j4eNu8f//737ryyislSTt37tRzzz1XaD20sefkTRq5uAvj1NRU/fHHH5JybkAWdfNBkrZt2+b5AH2Et84p2JYdw3HNXO+++67tfXR0tFq3bl1o2aCgINvvxpSUFM2ZM0eSNH36dFsS9n333VfswzKAGXbu3OnQUD55eyyJi4vzZkilAucT/5P3fGL58uX6559/nFo+OTnZtl+VpN69ezu8bEBAgFq0aKGnnnpKv/76q15//XXbvPfff7/MDqnkrHr16ik4OFhSznVOR85Jcrd/XxIbF6fyTZr41SuW/S1QppHQUMq88MILtgSEChUqaNCgQW7Vt337drvpBg0aOLRc3nIX1wHp2LFjtvcXj6EVEhKijh07SpKsVqu++OKLEo2ttMmbNc94Zc6577777KavvfZal36oh4aG6qqrrrJNf/XVV0WWz87Othvqpl27dk6v099169bN1s12cnKy3nvvvQLLVa1a1fb+77//LrLOjIwMrVy50nNB+om7775bderUkZSzbf373/92qZ6LE0ZCQ0PVsmVL2/Q333xT5PL79+/Xb7/95tK6AVcVdb4B7+J8rmDz58/XrFmzJEnlypXTjBkz7G5oBQcH6+OPP7ZdIJw0aZJ+/vnnAuuijT0nb8LjxU+Z5k3Yc6TXrLzncKWNt84p2JYdx3HNHBs2bNDMmTNt04899pgtsbcwDzzwgG3/Pn36dFmtVn3yySeSpMDAQLevVQHekp2dre+++67IMgcPHrT9tgsMDCwywQc5OJ/4n3vuuUc1a9aUlNPTprPnEyNGjLCdS0RERLh8PiJJw4YNU2RkpCTp1KlT+RJbUbCwsDC1aNFCUs7fsLh9xpEjR7Rx48aSCA0ASjUSGvxcVlaWjhw5om+++UY33HCDLbMyLCxMs2fPdrur9n379tlN517AKU7ecnv37nUrBl+3YsUKZWZmOlU+79M8bdq0yVcm78noqFGjdOTIEYfrd6TbeX/lSlvnvUBbUFujcB06dNAzzzyj+Ph4xcfHa8yYMS7XNXDgQNv7l19+ucgnz9577z3bvqd69erq3r27y+v1Z6NHj7a9/+yzzwrcD9SqVUuVK1eWlPMEQ1FJDZMnT9bx48c9H6iPu7jHix9++EFPPvmkw/tKwzD06quvauzYsfnm/etf/7K9nzBhgi5cuFBoPSNHjizV+2d4nzfON+BdnM/ZO3HihB566CHb9JtvvlngGOzNmzfXyJEjJeW0w+DBgwt9UpI2dt/u3bv166+/2qbzJutJOQkOuTclt2/fXuSx7uOPP1ZCQoJX4vQF3jynKIvbMsc1/5CQkKDbbrtNGRkZkqRKlSrpqaeeKna5+vXrq3PnzpKkX375Rf/9739tvfP06NHDdjMP8EXjxo2zbfMFGTVqlO1J9ltuuYUhJxzA+cT/hISE6D//+Y9t+scff9Tzzz/v0LLTpk3T+++/b5t+4YUXVKlSJZdjsVqtCgj43+2h8PBwl+sqa+655x7b+5dfflnp6emFln3ppZdktVpLIiwAKNVIaPBDlSpVksVikcViUXBwsGrUqKE+ffpo6dKlkqSuXbvq119/9chNwLxjJEpSTEyMQ8tFR0fb3jvSZWZ6erqSk5PtXv7i+eefV4MGDTRhwgTt2rWryLLffvutrRt/SbryyivVvHnzfOV69uypnj17SpIOHz6s9u3b28aaLEhmZqYWL16sW2+9VfPnz3fxm/g+d9q6TZs2BbY1ivaf//xHkydP1uTJk9WtWzeX6xkwYICt55b9+/fr1ltvLfDm+pw5czRs2DDb9AsvvGB7SrOs6dq1q6699lpJUlpaml555ZUCy91222229w888ECBQ09Mnz5dI0aM8E6gfqBfv35241K+/fbb6tatW5E9JmRmZmrevHm68sor9dxzzxV4wX3AgAGqXbu2JGnXrl3q16+fzpw5Y1cmOztbY8eO1aeffkq3unALx0D/w/mcvUceecT21Ff37t01ZMiQQss+99xzthvru3fvLvQYRhu7Z+/everbt6+ysrIk5VzEvuuuu+zKRERE6Oqrr5aU03X8Qw89VOAF248//lgPPfRQqT/WeeucoixuyxzXfNv+/fv13HPP6ZprrtGhQ4ck5Tw489133zn84MyDDz5oe5/3Zt3999/v2WABD7JYLNq+fbv69++f79pkdna2xo8frxkzZkjK6b6/qOGx8D+cT9i7++679fDDD9umX3nlFd1xxx06ePBggeXPnDmjxx9/XA8++KAtkfHGG28sdPv7+eef1bNnTy1cuLDQ5JysrCw9//zztuv2zZs3t7uej6INGjRI1atXlyTt2LFDd9xxR759hmEYev311/X+++/75DZ9PjFR57Zv96vX+cREs5sNgImCzA4AntW+fXs99thjuuKKKzxS38VPQ4WFhTm0XN6MTkfGnnvllVcKfFLFXxw4cEAvvviiXnzxRTVo0ECtW7dWnTp1FBsbq4yMDO3du1c///yz3YWaihUr2mXkXmz27Nnq1KmTEhIStHv3bnXs2FHNmzdXhw4dVK1aNRmGoVOnTunPP//Uhg0bbDfRBgwY4O2vaypX2/qjjz4yMWqEh4dr1qxZ6ty5s1JTU7Vq1So1atRIvXr1UlxcnFJSUrRixQq7JwR79+6tRx991MSozTd69GhbctqHH36oZ599VrVq1bIr8+yzz2rmzJlKTU3V6tWrFRcXp379+qlatWpKSkrSkiVLtG3bNlWrVk0333yzpk2bZsZXMd2rr76qiIgIjR07VoZhaPny5WrVqpUaNWqkDh06KCIiQjVq1FBSUpJ27dqllStX2v0YDQrKf8oUFRWljz76SD179lRWVpZ++OEHNWrUSH369FG9evV06tQpLVy4UDt27FD58uXVu3dv28UvwBVFHQOPHz+uM2fOcAz0MZzP5Zg9e7at6+DY2Nhit8mgoCB98sknuuqqq5SRkaEpU6aob9++6tSpU4F108YFmzt3rt2N9tOnTysmJkZnzpzR5s2btXz5crub62+88UaBPfKNGDFCffv2lSTNnDnTdpG8Vq1atnONP//8U4GBgXr++ec1YcIE7385ExV1TtGiRQs1atRIkZGRTp1TSGVzW3blt1358uU5rnnAxfuHjIwMnT17VkePHtW6deu0a9cuu94/6tatq48//lht27Z1eB29e/dWpUqVlJSUZEucqlq1qm655RbPfRE/k9vup0+fduip/oEDB9p65EPJaNu2raxWq7799ls1bNhQffr0Ud26de1+2+V6/vnnGW7CCZxP2Js8ebKCgoI0efJkSdIXX3yhr7/+Wh07dlTLli0VEBAgi8Wiv/76S8uWLVNaWppt2b59+2rmzJmF3iTPzs7WokWLtGjRIsXExKhNmza67LLLVKlSJaWnp+vQoUNauHChbdhqi8Wil19+2ftfuhSJjo7WtGnTdOuttxa4zzh9+rQWLVqkP//8UxUrVlTv3r1t5y++ktwQGxenyMBAs8NwSojVKpXiHlwAFI2EBj/UpUsXnT17VlJOzwZHjx7V33//rezsbK1Zs0Zr1qxR69atNXfuXNWrV8+tdV389EhhF18ulrdcUd205XruuefsnspOTk62PfXq69q3b68///zT9lT0rl27in3CpH379po6dWqRXXnFxMRo7dq1euKJJ2xjTm7ZskVbtmwpdJmKFSvaskNLI1faulWrVvr000916aWXlkSIKEKbNm20cuVK9e/fX/v27VNycrLdWKy5LBaLHnzwQU2ePNlnTvLNcsMNN+iaa67RL7/8ovT0dE2YMEHvvfeeXZn69etr1qxZuvPOO5Wenq7Dhw9r4sSJdmUuueQSzZs3T998800JRu9bLBaLRo8erfbt2+uFF16wJc/8888/+ueffwpdrkqVKnrmmWcKHZeyW7du+uKLLzRo0CAlJycrKSlJU6dOtStTuXJlffXVV1qxYoXnvhDKHHfONzgGmofzuZwxY/PuQ9955x2Huhq//PLLNXr0aL3wwgsyDEP33Xef/vjjD9s4v7lo48Ll7ZK4KOXLl9fbb79d6I3x2267TWPHjtWYMWNkGIb27duX73wkMjJSH3zwgWrWrFnqb0B465yirG3Lrh7XxowZo8suu6wkQizVHN0/VK9eXYMHD9aIESNUrlw5p9YREhKigQMH2g3VMmDAAIevK5VGjrZ7rq5du5LQUMKCg4M1d+5c3Xrrrdq8ebM+/PDDfGUsFoueffZZjRs3zoQI/RfnE/YCAwM1adIktWvXTi+++KJ27dolq9WqlStXauXKlQUuU7VqVY0cOVKPPvpokdfL8vZ0evbsWS1ZskRLliwpsGxsbKzee+89W09RcFzPnj01a9Ys3X///UpJSdGJEyfy7TOqVKmir7/+Wj/++KPtM4b2AADXlN1fEX5s7ty5+T47deqUpk2bppdeekkpKSnasGGDrrvuOm3cuFFVqlRxeV0RERF202lpafk+K0jerNGLLzoWJDQ0VKGhoc4H6APeeOMNTZgwQT///LNWr16t33//XX///beOHTumlJQUhYaGKiYmRo0bN9ZVV12lvn372rqR37dvX5F1R0RE6MMPP9Tw4cP1ySefaNWqVdq5c6dOnjypgIAAxcbGqmHDhrrqqqt0ww03qGvXrgoJCSmJr20KV9q6Zs2aBY7PDHO0bt1aiYmJ+vjjj/Xtt99qy5YtSkpKUnh4uGrWrKnrr79e999/v1q0aGF2qD5j9OjRuvHGGyVJH330kYYPH54vWa137976448/9MYbb2jZsmU6fPiwwsLCVL9+fd1+++165JFHFBMTU6YTGnJ16dJFXbp00Zo1a7R48WL99NNPOnDggE6cOKGsrCzFxsaqTp06atWqlW688UbdeOONxV507dOnj1q3bq23335bCxYs0P79+xUcHKw6deqoV69eevTRR1W9enUSGuCW4o6BISEhio2NLfB8A+Yq6+dzQ4YM0alTpyRJt956q1NPkw8fPlzffPONNm7cqD179uiZZ57Ru+++m69cWW9jZ1gsFkVGRqpy5cpq1qyZevTooTvvvFOxsbFFLjdq1Ch16dJFEydO1Nq1a3X8+HGVK1dOtWrVUs+ePTVkyBDVr19fq1atKpHv4QsKOqfYs2ePzpw5o8zMTJfOKcrStuzq7+jifkPDNZGRkYqOjlZsbKxq1aqldu3aqW3bturSpYsC3Xh6c8iQIXYJDQw3AX9Qq1YtrVu3TtOmTdOcOXP0zz//6MyZM6patao6deqk+Ph4tWnTxuww/RLnE/ndeeed6tu3rxYsWKBFixZp/fr1On78uE6fPq3o6GhVqVJFLVu2VPfu3XXbbbc5dJ29Xbt22rdvnxYvXqy1a9dq69at2r9/v5KTkxUYGKiKFSvqsssuU/fu3TVo0CBVrFixBL5p6XTHHXeobdu2evvtt/XDDz/owIEDCg4OVt26dW3Xg6pVq6YvvvjCtoyjQ3p7W0piogw/e5AsNU/vUQDKHothsBcoTTZv3qzrrrvONv7VvffeW+AT0I768MMP9dBDD9mmk5KSHDrJef31121ji9aoUcM25qKjkpOTFRMTo7Nnz5bq8bv27dvHzXYvo429jzb2PtrY+2hj76J9vY829j7a2PtoY++ifb2PNvY+2tj7PNnGq1evVseOHSXl9LCxevVqj9Tr79iOvYv29T7a2PtoY+8ryTbu1q2bli1bJknasWOH4uLinFrek/dKcuv64cor/W7IiRSrVT0TEkr9PSMABQswOwB4VosWLfTcc8/ZpufMmWN7IsoVlSpVsps+cuSIQ8vljsEliSxPAAAAAACAMmbGjBm29w888ICJkQAAYI4zZ85o3bp1kqRy5cqpcePGJkcEAP6JhIZSqH///rb3WVlZ+u2331yu6+Jswf379zu03IEDB2zvGbcZAAAAAACg7Dh58qRtyNTy5cvbXasCAKCsmDBhglJTUyXlDMFn8bNhHgDAVxQ9gCP8Uu3ate2mk5KSXK6rUaNGCgoKUlZWliQpISFBPXv2LHa5zZs32943adLE5fUDAAAAAADAv4waNcp2A2fIkCEKDw83OSIAADwnKSlJ48aN07BhwwocuiIjI0Ovvvqq3nzzTUmSxWLRv//975IOs1ApiYky/Cy5ItUwzA4BgIlIaCiFzp49azcdGxvrcl0hISFq06aN1q5dK0las2ZNscscPXpUO3futE3njpcIAAAAAACA0mfDhg3asGGDUlJStHLlSv3444+Scq5JPf300yZHBwCAZ2VlZWnixImaNGmSWrdurVatWql69erKysrSnj179OOPP9oN3/3UU0+pTZs2JkZsLzouTpGBgWaH4ZQgq1VKSDA7DAAmIaGhFFq9erXddIMGDdyqr1evXraEhmXLlun48eOqUqVKoeVnzZplex8bG6vrrrvOrfUDAAAAAADAd/3www8aO3as3WcWi0XvvfeeKleubFJUAAB4l2EY+vXXX/Xrr78WOD8wMFDDhw/X+PHjSzgyAChdAswOAJ6VkZFhd3Bs0KCB4uLi3KrzrrvuUmhoqCQpMzNTr732WqFlz58/r4kTJ9qm77nnHgUFkTcDAAAAAABQFlSrVk09evTQ6tWrdeedd5odDgAAHle1alX99NNPeuaZZ9SpUyc1btxY5cuXV3BwsCpXrqxWrVrp2Wef1fbt2zVhwgRZ/Gx4BwDwNdxp9nFLly7VkiVL9MQTT6hmzZpFlj1y5IgGDRqkzZs32z4bMWJEgWX37t2rSy65xDY9evRojRkzpsCytWrV0kMPPWRLVHjnnXd07bXXqm/fvnblMjMzNXjwYO3fv1+SFB4erhdeeKHY7wgAAAAAAAD/NWbMmEKvKwEAUNpYLBZ17NjRb4fbTklMlPwsySLFMMwOAYCJSGjwcSkpKXrjjTf05ptv6tprr1WHDh10xRVXqHLlyoqIiND58+e1e/durV69Wt9++61SU1Nty9566626//77PRLHmDFjtGjRIv3zzz+yWq3q37+/7r77bvXu3VsVKlRQYmKi3nvvPW3dutW2zOuvv67q1at7ZP0AAAAAAAAAAABwT0xcnCIDA80OwylBVquUkKBWrVopMDBQ8fHxio+PNzssACWEhAY/YRiG1q5dq7Vr1zpUfvDgwXr//fc91pVR+fLltWDBAnXt2lUHDhxQdna2PvvsM3322WcFlh8+fDgHEwAAAAAAAAAAAHjExo0bFR0dbXYYAEoYCQ0+7uqrr9awYcO0ePFibd++XUYR3eqEhITolltu0dChQ73S1VHjxo21detWPf3005o9e7YuXLiQr0zTpk312muv6eabb/b4+gEAAAAAAAAAAOC61MREjz0MW1JSGXICKNNIaPBxtWrV0ptvvqk333xTZ86c0ZYtW7R7924lJSUpPT1dkZGRKl++vJo0aaLmzZsrLCzMoXrr1atXZHJEYWJjYzVt2jS99dZbWrFihQ4cOKCUlBRVr15dV1xxhVq0aOF0nQAAAAAAAAAAAPC+qLg4RfnZkBOW/x9yAkDZREKDH4mNjdV1112n6667zuxQVK5cOfXq1cvsMAAAAAAAAAAAAAAApVSA2QEAAAAAAAAAAAAAAABcjB4aAAAAAAAAAAAAgDIgLTFRgRaL2WE4Jc2FIdQBlB4kNAAAAAAAAAAAAABlQFRcnKICA80OwykWq1VKSDA7DAAmYcgJ+JQpU6aoadOmatWqldmhAAAAAAAAAAAAAABMRA8N8Cnx8fGKj49XcnKyYmJizA4HAAAAAAAAAACg1EhPTFSQnw05kc6QE0CZRkIDAAAAAAAAAAAAUAZE+uGQE2LICaBMY8gJAAAAAAAAAAAAAADgc0hoAAAAAAAAAAAAAAAAPochJwAAAAAAAAAAAIAyIC0xUUEWi9lhOCXNMMwOAYCJSGgAAAAAAAAAAAAAyoCouDhFBQaaHYZzrFYpIcHsKACYhCEnAAAAAAAAAAAAAACAzyGhAQAAAAAAAAAAAAAA+ByGnAAAAAAAAAAAAADKgLTERAVZLGaH4ZQ0wzA7BAAmIqEBAAAAAAAAAAAAKAMi4+IUGRhodhhOMaxWKSHB7DAAmIQhJwAAAAAAAAAAAAAAgM+hhwYAAAAAAAAAAACgDEhPTFSwnw05kc6QE0CZRkIDAAAAAAAAAAAAUAZE+OGQE9n/P+REq1atFBgYqPj4eMXHx5sdFoASQkIDAAAAAAAAAAAAAJ+2ceNGRUdHmx0GgBIWYHYAAAAAAAAAAAAAAAAAF6OHBgAAAAAAAAAAAKAMyExMVIbFYnYYTsk0DLNDAGAiEhoAAAAAAAAAAACAMiAsLk7hgYFmh+GULKtVSkgwOwwAJmHICfiUKVOmqGnTpmrVqpXZoQAAAAAAAAAAAAAATERCA3xKfHy8/vrrL23cuNHsUAAAAAAAAAAAAAAAJmLICQAAAAAAAAAAAKAMyExMVKbFYnYYTsk0DLNDAGAiEhoAAAAAAAAAAACAMiA8Lk7hgYFmh+GULKtVSkgwOwwAJmHICQAAAAAAAAAAAAAA4HPooQEAAAAAAAAAAAAoA7ISE5XlZ0NOZDHkBFCmkdAAAAAAAAAAAAAAlAFhcXEK87MhJzIZcgIo0xhyAgAAAAAAAAAAAAAA+BwSGgAAAAAAAAAAAAAAgM9hyAkAAAAAAAAAAACgDMhKTFSWxWJ2GE7JMgyzQwBgIhIaAAAAAAAAAAAAgDIgNC5OoYGBZofhlAyrVUpIMDsMACZhyAkAAAAAAAAAAAAAAOBzSGgAAAAAAAAAAAAAAAA+hyEnAAAAAAAAAAAAgDLAmpgoq8VidhhOsRqG2SEAMBEJDQAAAAAAAAAAAEAZENI0TqGBgWaH4ZR0q1XalGB2GABMwpATAAAAAAAAAAAAAADA59BDAwAAAAAAAAAAAFAGZP+dqGw/G3IimyEngDKNhAYAAAAAAAAAAACgDAhuEqfgIP8aciI4yyptSDA7DAAmYcgJAAAAAAAAAAAAAADgc0hogE+ZMmWKmjZtqlatWpkdCgAAAAAAAAAAAHxEq1at1LRpU02ZMsXsUACUIIacgE+Jj49XfHy8kpOTFRMTY3Y4AAAAAAAAAAAApYbxT6IMi8XsMJxiGIYkaePGjYqOjjY5GgAljYQGAAAAAAAAAAAAoAwIjotTcFCg2WE4JTjLKv2SYHYYAEzCkBMAAAAAAAAAAAAAAMDnkNAAAAAAAAAAAAAAAAB8DkNOAAAAAAAAAAAAAGXBP4lSgMXsKJyTbZgdAQATkdAAAAAAAAAAAAAAlAFBl8YpKCjQ7DCcEpRlldYmmB0GAJMw5AQAAAAAAAAAAAAAAPA59NAAAAAAAAAAAAAAlAU7GXICgH8hoQEAAAAAAAAAAAAoA4Li/HTIiWMJZocBwCQMOQEAAAAAAAAAAAAAAHwOCQ0AAAAAAAAAAAAAAMDnMOQEAAAAAAAAAAAAUBbsSpQCLGZH4Zxsw+wIAJiIhAYAAAAAAAAAAACgLGgcJwUFmh2Fc7Ks0qEEs6MAYBKGnAAAAAAAAAAAAAAAAD6HhAYAAAAAAAAAAAAAAOBzGHICAAAAAAAAAAAAKAt2JUoBFrOjcE62YXYEAExEQgMAAAAAAAAAAABQFjSOk4ICzY7COVlWaX+C2VEAMAlDTgAAAAAAAAAAAAAAAJ9DDw3wKVOmTNGUKVNktVrNDgUAAAAAAAAAAKB0YcgJAH6GhAb4lPj4eMXHxys5OVkxMTFmhwMAAAAAAAAAAFB6NIqTgv1syIlMq7QnwewoAJiEIScAAAAAAAAAAAAAAIDPIaEBAAAAAAAAAAAAAAD4HIacAAAAAAAAAAAAAMqC3YlSoMXsKJxjNcyOAICJSGgAAAAAAAAAAAAAyoJGcVJwoNlROCfTKu1MMDsKACZhyAk/cebMGc2fP19Dhw5Vx44dVa1aNYWGhioqKkp16tTRLbfcorffflunT5/2yvotFovTr/fff98rsQAAAAAAAAAAAAAASj96aPBxO3bs0DPPPKMlS5YoIyMj3/yMjAylpKTowIEDWrBggV544QVNmDBBjz/+uCwWP+syCAAAAAAAAAAAAN6zhyEnAPgXEhp83LZt27RgwQK7zwIDA9WwYUNVrVpVVqtV27dv16lTpyRJqampevLJJ7Vt2zZNnTrVK0kNHTt2VHh4eLHl6tSp4/F1AwAAAAAAAAAAwEUN/XTIiR0JZkcBwCQkNPiJoKAg3XzzzRo0aJCuv/56RUdH2+YZhqHvvvtO8fHxOnTokCTpo48+0lVXXaVHHnnE47F88sknqlevnsfrBQAAAAAAAAAAAAAgV4DZAaBowcHBeuCBB7Rr1y7Nnz9fvXr1sktmkCSLxaJevXpp/fr1qlatmu3zUaNGKTMzs6RDBgAAAAAAAAAAAADAbfTQ4ON69eqlXr16OVS2du3aGjt2rB566CFJUlJSkn7++Wd16dLFmyECAAAAAAAAAADAH+xJlAI9P1y5V1kNSVKrVq0UGBio+Ph4xcfHmxwUgJJCQkMpc8stt9gSGiRpx44dJDQAAAAAAAAAAABAahgnBQeaHYVzMq3SnwnauHFjvl7MAZR+DDlRylSoUMFuOjk52aRIAAAAAAAAAAAAAABwHQkNpcy+ffvspqtUqWJSJAAAAAAAAAAAAAAAuI4hJ0qZefPm2U1fc801Hl/HM888o7/++ksHDhxQZmamKlasqEaNGum6667TwIEDdckll3h8nQAAAAAAAAAAAHDT3kQp0GJ2FM6xGmZHAMBEJDSUImfPntU777xjm27WrJkuu+wyj6/nq6++sps+dOiQDh06pFWrVmnChAm6//779dZbbyk8PNzj6wYAAAAAAAAAAICLGsRJwYFmR+GcTKu0JcHsKACYhISGUuSpp57S0aNHbdPjx4/3ynoqV66s+vXrKyoqSmfPntWOHTt0/vx5SVJWVpY++OADbdiwQStXrlRMTIxDdaanpys9Pd02nZyc7JXYAQAAAAAAAAAAAAD+gYSGUmL69On66KOPbNN33HGHbrnlFo/V37RpUz344IO65ZZbVL9+fbt5WVlZ+vHHH/X8889r69atkqTNmzfrzjvv1KJFixyq/5VXXtHYsWM9Fi8AAAAAAAAAAAAuwpATAPwMCQ2lwOrVq/Xoo4/api+55BJ98MEHHl3Hn3/+Wei8oKAg3XTTTerSpYv69eunhQsXSpIWL16s77//3qHEiueee07Dhg2zTScnJ6t27druBw4AAAAAAAAAAIAc9f10yInfE8yOAoBJAswOAO7ZsmWLbrnlFttwDVWqVNHixYsdHurBk8LCwvT555+ratWqts8mTZrk0LKhoaGKjo62ewEAAAAAAAAAAAAAyi4SGvxYYmKibrjhBp09e1aSVL58eS1ZskSNGzc2LaZy5crpkUcesU2vXr1aaWlppsUDAAAAAAAAAAAAAPBPDDnhp/bs2aOuXbvq+PHjkqSoqCgtWrRIzZs3NzkyqVOnTrb3aWlpOnDggBo1amReQAAAAAAAAAAAAJD2JUpBFrOjcE6WYXYEAExEQoMfOnjwoLp06aKDBw9KksLDw7VgwQK1adPG5MhyVK9e3W46KSmJhAYAAAAAAAAAAACz1Y+TQgLNjsI5GVZpY4LZUQAwCUNO+Jljx46pa9eu2rNnjyQpNDRU33zzja677jqTI/uf1NRUu+mIiAiTIgEAAAAAAAAAAAAA+CsSGvzIqVOn1K1bNyUmJkqSgoOD9cUXX+iGG24wOTJ7f/31l910lSpVTIoEAAAAAAAAAAAAAOCvGHLCTyQnJ6t79+76448/JEmBgYGaNWuWbr31VpMjy2/OnDm29/Xq1cs3BAUAAAAAAAAAAABMsC9RCrKYHYVzsgyzIwBgIhIa/EBqaqpuuukm/fbbb5KkgIAAzZgxQ7fffrvJkeX3/fff6/vvv7dN9+7d27xgAAAAAAAAAAAA8D/146SQQLOjcE6GVfolwewoAJiEISd8XHp6unr16qU1a9ZIkiwWiz788EP961//cqvevXv3ymKx2F5jxowpsNzZs2fVt29fbdq0qdg6P//8c91111226YiICA0fPtytOAEAAAAAAAAAAAAAZRM9NPi4d955R8uWLbNNx8bG6ssvv9SXX37p0PLdunXTU0895fL6DcPQvHnzNG/ePF166aXq3r27rrzySlWvXl2RkZE6d+6c/vjjD3311VfauHGjbTmLxaIZM2aoWrVqLq8bAAAAAAAAAAAAHrSfIScA+BcSGnxcamqq3fTp06f1448/Ory8JxMKduzYoR07dhRbrly5cvrggw/Uv39/j60bAAAAAAAAAAAAbqrnp0NOrEkwOwoAJmHICRQpPDxcgwcPVt26dYstGxMTo6FDh2rbtm12Q0+gFMjOls6clE4clpKOSOfOmB0RAAAAAAAAAAAAgFKOHhp83JgxYzRmzBiP11uvXj0ZRvFd9ISGhmr69OmSpOPHj2vr1q3av3+/kpKSlJ6erqioKFWoUEHNmjVTs2bNFBjoZ1l9KFh6mvTbSmnXH9LeHdK+RCkz3b5MZIx0SROpXhOpyVXSZa2lAHKkAAAAAAAAAAAAAHgGCQ1wWJUqVdS1a1ezw4A3Hd4rLf9KWrNAunC+6LIpZ6Vtv+S8FsyQKteUOveVruslRcWUSLgAAAAAAAAAAMAJBxKlIIvZUTgnq/gHdAGUXiQ0AJDSUqXZb0mr5rtex4lD0tyJ0jdTpdvjpW53SBY/OykCAAAAAAAAAKA0qxcnhfhZb9sZVumnBLOjAGAS+ocHyrptv0rP9XcvmSGv9AvSZ29ILz8kHTvomToBAAAAAAAAAAAAlDkkNABl2YJPpP/ESyePer7uxN+lkXdLf/3m+boBAAAAAAAAAAAAlHoMOQGfMmXKFE2ZMkVWq9XsUEq/eR9K33zo3XWkpUpvDJWe/K90xTXeXRcAAAAAAAAAACjawUQpyM+Gi84yzI4AgIlIaIBPiY+PV3x8vJKTkxUTE2N2OKXXj597P5khV1aG9M7T0oj3pYaXl8w6AQAAAAAAAABAfvXipJBAs6NwToZVUoLZUQAwCUNOAGXNvr+lOe+U7Doz0qT3XpDS00p2vQAAAAAAAAAAAAD8Fj00AGVJVpY0dYxkzSr5dZ84JH0xSfrXMyW/bgAAAAAAAAAAIB1IlIL9bMiJTIacAMoyEhqAsmTBx9L+v81b/9IvpNZdpbgW5sUAAAAAAAAAAEBZxZATAPwMQ04AZUV6mrR4lslBGNL3M0yOAQAAAAAAAAAAAIA/IKEBKCvWL5ZSz5kdhbR1vXT8kNlRAAAAAAAAAAAAAPBxDDkBlBXLvjQ7gv9nSMu/ku563OxAAAAAAAAAAAAoWw4kSsEWs6NwTqZhdgQATERCA1AWHD8k7U80O4r/2bCMhAYAAAAAAAAAAEpanTgpNNDsKJyTbpWUYHYUAEzCkBNAWbDnL7MjsHfyiHT+rNlRAAAAAAAAAAAAAPBhJDQAZcGe7WZHkJ8vxgQAAAAAAAAAAADAZzDkBFAW7POh4SZy7d0hXXGN2VEAAAAAAAAAAFB2HEqUgi1mR+GcTMPsCACYiIQGoCw4d8bsCPJjyAkAAAAAAAAAAEpWnTgpNNDsKJyTbpWUYHYUAEzCkBNAWWDNNDuC/LIyzI4AAAAAAAAAAAD4iVatWqlp06aaMmWK2aEAKEH00ACUBYE++F89MNjsCAAAAAAAAAAAKFsO+++QExs3blR0dLTJwQAoaT54lxOAx0WUMzuC/CKizI4AAAAAAAAAAICyhSEnAPgZhpwAyoI6jc2OID9fjAkAAAAAAAAAAACAzyChASgLLmlidgT5+WJMAAAAAAAAAAAAAHwGQ04AZUHdS82OwF5MRal8ZbOjAAAAAAAAAACgbDmcKAVbzI7COZmG2REAMBEJDfApU6ZM0ZQpU2S1Ws0OpXSpeYlUtY50bL/Ti2ZXyFDm1WdlbXBBCrNK2RZZUgIV+GeUgjdHy5LmwlhbLTo6vwwAAAAAAAAAAHBPrTgp1IXr+mZKt0pKMDsKACYhoQE+JT4+XvHx8UpOTlZMTIzZ4ZQeFovUua/0+VsOL2KtnqaMridlveRC/pkxWbLWSFfm9acUtC1KIcsqyZLqxAlQl9sdLwsAAAAAAAAAAACgTCKhAShJ55Klv7dLe3ZJaRcUdeyoVLWaFB4hXdJAatREKlfOO+vucIv01btSZnqxRbMapSi931EZwUV342QEGcq88pysddIU9lkNBZwJLj6Ohs2kuo0djRoAAAAAAAAAAABAGUVCA+BN2dnSL2ukFYul7duko4ftZkdlZEghIfbLVK8pNblc6naT1KptTu8KnhAVLXXqLS2dW2Qxa+0LSu9/VEag42NSZVfIVNq9hxX+US1ZLhTTU8NNAxyuFwAAAAAAAAAAeNDhRCnEQ/cdSkqG4/crAJQ+JDQA3nD2jPTDN9KCefmSGIp15FDOa8WPUo1a0s23ST17S+Wi3Y/r9njp95+lk0cKnG1YDKX3OeZUMkOu7AqZyrghSaHfVi28UKuu0lWdnK4bAAAAAAAAAAB4QO04KdSJIaR9QbpVUoLZUQAwSYDZAQClzsL50r29pGmTnU9muNjhg9KHE3Pq+3GB+7GFRUgPjJRUcPaltWGqsmOzXK4+6/LzMsKsBc8sV14aONzlugEAAAAAAAAAAACULfTQAHjKsaPSm+OkTb96vu7z56T/jJF+XiY9+YJUqbLrdV3WWupxt7R4Vr5ZWa3Oul6vJCPQUGaLZIWsL28/wxIg3T9Sii5f8IIAAAAAAAAAAMD7jjDkBAD/QkID4Akb1kkvjZAupHp3Pb+ske7vL415XWpxtev13PWEdO6MtHah7SMj1KqsBu7Hb73svGSX0GCR7ntRatnR7bodcu6kdOgv6cjfUupZRZ86KVWuKlWoJdVsIlVtKAUFl0wsAAAAAAAAAACf8P0G6au1UvmwGL18nxQRanZEJqnFkBMA/AsJDYC7fl4hTXheynJ9qAannD8nPT9UGvWa1LaDa3VYLNKQ0VJwiLRqviTJiLQWNhKFU4zIPENOWAKkB8dI7Xq6X3FRzp+Sfvsm53XafpiPiIwMKSTkfx8EBkuN2kpt+uX8a/GzTFQAAAAAAAAAgFP2n5DGzZWyDSkjPVzTl0qP3Wx2VAAAR5DQALjj17Ulm8yQKyNDemm4NOFtqWVr1+oICJDue0Gq10Sa87ZkyfBIaEbg/3f9VKVWTtJEXAuP1Fug1GRp8TtSwg+SNdOxZayZ0o6fc14Va0s3PiE1uc57MQIAAAAAAAAATJWcmpPMkOtMinmxAACcQ0ID4Kq9u6Wxz5Z8MkOujAxp1NPSB7OkmrVdr6fzbVKztrJ89qKk/W6HZbkQKHW7U+r/mBQa5nZ9hdqxWvpmgnQuyfU6Th6QPntKan6jdPMzUkS05+IDAAAAAAAAAPiEy+pIPVpKi3+XKpbL1r+uNzsiEx1NlEL8rOfiDKP4MgBKLRIaAFdkZ0v/GSOlp5sbx4VU6fWXpLc+dG/ohErVZXl8mgJOH1R22p/ShfOSs+cHARYpMkaBFe6S2j7teiyOWPqutGq65+rbskjat1kaNEWqXNdz9QIAAAAAAAAATGexSOPvlYbfJiUdO666VcrwdeAacVJYoNlROCfNKinB7CgAmCTA7AAAvzT3UynxL7OjyPHHZmneHPfrsVgUXP5BqWptqVZDqXwlKSJSCizixCY4WIqMlipWk2o3lipVV3D5h9yPpSiLJ3o2mSHXmaPStCFSkvu9VAAAAAAAAAAAfE+5iJzRmAEA/oMeGgBnHdgnffqh2VHYmz5FuvY6qXoNt6oJ0o3K0LsyglKl2Mr/m5GVmfMy/r/bhoAAKThECrBPdgi0XKUASz23YijS+rnS6k+9V//5U9KMR6X42Qw/AQAAAAAAAAAofY4x5AQA/0JCA+CsLz+TMjLMjsJeWpo073Mp/im3qrFYIhRieVDpxtv2M4KCc15FLatQhVgedWv9RUraL/040Xv15zpzVPrhTanfWO+vCwAAAAAAAACAksSQEwD8DB3rAM44f15asdjsKAq2ZEFOYoObggPuULDlHqeWsShYoQEvKdDS1O31Fyg7W/p6jJSZ7p36L7Z5obRjdcmsCwAAAAAAAAAAAECBSGgAnPHj99KFC2ZHUbDz56TlizxSVWjAYwq1PC6LIootG6AqCgt4R0GWjh5Zd4G2r5L2b/Ve/QVZ/E7Jrg8AAAAAAAAAAACAHYacAJyx6FuzIyjaom+lm/p4pKrggDsVZNyqLOMHZWqeso09eeZaFGhppWBLXwWqvSwWL+dG/fKFd+svyIm90q6NUoNWJb9uAAAAAAAAAAC84ViiFGIxOwrnZBhmRwDARCQ0wKdMmTJFU6ZMkdVqNTuU/FJSpL27zI6iaH9vlzIypJAQj1RnsUQo2NJPweqnY8YeHdMRBSpIdVRP4ZYqHllHsU7slXb/VjLrutivX5LQAAAAAAAAAAAoPWrESWGBZkfhnDSrpASzowBgEhIa4FPi4+MVHx+v5ORkxcTEmB2OvX92SIaPZwFardLuf6RLL/NYlUk6ox+1QQctJ2yfBWinmqiuuqm1QhXssXUVaMdq79ZflL/XSdnZUgCj8wAAAAAAAACAP0vUOe1TqlLDUlVVVoXJz27qA0AZRUID4Ki/t5sdgWP+3u6xhIaTStYsLVWaMuw+z5ahP7VXp3ROd6mrgr25KzlkYrtnpkkn9khVG5gXAwAAAAAAAADAZaeUoYnaqf1KlSSlx6brR23RANVVW1U0OToAQHFIaAActetvsyNwjAfjXK2EfMkMeR3RSW3TbrVQY4+tM5/DJieSHNpOQgMAAAAAAAAA+Km8yQy50pWtadqjqgpTfUWaFJlJjiVKoRazo3BOuo/3ng3Aq0hoABx1PtnsCBxzzjNxpipNf+tgseUStNO7CQ2nDnmvbkecPmzu+gEAAAAAAAAALtmhc/mSGXIZkpbpmB5U/ZINymw14qQwPxtuI80qKcHsKACYhIHhAUdlZpodgWMyCu9RwRlndF6Gis96PK1zHllfgbKtkpHtvfodkZlm7voBAAAAAAAAAC7Zo5Qi5+8tJNkBAOA76KEBcFSgn2QsBnnmv3WIg7sHR8u5xOIDOVeB7CYBAAAAAAAAwB9FFXP9OlJ+ct3fk44z5AQA/8KdOsBRIaFmR+CYUM/EWUmxqqhonVTRQ1jEqY5H1lcgi0UKj5YuODGMRkCWFHJBCk6TAjMVmG2VLMFSVqiUESZlhkly4mQtPMbpsAEAAAAAAAAA5rtKsZqtAKWr4J6A26lSCUfkA6oz5AQA/+IDjz8DfqJmbbMjcEwNz8XZWk2LnB+oALVUY4+tr0DV4xwrF5oiVTggVftHqnhQik6SIs8qIPKcFHVaij0qVdkrVdsplTuRk/jgiBoOrh8AAAAAAAAA4FMiFKS7VafAR9yaqJzaq2KJxwQAcA49NACOatzE7Agc48E4m6mBzui81mtbvnlBClQvdVBFebkHg5pNpN0bC58fkCXFHpHCzztWX2BWTrJD1CnpTDXpQhHxWyxSjUudixcAAAAAAAAA4DM6qJKqK0xLdUz7lSplGuoWWkcdVUlBPPeLMiw7O1uHDx/WuXPnlJKSooyMDEVGRioqKkoVK1ZUbGys2SECkkhoABwXV3RvBT7Dw3F2VHNdqjrarH90TKcUIIsuUQ01V0NFKdyj6ypQ3Sul1Z8WPC8kNac3hgCr8/UGZEsVDkup56XTNVTgMBRV6kthUc7XDQAAAAAAAADwGQ0VpYbKuda77+Q+1Y2qYnJEJjqeKIU6MSyzL0g3zI6gVEhOTtbChQu1cOFCbdmyRTt37lRGRkah5StXrqwmTZqoY8eO6tWrl1q2bFmC0QL/Q0ID4KjqNaVy0dK5ZLeryo7IlrVqljIDMxRglQKPBSkg1QOZoJUqSxU830VWFZVXd7X2eL0OiWsnRVeWkk/Yfx6SKlXaL1ncPJGJSM5JbjhZS/mSGq7u7V7dAAAAAAAAAAD4kupxUlig2VE4J80qKcHsKPzWiRMn9PLLL+uDDz5Qenq67XPDKPr+yvHjx3XixAn9/PPPGj9+vK644gqNGzdOt9xyi7dDBuyQ0AA4o0Nn6YdvXF48s36GLnRMUXrLNBlBhgzDUKrFIkuWRaEbwxX+c4SC94W4EV8X15f1VQGB0tV9pBUf5vksK6dnBneTGXKFnZeij0vJVf/3WXCY1JKDMgAAAAAAAAAA8E8//fST+vbtq9OnTxebwFCQvMts3bpVvXv3Vv/+/fXxxx8rNDTUk6EChSKhAXDGrbe7lNBghGTr7P1nlHFFWsHzgwyltU1VWttUhf4epuiPy8uS5UKXT71ud34ZBxgydEZ7dEGnZVGgyqm6olS1+AU9pXVfae0sKT0lZzr2iGvDTBQl6pSUVk7KiMiZbnUbw00AAAAAAAAAAAC/tGLFCvXs2VMZGRmyWHLuOUVGRqp9+/Zq27atGjRooDp16ig6Olrh4eEKCgpSWlqaUlNTdfToUR04cECbN2/W6tWrlZiYKCknweGLL75QUlKSli5daubXQxlCQgPgjEZxUtMrpL/+cHgRI9jQmaGnlFm/8HGI8kpvmaYzUScVO6miLFYnkhpatJJq13W8vAOyZdV+rdUBrVOqkuzmlVd91dN1qqLLPLrOApWrKN34pPTNeCn0vBR+3vPrsEiKOSaduESqUFPq9ojn1wEAAAAAAAAAKFFWZemA/tI+bdUFnVNaxQyd1eVqoKsUqVizwyt5JxKlUBceqDRTuod6ay5Dzp49qwEDBigjI+feVMWKFTVu3Djde++9ioyMdLq+TZs2acKECfrmm29kGIZWrFihN954Q08//bSnQwfyIaEBcFafO51KaDh39xmHkxlyZTbO0Pk7zqrc7FjHF+p9h1PrKI5VmUrQJ0rSjgLnn9ZundZuNVIP1VdXj667QK16S38ul0594b11hKRJIRek20ZLIeHeWw8AAAAAAAAAwOtO6qDW6kul6X8PyWUEZ2iH1ilR63Wp2ukKXW9ihCaoGieFB5odhXMuWCUlmB2FX5k1a5YOHz4si8Wixo0b66efflKVKlVcru+qq67SvHnz9NZbb+mpp56SYRh68803NWzYMAUEBHgwciA/tjDAWdffIF15tUNFreWtSmt9waXVXGh7QdnlHBxWoU07qX0nl9ZTmO2aX2gyQ17/aLGO6HePrrtQtzwuRWV6dx3Nm0iXtPTuOgAAAAAAAAAAXnVGx/STZtklM+RlyNB2rdE2rSzhyADv+/LLL23vZ82a5VYyQ15PPvmkbr75ZknS8ePH9fPPP3ukXqAo9NAAOMtikZ4eJQ25Q7pQdLLChQ4pOUMZuCLQ0IV2qYpcXK7ocpFR0pMvuLiSgqXpjA5ro8Pld2u5qqsEkgAyDkqV6khJ+6Qs53q9cEh0Zamcn3W1BQAAAAAAAADIZ6uWK0vFX0ferrWqr6sUoegSiMoHJDHkRFmwc+dOSVLjxo3VsqVn79/cc889WrBggSRp165d6tSpk0frBy5GQgPgiuo1pCFDpYmvFVksrW2qW6tJu9aBhIZHhkmVPZNZl+uAfpEhx08QzuuYTmmXKqiBR+PI58x2KTBIqlRPOn1YSi84s9ZplgAptpoUESOd3ydlpUpBEZ6pGwAAAAAAAABQolJ0Rse026Gyhgzt1iZdXlaGnqjCkBNlwYkTJ2SxWFS9enWP112tWjXb+6SkJI/XD1yMISfgU6ZMmaKmTZuqVatWZodSvFv75Qw/UQgjyFB2TLZbq7BWtBadWND9FunGW91aR0HOaq/Ty5zRHo/HkU/qkZx/AwOlSrWl2Oo5yQjuCI2UqtbPSWaQJGVLaRyAAQAAAAAAAMBfHddepx7aO+bCNXHAl1WuXFmGYWjfvn0erztvnZUqVfJ4/cDFSGiAT4mPj9dff/2ljRsdH+7ANBaLNOIl6ZoOBc42gjzQBZJFhf8v7dhFenqk++sogFWZTi+TrSwvRHIR46IEkchYqWrDnKEiAp3scCYsSqpYJ2cIi8Bg+3nZJfBdAAAAAAAAAABekeXkNW5rSVzfBkpQw4YNJUl79+7VypUrPVr3tGnTbO8bNPByz92AGHICcE9QkDT2demVkdKqpXazLGkWyVBOUoKLLJkWWbILqKDbTdKzo6UA7+QkhaqYYS4KEOLCMk4raBiIwECpXCUpqlLOEBQZF6SMNCkzTcq2ShYjpxeHoBApOCznFRYlBQXnr8u2nnDvfQcAAAAAAAAAgFdFKNrJ8iVwfdtXnEyUwty4cWGGNA88QFrG9OvXTz/99JMMw9C9996rFStWKC4uzq06DcPQM888ozVr1kiSqlSpoo4dO3oiXKBIJDQA7goKkl6YIDVoLH36oZSZk/lpkUXBO0OU2SjD5aqD/w6x/yAkRBr8qHT7PTk9RHhJNbXUMW1zuHyAAlVVzbwWj010EZl+FuUkKoRF2X2cmZ6h0NCQgpcpSFCkFF6t+HIAAAAAAAAAAJ9UTQ0UpkilKcWh8nXV3MsR+ZCqcVJ4oNlROOeCVVKC2VH4lXvvvVevvPKKjhw5oiNHjqhFixYaNmyYhgwZorp16zpVV3Z2tr7//nu98sorth7WLRaLhg0bpgAvPXgL5EVCA+AJAQHS3YOla6+T/jNGSvxLkhT+U6RbCQ3hP0f+b+KyZtIzo6Xazh1oXFFFlylM0UpTsoPlr3CpVwenxTbx/jpiLvVqsggAAAAAAAAAwLsCFaT6ukp/6ediy0YqRjXl3pPrgK+JiYnRJ598ohtvvFFWq1VpaWl65ZVX9OqrryouLk5t27ZVgwYNVKdOHcXExCgsLExBQUFKS0vThQsXdOTIEe3fv18JCQn69ddflZxsf7/o+uuv1zPPPGPSt0NZQ0ID4En16kuTZkjz50rz5yg04ZACzgYoOybb6aoCTwYqZFuoVL2m1O8e6dZ+Xhti4mIBCtRl6q/fNV2Gio49TNGK080lEpdim0ohFaSMU95bR7UO3qsbAAAAAAAAAFAimqqDzuiIDuufQsuEKFzt1F8B4ilzlD5dunTR4sWLdfvtt+v06dOScnpb2L59u3bs2OFwPYZhyGKxyDByhv64/fbb9cknn3glZqAgJDQAnhYYKPW7W7rtTll+WaNym9/V2et+zhkSwVHZFkX90UmWlx+RWrU1pceASrpUV2qQ/tAsZSm9wDKRqqKWuk9hii2ZoAKCpLq9pX+me6n+UKnOrd6pGwAAAAAAAABQYgIUoGvVXzu0Rju1SWk6b5tnUYBqKk5X6HqVU0UTozRBUqIU5me9FKcZZkfgtzp37qzt27dr/Pjxmjp1qtLTc+735CYp5L7Py5LnnlTuPMMwdNlll2ncuHHq3bt3yQQP/D8SGvzEmTNntHLlSq1cuVIJCQn6+++/dfr0aQUHB6tChQpq3ry5unTpooEDB6p8+fJejWX37t36+OOPtXDhQu3fv1/nz59XjRo11KxZM91zzz3q06ePAgP9bPwlbwgIkK7tqNBrO6rc+a90Tv+V0lNkZKXICE6VEWSVIUMWWWTJCpQlM1KWoAgpNErRlhEKfegWs7+BqqiprtMoHdYvOqAVStMZWRSgKFVXPd2kymoiS0lnrl5yu7R7jmRN9XzddXtLIdGerxcAAAAAAAAAUOICFKCm6qhL1U7HtFsXdF4nz5zS5VVbK7wkhlH2RVXjpHA/u4dzwSopwewo/FaVKlU0ceJEjRs3TgsWLNDChQu1ZcsW7dy5U5mZmfnK5yYxVKpUSU2aNFHHjh3Vq1cvXX311SUdOiCJhAaft2PHDj3zzDNasmSJMjIy8s3PyMhQSkqKDhw4oAULFuiFF17QhAkT9Pjjj9tlUHnK22+/rREjRtgyuHLt3r1bu3fv1jfffKO2bdtq1qxZuuSSSzy+fn8VHtVP2UrT+ai3ZVWapABJATKyDSnAopxDwwUFqoLK6XGFyfxkBknK0lGd1w8K1FLV0dk8cxJl1S6d142KVDcFKLLkggqvLF3+hLTlZc/WG1FDahrv2ToBAAAAAAAAAKYLUKAqqYaydF5GRqDCSvKaNuAjYmJidM899+iee+6RJFmtVh0+fFjJyclKSUlRZmamIiIiFBUVpUqVKnn9AWrAUSQ0+Lht27ZpwYIFdp8FBgaqYcOGqlq1qqxWq7Zv365Tp05JklJTU/Xkk09q27Ztmjp1qkeTGsaNG6dRo0bZpgMCAtS0aVNVqFBB//zzj44cOSJJWr9+vTp27KiNGzeqWrVqHlu/P0vTt0rTdAUqShbVVrbOylCGDMMqiwJlUagCFS2LQnVBHyhA5RSmG02NOUUrdUpvS8qfnSdJWTqgM/pQ5zRPlTRWISrBBJZ6t0lH10jHfi5wtjVAOlIlXKejQ5RhZCvSalGNY6mKTskquD5LsNRijBQU4b2YAQAAAAAAAAAlypBVJ7VFR/SzzupvSVJ6lXSdVFVVU3tVUzuFKMbkKEvYSYacQI7AwEDVrl3b7DCAYpHQ4CeCgoJ08803a9CgQbr++usVHf2/bvENw9B3332n+Ph4HTp0SJL00Ucf6aqrrtIjjzzikfX/+OOPGj16tG26bdu2+vjjj9W4cWNJUnZ2tr744gsNGTJE58+f18GDB9WvXz+tWbPGI+v3Z+laofN6W/r/fhgCFKoAVZEkZWRlKDgwxK68IatS9LoCVE4hal/C0eZI0Sqd0hvKjbkoViXphEaoit5QsErwwNfqFemXJ6WkDXYf76odpT21I5UZnDMUhpFtyBJg0Z7akYo9m6ErEs8o6oL1fwtYgnPqqtSy5GIHAAAAAAAAAHhVllL1l95Xsnbmm5ehM9qvBTqkZWqiBxWrS02I0CRVGHICgH8JMDsAFC04OFgPPPCAdu3apfnz56tXr152yQySZLFY1KtXL61fv96uR4RRo0YVOPaNswzD0PDhw21j5sTFxWnZsmW2ZAYpp7eGO++8U/Pnz7d9tnbtWrvpssjQBZ3Xm3IkMcB+uWyd1+sylH+YEW/L0jGd0ltyJuZsndNJvSzDye/plsBQ6Zq3pUv6S8rJJv2rQbT+rl/OlsxwsTMxIfqlRSWdD///XK6IGtK1U6TqnUokZAAAAAAAAACA92UrU3/q3QKTGfKyKu3/y+0uocgAAM4iocHH9erVS1OnTlWdOnWKLVu7dm2NHTvWNp2UlKSffy64S35nLF68WFu2bLFNv/POO4qIKLhr/q5du+qOO+6wTb/66qtur9+fpWupDKW4tGy2zipDq/6PvfuOj6rO+jj+udPSK0nohCYQFBUVFCsKdhEXRR/XusWysu6uddVdV10L6rPqIy72taxlVdYKqIiCIDZABVQg9E4ggfRk6r3PHyORQMokmZJJvu/Xa3Rm7q+ckDaZe+454Q0oBFV8QGNtJpriYyOeaGdI2l1w8M1wzJPs6D2Ajb2a73vmc9pYcmCXYCLEia+pMoOIiIiIiIiIiIhIB1PE51SGmKRg4Wctr0U4IgmHESNGMHToUKZOnRrrUDoE0zTZsmULK1asYPHixXzxxRcsXbqUtWvXUlZWFuvwROqo5UQHM27cOK666qq6xytXrmTMmDFtWvPNN9+su9+vXz9OOeWUJsdfddVVvP766wAsWrSILVu20KtXrzbFEK/cvNfG+e+QQNP/3uFk4aOaj1o9v4qZJDI8jBGFKOdwNuaMBd9S8JZBoBbMfatb2MCeCM5UKtMz2d3zPLJpODFHREREREREREREROJXES272LOaLVSwjnT6RyiidmR3ISQasY6iZdzB6tCLFi3ar4q5hK6iooKZM2cyc+ZMli5dypo1a/B6G68UnpubS0FBAccffzzjx4/nsMN0gajEhhIaOpjs7Ox6jysqKtq85syZM+vun3rqqRhG07/ojjvuOFJSUqiursayLN5//32uvPLKNscRb0x24W+mnFVzfCzHpBIbaWGKqmkeVmJS1ur5tXyNhYVBdF8M1VLGLtaAMzl4AzBNsHz4vF5crkSwOdk7rC0sIrszvDgVERERERERERHppHbvriU7OynWYUiUVbGZGopaPK+YhZ0joSFnMCTZYx1Fy9QGINoVojuQ4uJi7rvvPp566ik8Hk/d83tazTdm586dFBcXM3/+fO655x6GDRvG3Xffzbhx4yIdskg9ajnRwWzcuLHe47y8vDatt3PnToqKfv7FP2rUqGbnOBwORowYUfd473YVnYlJZVjWsagKyzqhaHvMgVa32GgLN2XAPr94bTawJ4AtAez1kxkgmAQhIiIiIiIiIiIiHdMnn6zjlFNe4t13V8Y6FIkyL+Wtmudp5TyR9mzevHkUFBQwZcoU3G43lmXV3UKx9/hly5ZxzjnncOGFF9ZLjBCJNFVo6GDeeuuteo+POuqoNq23YsWKeo8HDBgQ0rwBAwbw6aefNrhGZ2EQrgzH6H2bGmHJcYp+Zmdr/q3D87GKiIiIiIiIiIhIe9SrVzoHHphHfn5mrEORKGvte782vWcsHcycOXM444wz8Hq9ddXXU1JSOPbYYxk1ahQDBgygT58+pKenk5SUhMPhwO12U1NTQ1FREZs3b+a7777js88+o7CwEAgmOLzxxhuUlJQwe/bsWH540okooaEDKS8v59FHH617fPDBB3PggQe2ac19Kz706dMnpHl7j9uwYUObYohXBlkY2LAwg0+YJnjLwV8bvJk+nKYJ1Tawu8CeCI5kcKUHqwsABk5sRK8flJ1GKnqYAQi4wQoABtgcwXj3aT9iIw0b0S/hlkoudlwEaLzX074y6BnBiERERERERERERCSWBg/O4cUXz4l1GBIDyXQnWLI3tCvQ68/rBEoLoTa6baPbzN2yz6UEzxleeumleL3B8yZdunTh7rvv5uKLLyYlJaXF633zzTfce++9vPPOO1iWxZw5c/jHP/7BjTfeGO7QRfajhIYO5IYbbqjXHuKee+5p85oVFRX1HmdkZIQ0Lz3955PwlZXNtzHweDz1ytPsu288spGKk6PwmvOhtgQ85bAnuaEeCwKe4M1bDjU7ICEDknJx2U7CICFqMbvoj5P++FgHAR94S8FbAZavgdFGsJ2DKwNcmWCzkcLYqMW6NweJdOdQtrAwpPEGNnrTtuolIiIiIiIiIiIiItL+JJBFFgdSyg8hzzGw0ZVjIhhVO5IzGJKjX2m5TWoCwJJYRxFXXnnlFbZt24ZhGAwaNIh58+a1qU394YcfzltvvcUjjzzCDTfcgGVZPPTQQ1x//fXYbKpuIpGlr7AO4rnnnuNf//pX3eMLLriAcePGtXnd6urqeo8TExNDmpeU9PNV+vuu0ZDJkyeTkZFRd+vdu3fLAm2nErd3g/J14Cml4WSGhpjB8eVrSSzqEcnwGpTqOwmqt0PlGvDsaiSZAcAC0w3uHVCxGty7SbFOj2qse+vLcdhwhjS2G4eQTHaEIxIRERERERERERGRWOjB6BaN78IhJJAVmWBEYmDatGl191955ZU2JTPs7brrruOss84CYOfOncyfPz8s64o0RRUaOoDPPvuMa665pu5xv379eOqpp8Kyts9X/2S2wxHal8ze4/aUs2nKrbfeyvXXX1/3uKKiIv6TGr59GOeqV3AcbcOfGmjxdEe5HedXT0KBGw75fQQCbEDJtyR/9xSVB1Xib1HnCJPkTWU4i26HEQ9AUnh+MbZEGl0ZzkV8x8uY+Bsdl80AhnFeFCMTERERERERERERkWjKYii9OJUtzGp2bBJdGcAvoxBVO1FaCO44azlRq5YTLbVmzRoABg0axGGHHRbWtS+66CJmzJgBwNq1axk9enRY1xfZlxIa4tzSpUsZN25cXbuGvLw8Pvzww5BbQzQnOTm53mO3273fcw1xu91190PpxZOQkEBCQvRaK0Tcd4/AqlcxMEhb0oXyI3diOkOt0AA2r420JV2CD1a8AIYNDr6myTlttuMLWHgjNtNLzvdp7Dy0AtMVWsyucgfZhSlgfg8LfgvHPA3J3SIbbwPyGMpRTGIdc9nBD1h7VcVIIps+HEVfjsWmH30iIiIiIiIiIiIiHVpfxuMgiU3WOwTYiWW5ARO73cS0EjDIIJPDGWL8BifNn8foMNRyolMoLi7GMAy6d+8e9rW7dfv5/E9JSUnY1xfZl87qxbHCwkJOOeUUysvLAcjKyuKjjz5i0KBBYdsjNTW13uPa2tqQEhpqamoaXaPD2/wJFL5S99Be4yR9UR6VhxUTSGy+UoO9xkH6tznY3Xt9ey5/DroMg57HRSJiqFgLC28CM1hNw1lrp+t36ewaWoU3rfFqB1iQvDOB7FUpGOZPGZ012+DLa2H0y2CPfpJKBj0ZzsW4qaCczWwv20qfrgPJoi+GuuyIiIiIiIiIiIiIdAqmuYxccxYZ5reU2GyUGg78hoFlBUgPVJFn7iDFqMaw5WHZLsAw9P6xdBy5ubls3bqVjRs3hn3tvdfMyckJ+/oi+9JP5zi1fv16xo4dy86dO4Fg0sAHH3zAIYccEtZ99v1BtH379pDmFRUV1d3v0qVLWGNq1zxlsPj+/Z52VDnJ+KIbKasysNc2nPlor3GQUphJxlddsdc49x+w+D7wVoY5YMAMwLd3gumpH7PbTtdvM8j7Lp3kHQkYgZ9LUNm8NtI2J9F9YSZdVqb+nMywR9V6WD41/LG2QCLpdOVAstyDyaa/khlEREREREREREREOgl/4D08/qswzc9wYNLN9FMQcDPMX8tgTyV9TS/JmFjWZnyBR/AGbsCyamMdtkjYDBw4EIANGzYwd+7csK797LPP1t0fMGBAWNcWaYgqNMShLVu2MGbMGLZs2QJAUlISM2bM4Mgjjwz7XoMHD673eNOmTRx00EHNztu8eXPd/SFDhoQ9rnbrx+fAU9rgIZvfRtKGdBI3pOHr4iaQ6sdn+XAaTuyVTpy7EzBoom9VbTGsfCn8rSfWvwHlKxo9nFDhJKEimGBh2SywwLBC6K+17jXocxZkhK9iSEvVUkuNvQY/fhz6cSciIiIiIiIiIiLS4fnNWfgC9wJWyHNM83O83ILL/jCGEWftGFqqtBDcIbzH357Uhv65lKDzzjuPefPmYVkWF198MXPmzNnvnF9LWZbFTTfdxIIFCwDIy8vj+OOPD0e4Ik3SGb44s2PHDsaOHcv69esBSEhI4J133uGEE06IyH4HHHAADocDvz/YdmDJkiWcccYZzc777rvv6u4XFBREJLZ2x++G9dObHWZg4NqVBLvA5vGSkOAKfY+178CBV4C9gQoOrWFZwcSDEO1XiaFJJqx7HYbf3vK42sDCYhWF/MD3FLMTb66XL1jAQA7gUA4lg8yoxiMiIiIiIiIiIiIi0WFa2/H5/05Lkhnq5ppf4jdewGn/TfgDa0+6DIbkOEvaqAkAS2IdRVy5+OKLmTx5Mtu3b2f79u0MHz6c66+/niuuuIL8/PwWrWWaJtOnT2fy5MksWrQIAMMwuP7667HZVB1bIk8JDXFk9+7dnHzyyRQWFgLgdDp54403OOWUUyK2p8vl4sgjj+Tzzz8HqMu6akpRURFr1qype9xpsrO2zAFfBFpC7M2zG7Z9Br1PCs96xV9DzdbwrNWQrbNg2A3gSI7cHnsxMZnLHFZTWO95H15W8CNrWcMZnEU3ukUlHhERERERERERERGJnoD5FuBr/fzAf3HYLu/4VRqkw8vIyODFF1/k9NNPJxAI4Ha7mTx5Mvfffz+DBw9m1KhRDBgwgD59+pCRkUFiYiIOhwO3201tbS3bt29n06ZNLFmyhK+//pqKiop665944oncdNNNMfropLNRQkOcqKio4NRTT+X7778HwG6388orr3D22WdHfO/x48fXJTR8/PHH7Ny5k7y8vEbHv/LKK3X3MzMzI1Y9ot0pWRa9fcKV0FDyTXjWaUzADaU/QO7IyO7zkx/4fr9khr158fAh73MRl+AkTFUuRERERERERERERCTmLMuHP/Bu29ZgF6Y1F7sxNkxRicTOmDFj+PDDD5k4cSKlpcF26aZpsmLFClauXBnyOpZlYRgGlhWsfDJx4kRefPHFiMQs0hAlNMSBmpoazjzzTBYvXgyAzWbj+eefZ+LEiVHZ/8ILL+T222/H4/Hg8/l44IEHeOihhxocW1VVxZQpU+oeX3TRRTgcneTLbPeK6OxTGsZ9ypaHb61G91gRlYQGE5PvaT6pxE0tq1nFUA6MeEwiIiIiIiIiIiIiEh2m9RlQ1uZ1/IH3sNs6cEJDWSF4WtJeuh2obXkLEQk66aSTWLFiBffccw/PPPMMHo8H+DlJYc/9ve15fu9jlmVx4IEHcvfdd3POOedEJ3iRn3SSM83xy+PxMH78+LpWD4Zh8PTTT3PJJZe0ad0NGzbQr1+/usd33HEHd955Z4Nje/XqxVVXXVWXqPDoo49y9NFHc+6559Yb5/P5+NWvfsWmTZsASEpK4i9/+Uub4owr1duis09VGFtEVG8JbZxlgd8Llhl8bLOD3QWhvOap2tzq8FqimGIqqWh+ILCWNUpoEBERERERERER6cBeftnLs8/6uPBCJ1dd5Yp1OBIFphWe984tovRef6x0GQzJcdZSoyYALIl1FHErLy+PKVOmcPfddzNjxgxmzpzJ0qVLWbNmDT7f/i1a9iQx5OTkUFBQwPHHH8/48eM54ogjoh26CKCEhnbv0Ucf5eOPP657nJmZybRp05g2bVpI808++WRuuOGGNsdx55138sEHH7B69WoCgQDnn38+v/zlLznnnHPIzs6msLCQJ554gmXLfr5C/n//93/p3r17m/eOG2br+3LFbJ+m1vK6obYMfLXg9wD7ZEAaNnAmgjMZkjPB3kgLBys6/y4ePCGP9eKNYCQiIiIiIiIiIiISa9On+6mqsnjvPb8SGjqN2na2jkj7kpGRwUUXXcRFF10EQCAQYNu2bVRUVFBdXY3P5yM5OZnU1FRycnLIysqKccQiQUpoaOdqamrqPS4tLWXWrFkhz+/WrVtY4sjKymLGjBmMHTuWzZs3Y5omL7/8Mi+//HKD4//85z8zadKksOwdN2whvCi2TPC7wV8Lpg+73wd+Z3CuIzF4M2xNr2FPCE+8APbE/Z9zV0J1CfjcTc+1TPDWBG/VJZCQBqm54NwnPlsY421CCskhj01uwVgRERERERERERGJP1df7eLll32ce65Og3QWBilhWilc67RT5YXgVcsJAbvdTu/evWMdhkiz9JtcQjZo0CCWLVvGjTfeyKuvvkpt7f5ZikOHDuWBBx7grLPOikGEMZbeF4p3N3zMXwvuUvBWBNs3/MRmWeDf64WDYYArHRKzg8kNje0TLql9oTrYIgQzABVF4A6tbcN+PJXgqYLUHEjJ+bkdRVr/cETarC7k0IUcdlHS7NhBDI5CRCIiIiIiIiIiIhIrJ57o4MQTdQqkMzGM8LwXbQvTOu2WWk6ISJzRb/N27s477+TOO+8M+7p9+/at64HTEpmZmTz77LM88sgjzJkzh82bN1NdXU337t0ZNmwYw4cPD3uscSO7AIq/rf+cGYDqomAiQygsCzzlwVtCBiR3Bds+LyyyCsITL0BmAeyYH6zGULopGG+bWFBVHExsyOodjD0zjPE2YziH8TEfNTkmkyz60cFfkIqIiIiIiIiIiIh0MjbjSAyjB5a1rU3r2G0TwhSRiIiEgxIapFXS0tIYP358rMNoX/IOh8JXfn7sq4aqra1PEvCUB9dI7QnOvVok5B3etjj31vVo+OFR2L0x2EIiXHy1sHsTdD0oqgkNAzmACspZyNcNHk8ngzM4CxvNtPUQERERERERERERkbhiGDbstgn4A/9swxr52G0jwxiVSPtlmibbtm2jsrKS6upqvF4vKSkppKam0qVLFzIzM2MdogighAaR8OlxLCTlQe1O8FZB1ZZ67SVaxfRD5SZI6w3OFEjtDV1HhCdeAGdX2LULCGMywx5+N+z2gRHdHzOHcQS96MOPfM9GNhKwTLqQwxAKGMwQXLiiGo+IiIiIiIiIiIiIRIfDNh5/4CWgfJ8jHizLDZjYDD9YSWCk8HPv5D3zL45SpDFUXgheo/lx7UltG8+1CAAVFRXMnDmTmTNnsnTpUtasWYPX6210fG5uLgUFBRx//PGMHz+eww47LIrRivxMCQ0i4WLYYOB58N3D4Ulm2MOyoHILZPQLrm+E8YXGrHuhJg2SQ2yJ0RKWATuq4dvX4Ihfhn/9JuSRRy7HEWAYm0vW06fXYOxkRjUGEREREREREREREYkuw8ggwfEQHv81BJMYKsHaDVZN3Ri7YWGZRvBiPCMLw8gEnNht5+Gwd4LK1FmDIdne/Lj2pCYALIl1FHGruLiY++67j6eeegqPx1P3fHOt6Xfu3ElxcTHz58/nnnvuYdiwYdx9992MGzcu0iGL1KO669KuTJ06laFDhzJiRBirEETToAuCrSLClcywh2WCtzKY0BAuP34Aaz8DXzr4UsO37h7uPLCcMH8qlG4O//qN8LKBEqayiYvZwm/w5v6NzVzCNv5IJbMwcUctFhERERERERERERGJLpvtYFz2W8HcCOaWeskM9Vh+MIuxAmuwMxSn/aboBioSBfPmzaOgoIApU6bgdruxLKvuFoq9xy9btoxzzjmHCy+8sF5ihEikqUKDtCuTJk1i0qRJVFRUkJGREetwWq7wDXCkAbvDu64B2JJh9ZtQEIZqB5YFXzzz8+Pa7mBfDzZ/29cG8KeAN+un+x5Y+BKcelt41m6EhZcSplDNvAaPe1nHLv5JKS+Qy59J4tCIxiMiIiIiIiIiIiIi0WeZa8D9EA6rO6atjIBRDjT03reBzUrFZmViC/yAxbMYriuiHW70VRSCTy0nOoM5c+Zwxhln4PV6MX6q/p2SksKxxx7LqFGjGDBgAH369CE9PZ2kpCQcDgdut5uamhqKiorYvHkz3333HZ999hmFhYVAMMHhjTfeoKSkhNmzZ8fyw5NORAkNIuFi+qHwP+BIhqRuUFsUvrWTeoAjCVa+CkP+J9jeoi02fA2lm35+bDmgug+kbARboG1r+5Oguhf1eo8t/wBG/wESIlAJArDws4O7cYdQcsqkih3cSR63k8zhEYlHRERERERERERERKLPsnZjuv+AZVVg4MRu5mIjB8uoxDTcgEkgYGK3JWCz0jFw1s01vU+B0QOb88zYfQDRoJYTnUJ5eTmXXnopXq8XgC5dunD33Xdz8cUXk5KS0uL1vvnmG+69917eeecdLMtizpw5/OMf/+DGG28Md+gi+1HLCZFw2TQH3D9VZkjICiY1tDXJ0TAguQe4fqpWUVMEWxe0cVFg2Tv7P2cmQHXfYEJCa3kzgokR+/5o8dXCilmtX7cZpbwQUjLDzwIUcz9+dkYqJBERERERERERERGJMsv3OpZZ/31fAwOblY7DzMNhdsPw5WC3utRLZvh5/lQsy4xWuCIR88orr7Bt2zYMw2Dw4MH88MMPXHXVVa1KZgA4/PDDeeutt3jooYeAYKWGhx56CNPU94tEnhIaRMJly6f1HydkQUpfsCe0bj17IqT2/TmZYY/NnzYwuIW2Lmn4edMF1flQmwdWCzI0Ay6o7g21PWj0x8rWpS2NMiQm1VTS8mQJCzcVzIxARCIiIiIiIiIiIiISbZblx/K93bY1zJ1YgYbbGovEk2nTptXdf+WVV8jLywvLutdddx1nnXUWADt37mT+/PlhWVekKWo5IRIuu1bs/5wjCVL7gbc0eAt4m1/HngCuLHBlBis07Gt3A/u0RFVJ8NYoA7xdwJsFzorgze7evxWF6QxWc/BlgD+FZstRFLUx7kZU8QkW7lbO/ZgsLsLAFeaoREREREREREREJFZMCz7cCktK4cAMOKsX2HV5Z4dnBeZgWbvbvo5vGjhODENE7VRFIfjbWl46ymqsWEcQd9asWQPAoEGDOOyww8K69kUXXcSMGTMAWLt2LaNHjw7r+iL7UkKDSDj4aqBqS8PHDAMSsoM3f03wFnCD6cUKBMDuAJsLHIlgTwJHctN7la+DgA/s+5fDCknxmhAH2sCXGbwBGD4wfiodZDlaVsEBYPfGtsXdiGo+a/VckwpqWUoyI8IYkYiIiIiIiIiIiMTSI8vhPxuC998imNhwxyGxjEiiIvBlWJaxAouwrACG0cL3wONF5mBIibOPzRWAFrWdluLiYgzDoHv37mFfu1u3bnX3S0qauoBWJDyUkygSDr4qIIQMQUcyJOZASi9I648/KR/S+kFKT0jo0nwyA4AVAH9t62P1VrdunuUEMyF4a2kyA4BlgrcNcTciQGkb55eFJxARERERERERERGJOW8A3txU/7mZW6AihOK5Et8sqzxcKwEVYVpLJDZyc3OxLIuNGzeGfe2918zJyQn7+iL7UkKDiIiIiIiIiIiIiIh0GPsW0zeMhrv7ijROXzAS3wYOHAjAhg0bmDt3bljXfvbZZ+vuDxgwIKxrizRELSdEwsGZRvAFThT6OBkOcIZQyaExCanhi6UlDBu4ksK+rJ1s/Oxow/ysMEYjIiIiIiIiIiIiseSyw/l94aV1Pz93di9IC28nXGmHDCMjTO/QG0BaWFZql6oKwYyzhI2aKJx76WDOO+885s2bh2VZXHzxxcyZM4fBgwe3aU3LsrjppptYsGABAHl5eRx//PHhCFekSUpoEAkHZxKk9YbKTc2PbauM/mBrw7du7gHhi6UluvQFe/j/akjheDysaNVcG5kkoeZ5IiIiIiIiIiIiHckfhsCBGbCkFIZmwGk9Yx2RRIX9GPBNb/Myhv0oDKMVbZfjReZgSImzj88VAJbEOoq4cvHFFzN58mS2b9/O9u3bGT58ONdffz1XXHEF+fn5LVrLNE2mT5/O5MmTWbRoEQCGYXD99ddjs6kZgESeEhpEwiW7IDoJDV0K2jY/JRvS8qByZ3jiCVXXIRFZNpUxlPJvLGpbPDeNkzFQaraIiIiIiIiIiEhHYhgwtkfwJp2HYT8Rw8jBskratI7NOTFMEYnETkZGBi+++CKnn346gUAAt9vN5MmTuf/++xk8eDCjRo1iwIAB9OnTh4yMDBITE3E4HLjdbmpra9m+fTubNm1iyZIlfP3111RUVNRb/8QTT+Smm26K0UcnnY0SGkTCpfeJsHFWdPZpq56HwsqP2r5OS/eMABtJpHE6FbxV/4BlAl4MvGAZYNRPXDB+miciIiIiIiIiIiIi8c8w7BjOCVjep1u/hq072I8NY1TtUGUhBNRyojMYM2YMH374IRMnTqS0tBQIVltYsWIFK1euDHkdy7IwDAPLCn4eJk6cyIsvvhiRmEUaooQGkXDpfSIk5oC7bdmfTUrpAT2Obvs6B58T3YQGVzIMPS1iy2dxKT42UWstBKsMzDKwPAA4DBP8NjBsYKSCkY1hSyePW3GQG7GYRERERERERERERCS6DOf5GP4ZWOa2uucsTEyjEstwAyaW0yRgJGCz0jFw1Z/v+j2G0cFL6GfEYcsJp1pOtNZJJ53EihUruOeee3jmmWfweILnTvYkKey5v7c9z+99zLIsDjzwQO6++27OOeec6AQv8pMO/lNZJIpsdij4ZWT3KLg4eGK+rfqOhC59275OqIaeEUxqiBADO3me40itLYLAjrpkhnosE8wKbP6NdK3KI8nsF7F4RERERERERERERCT6DCMTW+KjGEYWFj78tp347GsJ2LZjGqWYRjnYKwjYSvDZ1+O3bcE0qgCwuX6PzXFqjD8CkfDLy8tjypQpFBUV8dJLL/E///M/FBQU4HA49ktmgGDygmVZdOnSheOOO46//OUvLFy4kO+//17JDBITqtAgEk4FF8PGj2H38vCvnXsoDDovfOsdfSVMvy186zXGmQRHXhrZPWr+hVHzBDkYZNjSqHR5qXJ5MY2ffxEnBOykeRJI8TkxWAzeSyHjSbCrkZ6IiIiIiIiIiIhIR2HY+mEl/BGf/zdgVTcx0sI0qjBt1dhtE7A7I/w+tkiMZWRkcNFFF3HRRRcBEAgE2LZtGxUVFVRXV+Pz+UhOTiY1NZWcnByysrJiHLFIkBIaRMLJsMGoO2HWZeCvDd+6jhQ46m/hqc6wR8EpUPgxrJoTvjUbcsK1kBHBpAH321DzRN1Dp2kn251EljsR07Bwe70kOROwsU9PMHMblF8DWa+CEbnqESIiIiIiIiIiIiISPQHzG3zmZAxbHyyrCqzSnxIb9rkS3XCCkYVhZGKyAl/gPlyOv8Yk5qiqKgTTaH5ce1KzfxUBaTu73U7v3r1jHYZIs2Ka0FBbW8t3333H6tWr2bhxI1u2bKGyspLq6mr8fj/JycmkpKSQm5tLfn4++fn5HHLIIeTn58cybJGmZfaH4x+CeddBoIHWBy3lSIIT/w/S+7R9rX2dfAtsXQrVu8K/NkDfI2H4xMisDRDYBtWPNHjIwMBuGThM2/7JDHuYW6D6/yA1CpUqRERERERERERERCSiLKsUr/9mwAcYGEYaGGmAF8tyAyYBXwCnMwmMJNjrveOA+R7+wFAc9gmxCT5aMgZDij3WUbSMMwAsiXUUIhIjUU1oqK6u5pNPPmHWrFnMnz+flStXYppmi9fJzs5mxIgRnHzyyZx22mkUFBREIFqRNug+Ek76J3x2K7hLWr9Oclc49n7IHRa+2PaWkg0T/wmvXQXuivCu3W0ojH8QjAhmetY8B1ZN29ZwvwNJl6v1hIiIiIiIiIiISAfhw+QbKinCQy4uRpKOkzBWv5V2y2++A1Q2cMSFYbgAMPGAkdDI/Few236BEcn3tUVEpEUintDg9XqZPn06L7/8Mh988AE+nw8Ay2p9eZhdu3Yxa9YsZs2axY033ki/fv24+OKL+eUvf8mgQYPCFbrEwNSpU5k6dSqBQCDWobRd3nA46w1Y/A/Y8H7L5w8YD4dfD86U8Me2t7wD4MJn4L/XQuXO8KzZ53D4xcOQEMHYrRrwfBiGhUxwvwUpvw/DWiIiIiIiIiIiIhJLG6jlH2xkN766517GwZ/ow2Ai/F6rxJRlmQTMt9u4xmZM62vsxlFhikpERNoqYgkNW7Zs4Z///CfPPvsspaWlQP0khnBkt+1Zb926ddx9993cfffdHH/88fzxj39k/PjxyqCLQ5MmTWLSpElUVFSQkZER63DaLiEdjvk7DL0YVk2DDR+Cv7bx8Y5k6Hc6HDARsgZGL87cAXD5azDnIfhxZuvXcbjgmKthxMVgi3DGs+8HwB2mtRaHZx0RERERERERERGJGR8m/8sGSvHXe74cPw+xkUcZTBJxVmpfQmZaX2FZRW1eJ2C+jd3WgRMaqgvBirPzZzWtv0hawm/BggV1FfiPP/74GEcjnUHYExpWrVrFXXfdxbRp0wgEAnVJB4Zh1EswaKhCg8vlIjk5maSkJBwOB7W1tdTW1lJTU9Pg+IbWmz9/PvPnz6dPnz7cdttt/PrXv8Zu1wsUibGsQXDkX+DwG6F0FexeAVVbqNm1k4QueZDWG7ILguPsrtjEmJQOZ94FBafCV8/BliWhz7U74ICT4JgroUvfSEVYn39V+1xLREREREREREREYmIRFfslM+xRRYDPKWMsXaIclUSLZa0PyzpmmNZpt9IHQ0qcnTdzBIAlsY5CfnLyySfj9XoxDAO/v+GfuSLhFLaEhg0bNnDHHXfw6quvYppmvUQGqJ/AMGTIEA4//HAOPvhgDjroIPr06UOPHj3IyspqcG2fz8e2bdvYunUrhYWFfP/99yxbtoyvv/6a6urqunF777Vx40auvvpqJk+ezB133MFll10Wrg9VpPUcCZA7LHgDKjZuJCs/P8ZB7aP/0cFb8Rr4/j3Y/gPsKAS/p/64pAzoWhBsLzFsPKRkRzdOq7rxYwEf+Nxg+rH5fWC6gokizkQwGqoc4QXLD0bEu/CIiIiIiIiIiIhIhGzH08xxb5QikViwaOI94xYJ1zoiHVdDF6KLREqbz97V1NRw33338fDDD+PxeLAsq64ag2VZWJZFVlYW48aN48wzz+SEE04gLy+vRXs4nU7y8/PJz8/n6KOPrns+EAiwePFi5syZwzvvvMPixYvr9ofgN9OGDRv49a9/zWOPPcaUKVPqzReRJuQOhJOuD943TSjfCr7aYEJAYjqktez7OOyMpPqPfW6o3Q3eKjADdU/bLQvce5XPciRCYiYkZuzVFsMBKjUnIiIiIiIiIiIS17rgbPJ4TjPHJd4lNT8kquu0U9WFQJy1nKjWyXORzqzNCQ2DBg1i+/bt+yUyJCYmcu6553L55ZczevToiLR9sNvtHHnkkRx55JHceuutbN26lddff53nnnuO5cuXA9TF8+2333Lcccfx1FNP8dvf/jbssYh0aDYbZPWOdRT1OQYG/+/3QOX2YLJFKPxuqCqC6p2QnA3JOcG1jDh7ASciIiIiIiIiIiL1HEkGr1BENYH9jrkwOJbM6AclUWMzeoVlHcPoGZZ12q14bDlhV8sJkc6sodrrLbJt2zbg58SBvn378uijj7J9+3ZeeuklxowZE5Fkhob07NmT66+/nh9++IEvvviCCy64ANtPV2DvqdqwJ14RiXO2oVBdCqXrQ09m2JtlQnUJlG4Ab3he6IqIiIiIiIiIiEjsJGHnj/QhcZ9TH04MrqUPaeHrwi3tkM04Dmi4tXlLOGzj2x6MiIiETVh+e1uWxSGHHMItt9zCxIkT65IIYumoo47iqKOO4v777+ehhx7imWeewetVfyyRDiHgh48nQ2IN5LWx1JTfDR9/Aicsgl4jwhOfiIiIiIiIiIiIxMRBpDKFwXxGGdvxkIuL48kiQ8kMHZ5hOHDYz8EfeL4Na+RiM0aHLSaRWPn1r38dsbV9Pl/E1hZpSJt/gw8cOJC7776bCy64IBzxhF1+fj5Tpkzhpptu4q677sLh0IsWkbhmmvDx7bD2E0jJgZxKsLUhqWFnGpRZ8P51MG4qdD8kfLGKiIiIiIiIiIhI1KXi4HRyYh2GxIDDNgF/4BWgdRe42m3nYxixv2g3oqoLgThrwVzdxgsbO6EXXnihrnq9SLxr89n9FStWRK2lRFv07t2bZ599lkBg/95ZIhJHvn8N1swO3q9OgA050L+4dWt57bCqW/C+zw2zboEL34CEtPDEKiIiIiIiIiIiIiJRYxhdcTn+jtd/G2ACYOEjYKvAMtxYmFgJFj6bC7uZjmElYfx0ct9mOw6H7ZIYRh8laYMhtf2f16vHFgCWxDqKuGRZ4U8GUaKERFubExriIZlhb/EWr4jspWwTfDW1/nMbcyDBBz3LWraWzw5L+4Bvrx+D1cWw4CEYc2dbIxURERERERERERGRGLDbTsLpuBOP/zYC9mJMowbY66SuzcI0vJj2Kgxc2M0MnJyNy35Px6/OIJ3GnqQDwzA49NBDSU9PD9va8+fPD9taIqFQ/wURiR+fPwx+z/7Pr+oerNYwoBjsZvPrlCXDiu7gdu1/bOUMOHACdDu47fGKiIiIiIiIiIiISNRZtiQCThcW9nq5DPuNwyBgd2AjCQxdECsdx8CBA1m9ejWGYXDDDTfwy1/+MmxrJyUl4fE0cK5GJEKU0CAi8aF8K2z8vPHjW7OhJA16lUK3MnDt017GAsqTYWsW7EyjyR5h37+hhAYRERERERERERGROORnEbX8DQw7Bj0x8GNRBrjBMjEtE5stAcjEMJJ+mvMJbpwkcXssQ4+O2kKwxVnLgNrwt03o6EaMGMHq1asBWLx4cVgTGkSiTQkNIhIffnwTmuv15HHC2rzgLdELyV78pheXlQhViRAIsVzY2k/g2BsgKavtcYuIiIiIiIiIiIhIVFh4qeUuwP/zk4YDg5yf7oPp8+Jw7F+918eHODgGJydFJ9hYSR0MqXFWjcIIAEtiHUVcGTFiBK+++ioQTGgQiWdKaBCR+LCpieoMDXG7wO3C8nrB1UBriaYEfLBlERxwSsvmiYiIiIiIiIiISMx9SRkfsYsivOTiZAxdOAFdvNQZ+PkEi9JWz/fyZsdPaJBO4YgjjgDAsiyWLFmCZVkYRvgqc4RzLZHmKKFBRNo/nxt2r4/unsUrldAgIiIiIiIiIiISZ16jiPcorntcjp81bGEtNfyanjGMTKLBy9ttmh9gCQHWY6dfmCJqh9RyolMYPnw4drsd0zSprq5mxYoVDB06NGzrhztBQqQpSmgQkfZv91qwzOjuWbwyuvuJiIiIiIiIiIhIm+zEy4y9khn29jG7GUM2+SRFOSqJFpPtBPixzev4+Rg7V4QhonYqJQ5bTqCWEy2VnJzM6NGjWbNmDQCrV68OW0LDM888QyAQCMtaIqFQQoOItH/u8ujv6amI/p4iIiIiIiIiIiLSal9TTlOXRX1NuRIaOjCLsrCsY7ahZYVIezJ79uyIrHvxxRdHZF2RxthiHYCISPNiUE4q2hUhREREREREREREpE18zbyP6I3F+4wSNRb+MK0UrnVERCQcVKFB2pWpU6cydepUlaqR+hwxyJp2Jkd/TxEREREREREREWm1g0jhv00eT41aLBJ9Buntap12y1MIDiPWUbSMR8lIIp2ZEhqkXZk0aRKTJk2ioqKCjIyMWIcj7UWXgZ1jTxEREREREREREWm1QaRwMKkso2q/YweQzCFKaOjQbPTGRndMtrdpHQcjwxRRO5UyGFLtsY6ihQLAklgHISIxopYTItL+JaZDeo/o7plbEN39REREREREREREpM3+RD5jyCbhp9MfTgxOIIs/0xeDOLsqXVrEwIaT8W1aw0Zv7IwIU0QiIhIOqtAgIvGh+3Co2Ba9/XoMj95eIiIiIiIiIiIiEhaJ2PgNPfkl3SjFTyYOkom3q9GltZychYfnAG+r5rv4hRJfRETaGSU0iEh8OHACFM4MaajlCBDoXoWV6Me0fPgtF7bSJGy7k0Lbq8dhkNmnDcGKiIiIiIiIiIhILCVhJ0mJDJ2OjSwS+C0eHm/xXDuDcXJ2BKJqZ2oLwR5nSRu1VqwjEJEYivuEhtraWn788Ud27NhBdXU1ubm55Ofn079//1iHJiLh1P0QyBkEJasaHWKmu/H3KyPQuwLsZvA5y8JnBF+cGeWJODZkYt+cjhFoouPOsIlhDV1EREREREREREREoiOBi7Aow8urdc/58eHHi4WJ3xYATJwk1FVjsNGXJB7EIMSL4uJZ6mBIjbdknwCwJNZBiEiMxG1Cw7vvvsuTTz7JvHnz8Hg8+x3v27cvEyZM4KabbiIvLy8GEYpI2I36A0z/fYOHfIN24S8obnK6leHGd0gR/oG7cX3ZC1u1a/9BXQ+C/mPCEa2IiIiIiIiIiIiIxEAikzDoSiVTcLMTP766Y5bdxIcbGzZcJJPKKaTwNwzSYhixiIg0Ju4SGlavXs1ll13G119/DYBlNVxmZv369Tz88MM8+eST/O1vf+Omm26KZpgiEgl9joKC8bDi3XpP+4YW4z9gV8jLWClePMdtImF+H2w1eyU1OFww5k6wNVG9QUREREREREREROKCiYkNvdfXGVn4qGIttaRgkYNBKRbuvUbYscjESyYV7MBFCa7OktDgLgRHnLWccKvlhEhnFlcJDR9//DEXXHABZWVlWJZFbm4uF1xwAaeeeip9+vQhJSWFnTt38s033/DWW28xd+5cqqurueWWW/juu+94/vnnSUhIiPWHISJtcez1sON72L0OAH/v8hYlM9RJ8OM9egsJc/pimD/9UXPMDZDVN3yxioiIiIiIiIiISFSVsovlLGUdhXjx4MBJfwYxlEPpQm6sw5MosLDYzcPUMA8wMEjHIP2noyZenx9Xws8XugUooZi/0JWHcNA9JjFHVcpgSImzlhOWWk6IdGZxk9Dw1VdfMW7cODweD4ZhcOutt3LrrbeSmppab1z//v056qijmDRpEgsWLOCqq65ixYoVvP766/h8PqZNmxajj0BEwsKVAmdPhXevxirdgH9wK5IZfmKleAn0rMSxOQNGXQsHnRvGQEVERERERERERCSa1rCCz5iNiVn3nB8fq/iR1SxnFCdSwMExjFCioZb5PyUzNKThih0mZezmMfK4L3KBiYhIq8RFraWioiLOOeccPB4PCQkJvPnmm9x77737JTPs69hjj+Wrr75izJgxWJbFW2+9xZ133hmdoEUkclJy4RfPYh7UDyvF26alAgOq4KS/wWGXhSk4ERERERERERERibYdbGM+H9VLZtibhcUXzGELG6McWfOqLJMXrGquNHdzR7aNN60aAo2025bmVTK9VfM8LMHH5jBHIyIibRUXFRpuv/12du7ciWEYPPvss5xzzjkhz01LS+Odd97h2GOPZenSpdx///1ceuml9O/fP3IBi0jkJWUROGYAVHeHqh1gNfyHSpNcKZj9u2ImDI6P7C4RERERERERERFp0Pd8g0XzSQDLWEwv8qMQUWi8lsWNVhmr8QcfOw0et6r4AR93GBkxji7+eFmPl+Wtnl/FTLK4OowRtUOeQnAasY6iZTxK8BHpzNp9QsO6det44YUXMAyDiRMnctFFF7V4jZSUFF566SWGDx+Oz+fjrrvu4sUXX4xAtCISTaa1ApKyICEd3GVQWwqBZio2GAa40oLzXCl169gYHPmARUREREREREREJOzc1LKJdSGN3c5mKqkgjfQIRxWaT/HUJTPsbT4eCi0fgw1nDKKKXx6WtHH+0vAE0p4lDoYke6yjaBl/ANr4ue1M9lzUPXr0aJ577rkYRyPSdu3+ouQ333yTQCAAwL333tvqdQ466CAuuOACLMvi3Xffxe/f/wWCiMQXy6oO3rHZIbkLdBkI2f0hvQckZUNiOpYzFRIzICUPMvtAl0GQ0asumSGoKibxi4iIiIiIiIiISNvVUB1SdYY9qqmMYDQt8wO+Ro9938QxaZhJTRvnV4cpEpGW27x5M48++ijjx4+nb9++JCQkkJqayoEHHsgf//hH1q0LLXFrw4YNbNy4kaKiov2O2e127HY7Z555ZrjDF4mYdl+h4f333wfgkEMOYcCAAQ2OMc36peZttobzNM477zxeffVVKisrWbBgAaNHjw5rrCISXQau/f9McSQGb4nBh36vB7sroZmVmjsuIiIiIiIiIiIi7ZWjhac6HLSfqgfZTVx32qX9X5Pa7hht/NwauMIUiUjLbN68mfz8fCzr57Me6enp1NbWsnz5cpYvX84zzzzDCy+8wPnnn9/qfSzLwjCMevuItHftPqFh/fr1GIbByJEjGx3jdP78C8owDL744osGxx9xxBF19zds2BDWOEUk+gwjD8vaFZZ1REREREREREREJD6lk0kGWZRT2uzYFFLpQk4UogrNqSTyWqACr2lhWSaWz4dls9HFsHOMQxditZSDnjGdHxd8heA1Yh1Fy/g6/sn3PdXqTzvtNC677DLGjh1LTk4Ofr+fL774gmuvvZZly5Zx8cUXU1BQwLBhwxpdy+Vy4fP58PlU5UU6hnaf0LBjxw4A8vIaP+EYajbR3mvs3LkzPAGKSMzYbWdgBla0cZVMbMbRYYlHREREREREREREYmMoh/AlnzY7bggHY8Sw8oF7xw4qly+nYsUKqlaupHLFCsb36srbvzqPsi5ZWKZJ9pYifvHUKyzyWaQXFJC2182VlRWz2ONBEkdiIwszhOSWhqRwWpgjaoeSBkOyPdZRtEwgACyJdRQRlZWVxbfffsuhhx5a73mHw8Hxxx/PRx99xLBhwyguLuaRRx7hueeea3St7OxsioqKWLNmTYSjFomOdp/QkJKSgtfrpbq66b5FoZRGqan5uXdScnJym2MTkdiy287CF3gcqG31Gg77eAyj/ZSYExERERERERERkZYbwsFsYSObWd/omG70ZBiHRTGqoIDHw45Zs9j23/9SsXz5fscHl5Zy8w33sr1PD6yaWnoV7wbAAxTv2EHxp58GBxoGWSNG0GviRHJOOAGjkfbbnZmBg1ROpYLXWjzXTi5JHBmBqESal5GRsV8yw966du3KGWecwYsvvsg333zT5FoHH3wwRUVFbNq0iQceeIAbb7wRuz3OklhE9tLuExq6d+9OaWlpky0i7rjjjnqPe/Xq1eC4vdfo3r17OMKTMJs6dSpTp06tK60j0hTDSMFuO52A+VYrV7Bjt00Ia0wiIiIiIiIiIiISfTZsjOUsvuFLVvI9Xjx1x5y4GMRQRnAs9iieFqnZtImt//0vRTNm4KuoaHKszbLouXErXq8XXK6GB1kWpQsXUrpwIQl5efSYMIEev/gFCV26RCD6+JXKOKr5mAAlLZqXwaUxrd4RNWo5EbdycoLtcvx+f5Pjzj33XD766CMAbrvtNv72t7/RrVu3ekkN8+bNo3///m2KxzAM1q5d26Y1RELR7hMaRo4cyY8//sicOXPw+/04HPuHvG9CQ2NmzZpVd/+II44IW4wSPpMmTWLSpElUVFSQkZER63AkDjjt12Jay7CslpdOctr/jM1QcpOIiIiIiIiIiEhHYMPOCI5lOEexmfV4cOMigd70xUkjSQIREPB4WPf442z5z3+wTLP5CQ6LhAO82FNNnF4/tmrwrHWC1fhJZ8/Onax/8kk2Pv88AyZNotf//I8qNvzETha5/J2d3IZJWUhzMriUFMZENrD2InEwJMXZ1fr+trecKC4uZvHixSxatKju/0VFRXXHn3/+eS6//PJWr//FF1/wwgsvsGDBArZs2QIEL8A+9thjufzyyzn66La3vp43bx4ABx10UJPjfvWrX/HMM8+wePFiDMPA5/PVxQTBqvdut5uNGze2OhbLsjCMOEuMkbjV7hMazj77bJ5//nkqKip45ZVXuOyyy1q1jt/v59lnn8UwDA488EDy8/PDHKmIxIJhpJDgmILH/0csa3Wos3Da/4jDfk4kQxMREREREREREZEYcOCgHwfEZO/yZctYceed1Gza1OxYe46ftDE1pB5fgz0tmPhgWhY2w8BfYqfykxSq5iVhVjV+8tn0eFj98MPsnDOHgr/9jeQ+fcL2scQzJ33pysPsZgoelgINX+FvJ5cMLiOFk6IboERNUVERRx11VJtO3jelurqaP/zhDzz33HP7HVuxYgUrVqzgmWee4de//jVTpkwhJSWlVfu88847LF68GAgmLDTF4XAwZ84cbr31Vv79739TWVmJZdX/Htj3sUh71u4TGs444wz69+/PunXr+Mtf/sLZZ59NVlZWi9d56KGHWLt2LYZhcO2110YgUhGJFcPIIcHxDP7Ak/jNGUBVo2NtxoE47L/Bbjs2egGKiIiISMdQvBN2FoHHA1jgSoDsLtC9J+jKFBEREZF2o4zV7OZH/NTiIJEsCshkMAaRe81mer2snTo15KoMaWOrybqkvNGXkY6cAFkXVJAxvpKSqVnULk1scr3yJUtYeOGFwWoNF16oK6cBB93I4z6qWMYWnqecQvz4sBwGqWTSnXHkMhFb+z9VJm3Q1koETQkEAkyYMKGuvQNAUlISBx54IA6Hg+XLl1PxU7uZ5557jq1btzJz5sx6rR9CsWnTJq688koAxo8fz2mnndbsnNTUVB577DEeffRRVq1axe7du/F6vZx00kkYhsGIESN44IEHWhSHSKy0+5/STqeTe++9lwsvvJDt27fX/WBwOp0hrzFz5kz++te/1lVn+O1vfxvBiEUkFgwjGafjehzWNQTMDwiYH2JRghUowzDygokMtvOw2YbEOlQRERERiRcrf4QvP4PVK2DVCijd3fC4lFQ4YAgMKoDhI+CIo0DlfkVERESiroSlbGA61RTVe34zn5BEHn05gzzC347aX1XF0j/+kfKlS0Man35mFVkXVIQ01pZokXv9boofzab226aTGvZUa6hYsYKhd96J0cKTph2NiZ8NvEwxn2NhAT2wA16/F7fdxXo+oYgfOYBrSKZHrMONHm8heOMs4cUbnmoCubm5HH744RxxxBGMGDGC8ePHt2m922+/vV4ywxVXXMH9999PdnY2EKzecP/993PPPfcAMGvWLP72t79x7733hrxHWVkZ48aNo7i4mP79+zdYCaIpNpuNIUP2Py+SnZ3NCSec0KK1RGKl3Sc0AFxwwQXMmjWLF154gfnz53PSSSfx9ttvk5OT0+zc559/nt/97ncEAgEyMjJ4/fXXlZko0oEZRiIO+y9w2H8BwI6yjWRlqMWMiIiIiITI44FPPoTp/w0mMYSiugqWLA7e3ngpWLFh3Llw+nhIz4hsvCIiIiICwDYWsIbXfzpxvb9adrKCF/BQRm/Ghm1fb2kpSyZNomrVqpDGJx7kJvP80JIZ9jAMyJ1UyrbbcvHvaP60zo4PPiBQXc1B99+PzeVq0V4dhYXJap6klCVNjquliOU8wIH8maTOktSQOBgS4yzZxReAZj6XjcnOzmbatGmMGDEirO3ot27dyiOPPFL3+JJLLuHpp5+uNyYlJYW7774boC6p4ZFHHmHSpEn06NH811tVVRWnn346y5Yto0ePHsyePbsuWaIt1G5C4k3cXDLy1FNPMXbsWCzL4osvvqCgoIBHHnmEsrKyBsd/9dVXnH766fz2t7/F6/WSlJTEtGnTKCgoiG7gIiIiIiIiEh9mvAUXnA4P3R16MkNDtm+Fp6cE13rucfD5whejiIiIiOynnHVNJjPsbT3vspsfw7Kvv6qKpb//fcjJDADpZ1a3qluZ4bRIO7k65PEl8+fz4223hdT+oiMq4uNmkxn28FPNap6MbEASM+np6Zx33nlhTWYAmDJlCm63G4Dk5GT+7//+r9Gxt99+O7179wagtraWRx99tNn1a2pqOPPMM/nqq6/Izc3l448/pn///m2Oe+7cucydO1ftJiSuxE1Cg9Pp5IMPPuCqq67Csix27drFjTfeSF5eHkceeSQTJ07k8ssv54wzzqBnz54cc8wxfPTRR1iWRY8ePZg3bx5jx4Yv6zJWiouL+eCDD/j73//O2WefTffu3TEMo+72wgsvRGzvvn371tsrlNstt9wSsXhERERERETCYkcR3DwJHrkPKpu+Wq7clcIbg8by76Fnsi2lmaqBXi+88hz87pK2JUiIiIiISJO2MCekZAYAC4stzGnznqbXy9I//YnKwsKQ5zi6+Ukc6mn1nqnH1WC4Qk9QKP70U1b+dHV4Z2JhsoO5LZpTwzbKWR6hiKQjeuutt+run3/++U1WTnC5XPzqV7+qe/z22283ubbb7WbcuHHMnz+frKwsZs+eHbYLtk844QROOOEEhg0bFpb1RKIhLlpO7GG323niiSc4++yzue2221i6dCl+v59FixaxePHiunF7SqUkJCTwu9/9jr/+9a9hKcESS0VFRRx11FFs3Lgx1qGIiIiIiIh0HHM/gofugdqaZocWJXfhstPvZFdisI3EUwdP4PFP7ueQ4tVNT1y/Bn5/OVx2FVz06zAELSIiIiJ7eChjF8taNKeMVdSwk2TyWr3v+meeoXzJkhbNST2+plXVGfawJVkkj3BT/XlyyHO2T59O1siRdDv99NZvHGfK+RE3xS2et5N5ZDA0AhG1M75C8MVZa3Zf+2qRUFhYyJo1a+oen3baac3OOf300/n73/8OwOrVq1m1ahWDBg3ab5zH4+Gcc85hzpw5pKen8+GHH3LIIYeEL/gQ+f1+HI64Oo0sHVhcfiWefvrpnH766Xz55ZfMnDmTb7/9lh07dlBdXU1ubi75+fmcfPLJnHHGGeTm5sY63LBwu93tKplhxIgRISWJDB48OArRiIiIiIiItMJ7/4UpD0CI/UNfG3JKXTIDgMfu5OmDf8HUTx5sfnIgEGw/sasErr2JNr2TLe3OnDnreffdpdx/fw+SkpyxDkdEpFP65ptt/Otf33DPPXlkZyfFOhyJoiq2YNGytgoWFlVsbHVCQ8Xy5Wx68cUWz3PkBFq1397sXVq+xur//V+yRo4koUuXNu8fD2rY3Kp51WwKcyTtVOJgSLTHOoqW8QUgxBYi0bB06dJ6j0eNGtXsnMMOOwyXy4XX661bY9+EBp/Px/nnn8+sWbNISUnh/fffZ+TIkeELvBFz587lnXfe4euvv2bNmjWUl5djmiZJSUnk5uZy2GGHcdxxx3HxxReTk9NMpUKRCIjLhIY9Ro0aFdIPiY4mNzeXww8/nCOOOIIRI0Ywfvz4qMfw4IMPMnr06KjvKyIiIiIiEhYz34ZH72/RlB3J+yd170hu4ZvC774BNhv8/saWzZN2bc6c9Xz66RaKiqro1y8r1uGIiHRKn3++mQULtrFmzW5GjuwZ63Akikz80Z3n9bLizjuxzJYlUQAYjrZfZW5ztnwNX0UFhffdx8EPPdTm/eNBtL8mpPNZseLnloIul4vevXs3O2fPuLVr1+63BkAgEOCiiy7ivffeIykpienTp3PMMceEN/B9LFiwgKuvvrpeLNZeCf81NTVs3LiRTZs28c4773Drrbdy1VVXMXnyZJKSlDwo0RPXCQ2dSXZ2NtOmTWPEiBHk5+fHOhwREREREZH49dUC+L/JLZ523NYlzM4/st5zx2/5tuX7v/0a5ObBBZe2fK60S7fddhynnpqnZAYRkRi6+uojGDYsSckMnZCLtFbNc7Zy3vpnnqF63bpWzTVrbK2aF441SubNo+iDDzpF6wkHqa2a52zlvLjjLwR/nFWM87evlhN7V1Tv1asXRogV+Pr06VOX0LBhw4Z6xz7//HOmTZsGgGmaXHjhhU2uVVRU1IKI9/fwww9z8803Y1lWvSSGhliWhWEYeDweHnvsMWbNmsUnn3xCjx492hSDSKiU0BAn0tPTOe+882IdhoiIiIiISHyrrICH7oZWXFF3xvrP2ZKax6sFp+GxOzl9/Rdcteyt1sXx/BMw4mjoP7B186VdSU520qdP606KiIhIeLhcdvr3z2h+oHQ46fQjkWzc7A55jpMUsmh5u2T3zp1s+ve/Wzyvbv4KF6nH17R6PoB7uavVc9c8+ih5J5+MzdGxTw1lM5yNvNbiViTZHBGhiNqZOG45UVFRUe/phIQEEhISoh7O3nFkZIT+uyc9Pb3ufmVlZb1j5l5/o3o8Hnbs2NGGCJv24osvcuONwaqBe5IxBg8ezFlnncWwYcPIycnB5XJRWVnJ2rVr+frrr5k5cyZutxuAwsJCTjnlFBYtWqRKDRIVHfu3loiIiIiIiMjeHnsQdu9q9fQrv3+b337/DgA22nCVkM8HD94JU18Ee5y9mSgiIiLSjhjY6M4xrGd6yHO6MQobzhbvte3tt7ECgRbP26P66ySyLqrAntry5FoAzzon3o2tT2jwlpRQPHcuXU8+udVrxAMXWWRxKLsJvZqaDQd5HBfBqCQc9m3tcMcdd3DnnXdGPY7q6uq6+4mJiSHP2/vk/95rAIwePbrZSgnhsHv3bq6//nogmMzQt29fpk6dymmnndbkvLKyMm6//XamTp2KYRisWLGC+++/n7vuuiviMYu0vb6RiIiIiIiISDz4Yj588mGbl7FhtS2ZYY/VK+E/L7R9HREREZFOrgcnkEJopc+TyKU3Y1u8hxUIsO3tt1s8rx6/QdW85FZPr/w4pW37A1t/Kmnf0fXkLOyEnvzRjbE4SW9+oMTU5s2bKS8vr7vdeuutMYnD5/PV3Xe0oOLJ3mO9Xm9YYwrV888/T2lpKYZhMGTIEL7++utmkxkAMjMzeeyxx/jnP/9Z16biscceI9CGJC+RUKlCg4iIiIiIiHQOzz0e6wj299qLMOFCSG79G9siIiIinZ2DRA7m93zPE1SxudFxKXTjIH6Hk9QW71E8dy7ekpK2hAlAxYxUkg934+zmb9G82h8TqP6y7aXdy779lup160jp37/Na7VnKfThAK5hNU8QwNPk2FyOoTfnRimydsBfCH4j1lG0jD+YUJ6enl6vbUOsJO/199ueNgyh2HtsSkrbE5Ra4/3336+7/+yzz5KTk9Oi+ddccw3vvvsus2fPpry8nM8//5zjjz8+3GGK1KOEBmmVf/zjH1x33XWsX7+e2tpasrOz6devH8cffzwXXXQRw4YNi3WIIiIiIiIiP1v2HaxfE+so9ldbAx+/D2efF+tIpBUCbMfNRwQowpZZQiU9cXIYCRyDgVqJiIiIRJOLdIZzAyV8xzY+o5x1dcfS6EMPjiePw1vVagJg63//G5Y4zWobOx7Mpustu3DmhXZls3u1i+IpWRAIz0norf/9L4Nuvjksa7VnmRzEUG5hG+9TyneY1E8iSaE3XRlDHsfGKMIYcQ2GhDh7reoJAEtiHUWd1NSfk6Jqa2tDnldTU9PgGtG0atUqAPr27cuoUaNatcbFF1/M7Nmz69ZTQoNEWtgSGgKBAHb1/ew0Zs6cWe9xUVERRUVFfPnllzz44INMmDCBp59+muzs7BhFKCIiIiIispf3Wlda17Is8Hiw3LXgdoPfD3v6mhoG2O2QkIiRmAiJiRi2VnR2fO+/SmiIM16WUcPreFkIBHtgG4leanFRy3Rs5JDEGSQxERuqviEiIhItNhykk4efNJJwEKAGO0mkkkYGea1OZvBXV1P6zTdhizNQ4qDorhyyfllBykg3hrPhdmZmrUHV/GRKX08P6xX1JfPnd4qEBggmLRzAVfiooJSl+Klmd0U5+bmHk8bAWIcncWrvqgbbt28PeV5RUVHd/S5duoQ1plAVFxdjGAZ9+/Zt9Rr5+fl193ft2hWGqESaFraEhtNOO40333yzXZR6kcjLyMhg0KBBpKenU1VVxerVq9m9ezcQfMPvzTffZPHixXz22Wf07t272fU8Hg8ez89lnyoqKiIWu4iIiIiIdDLlZbBgbsjDLcvCqqyAsjKs2tqfExga3wALwABcCRgZmRiZmaEnN6xfAz8ugwMPDjlGiZ1aZlDJo+xJZGiISQnV/BsPX5DBZOwo2V9ERCTSfJSwlX9SzYp6z/spp4wiyviUJAbSk9+TQPcWrV1ZWBjCa8KWMSvt7Hoqi9JXA6SeUEPyYR5sqSam38SqclD9ZRLVXyRheVqRMNsMd1ER3tJSXFlZYV+7PfJRwza+oYjv8FKFJ8WLDYteJJBO8+cvOhrLLMQKU7WPaLHM8H7/tdXgwYPr7u/atYuampp6bSgas3nzzy1xhgwZEpHYmpOWlsbu3bspLS1t9RplZWV192PVOkM6l7AlNHzyySeMGjWKmTNntimrR9qvvn37csUVV3DOOedw4IEH1jtmWRYLFizgr3/9K/Pnzwdg48aNjBs3joULF+JyuZpce/Lkydx1110Ri11ERERERDqxH5eBz9fsMMvvwyotxSorg0Bo5X/rL0CwmsPOHVglOzHSMzCysjESEpqfu2SxEhrigJvZVPJIyOP9rKGcW8jk/1SpQUREJIK8FLGeO/HT9Am6Wtawntvpy99IpE/I61euWNH8oFYyK+1UzEijYkYaAF6vt9n308OhcsUKuhx9dMT3ibXNLGA179VrN+Gxe9jGQraxkC4MYRiX4CAphlFGmWMwOOOs4rqjfbWcKCgoqPd4yZIlHN3M99PWrVspLi5udI1o6dmzJ7t27eKHH36guLiY3NzcFq/xySef1FtPJNLCmtq3cuVKRo4cyRdffBHOZaWd+PTTT/nLX/6yXzIDgGEYHHfcccydO5crrrii7vmlS5fy1FNPNbv2rbfeSnl5ed1t7yw1ERERERGRNlnV9BvQFmCWlmKuW4e1a1frkhn2ZVpYZWWYG9ZhFu8Mtq5oyuqVbd9TIsqkskXJDHv4WUsN/45ARCIiIgJg4mMj9zebzLBHgEo2MZkAofe9j2RCQ6xUruz4rz83MY9C3qqXzLCvXazkW54kgDeKkUm8GzlyJAl7Ja4vWLCg2TmfffZZ3f3ExERGjhwZkdiaM2bMGAACgQA3t6L1zOrVq3n22WcBsNvtjB49OpzhiTQo7LWKSkpKGDNmDK+88kq4l5Y4YLPZePzxxxk2bFjdc4899liz8xISEkhPT693ExERERERCYvVjb8Bbfl8WJs3Yu0oArPxFgKtZoG1axfmhvVY7ibeNC9cHv69JazcfICFp/mBDajlQyy9SS4iIhIRFXyFl9B72AP42E0580MeX7m8471W64hJGnurZRereC+ksRVsZgOfND9Q5Cepqal1iQFASOdE9x4zZsyYmLVquPjiizGMYMuRf//730yaNAm32x3S3MWLFzN27Fhqa2sxDIPTTz+drE7SukZiK2wtJ/YwDAOPx8Oll17KqlWr1EagE3I4HNxwww1cfvnlQDBba+PGjeTn58c2MBERERER6ZzWFDb4tFVVhblta2QSGfbl8WBu3ICR1xVbVvb+x3cWQUU5pGdEPhZpMQuLWqa3YX4lbuaQxGlhjEpEREQASvmoVfN2M5tsTg1pbO2WLa3aoz2r7eBVkrfwBcFabKHZylf04xRsxFkrhlawzEIs04h1GC1imaF/LqPl8ssv5/333wdg2bJlTJ8+nXHjxjU49ttvv+WDDz6oNzdWhg8fzqWXXsqLL76IYRg8+eSTTJ8+nSuvvJLTTjuNYcOG1as+sWXLFhYuXMh//vMf3n777brqgy6XiwcffDBWH4Z0MmFLaDjiiCNYvHgxhmFgGAaWZXHPPfewevVqXnjhhaj0fNqjsLCQwYMHR20/2d++JWZWrVqlhAYREREREYmNsv3LD1uVFZjbtkFzrSDCyQJrxw7MQABbTgN9SsvLlNDQTgXYTIBtjQ+w6v7TKC8LldAgIiJ1Kist/vMfH0OH2jj22LBfd9hp+CilhlWtmuthMx62kUCPJseZPh9WNBJgoyzgaV3lqXixncUtGu+lkt0UksPQCEXUfpjOwZjO+ErcMJ0BYEmsw6jnvPPO45BDDmHp0qUAXHXVVRxwwAEMGTKk3rjt27dz8cUXE/ipteGhhx7KueeeG/V49/bEE0+wdu1aFixYgGEYbNmyhTvuuIM77rgDgKSkJFwuF1VVVXVxA3XJDHa7nVdeeUXnYiVqwtZyYv78+Zx77rl1X8x7khpef/11TjzxRIqLi8O1VaMWLVrEhAkTOOiggyK+lzSte/fu9R6XlJTEKBIREREREenUTBP89XvmWlWVwcoM0Uxm2Hv/khLMXbv2P9DB31SOZxaVez8ATzVU7IRdm2DHKihagXPXWti+AorXQtk2qN4NAX/Da4iISKf3zDNenn7ay/XXuyktbX9XHseLABURn296O2bbKLMDv/a0MPG24rWXm7LwByPtwhVXXEFiYuJ+t5aO2ZthGDz77LMkJSUBwcSFI488kltuuYX333+fjz76iHvuuYfhw4ez4qcWL0lJSTzzzDN1LR9iJTExkVmzZvG73/2u7jnLsupuNTU1lJWV4ff768777vl/fn4+H330ERMmTIhJ7NI5hS2hITExkWnTpnHLLbfsl9Tw5ZdfctRRR9V9w4bbrFmzOOmkkzjqqKN45513MDtgtmS8qampqfc4OTk5RpGIiIiIiEinZrPBXm8WWW435tatLak+GxFW8U6sin3eQLfH11VSnYsjmBxTtQuK18DuTVC9C7zVYAbqD/V7obYcKnbAzjVQuhW8tUSg66eIiMSx3r2Db83n5dnQW6etZ7S5PUDz8w1b2E6jtCsd9eMKMn66tUxnaDfRWfl8Pjwez363vfn9/mbH7OuII47glVdeqUtqqKio4IEHHuDMM8/k1FNP5fbbb2fHjh1AMJnhlVde4YgjjojMB9lCSUlJTJ06le+++44rrriCvLy8Rsfa7XaOPPJInnrqKZYvX86JJ54YxUhFIvDX9H333ceQIUO48sor8fl8dUkN69ev5+ijj+b111/nlFNOafM+lmXxxhtv8MADD9SVc7FidHWN7G/58uX1Hjf1g1BERERERCSiXC7weLAsC3N7lNtMNMHcUYQtORnD8dOf5lFs1SgtY9u0CRLXQcDXwpkWuCvAXYGtMgf61oBLZ61ERAQmTnRy+OF2cnMNEhLiq5d9e+KgCwZOLFr6OxoMbLho/n1r21695DsSWwd+7WlgkEYPKtnaonlp9IxQRO2LZRViWfH1c6c9n//7xS9+wTfffMO1117LnDlz9ovVMAzGjBnDY489tl87ivbg4IMP5qmnnuKpp55i48aNrFmzhrKyMjweDxkZGeTm5nLwwQc3Wa1CJNIicnnApZdeSr9+/ZgwYQK7d++uK51SXl7OWWedxZQpU7j66qtbtbbX6+W5557jH//4B+vXr6/3g2FP8oTE3muvvVZ3PykpieHDh8cwGhERERER6dS69YCN67FKStpXW4dAAKtoO0av3uBwQG7XWEck+zJNmPN/2Bf/B9cpNrzdm5/SmMQF6+HjC2DCP6Cbes2KiAj079+Rr5CPDjtJZDCKMua3eG4qh+Ego9lxhs2GPTGRgNvdmhCbXttuktmripTcWpKzPTgS/JimScCTQM2uRCp3JlGxNYXWVBtojiM1Nexrtie9OJoVTAt5fDq9SaNXBCNqPyznYCxnfFWjsJwBYAkjRozAbrczadIkJk2aFPL8F154gRdeeCFi8RUUFPDxxx+zefNmvvjiC7ZuDSbT9OzZk6OPPprevXtHbO9wys/PJz8/P9ZhiOwnYvUOjzvuOL766ivOOussCgsLMQwDwzDw+/1MmjSJwsJCHn744ZD7xFRUVPD444/z6KOPsnPnznptLfawLAu73c7EiRMj8jFJaL755huefvrpusennnqqMrdERERERCR2DijAKlyBtbsk1pHsx6qqwqwoxzZ8hCo0tDemCdP/Bss/BCBpRTLe7q1LiHGUOnDtSAC2w6tXwgX/hJ7DwhisiIhI55XFKa1KaMgm9ErSKQccQMX337d4j8bYXQG6H1xC7gHl2F3121dZloVh+MjoWUV3wFvtZOfKLHYsz8Yyw5fYkDJwYNjWao+6cThr+RAvlSGNz0cl9OPBokWLSE9Pj3UYjerduzcXXHBBrMMQ6XAi2sBxwIABfPXVV5x77rnMmTOnLqnBsiymTJnC2rVr+c9//kNKSkqjaxQVFfHII4/w1FNPUVlZ2WgiQ0JCApdddhk33XQTAwYMiOSH1aHs/e942WWXNZqhdt555zFp0iRGjx7dZBLKJ598woUXXljXV8gwDO64446wxiwiIiIiItIiBwzBKimGdlrQzyouxjpgSASuu5M2mf2/dckMAK5NidjLHQQy/C1eKvmHva6A9FTDG3+ES/4FOf3CEamIiEinlswBZHIcZXwW8pw0jiCFg0Men15QELaEhszeleSPKsKZFNprCleKj16H76TLgHLWL+hOza6ksMSRVlAQlnXaKzsuDuUKvuUJ/NQ2ObYvY+nKodEJrB0wzULMMCbHRINpttM/5kQkKiKa0ACQkZHBrFmzuOaaa3jmmWfqJTXMnDmTY489lhkzZtCzZ/3eRGvWrOHBBx/kpZdewuv1NprIkJaWxtVXX811111Ht27dIv3hxNQVV1zBSy+91OyYhtp5uNtYDuvjjz/mzTffpE+fPpxxxhkMHz6c3r17k5aWRnV1NYWFhbz77rvMmTOn3rwHHniAQw89tE17i4iIiIiItIWZ2QWrqirWYTTO58O0IL6KvnZwq+fDt/VLFBsYZHycTdmZJZiJZshLJS1PIXFtcv0n3RUw4w649Hmw6TMvIiLSVj24GhMvFXzd7NhUDqEXf8BoQTppapj63nc7cBe9jtjZqrlJmR4KTt/I2vk9KduU1uZYOnpCA0A6vRjBH1jNe5Swkn0znJPIoR9j6MGRsQkwRixHAZYjvl6DWo4A8G2swxCRGIl4QgOA3W7nqaeeYvDgwdx8880/lUwKJjUsXbqUESNGMH36dA4//HC+/fZb7r//ft5++21M02w0kSE3N5c//vGPTJo0iYyM5vtcdQQ+n6+u8kFj/H4/fn/LrxYJ1aZNm3jyySebHedyuZg8eTLXX399xGIREREREREJhe/HH7DbHRiByP2t1CYGeNdtJDzX2kmb1VbAh/c1eMhR6SDz/RzKT95FIC3Q4Ji9JS9LJfXbRkribl8OX70IR/+6LdGKiIgIYOCgF3+ilNnsZhYetmJhETyBbWBg4KIb2ZxMNqdjtDCVND0MJ/9zB5e2OplhD8NuMeCEraz6uDeV2xuvfN38OnbSBg1qUyzxIoWuHMoVVLKWLXyIlwpqPV76JBxJd05tUWKLiIjERlQSGva4/vrrOeCAA7jooouorq6uS2ooKirihBNO4PDDD2fBggUA+yUy7Hmcn5/PjTfeyG9+8xsSExOjGX6n9utf/5r333+fwsLCJsclJSVxwQUXcNNNNzF06NAoRSciIiIiItIwy+vF/8FMrNRMnOUlsQ6nQYGkVALfL8PcvBlb796xDke+fAGqGv9acVQ4yH47D0+/WmqHVOPL9dU7bvgMEtckk1SYjKPM2fRenz8Lh06A5My2xy0iItLJGdjIYgwGGexgGlUUAiZgI5kBdGEimRzZ4mQGgJT+/bEnJRGobbp1QWMSMzz0GbGjVXP3Zdgs+h+3jR/e6U/A27qr7FMHDsTmcoUlnvauluWUMYMqFuEggANwJHipZimb+IAMTiWdsdjoHP8eIiLxKKoJDQDjxo3js88+4+yzz2bLli11CQs1NTUsWLCg0USGAw88kD//+c9ceOGF2O3xVQonXF544QVeeOGFsK6559+3OQ8//DAPP/wwpaWlLFu2jA0bNlBcXExtbS3JyclkZWUxdOhQDjvsMFyd5IWQiIiIiIi0f+b3y7AqKwikZeKsKNm3ymy74E/LAiwCX32BrfcFsQ6nc/N7Ydm7zQ4zTIPEtckkrk3Gn+kjkBLAa/pIsFw4SpzY/LbQ91v6Loy6rI2Bi4iISC1bWM9DeAkmJjrIqjvmZTebeIrtvE4/riOZ/i1a27DbyTvlFLa/2/zrhIb0O2Y7hj18L0SdSX56j9jBhs97tGp+tzPPDFss7dlu3mYXL9PYHwFeNlPMs1TyGT24DTttb+URDwJWIQErvipTBEI8lyUiHVPUExoAhg0bxh/+8AduuummusSFPdUa9k1kOOqoo7j11lsZN25cLEKVfWRlZXHCCSdwwgknxDoUERERERGRZgVWLgfAcjgJJKVhr6mMcUT1WU4XZmKwXHBg5XKauZ5fIm3FbKgtb9EUR5kzWInBa2tdgv93b8JRl4IRX28qi4iItCdutrCWe/BT3eQ4H2Ws5T4G8BeS6deiPXqdf36rEhpSu9aQktu6yg5N6dK/gq3f5uGrbdlpHntiIt06wfmWUmawi5dCGuumkG3cS0/uwkZChCNrBxwF4IjJ6cHWc/iBxbGOQkRiJMRLBsLD4/Hw+OOPc8ABB3DzzTfXJTHssXcyg9PpZMaMGXzxxRdKZhAREREREZFWMQtX1t33ZeWBLap/BjfLm92t7kS2uXJFjKMR1n4e/T3Lt0HJ+ujvKyIi0oFs4J/NJjPsEcDDBqZgYbZoj7TBg0k/6KAWx5Y3uLTFc0Jh2CxyDihr8by8U07BmdaxKxH42U0JL7ZojptVlDE9QhGJiEhbROWdnPLycu69917y8/O59tprWb9+faOtJfbw+/3cfvvtbN++PRohioiIiIiISAe0d5KA5XThy8yNYTT1+dMyMZNS6h6bGzdgud0xjEgoilFSyY6VzY8REZEOZVk1PL4d3iiBqkCso4lvlfyAm60tmuOlhHK+bfFePSdObPGcjJ6hJVq0RkbPqhbP6XX++RGIpH0pZzbQ8m+scma3ONFFREQiL6I1ZbZv387DDz/M008/TVVV1X5JDBBMZEhKSuKss87i7bffJhAI1B3/7rvvGDlyJDNmzOCQQw6JZKgiIiIiIiLSwVimibl1S73n/GlZ2GsqsblrYhRVkOVw4svqus+TJtbWLRgDBsYmqM7OXQVlW5ofB+D3grcWvG7wucEM4DBNsNvB7gRXEjgTISEJjBCuJSlaAQed0bb4RUQ6sRov/N+n8P3GbM44BC4ZGeuImvbiTnhsr+v4XiqGFwdCtnpPtcouPmnlvI/J5IgWzel68sms++c/8RQXhzTelerF7opcxkpytgewgNBaV2UOH07akCERi6c9sDCpYHar5voppppvSGVEmKNqX0xWY4b4NdNemFjNDxKRDisiCQ2rVq3iwQcf5JVXXsHr9TaayJCRkcE111zDn/70J3Jzc5k9ezbnn38+FRUVdeO2bt3Kcccdx6uvvspZZ50ViXClHZk6dSpTp04lEFBasoiIiIiItJHXC/u+8WUYeHN6kFC0AcPvj0lY2IIxNNT+wvJ4YhCQAFC9C6wm3ii1LKitgKrSYDLDPgzLgoABuKG2MvikzQbJGZCSBc4m+jFXlbQtdpE2Mk2LF19cQnZ2gPz8/FiH0yFVVHh48cUlHH54KvonDr9/fALv/QBer4vV86BrGpxSEOuoGlYVgGd21H9uuxdeK4FruscmpnhXw9qozbO5XAy+7TaWXXddSOMT070t3qNF8ThMnMl+fDXNZ8Psib2jC1CGn92tnu9hQ4dPaMA+GOwRvd45/Ox+YGGsoxCRGAlry4lFixZx7rnnMnToUJ5//nk8Hg+WZWEYRr3WEt26deOBBx5g06ZN3HvvveTmBkt+nnzyySxYsIDevXvXm1dVVcUvfvELHn300XCGK+3QpEmTWL58OYsWLYp1KCIiIiIiEu8aSViwHE48Xftg2e1RDggwDDy5vTATkxs+7vNFNx75mdlEYn1tJRStht3bGkxmaHxNM5gAsWMd7NoCgUaSaBp7XiRKduyoYurURUybtibWoXRYX321hRdfXMqcOSFWgpEWWb3PxfJr2nGeWJEX3A1UtF+vnMZWM2ld0oBJ6/7Rc447jm5nhFZZyWaP/FXlhi20PfpddRUp/fpFOJrYa+3ndQ8LtYATEWlvwpaCNWbMGD799FOA/Soy7Hk8YMAAbr75Zi677DJcLleD6xx44IEsXLiQs88+m4ULF9YlNQQCAa6//npWr17NlClTsDVwJYuIiIiIiIhInUb+7gSwnAl4uuWTsGNT9Co12GzBZIaklMbHNBGzRJi9gSsbzQCUFgUrM7RVbSV4aiCrGySlN7+3SBR1757GY4+djmFUxjqUDmvMmH7cf/9YevRQb/ZIOKY/rPip6oHNgCPbcRWMPgmQ5YDSfV5+DG/i5YE0zUYSUN3ieXYaSTANwQE33sjuhQvxljSdPRPwR/48hhnCHukHHUSfSy6JeCztQfDrIXbz40GA1QTCe71zxAXQ789w6d+/PwCjR4/mueeea9UaV111FbNnz8YwDNaubV2VHJGWCFtCw9y5c+vu75vIMHz4cP785z9z3nnnhZSIkJeXx6effsoll1zCm2++WZfUYFkWTzzxBOvWreONN94gNTU1XOGLiIiIiIhIB2O4XGCzN3rlfTCpoS/OXdux17b8TfCWMF0JeHN6YLkSmxxnJHX8N1DbrfSu9b9e/F4o2QT+MFbNMAOwayukeSAj9+fnM3uGbw+RVho1qjcbN26MdRgdlt1uY+zY/vo3jpCrjoG8NPhuTTXjjkjg8D6xjqhxLhv8tRf8ZdPPlRpGpsK5XWIbVzxLYxi7mNv8wAbmtZYzPZ0hf/lLs60nakubaDkVBgGvHb+76dM8NpeLgjvuwOgkF4k6yMRFb7xsbtX8JA4Kc0Ttj8EQjMh0pI8YAz/wZazD6BA2bNiAYRgUFRW1eo2dO3fWrSMSDWH9DbZ34oFlWYwePZoPP/yQb775hvPPP79FVRUSExOZNm0aN910U72KD5ZlMWvWLI455hi2bFGJNhEREREREWmcrV//Jo9bDifern3wdukGkXiT1wBfRg6e7v2aT2ZwujB69Q5/DBIahwtyfvp68fugeGN4kxn2VlkC5Tt/ftytnTZ6FxGJE4YBEw6B3x5Rych2XJ1hjxMy4P0CeLAvPD8QHh8ACZ3jXHNE5DC2VfO6tHJe3b7HHUe/q69ucozf7cBbE7kTx9Ulzby+tNkY+ve/d4pWE3vL4NRWzUugH0kMCXM0IiLSVmF9mbQn8WD8+PF8+eWXzJkzh1NOOaVNaz7wwAM8/fTT2H/qbbonqeH7779n5MiRLF68uM1xi4iIiIiISMdkHxLaieJAWhbuHv0JpGYEz4q0lQGBpFTc3frhz8oNaU3bgIEYjvi6UqrD6VYAlhWszBCIcCuSyl1QXfbTvnrjXESks0l3wEkZMEytJtosiT6ktfCq+hQGksrgNu/d77e/pfdFFzU5pmxTWpv3aUxpU2sbBoNvu428sW1L3IhH6ZyIjZZ/c2VwRgSikXAaMWIEQ4cOZerUqbEOpVMzzWCJoZZcyC7SFmF7p8TpdPLLX/6SP//5zwwZEt4/xH/729/St29fJk6cSEVFRV0Jk6KiIkaPHs1LL73EL37xi7DuKSIiIiIiIvHPNrgAZr4X0ljL4cSb0wOy8nBUleOoLMVo4RX6lt1OIDUTf1omlsPVslhDTL6QCBoyBuY/HWw3EQ1lO6D3oZDZIzr7iYiIdFD5TGINd+O2toJVAVYNWG7ABGxgJICRDEY6LiOPvvwhbHsfcN112BwONr74YoPHd67MIm9Iadj228P029i1NqPBY4bNxuC//pUeZ58d9n3jgY0kunED27gXaLj93L7SOJ50TopsYO1EgNX4w3u9c8QFCJ5AX7RoEenp6TGORkpKSgBITU2NcSTSWYQtoWHt2rX06tUrXMvtZ+zYsXzxxRecccYZbNy4sa69RU1NDRMnTmTy5MncdNNNEdtfRERERERE4o+tYGjLJ9kd+DO64E/PxvB5sXlrsXnd2DxujIAveAU/gGFg2RyYCYmYruDNciW2usKDbUgrYpUwS4Ca6uhtZ5lQXhX8mlL/WRERkVZzWMkMdA9hM59R4fBi7TvAcgPlpAVK6GMegzMpHcL4q3fAtdfiyMhg3T//ifXTlct7uMsT2L0hney+FeHbECj6IRvTv/9JaXtiIgV33UXemDFh3S/epHAoPbiVIh7CpLbJsemMIY+rMcL5RdGuDSaMpwejxA+UxDoIAbZv3863336LYRj06dMn1uFIJxG2n1iRTGbYo6CggIULFzJu3DgWLlxYl9Rgmia33HILq1ev5oknnqhrTyEiIiIiIiKdm21IAbbuPTC3b2v5ZMPAciUQcCWEeF1X6xlOF47jTojwLtKs9x8DRyZ4d0ZnP8MOxTthxQIYelx09hQREelozAqouBGH/1v6AR4blLigygGmATYLUgKQ44FE0wc8B96vIP3/wJYdtjDyL72UzEMPZcVdd1GzcWO9Y5u+6kp6t2ocieF5VVmzO4Hty3L2ez7j0EMpuOMOknv3Dss+8S6Fw8jncSr4mFI+pIatWJgEbAFsuMjiBDI4jaQwtB8RaY/+/e9/N3ps69atTR7fm2VZ1NbWsmbNGt544w08Hg+GYXD00UeHK1SRJsVbCha5ubnMmzePSy65hP/+9791SQ2WZfGvf/2L9evX8+abb6rkjIiIiIiIiGDYbDjOORfvE4/FOpQm2U8ai5GZGeswOrfNy2Hzj+DIBn85mJ7I7+nqBoYNvpymhAYREZHWsGqhYhL4V9Q9lWBCT3cz8/zLofwqyPgX2MJ3LiHj4IMZ+Z//sO7xx9n86qt11Rr8Hgdr5/dk0JjNGPb96ke0iN9tZ928nljWz9UE7ImJ9J80iV4XXIChnvb1+Kiggl1UYGKSgYWJz/JjkoxBKU6KSWRQJ6rOIJ3J5ZdfjtFAJTjLsvjhhx/41a9+1eq1bTYbV155ZVvCEwlZ3CU0ACQkJPDGG29w66238sADD9RLavjkk08YNWoUP/74Y6zDFBERERERkXbAedZ4fM8+heXzxjqURjl/cV6sQ5Av/xv8v2FAQg+o3QD7F6wOH3saOH46gbLqK9i1Fbr0jNx+ccjCYhvrWcVSdrGD2rxaetCbQRxKL/pjxFnvZxERiYDqR+slM7RIYD1UPwhp94Q1JJvLxcA//Ynck05i1f/+L5UrgvFVbk9h9ZxeDDxxKzaH2cwqDfPVOlj1UR/cFQnBJwyD7KOOYtDNN6sqQwPK+IYNPIGJDwADFwZgWF4MbNSwno08QwXf05crMegc1b/9rMEfZ6+j/LTue0aCyQsteT4UCQkJTJkyheHDh7d6DZGWiMuEhj0mT57MAQccwO9+9zv8fn9dUsPKlStjHZqIiIiIiIi0E0ZmJvYxJ+P/cGab19reK4sVh/TGtNvot6qIASuL2rymbeAg7MMObvM60gaWBT/M/fmxLRFceeDdEZn9bC5I6LbX/ib8+Ckcf1Fk9otDPrx8yjts5+eS3V6bl62sZyvryaUHJzGBBJJiGKWISOv5MNmBh2TsZOOKdTjxybcc3G+2bQ3Ph5AwHlwjwhPTXjIOPpgRL71E+Q8/sHXaNHbOnk3FtlR+fK8f/Y7dRmpebYvW270hnU1fdcXvceBIS6P7WWfR87zzSM7PD3vsHUElK1nP41j4mx1bylfYSCCfX0chstizMRhbnJ0etOEHIvTavAM7/vjj96vQMG/ePAzDIDMzk4MPDu3vUJvNRkpKCt26deOwww5jwoQJ5OXlRSJkkQbF10+sBvz6178mPz+fiRMnUl5eHutwREREREREpB1yXXkNgfmfYtVUt2q+1+XgtStPYPnwPvWe77mhhEsf+4SMsppWRmaQcN1NrZwrYbNrC7gr6z/nzAYs8O4M7142FyT0AWOft2S2tPLq0g5qPu/VS2bYVzHbmMNbnMaFqtQgIpiWxdeBAN87HYwOBBhkb79XWZtYvMs2PmEnNQQAOIBULqQ3fUmJcXRxxv0aYamm5H4tIgkNe2QcdBAZBx3EAddfz7Z336V47lxWzUkls3sJeQW7m05ssKBsSyo7V2RTU5FH2rACup52Gl1POw17YmLEYu4ItvJaSMkMe+xiHnmMJYk+zQ8WiROffvrpfs/ZfmpLc+SRR/L+++9HOSKR1on7hAaAMWPG8Pnnn3PmmWeyYcOGWIcjIiIiIiIi7Yyta1dc116H54HWlRR+8/Jj9ktmANjaN4fn/3Qyf7jrXWyteD/ded4F2A9Vmc6YayyZwNklmHjgLQpWUWgre0qwncW+yQwAW5a3ff0OYgeb2cr6ZscVs40trKM3A6MQlUjrWRbM2gaLdkGWJ5kre4Gr/Z5vjzvFpsl17hrWmybexARerK3mZIeTvyUkYmugb3isvcIm5lJc77nVVPG/rOJ2CuiGTlKHxDLB+2l41vIuAMsLRmQrZTgzMsi/9FLyL70UKxCgev16KpYvp2T115ily3A5i7HbavH6fNjsWfj8XbHlHk7K2BEM/f0Qknr33u9Ka2lYNeuoCeG1xL6KmUMfLg9/QO2Mj7X44iwh1KeWE2HVlnYTIrEQtoSGzz//nKOPPjpmv1ALCgpYuHAhZ599Nl9//XVMYhAREREREZH2y3n2OfjnfkJg4ZctmlfaJYVlI/o1eryodzarDurFkO+3tGhdW8/euH73+xbNkQjZuaHxY44MsCWDdzsEWlfhA8MGzjxwZjU+pmQzmCbY4uvN5UhYxdIWjF2ihIYwME2L2bMD2O02VLk8/J4ohOfWBu97PemsN+ChI2IbU0fymNfDerP+ia7Zfh+H2+2Mc7avVg678fLpPskMe9QSYBZFXEbf6AYVrwIbwWpthaz9FgN/ITiHhWm95hl2O6kDB5I6cCBwdr1jGzduJF8/jNtkN5+3ct6X9ObSDl/9yc4g7HF2vbMdP7A11mF0CKap5BCJP2H7qXzcccfRtWtXLr/8ct58802qqqrCtXTIcnJymDt3LhMnToz63iIiIiIiItL+Jdx6O0Z2lxbNWTukO5at6eT9NUN7tGhNw+ki4fa7MFQquH3wuZs+bnNCYp/gzZEGWGD5wfKB6QHTjWF5gvctb/B5KxCsxODKg6QBTSczQHDN5uLoJEoJvc1HKSURjKTzePllH3/5i5ubb06huFhvcofb6/t0T5m3A4qaqDAvoTMti3kBX4PH5vpDLzUfLT9S0WSDhO+piFoscc/cEeb1isK7nsSUl92tmmfiJkC4EmVERCRcwppmtmvXLl566SXOP/98cnJyOPXUU5k6dSqbNm0K5zZNSkhI4LXXXovafiIiIiIiIhI/bHl5JP3fVIy09JDnGCFU4zRaUrLTZifhnvuxDzs49DkSe9aeJAb/T+269yS5GHvd2OuYEUxqsPzhaVfRqRjBahWeKqgugfItULYRR9XW4P3q4uAxMxDrQDsMpzP49Wu3g92ucubhtu8/qUGY35Tt5Br7t2wmFzEmmvu86+uiJcL9CW6HXzDSavpsioh0LBGpKWNZFl6vl48//piPP/6YP/zhDxx00EGMGzeOcePGceSRR0ZiWxEREREREZFm2QYMJPHRx3Ff93us8rJmxw9cvg1bwMS0N36aYXCI7SYMh5OEu+7FcezxoYYr0eBKavq46QbP9uD/AQwDsAdve/IYLKuBNpwW+HaDrxScXcCZ89PcBhg2cKpiB7vW0KVqFWXJxbBPr2TDtIKfA2/lnmfIdmdDwnLIGxr1UDuS//kfB336GFhWKdnZ2bEOp8O5pD9MLfz58ak9IK+ZHzsSGpthcKLdySz//lUaxtqdMYioacPIwI5BoJE6DYeQGd2A4pm9e3jXs7Ws2pa0by5yWjXPTjJ2ksMcTfvjZQ3eOEuh8qIEYZHOLGwJDYcccghLl/7c43DPH/HWT1epfP/99/zwww9MnjyZvLw8zjzzTMaNG8fJJ59McnLH/wUhoZk6dSpTp04lENBVFiIiIiIiEjn2wUNIeuJZ3Ddfj7ml6aqCGWU1HPbFGhYfN6jB473WFzNgxfZm9zQyMkm86z7sI0a2KmaJoK79Gz/m2wXeYmiySHhzLPCVQKAKEnqCrYGe7rn5YIuvN5bDyueGhf+EH15nUHYSa0cPDGGSxeBvFsOOuTD4bBh1PSSkRjzUjsgwDI45xsHGjTpZEAm/GggHpMGiXZDlLuOSQ7rGOqQO5Q8JCWyxTH786f1EAzjH6eJUR/vrD5+Ok5Ppyofs394gFQenoq+NkNl6g5EKVjhaXzvBEcrvHYkX2RzHTj5qxbyjMeLsRH9r2BmEPTLXO0eMHT+wOdZhdAh2uz1saxmGgb8dtniSjidsP5m/++47Nm3axOOPP87pp5+Oy+WqS2YwDAPDMLAsC8uy2LFjB88//zwTJkwgJyeHM888kyeffJKtW7eGKxyJU5MmTWL58uUsWrQo1qGIiIiIiEgHZ8vvS9K//4PzgouCV8c34ZyXv+Swz9cErxDfS/+V27n80Y+bLWvrGD2G5FemKZmhvepV0PDz3h3g3Unbkhn2YrrBvRFMz/7HejYSQ2ewaw3893/gh9cAi9zdNfTZWt7stO47q+ix46dqDYXvwbTzYccPkY1VpJWO7QrXDYUTu7hpouCPtEKmYePppBSeSErmj7VuXktO5caExAaq5rQPE+nJBfQii2AFCQM4hAxuZTA5JMQ2uHhiGOAaG561XKPBaCDZUOJWMn1IoeVJKrmMiUA0Iu3LnnO3e87ZtvUmEg1hTcHq1asXV199NVdffTU1NTXMnj2b6dOnM3PmTHbs2AFQ74WkZVm43W4+/PBDPvzwQyZNmsShhx5a15ri8MMPD2d4IiIiIiIiIvUYCQkk/OE6HCeOwXPPnY1Wa3D4Tc5/7jPGvvcdKw/pjWkz6F9YRI9Nu5tePyOThBv+jGPMyZEIX8IluwckZ0DNXifRvcXBdhHhZvnBvQkS+4Jtr3LojSVVdHTFK2DmJPBU1Hv6uEWb+Iw+bOqZ0eC0HjsqOeHrjfWTiap3wozfwemPQo/DIheziLRLB9sdZPgD9Grn1W4MDE6lGyfTlTJ8JGAjJc6ulG43ki4Az3vUa1FkAVbNTzcPWGYwcdVIACMJjBT2y0RN+p8oBi3R0ouLWM1kTLwhjc/jVBJR6xHpHFqbiLBvdX6RaInYK6Xk5GTGjx/P+PHjAVi4cCHTp09n+vTpLFu2rG7cvl/83333HUuWLOHuu++mW7dunHXWWXWtKRISlKEqIiIiIiIi4WcfdjBJr7xBYN5cfG9NI7Dk2wbHZZdUcfQnK5pdzzbgAJy/OA/HqadjqM1ifBg2Br5+K3g/UB1sEREplh+82yChT/AKU8MGB3fCKwIrt8P71+6XzABgNy1Gf72R4uxkCvt3YXdmEgHTJKfSy6D1u+haUt3wmv5a+PA6+MULkNUvsvGLiLSBDYNsVBWgTRwHQNIvofbl4ONAGZi7wNrnBHa9825OsHcBW1YwsSHhHHAeEpVwJbpS6E9//sQ6pmDibnJsDifSk86T2OJlLd44a63hRW2xwmX9+vUhjw0EApSVlfHDDz/w7rvv8t5772GaJpdccgl33nkntnaeRCgdR9RSP0eOHMnIkSO5++672bx5M9OnT+e9997j008/xesNvsDYN7lh+/btPPvsszz77LMkJSUxZswYxo0bx1lnnUW3bt2iFbqIiIiIiIh0AobDgWPMyTjGnIy5fh2+d98msORbrHVrsQLN9AU1bNh698E+7GAcZ56N/ZBDoxKzhNGoicGEBssEz/bI7xeoAX8pOLOh4DjIyIv8nu3NvLvBXdbkkNzdNeTurgHA4/GSkBDCyT9fNcy9A855AfQmq4i0Qz52UMO3mFRh4MRJD5I5HIPw9TXvNJKvAe934P4ArEaS3erxQaAIzApIOAFSr494iBI76RxIAX9nJ7PZzecEqNnrqEEaQ8llLJl0rspODgbiwNn8wHbEgQ/YEOswOoT8/PwWzznssMO49NJLWbhwIeeddx4vv/wyPp+PV199NQIRiuwvJrWsevfuzTXXXMM111xDVVUVH330EdOnT+f999+nuLgY2L81RU1NDTNmzGDGjBkYhsFhhx3GuHHjOPvssznkEGVQioiIiIiISPjY+vUn4U83AGB5vZhr12AWrsTaVYLldoNlYSQkYKRnYBs8BNugwarEEO96HAB9D4VVs8HyRWdPXzE4MuDo86OzX3uy/C3YujBy6xcvh2Uvw6GXRm4PEZEWquE7yplBLd9h7XO1sYNs0jiFDM7ATnqMIoxDZg24K8E09m8l0eQ8wFMDgSpw6DVcR5ZAV3pxEakcRBEf4acSn89HbsJIenA6dpJiHaK0wIgRI7Db7UyaNIlJkybFOpxOZ+TIkXz44YccdthhvP7664wYMYLrrrsu1mFJJxDz5lypqalMmDCBCRMmYFkWX331VV1rih9//LFu3N7VGyzLYvHixXzzzTfceeed9OrVq641xUknnYTLpVJdIiIiIiIiEh6Gy4W9YCj2gqGxDkUi7YxrYfm06O1nmZDXFQYdGb092wPThO+ei/w+S16Eg/4HHHqfSERibzcvU8p/Gz3uZzelvEYVc+jGHbjoGcXo4tjuv4J/E9AbjDIwisFoorKW5QArB6xMMHfCrj9D3r+C7Z+kQ9rFIrbwLrUU1T3ndXrZyvsU8Qm5HE0fJmLrRC1gPKzDFWcVYTwEAFi0aBHpwR98CgABAABJREFU6Ur6iqWhQ4dy+eWX8/TTTzN58mSuvfZaHI6Yn26WDq5dfYUZhsGoUaMYNWoU9913Hxs2bKhLbpg3bx4+n69uHPzcmmLz5s08+eSTPPnkkyQnJ3PyySdz9tlnc+aZZ5Kbmxuzj0dERERERERE4khNEaRmQOWu6Oxns0GSHSwLjJZcVhrnNn0GVUXNj2srTzms/QgGnxX5vUQk5rZTzlZXBRnUkEn7uuJ+N681mcywNx872c7f6MmDOOgS4cjiXPV74P7q58dWJlgZQBUYNWB4CJZisIGVACSDlUq9Ug7e76HqNUj7ZTQjlyjZzmw28nqjxwN4KGIu1WxkCNdjJzGK0cWOgwPitOXEuliHIT855ZRTePrpp9m1axeffPIJp556aqxDkg6uXacd9u3bl2uvvZaPPvqIkpIS3njjDS655BKys7PrkhkMw6iX4FBdXc27777Lb37zG7p3787RRx/N5MmT+eGHH2L5oYiIiIiIiIhIe7fqU0jPBWdCdPbL7AaVO6BkfXT2ay8KZ4Q2zrTAXQtV5VBRiq26HCrLwV0TrPIQilUh7iUicWs525nCXKbyKe9kr+QhPuZFvmQnlbEODQAvmyjltRbN8bOLXfwrQhF1EJYFFc83cMAA0sDqCmYfMPsG/291BSuNBvtSVP4brEBk45WoK2MZm3gjpLGVrGMtUageJdJB5OXl1d1ft06JJhJ57apCQ1PS0tI477zzOO+88zBNky+++KKuesPKlSvrxu3bmuLrr7/m66+//n/27ju+jfp84PjnTtvbjp3YWc4gmxVCIECYIcwAZYSWsjpoS0kHpWW2zNIyfy0tTaEDmpZRVsJMIYRAmCEJ2WQv20lsx9uWra273x9KPBLZlu3T9PN+vfSKdLr73mPFlk53z/d5uPvuuwkEuig1JYQQQgghhBBCiP6tcnOoUkL+cKgugYA/evvKLoC07Lb9FoyK3r4STVUXk058XnDWh5IW/F7Q254yta9koQBmG9gdkJkLtk5mVFZvCiU/qAk9pyeu6nWN53w+lgcDKGl2vu33cYGl/5TdjoUvdC/P6y3sIED2AJXrdDcXKdKz3Qjr2MtrrEZv92aho7OdKvbyGT/iVPLJiGOE0Mi7vdquheUEqMNMnsERpQjvKgjsMWasYA14PgPH6caMJxJCOe92eG/oTj1rcLMfB4OiGJUQqaGqqqr1flNTUxwjEf1F0iQ0tKeqKtOnT2f69Ok88sgj7Ny5szW54dNPP21NXDi0NYUQQgghhBBCCCFEWB4n1O8N3TeZoWAE1JSFLqobLXsgZLYrI165GY660Pj9JCJXLbiqD1/e3ATOulBFhkjohP5v/F5wNoQSGjLzQi1D2k++9bugsQxyR/Q99hTk0XXmuF2UHqh44TOZ+J3XQ7muc4M1RpVKUtwK3cs9emPrJbVKs8ITuhM3OlcqidUWIdkE0PgfX3d6wdKNjw/Ywrc4PsaRtdFw08zSXm2rE6SJ98njW8YGlSq8a40fTxIaUoaLfTSxvUfb6OhU8RHF/eBvzscuvJjiHUaP+JAqKonk5ZfbWrkMGiRJQCL6kjKh4VCjR4/m5ptv5uabb6axsZH33nuPt99+m3fffZf6+vp4hyeEEEIIIYQQMVNR4eSrr8q58MKxqGqYkrpCiPCa9nd8fDCpoXE/tDQYsw+TGXIHgz39kH1XGjN+Mmja2/FxwA81FeBu6du4Xg94y6G5HvIHQ/sKA017JaGhE+8H/K3JDO295PdxlcVKuiKfI331gu4Ke7n9Fd3FZTgwy2vca1vZTwtdJ51togIXPtKIT9URH3vQiDBRKwwvWw2MJsX4e3axOubjibhqZGOvtmtgI8UGx5KITIzBjCXeYfSICT/0MElFRMfjjz/Oq6++2vr4lFNOiWM0or9IiYSG9rKzs/nmN7/JN7/5TYLBIJ9//jlvvfUW77wjPROFEEIIIYQQqe9vf1vFO+9sY/DgTKZMGRzvcIRIHkHf4ctUFXKLwJEFDRV9a0GRngPZg8K3PgiE2Xeqav86Oxugbn+oJYRRPG7YtwtyB0J23uH7FB3s6OS1d+s6+zSNsabkmr2ZiEoI3wK3Ho16NAqSbIZsImmKIFFAQ6MFb9wSGvqSzGDE9ilNN/i10VzGjifiKoinl9vJ35xIfZ988kmP1vf7/dTX17N+/XoWLFjA5s2bgVCV/BkzZjBmzJhohClEBymX0NCeyWTitNNO47TTTuPxxx+PdzhCCCGEEEIIEXXXXXcMo0fncswxhfEORYjkYupilpo9HQqPALcTWurBE2E1AZMJ0nIhI6fr8bt6LtWoB37WuiporI3OPnQ9lCgR8EFeYf96fXuoOFyCDWBVoLCT50TPDMHE1jBJDZkoZCOvcV9k0H1bFAUlbskMAGoEMXZF6eP2KU2xJ/Z4Iq7UXv7dm5DfA5H6zjjjDBQDKkQVFhbyt7/9zYCIhOhewiU0rF+/nokTJ2I2J1xoQgghhBBCCJHwRo3KZdSo3HiHIUTyyRzY/TqOzNAtGACfB/zu0L+6hh4MhlpKmC1gtYPFARYbRHKyMJJ9p4rMwdFNZmivqT6U3JAp1Wo6c57ZwvN+L1Vax6YIl5qtZEkrBEN8U0njAb3psOWXKmlY5TXuk/EU4sCKm86rsIxjEOlxTAqwMBQVG1o3rTE6Y2O0wRGlEMtocH9o4HhHGDeWiLssxvVyu7EGR5KYfOzGm2QVgnwE4x1CytH1cE2xInPOOefw9NNPM2LECOMCEqILCZc1cOyxx2K1Wpk4cSKTJ0/mmWeeiXdIQgghhBBCCCGESHWObMgugsaK7tc1mcGRAY50sHnB4icY9GNSbOC1QbCHp1sKJ/Qu5mS04hOobyBmE9ObGuHzpXCRXBQMJ11R+Ks9nX/4vKwIBlA1jW9ZbXzLEr8Z7anmdMXObeg8p7uoIEiWpnOVks63SYt3aEnPgomzGc/brA/7vBUzMxgf46g6MpFBOtNxsqTH2yqoZHFuFKJKEdaju35e84ZuugaKCqotdOuM7Shj4xNxlcFIMhhBMyU92m4gZ0YnoARjYTQWkquClQU/sDneYaSE4cOH96hCg9VqJTMzk+HDhzN58mQuvfRSjjzyyChGKMThEi6hAUL9WNauXcu6des6JDSceOKJHHfccUyePJnJkydz9NFHY7NJ2S0hhBBCCCGEEEIYoHBCBAkNOqS3QG596F8lNLPJrOtt1Rj8FmjMhvrcyJIbivpJQkPVXnj5CUhzgK05NvsM2OHNf8Cxp8Ew6e8bTpGqco/dAUBpTR3F+f2oYkiMnKs4OAc7zejUVO9hZHF6vENKGScyEhMqH7KVJtytyweTw8UcTRHZcYwuJJsL2hIa9CAEmkBzgeYBtNByxQqqHUyZYAoluzg4DguD4hN0MrCfCKZCCFa2LQt6IFAHAWcokeFQihJ6jS15YHK0LVdzwHF61EMWsVXEeWzn6YjXz2ES6QyLYkRCJIaSkpJ4hyBEjyVcQsOoUaPYvXt32OdWrlzJV1991frYZDIxbty41gSHyZMnc+yxx5KTkxOjaIUQQgghhBBCCJEyjjgVtnZRvtrig8Hl4HB3vg6AxQ/5NTCgFqoLoC4P6GQWVHYR5PeD6gG6Ds8+EGrRoWbHLqHBnR1qEfLP++Ce/4Apucori9ShKAqZKNTFO5AUdDzFHMcwdlNLScNeJgwaxeAESGQ4yMZosrVzaAz8BwINQJgS33oglOQQqAPVhsk8kgHm78U61OSiqJB5DTQ8HkoU8e0Hf2PX2+h6KKEk0ATmTLAVgmKGzKtCSSUipQzgeFxcyD4WdrtuGoMZzQ9iEFVi8FCCOclaTnik5YQQ/VrCJTTs2LGD5uZm1q1bx9q1aw97vn1Pl0AgwKZNm9i0aRMvvPBC6/Li4uIOSQ6TJ09m8GDplyiEEEIIIYQQQoguTDgHlvwRPIf3uyezKZTMoPSg16yiw8AqyGiGPcNAD9Nn4djLQI1V/4U4+uwd2Lo6dN+TCZkmUKN8YlpXwXPgombZVvjgZTj329HdpxAiLlRURlOA2eNKqGQGAFrWM6D0f+g5zTTldP8ZYvL5KNpdhjXz3zDk1tAFdxFexpXQ9Bo4F4eSQnoi4ISgCzKmQ+b10YlPxN0wLsVKDnt5Gz+HH98pqOQxhZFci7kftQJK3pYTX8c7DCFEnCTk0VBGRgannHIKp5xySoflixcvZs2aNa23bdu2oWmHl44qLS2ltLSUN954o3VZfn5+hwSHK6+8Mto/huiFuXPnMnfuXIJBybYTQgghhBBCCBFjFhsccwksf67j8gwnDNnX+3HTXDC8DMqGd0xqMFvhmG/0ftxk8sFL7R4o0DIAMquiu09XXsfXe8nLcM5Vba1BhBAi2ppXwa6foWheCqrs2N0mmnJ9eOyHn9NWNchsspBdZ8USUME7H/zVMOIxUJJrJnXMeMqgcj/YFehNbqCmQGUt5O6A9PGGhycSwyDOpIBTqeIjqlhCgGZ0zUIBRzOUb2IjL94hCiGE6EZCJjR0ZsaMGcyYMaP1scvlYv369axZs4a1a9eyZs0avv76azwez2Hb1tTUsHjxYhYvXoyiKJLQkKDmzJnDnDlzaGpqIjs7wbKphRBCCCGEEEKkvpO+Cxvfheaa0GOzP1SZoa8c7lC1hv2FbctO+QGk5/Z97ES3Y32oQkJ7rjywO8HSTfuO3grYoDm/47LqfbBhGRx9cnT2KYSICzc1VPAZjezAmd9AAwXkcwyDmIYZe/wC81XB7l+B5m1dlOm0kOm04LUFcaUHCJp0FF3B4lPJcJpR9UMSrho/gYonYfDNsY09GWgB2H4X+N0QKIb0vWA6/LpA59vboGUoaEHYficc/RKotujFK+Kmhc1UsxAna1HQsAC66sPFp5SwgwGcTR5noyZZxQIhoqW5uZn6+nq8Xi85OTnk5uZikrZtIs6SKqHhUGlpaUybNo1p06a1LgsGg2zevLm1isPatWtZu3YtDQ0N8QtUCCGEEEIIIYQQycGRBefdBa/dEnpcVBGaNmuE3HpoygJ3GhRNhGn9pMT10gVhFirQWAQDSkAx6PU9dGzCVGL46DVJaBAx5cfHbr6mhM14cOEb4KeJYzmCY3CQHu/wkloQL9t4gWrWoBNq5eAz+2iggQa2s5u3KOZ8hjEzPgHufRCCzrBP2bwmbN4ILw5VvwjZZ0H60QYGlwLK54FrW+i+boHmEWCrA1stKEE48DuBTruPAwV0E3hzwZvf9oRnD+x5Copvjl38IiZqeZ9y/gOEP9bwUUEFz9HEKor5JSYcsQ0wTjyUYCa5LlB7kKre0eL1ennxxRd54403WL58OdXV1R2eN5lMHHXUUZx66ql8//vf56ijjopTpKI/MyyhIRgMJkSGjslk4sgjj+TII4/k2muvbV1eUlLSoV2FEEIIIYQQyW4XtWymkpqsOo7GxFEUJd1JCSGESEhjToMpV8LX/4H0FmPHHlALNYVw0W9B7U197CS0eWX45UEb1A+F3D2gdN9XPjIKNAyBQCcXJLauBl2XthMiJiop5VPewEfbrHGvxct6PuVrvmAqMzmCY+IYYfIK4mM9f6GJ3V2us4s3CeBiJJfEMDqgeS00fWHMWLoGlU/D6L8aM14q0LxQ8WLHZV4v1APeNLA2g9UPdh1Meqi1hEcBrwX8DrCq4PCAvd1nxf7XYMj3wZwZ0x9FRE89n1HOvIjWbWETZTzBCG5H6VX/kuRiYRSWJKtIYcEPrIt3GCnnhRde4Oabb6aurg4AXT/8mDwQCLROHn/yySe56KKLePrppyksLDxsXSGixbCEhvPOO4/58+eTlZVl1JCGGjFiBCNGjODSSy+NdyhCCCGEEEL0iQsf/+ErSgl94fSmedlCI/9jE9dwPMXSA1QIIfru7F9B4D3wdn6xrFcy3XDaPTCg2NhxE1VTPdTt7/x5fzrUD4ecvaD2ceadboKGweDL6HwddzNU7YVBw/q2rxTj1nW+1oI0qyr95Dcz6mqpYCmvESQQ9nmNIMt5DzNWRjAhxtElvxLe6TKZob0yFpPNWPJi+TrXvmbseM0rwVMKdvkLBaB2MQSbQNOhuQma6uCwNtSdXaxtPnADbHbIyoXMLMAD1Quh6FvRi1vEjIafSp7v0TbNbKCJlWRzYpSiEiKx/OxnP2Pu3Lnouo6iKGGTGQ5q/9xbb73FsmXLWLp0KRMmyDGMiA3DEhqWLFnCSSedxMKFCxkxYoRRwwohhBAiSfiCsKQSar1wZiEMSYt3REKkrufbJTO014yPeazgZk4nu5+UyhRCiKhRVSjMgJoB0FJrzJhmC+QMBUf4EuQpqWRz9+v406BmNGRVgr2pd/vxZkBTEWgRnOoq2SwJDe286/fzhM9Ds67jS3dwlLuF39kcFPWXCiJRso5PO01maG8tSylmXL+YEWyUID4qWdajbcpZGtuEBqdB1RkO0vXQmJLQENK4ApyNULMfgn1IhvN6oLoilHiXNxAal0tCQ4poZDkBen5MUcvifpHQ4KYUU5JVd3RLywlDPfLII/zlL39BOVC1TFVVzj77bGbNmsVRRx1Ffn4+VqsVp9PJzp07Wb58OS+//DJ79+5FURSqq6uZOXMm69evJy9PJtWI6DMsoQFgy5YtnHDCCbzxxhucfLL0IxRCCCH6i6AGP/oSNjSEHv91Kzx1Ihwjx7NCGMvromzXEnYX7QefB/xe0DUsugaqCcxWPBY7K+pfZ2buGZA3ON4RizhoaNApKdE45hi19eSEEKIXAk3gK4esgWDPgMZyCPh7P156HmQODLU6aNkMXGRYqAmtoiSy9XQTNA4BVw6k1R1IbNBCF/EO9L1u60qhHmgZoYI3C1y5XVdl6G1M/UCJFuT3XneHzuJbg0Hu97p52pEet7iSnZN6KiKsHtBCE/vYyVDGRDmq1FHNagK4e7RNHZvwUI+d3ChF1Y53X+gzxGiuCBLE+oO6avjqJQiUGzdmUIPqSqifD7m3wiD5HpXs6lnaq+1a2ISPKqwMNDagBGNjFLYkaznhxw+sjncYKWHv3r088MADrecLTjjhBJ555hkmTZoUdv3JkydzxRVX8PDDD/PEE09w1113EQgEqKio4L777uPPf/5zLMMX/ZThqb81NTXMmDGDF154weihhRBCCJGgvqxpS2YA8Gnw751xC0eI1LN/F7zxMPz+PDZvXQDNdeBzgR4EDlzd0TXwe8DVwOamr+Gxb8C8m2HL5wcuBon+QNN0rr3WzQ03uHn66T5ceBVCgLddmwRrGuSPhqxCMNsiH0NRwJEN+SMha9CBi/CAr4sWDKnGd2gJ8C7oQXB7Yb8P9ihQrUAT4AF8gP/AfSdQTWidSi+0eEDvfiZ8r2JKcYsC/g7JDAdtCAbZq4V7RkSilooerV/Tw/X7O1cvXi8dHTcxeu/1VybXuMlk7Zfw8yvBE6W/mUAt/OKbsHxpdMYXMeOnutfb+qgyMBJhtKlTpzJx4kTmzp0b71CS1rx583C7Q4mB06ZN46OPPuo0maE9k8nEL3/5S1555RV0XUfXdZ599lm8Xm+0QxbC2AoNAIqi4PV6ue6669i2bRv333+/0bsQQgghRIJpCXP+ONwyIUQP+b2waC58/lIoYQHQ1O5n3GuqGlp/y2eh26gpcMW9UrGhHwgEQhUaAGprJZFFiL455G9IUSA9N3TzucDbEkok8x+4mK4fWMdsA4sdLA6wZ4Yq6HQ3dn+n6xCsB381B6sxEFSgxRS6ta6mh6k844dANQRqwJwP5gFtiSOdkQv1rbxd/Cp65fe017SwaSKd03u4fn/X29dLj1W58q6SiQNu8B+4BX0HjvGV0GeFxQ5mB1jTQQnz2aH389+TLz+CP9zVt2pJkfC44NHb4Kf3wRkXRHdfImr68r4q78mJbeXKlWRlZcU7jKT27rvvtt7/xz/+gcPRs5all1xyCbNnz+bVV1/F7Xbz8ccfc8455xgdphAdGJbQcPzxx/PVV1+hKAqKoqDrOg8++CDbt29n3rx5WK1Wo3bVra1btzJu3LiY7U8IIYTo76YPhHwb1LRLyP3G8PjFI0RKKNsAr9wLNWUdFhdX1HS76WHr7FoFT3wTLvg5TLvCyChFgrFaFZ56ys6aNUEuvTS5SogKkXDMOZ0/Z00L3drxe33YbBGe++hq7FRj6eY10XzgrwDN1ccd6aHEBs0JlsGgdlFJw9qDKhspbrrZzMt+32HLh6gqoxTDC7v2G9kM6NH6WT1cv7+z9bJthI0Y9UQ0HxqfDu4G8NRDoJNZrEHAf+B9UFHAlgWOPDDb29ax9OOejqu/gP+7E4IHZk74TGCOwkVnvwlQQskjT94HNjucdJbx+xFRZyYbP7W93jbVuSlBNX6+c1S5kZlTRtm9ezeKojB27FgmTpzYqzEuv/xyXn311dbxhIg2w96xPvnkE6699lrmz5/fIanh5ZdfprS0lDfeeIOCggKjdhfWypUreeihh3j77bfx+6W8qhBCCBEraWZ49mR4fhfUeuG8IXBmYbyjEiKJbfkMnr8NAodfYBhfUk5uUwv1WeH7Wis6TNuw/fAnfO5Q24ravXDhzQYHLBLJkUeaOPLIcDPChRA9YhsYunjkrzN+7PTxxo+ZqAYUdf6c5gbvHjBy1rTmAW8JWIeBKS38OvlSseig40xmLrdYmd8uqSFNUbjTZg9TDUNEagBF5DCQhgjKlluwUUw/ek8wwECOZzdvovXgvSOT4aTTxfuRkewjQ0lVmjeUpOCsCFVjiJSug6cxdHPkQfrAAy2M+unvSeU+eOz2tmQGgAY7pEXh/H9DuwQSXYMnfgNDnofho4zfl4iqHE7Gza4eb2djKA6KoxBRYrEyChuxm4RsBD8+4Kt4h5ES6upC328GD+79MXFRUdtnan19fZ9jEqI7hqVa2+12Xn31Ve644w70A2W1DiY1LFu2jGnTprF582ajdtfBokWLOOuss5g2bRpvvPEGmpQOFEIIIWJucBrcdiQ8MkWSGYTok21fwnO3hk1mAFB1uHbhZ2S4Dp/dpehw6UdfUVTb2Pn4nz4P//uzUdEKIURqyzw2ucZNRCMmhF+uecBbhqHJDG2Dg6+s86oPncXUT91is/OMI50fWm3c4PEyPy2DyabkmrWZiI7i5IjWG89UzEhVpZ6wkkU+x/Rom8GcGqVowlBUSD8GWqqgobRnyQyHctdB/S4IeiHjeONiTBa6Dn+5H7zujstre1YePWI1h4zr94UqNQRj1K5EGCaH01B6ccF+AGdHIRohEktOTg4AVVXdJ152prq6uvV+dnbqVzUR8Wd47bjf//73zJs3D4sldCB+MJt79+7dnHzyybz//vuG7Odg9YfjjjuOCy64gI8//rg1kUIIIYQQQoikVF8BL9wGwa5nGxXVNvKLF97lvC/WU1xRw5DKWqat38HP//seUzdFMAvlk//Amne7X08IIfq7gd8wfsz0iZA+1vhxE1XBYEg/pM+xHgTfHohqj2odvHtBP+Qz1WyFwTLT9lDjTSaut9o4zx8gSyozGGI44ziOrkvVH8ExESc+iI5GcRk2ciJaN4+JDOLE6AbUnq7DHg+4elfu/jBBH1RVgdve/bqp5t1XYdPqw5eXZoMWhfeq0pzDl+3cBK//2/h9iagyk0E+F/RoGyuF5MQy+UmIOBk+fDi6rrN582ZKS0t7NcY777zTYTwhoi0q6dbXXXcdI0eO5LLLLqOurq41qaGxsZFZs2bx5z//mRtvvLFXY/t8Pp599lkef/xxdu/e3SGJ4WBFCCGEEEIIIZLS/N+CN7Ie4mleH6ev3sLpq7fg9fmwWXs4++Stx+CIEyBTejYLIUSnsk8Cxyhw97xkcaeKrjZurGRxxDGw7tO2x/5K0GPRBzkIvkqwDWtbNHIimKX6gIiNCUxlIEPZyipK2YJGEAWFIYxmLMcxGEmu6S0bORzDz9jA07i7aO2RzzGM53oU4+f1dW7F07BxHRTbwHZ4VbVeqc6Ct38Cs5+HjIHGjJnonI3w3JPhn/OZYU8WFHdRma6nyjPB1Um1lFf+AWdcCPmDjNufiLpBzMZPLQ182u26FgYwgtswEaXqHwnGTSlqdC4PRo2bWBw79g/nnHMOX331FbquM2fOHN5+++0etRr78ssvee655wCwWq2cccYZUYpUiDZRe8c69dRT+fLLL5k1axZbt25FURQURSEQCDBnzhy2bt3KH/7wh4j/SJqamvjrX//Kn/70J6qqqjq0tThI13VMJhOzZ8+Oys8khBBCCCFE1Kx4HXasiN3+3E3w+u/huv+L3T6FECLZKAqMugc2fg9DqgnknAL55/Z9nGRz2iVtCQ1BJwSbYrdvrRkCDWDOCT0+9ZLY7VsIYABFTONsJjMaL43U1DYxcvA0TGR1v7HokoOBHM+vqWY1e1lAE2XoJh86DvI5hmF8g2xGxzaoyg2w6l+AApVFMLwE+lpIoDkDnNlAHSz9Hcz6U9/jTAYfvHl4q4n2NgyCwmawGdAOwq/C2i6SFQJ+WDQfrr6p7/sSMaOgMJQbsTOMGt4lQH2YdcxkcTxFXIOFvDhEGR82RmLvRUuOeArgA5bHO4yUcP311/PYY48RCAR49913ueSSS/j73/9OYWH3PYQXLFjA97//fYLBIIqicOWVV5Kenh6DqEV/F9UUrNGjR/Pll19y+eWX8+GHH7YmNei6zp///Gd27tzJf//73y5/2SsrK/njH//I3/72N5xOZ6eJDDabjeuvv55bb72V0aNjfKAqhBBCCCFEX2gafPhMt6vpgQB4POged+hffwB0DVXTCJpMKCYT2Oxgt6PY7WCzdX3+dNPHUL4NBvej0udCCNFTmUfC0B/C3qf7No51IIz6jTExJZtjT4O8QVC3H/zV3a9vtEANmLIhIxum9cOEEhE3PvbSxLs4+QiNUBUu/wAfpaSRzslkcz52JsQ5yuQVpJFm3ibIIgZSSwE63qAfu7kFWIKbUkxcSDozY1OhIeCDD+8H/UACnNcB1YNg4P7ej+mzwv6itseln8OWd2D8rL7Fmug0Dd6f3/U6PhN8NRhO3tP3pJHVReDppDrDQR+8Ad/8oVT5STIKCgXMIp/zqWIh1XxIgBaCmoM0JjGUa7FREO8whYipMWPGcPPNN/PYY4+hKAoLFy5k7NixzJ49m/PPP5+jjjqKAQMGYLVacTqd7N69mxUrVvDf//6X1atXt16nzc7O5qGHHorzTyP6i6h/+mZnZ7No0SJuuukm/vGPf3RIali4cCHTp0/nnXfeYciQIR2227FjB48++ijPPfccPp+v00SGzMxMbrzxRn7xi19ElD0khBBCCCFEwtnyKTRUhn1KDwbRGxvRG+rB5wu7jqLrEAigA7hCJ8t1AJMJJSsbJTcXpbOWFF++Bpfd1ecfQQghUtrQG0DzQPm83m1vHQQT/grWfnrCXFXhjMvh1cdBN6j8ek/o/lClhlOvA0tyzUYUyauB16nlPxw4KutAJ0Azn9DMJ2RxDvncGNuWCCnAz16quZsgbckCyiGvop8d1PMn3HzBAO5AjXYp+R3vQ31Jx2UNeaAroaQGpYetkj122DcMgoecwl/5Dxh3YaiKUKpa+yXs39f9evszYOUQmFre89f3oFVFsC+CiimNdfDlhzD9nN7tR8RNIxso501aaGsh5le91PM1Th6kgNMo4pKka8HQF27Kku7nlZYTxnrooYfYvXs3r732Goqi0NzczLx585g3b15E26elpfHOO+8wePDg6AYqxAExeccymUz87W9/Y9y4cdx2223out6a1LBu3TqmTp3K22+/zZQpU1i9ejUPP/wwr7/+OpqmdZrIUFBQwM9//nPmzJlDdnZ2LH4MIYQQQgghouPLw2cf6V4vel0delMj6L08ORcMotfXodfXoaSlo+TloWRkdFxn7btwwc/BLiUChRCiS8N/AukToeRh8NdFvl3e2TDydrDkRi+2ZHDOt+GthyF8bl70mTww67tx2nli208VG9lEAw248lzUUscExuPoJ33EoyGUzPDviNZt4n10fAzk5ugGlUIC1FDNXQSpiWh9Dyup5SHyuS+6iSNfvxp+eWMuuNOgsBzsnu7H0RWozYe6AYQtPdC0D8qWQfHJfQo3oa36LPJ192ZBiwWOr4DMHiTNtVjhqyKoTetZXJLQkFSqWUopzxEuuQwggJMKFtLMDsbwC9Qka8PQW8nbcuKLeIeRMlRV5eWXX+bxxx/n3nvvxePxdLh225UTTjiBefPmMX78+BhFK0SMEhoOuuWWWxgzZgxXX301LS0trX8YlZWVnH766UyZMoXPPgsdrByayHDwcXFxMb/61a/4/ve/j91uj2X4QgghhOhCGc18RS1egowkkykMwCKzjIToXjAAu75qfajroNfVoNfU9D6RIQzd1YLuakHJzEQZVIhysFSqzw1l62HsSYbtSwghUtaAsyBrCux/Gfa/3kX7BBVyToLCb4X+FaGWSHnZ4Ixgxm005GSCvQcXrfqBAAGW8CE72s1Y9Vl9LGM5K/mKsziTMRwRxwiTk5cdByozRM7JUhwcQyZnRimq1NLAUxEnMxzk4StaeJcMLoxOUHW7YP/Gzp/32aBsJDhckN0Q+tfib3teU8Frg+ZMaMwBzdT1/ja/mdoJDTs392z9egcsGQEjG2BUPWR2kT3XYoVdObArF4I9PGexa0vP1hdx1ciGLpMZ2nOyld08w2h+HP3AhEgQiqJw66238p3vfId//vOfvPnmm6xduxZfmOqggwcP5tRTT+V73/seM2fOjEO0or+LeU2Ziy66iE8//ZSLL76YvXv3tiYsuFwuPvvss04TGSZNmsTtt9/OVVddhcnUzQGdSFpz585l7ty5BIPBeIcihBAiQho6z7GTL6hqXbaUSt6kjJ8zgULkxLEQXdq/M9RvlwNVGSrK0T0RzNzqJd3pRHe5UAcVomQdKK26d7MkNKQITYcv3VARgOPtUJxck26ESA6WbBj6QxjyfWjZBi2bwbuPltoqbAXFkDYWMiaBdUC8I00sdQfKgWfmgbMHFS6MkJ4dSqjYvwsGj43tvhPYx3zSIZmhvQBBFrMEBw6GMiTsOiK8RhYSycWzw7d7RxIaIhCgGjfLe7VtM+9EL6GhckNk67nTQjcANQiqFvp1CZoJW42hM/sj3F8y0jQo2daL7VTYmRe6ZXsg1wNZXjBpocQFpzWU+NBgo0evdXt7S8DjBrtUsEkG5bxFT96P61mJm0twICX0Rf9SUFDAnXfeyZ133onP52PPnj00NDTg9XrJzs6moKCAgQMHxjtM0c/FpUnOUUcdxc9+9jNuvfXW1sSFg9UaDk1kmDZtGnfeeScXXXRRPEIVMTZnzhzmzJlDU1OTtBIRQogksYSKDskMB9Xh5a9s5T6ORe3tyQIh+oO9odlHutOJVr7P0KoMnQoG0cr3obhcKIWFKOUy0ygVOINwUyVsPlBpVwF+lAs39PMq90JEjWKCjAmhG+DUS8kbWhznoBLYwc+avIGhRD53c2z2a0uD/KLQ/X2bJaHhgEYa2UrXFwx1dFbylSQ09EAQJ830oFR+O1524mEbduR3tCst/A/QerWtn1I8bMDOUcYGBVDdw4oCEKrC0F0lhs40V4GrDtLyerd9IttbAr4etI4Ip9EeuhlN16BkO4w/2vixhaFclNHCzh5vV8WHFHNNFCJKLC2UEafLg73WQiDeIfQLVquV0aNHxzsMIQ4T03csr9fLM888w//93/9RUlJyWBJD+2QGi8XC66+/zgUXXBDLEIUQQgjRAzo6S6no9Pn9uNlEA0ciV9OE6FRDBVpjI3pFecx3rTfUh2ZADS6XtKMU8FxjWzIDhOYi/a0ezsmA4Za4hSWEECF1Bz7nFAUGDoWqPeBuie4+bWkwaFhonwD1sf+sTVSb2RrRnNVyKmikkWxk0kkkPGxCx9/9ip1ws1YSGrrhYX2ftveyPjoJDQ2lPVs/4A0ld+la6D1KMYHFDmoPEhwaSlMzocHZEO8Iupbo8QkAGljdy+3W9IuEBjsjsJNc5fyC+IBP4x2GECJOYpLQ0NjYyF/+8heefPJJqqurO7SVaJ/EcPA+QCAQ4O6772by5MkUFRXFIkwhhBBC9JCHIDV0PXNiHy5JaBCiC8HNX0MckhkO0psa0b9eizR1S35fhelUogOr3JLQIIRIAIF2vXgVBQYOg9pKaG6Izv7SsyB/cFsyw6Ex9HNOnD1Yt1kSGiKk0bckHQ2XQZGkLr2Pr1Ff/486FeimooCugasBPE3g93Relc1kBms6pOeCpZu2Bt3tM1kFep8UFBNhesuLxBPo5XtFMFrvEUIIIfpEjebgFRUV3HrrrQwfPpx77rmHqqqq1sSF9okMdrud2bNnYzKFTqMefG7NmjWccMIJrFu3LpphCiGEEKKXrKhYujmcSE+yEnZCxFJwy2YC7y6Mdxho5eX4nv93vMMQfVTYSVZKkbwNCyESgemQNyNFCbWCGDjs8Of6QjVBwVAoGNIxmQFAlTfEgyw9OEa3IFlxkVL6ONu1r9v3D337fYzaa9xZZQVdg6ZK2L8NmvaDz911i7lgANyNUFMCNbvB20V7np5Uc0gmSlQvWfSdWT5LkoHay/cKRT7zhBAiIUXl03fbtm08+uijvPDCC/h8vg4VGQ7SdZ3s7Gxuuukmbr75ZgoKCli8eDFXXnklTU1Nrevt27ePU089lRdffJFZs2ZFI1whhBBC9JIJlank8wVVYZ+3ojKFATGOSojkoPv9eB+8DzWQAM0eNBP+f/4N8ymnoo4cFe9oRC9dmwNLXeBrd458kg1O6GZynxBCxERaJzP80zLAPhoaqkPVGjStd+MrKmRkQ04BmDq5yJeW1buxU9BIRrKRzd2ul0E6BeTHIKLUYGVYXLfvDywMwc+OPmw/1MBo2kkvOHyZtxkaK0JJCr3h90DdHnBkQ/agUFuK9tJS9G/TkRbvCLpml4PrZJDGiF5tl85IYwNJUC3sIcYd6fushV6+lwohUoKh71grV67k4Ycf5s0330TX9U4TGYqKirj55pu58cYbyczMbH1u5syZfPbZZ1x44YWUlZW1btfc3Myll17K448/zs9//nMjQ0461dXVfPXVV6xcubL138rKytbn//Wvf/Gd73wn6nFUVlby73//mzfeeIOSkhLq6+spLCxk/PjxXHXVVVx55ZU4HHJwJ4QQ/cHFDGMLjdQd0npCAWYzAkeSfUESIlb8z/4DbffOUK/cONMCdnS/D++D92H/xzwUNcFnRYmwJtjgmcHwYiNUBGCqA67JBjUBcmaEEIKisZ0/p6qQNyiUjNDSBM568IXpoxOO1QYZuaFkhu4+vwaPjzzeFDecYeSSQz0NXa53FEeiRrfAa0qxUoyd8XjY0uNtTWSTzrQoRJVa0jkfFx/3aluVDBxMNziiAwrGw/b32x47q6C51pix3Y3ga4G8YjAfqDBhTYOcYmPGTzRDRhA6o9BFJYt4GiYJ4Mkgh8lYyMZPY4+2K+DMKEWUWByMwJFkVYE0pN2LEP2ZYVcYZsyYwdKlSwEOS2Q4+Hj06NHcdtttXH/99Vit4d8sJ02axIoVK7j44otZsWJFa3uKYDDILbfcwvbt2/nzn/+M2s9OslZWVjJt2jRKS0vjHQovvfQSN954I42NHQ8GSktLKS0tZdGiRTz88MO8+OKLTJ48OU5RCiGEiJVcbNzBUSymnK+owYvGSDI4m8FMJCfe4QmRkILbtra2eNACiZHQABDcsgn/C//Beu134huQ6LUJNvjtwHhHIYQQYRQeASYLBLvoja6qkJkTumlaKKnB5wG/D3QNLRhENVtCF/RsdrDau09iaG+IJDQcpKBwHufyJm/hwh12ndGM5FiOiXFkyS+L83qV0JDJDCl1HgE7R2OhGD89P0eaxgxUonTsXTCh7X7TfmipM3b8YABqS2DAiNB7YP64nr3/JZO0dCgaBhVl8Y7kcDkDIC9MNQ6RcFTMFHAW5bwe8TZW8smRzz0hhEhIhiU0fPTRR633D01kmDx5MrfffjtXXHFFRIkIAwcOZOnSpVx77bXMnz+/NalB13Weeuopdu3axSuvvEJGRoZR4Sc8j8eTEMkMzz33HNddd12HZWPHjqWoqIiSkpLWGLds2cIZZ5zBsmXLmDhxYjxCFUIIEUPZWLmCEVzRy5J+QvQ3/nnPgBYMPdBN6EEriil+sw00f1tlLf8L/8Fy5VUoNlvc4hFCCJGCzBYYMgHK1ke2vqqCPS10OyDo82HuZIJMtwaOAkdm9+v1I3nkMpvLWcs6trAV74GZj/kM4EgmMYHxUp2hFzKYjpMPcPN1aIHuBc0FeEDXMKFBMA2UNFBDx2AWCsnhG3GLOdlkcz01PAgcaFGjB0F3g+5FVXwQtIFiB8UBB85Tq+SQyWXRC6roWEjLg+odxiczHKQFoa4UCkbBqLOis49EMXpCYiY0jJ7Q/ToiYRRxAc1sp+ng+3EXVOwcwU9Q+snnXjN70ZOsoqq0nBCifzP0HevQRIYzzjiDO+64g3POOafHY9ntdl599VVuv/12HnvssQ5JDYsWLeKUU05h4cKFDB0apb5nCaygoIApU6Zw/PHHM3XqVC655JKY7HfDhg384Ac/aH08btw4XnjhBaZMmdK6bPHixVx77bXs37+fpqYmLrroIjZu3IjdHv+Zh0IIIaIrSA0aNej4UcnExPB+80VQiJ7QqqoIfNqxTG7AnYMloyo+8fjT0LW2i0O6s4nA4kVYZl0cl3iEEEKksBO+EXlCwwFaegD/KBe6Q8MfDIDfinl3GiZnD09pTY3NuZNkk0EG0zmFaZyICzcVVeWMGzYu3mElNQUzg7iDyuDNePSvQhfa21HRQWsOPQjasKijKTLdg4msOESbnBxMI5ebqNf+D/TqA69n6Hx06PU90G9LUUHJRlVHUKDch5kozqw3WWDYdNj1RfT2AaFKDc5aGH9RdPcTbxOOhc8WxTuKw004Nt4RiB5QMHEEP6WUf1NL53+bNgoYzRzSGB7D6OIrjWLSkqzlhC4tJ4To1wxNaNB1HUVRuOSSS7jjjjs48cQT+zzmI488wpgxY7jpppsIBoOtSQ0bNmzghBNO4K233uL44483IPrElpeXx6uvvsrUqVMpLo5Pf7Rf//rXeL2h/uj5+fl8/PHHDBo0qMM6M2fOZMmSJUyZMgWv18uuXbt46qmn+MUvfhGPkIUQQkSZjoaPZbh5Cx+raN/j0sQg7FyIgwtQyY1fkEIkmMBbr7dVZzi4zJODJb0alNj3iQ24D//7DLz+miQ0CCGEMN4x58LCJ8Dd1O2q/qFufEc58Y90gxr6fNR0naCiwKn1mMvs2NZnYilN62YkwGKDKSl+8a+PzJjJIpN6TSak9JmuYXL+jSLXWhocQZrsCkH18GM8VYcMr0auqxSz9f8g+wFQ0+MQcBLSg2S4tqEGami0uwiEeX1D62nY/M3keqqxpJWAbWz0YtI02LUxeuO359GgdA2MPTU2+4uHU8+Df/8p1HYoUZjMcMaseEchekjFwkhuoIiLqOYj6llNkBZMmoVsxlPAmWRztEzIEUKIBGfYu7TFYuH6669n48aNvP7664YkMxx0ww038L///Y+srFCm8sFqDZWVlZxxxhm8/nrkfZCSVVZWFldccUXckhk2bdrE22+/3fr4wQcfPCyZ4aBJkyZx8803tz5+9NFH0TQt2iEKIYSIsSAV1PMDGrkHH1/RPpkh9Px+WniWGq7CzcL4BClEgtE1Df9bYY5ddRMBT3bs4wlaCHoPL78d3LKJ4OZNMY9HCCFEirPYYNoVXa6iKzquU+to+cZ+/KNdrckMHSg6gWI3LRdV4TqrBr27hMApF0OazH7vjIsqSvgf23iRqqz3qOALgnjjHVZy0jVo/A24/osK5LltFNenM8hpJ9tjIdNrJt1toqDZRnFdBgUtdsy6Ct6Pof7HB1pTiC7pGjjvBPfzpPktFDqzKWjJxOG3YtZMmIIqFs1Ehs9OoTOHgS1ZWIJucN4F7leiF9f2T6FqJ5iiWAUCQDGDuQA+fjq6+4m3jEw49dx4R9HRCWdAXn68oxC9ZGcQw/gWo/gVxfySrPrvMYqfkMOxkswghBBJwLAKDTt37oxq+4ezzz6bL774ggsuuIDS0tLWpAaXy8Xs2bN56KGHuPXWW6O2//5uwYIFrfczMjK4+uqru1z/hz/8IY888ggAlZWVLFu2jFNOOSWqMQohhIidUDLDz9CIpDeoHyd/QMdNGl2fwBYi1Wk7d6DX1oR9zt8yEJOtGUWNXV9In7MIUMI+F1y5HNOEiTGLRQghRD8x4wbYsARqSsM+7T6tDt9RzoiH801sRjfrpL2fjxLuMy17EJz3k95Gm9JaqGQnr9HAVvQDycm+NB8uNrCL1yniFEZwESqmOEeaRFzPg+f9DosUFDJ8FjJ8FgC8Ph82a5gy3/5N4Hw4VKlBdM71d/B92PpQQcEesGIPhF5Tr9eHzdZJGfWWx8B8BFiOMz6uVa+G/jXlgeYEzd31+r1lLgLFBPu3wt71MPTo6OwnEZx/JSx5M95RtDl/drwjEL2ko7GXryhjGU3sA8A3wEc57zKEKYzgVBzkxDfIGGtmDxqWeIfRIy788Q5BCBFHhiU0RDOZ4aAJEyawYsUKLrroIlasWNGa1KBpGnfccQfbt2/nqaeewmSSL1pGW7iwbWbt9OnTycjI6HL9UaNGMW7cOLZu3dq6vSQ0CCFEatAJ0MBdESYztGnmacyMwErqt4oSojPa1i2dP6mb8DkLsWXvjUksAXcOmr/zssbals0xiUMIIUQ/Y7bC7Hvh6RtCM63b8Y1r7lEyw0H+sS34Km3Y1oepwnD5b8AuZfwP5aSM9TxJgPAXXQO42cMHNLOXI7kR1diutakpsBea+zhr3v0/sJ8HtpONiSnVBHaA+199GEAH5wOQ+yooBl7IayiHXctD9xUFLEPBVwq6wf3ezQPB1O6c7Kr5qZ3QMGocnHIOfP5+9+tG2+ST4cgp8Y5C9EIQP2t4nmoO/37rx0UJn1LOao7ne2QzLA4RxoeDYtLoJPkrQemE3lOnTp2KyWRizpw5zJkzJ85RCSFiJelq6RQUFPDxxx9zxRVXoOuh7HFFUdB1nWeeeYbzzjuPpqbuezGKyOm6zoYNG1ofn3TSSRFt1369devWGR6XEEKI+PDyGUHKerGljouXDI9HiGTSXZKA5ssk4M6NfhwBO/6W8O3DWtfZ1kXyhRBCCNEXxUfD+T87bLH32N6fz/Ee42ytMtDqzO/B2MjOYfQnQbx8zdOdJjO0V88WdvFG9INKBa6XjbmA3fJ838dIVe7ngGDfxtD2gneJIeG0Kl1FhxaMihmsw0G1GbcP80AwDwiz3xT3g9sgOy++MaRlwE2/iW8Motc2siBsMkN7Plr4in/hoTFGUYm+WLlyJZs2bZJkhhjz+/1UVlbi9UpbMhEfSZfQAGCz2XjllVe4/fbbD0tqWLJkScQX3EVkysrKaGlpaX08evToiLZrv97mzTLDTwghUoWb3pd89LGGQK+SIYRIDdqWTd2u428eRMCTHb0YAja8DcNA7/qrgFZRjt4oJ3SSzcstGhdVBTmhMsCNdUG2+LvpKy+EEPFy2jUw88bWh4FBXoIFvb8YrGX7CQz3tC2YfjWce1NfIkxZ+1mJj8iTRyr5IqLkh35N18GzsPv1IuFbCcEqY8ZKJboXvIuNGcv7tjHjHFQR5rynYgHLCDB1kqysa6AF2266BocmZR0cxzr88GQGgKZKaKnvS+SJLysHfnhHfGP47i0wYGB8YxC94qKWfayOaF0fzZSxLMoRCZE4ampqqKqqoqqq62OOFStWMHPmTDIyMhgyZAhpaWmcdNJJHaq6CxELSV0v7qGHHmLMmDH8+Mc/JhAItCY1bNkis8mMVFrasa/l8OHDI9qu/XqlpaXouo6ihO/RLIQQIjkEqcDP+j6N4eE9MvihQREJYby6Op2MDLBajT9u0SorIlhLwe8sAs2MOa3W2P370/A2DgU9shZtWkU5puzoJVcIYy1waTzmbCvf/pVP58d1GvPzVfJMchwuhEhAM26A9FxY+Ad8E/r+mecb34xlXyaccxOcfp0BAaamCj7t0fpBfOxnOUM4IzoBpYLgHtCMqhirg38jmOQCageBbYBBLRwCG0NJKEadp6zs5Fy0ooKlEEyZ4NsPwWbQtNC+O6Mc2E61gGUAmAtCjzvd91YYPa1P4Se8k86C82bDe6/Gft+nXwAzLo79fpNEIAh/XwQl++Eb0+DkCfGOqKMyviRsolAn9rCCIzi7X7RZamYPGga23okBF/54h5Aydu3axZgxYwCYOHFihwrt7S1ZsoRZs2bh8/laJ5cDLF++nIsvvpjf//733H777TGJWYikf2f+3ve+R3FxMbNnz6ZRZpBFxaEtPLIjPKmdldXWu1LTNFwuF+np4ftWer3eDqVqpG2IEEIkpiCVBowhs41E4vrf//zce6+XESNUXnjBYXxSg8fT/ToAKPhbBhL0pWPNrEAx9fGLux4aL9TOogc/k5QSTCovuQ4/WefUdRZ6dK5Nl4QGIUSCmnY5HDEVbd83AGefhtIGZcBPnoOiMYaElop0gjSzr8fbOaXKWtcCJcaOFyztfp3+Jlhi3Fh6M2g1YCowZjx3F+ekPS5w1oHHC6oJbIBJA1OYi6w6EFDBr4ZyN9QmyFAhcwConSQ1dLXvVHLDreBqhk/ejd0+p54OP7k3dvtLQv9eAs9+ELr/6SZYcCcUxblDSHv1lPRofR/NuKgjg9RPKHNQTBrWeIfRI7pRSW2Ct956q3UC8o033hh2Ha/Xy3e+8x28Xm/Yicq6rnPXXXcxffp0TjnllGiHLERytpw41IwZM/j8888pLi6OdygpqX27CQC73R7Rdg6Ho8tx2nvooYfIzs5uvQ0bNqzngQohhIg63ZBsaPkCIhLX119r6DqUlGg4nVEo1a9p3a/TfnV/Op66Ufhd+ehaZFUVOlIIerLw1I8i4M6jR8kMAME+9igWMVXbyX9Xnfw3CiESXf5wOPo0yB0MFkf36x/KYoecIph4kiQzdEMjENPt+g+DXx9dZqEezujfQQNf43DH+JoGdRVQXQqe5gPLVHBboNkGjTZwWqHZGvq3yQZNdmixgs8MKKAFoKkGKneBp5Pzqno/OdBTVfjZ/TDz0tjsb/q5cNujYOrNd7D+Y19d231/EKoTLL+mN59d8nkn+oNly9raq1xyySVh13nuuefYt28fiqJgMpm49957WbNmDZ988glnnHEGEEpquPvuu2MRshDJX6HhoAkTJrBixQouvvhili9fHu9wUorf3/EA32yO7Nfm0PV8vs4vYN15553ccsstrY+bmpokqUEIIRKQSkafx1AMGEOIaLnhhtAMhUmTVAYMiELur9UK3kirNBykEmgpINCSj8nWhMneiGr2oKhBQAcLobK1GqApoCtoATtBXwYBdw7ofTjkt9l6v62IuRNt8H6YX68TbVKdQQiR+BQlE9JzQjefG1xNoX/9ngO95duvrIaSGKx2cGSBLS20mMyYx51sTNgwYSNIz6owWeW17ZqaY/B4ucaOlwoUI18Txdj/M8shx8xeN9Tug2BXSRNK6Ng9EkE/VJdBRi7kFHbMUTb3o+N1VYUf/xpGT4R/PwHuzifP9ZrVDtfMgQu/ZVxLkhR2xcnw4Xpo9sDUI2BiZJ2qY8ZOFk09qkqkYOsnn3dO9hGUlhP91pYtoVZJAwcOZOjQoWHXefHFF1vv33bbbdx7b1vFmoULFzJx4kRKS0v55JNPqKyspLCwMLpBi34vZRIaAPLz8/noo4+4/vrr4x1KSklLS+vw2BNhqeRD1+us3QSAzWbDJifMhRAi4Zk5ApUsNNq1BtJ1CHog6AY9cKAXqQlMNjA5QO14uGFlcoyjFiJyeXkKt90WvWMSJSMD3dnb1loKQW82mt2GuagBNc+Fmu1GUXU4UCpQa7ai1acTrMgk2JBJjysyhIlXJI+fZKis92lUam3VRWbZFU5MrkqiQoh+ysyx+Pk49MDqCN3gwLGmHzSNgN+P1WYDkyXshSYzx8Yu4CQ2kClU8EWPtilgSpSiSRHmcYSOuwyq8GUeb8w4qcTI18Q0HJS07teLVN5wqNoRuu9xQc2ewxOxjNBcD8EADBjS9h6Yl2BXkGPhnEvhuJNh7m9h3ZfGjTthMvzkHiiSSXaRmjgc3vpNqDLDiIGJV9BiMMdRxeaI189nTL9JaEhnOOkk1/UYpYfJmKJze/bsQVEURo4cGfZ5l8vF559/DoCiKPzkJz/p8LzD4eB73/se9957L7qus3LlSi666KKoxy36t5RKaIDQhfGXXnop3mGklIxDTmS73e6ItnO5XF2OI4QQIvkoWLFzPi5ehqAXfPXgb+z6ZI3JAdY8sGShKjnYOD12AQuRYNQjxqJVlPdu2zwXlklVqLntj8VUdB10TQdVQUkPYkpvwjS0Cd1txr89n2BJDr1JbFBsdpRh/fAEaRIbbFZ4rUDlA49OVRCOsyoca5WZZUKI5GDlPNz8DThkEoWigDmUmaXrbfcPZ8KKnEiNxGBO7VFCQwZDyWZUFCNKAWo6WI8G37owT+qgeUH3gq6hakHQ0kG1E/YYTc0Dy7hoR5x8TIVgGgXBXX0fy2Jwr+/C8bDlw1BlhmglMxzkdoaqPwwYChYrFPTTv838QXDvX2DFx/C/l2H9SnqdUDTxODh/Npx8tlRl6IWstNAtEQ3iSGxk4SWySQXDOTnKEQmRGA62h8/MDJ/A88UXX+D3+1EUheOPPz5s9YUpU9qSXUtKSqISpxDtpVxCgzBefn5+h8cVFRURbVdZWdl6PzMzE4sluUoYCSGECM8RPBeX70nw1Ua2QdAN7n3gq8VuvgHFLlOFRf+ljp8Any7t4UYalonVmEfW9SgvQXEEsB5diTa4Cd+awejunh2LqWPGoqhRaLshosquKMxyyIlYIUTyUUjHykx8vN2r7S2cjkqewVGlpgyGMZhTKefTbtdVMXMEs2MQVQpwzO6Y0KB5IFAPwcZQpZEDTLoOngOf1aYMsOSFEiJax7kEFDmHFpZ9NrQ80nGZ5oJgE2hu0H1YtCB4zKDYQXWAKQfU9q+nAo4rjI1r8CTQNKjdG91khoPcTmiuhfFngJpgU+Jj7YTTQ7fyMnh/AaxfAXt2hSpZdEZRYdgoOHIKnHM5DO+nSSH9gIqJY/k2K/knGl38TgBDOYFBTIxRZELEl8lkIhAIdFqN/dNP244RzzjjjLDr5OTktN5vbm42MjwhwupzQsO5557LI488wrHHHmtAONHj9Xr505/+hMPh4Kc//Wm8w0kqY8eO7fC4rKwsou327NnTen/8eCmVJ4QQKcFThWnVraRn+2jpYRVGszNA2uY3YdzRMGRWdOITIsGp4yb0bAOThu3EPaj5ru7X7Wyf+S5sp5bgXTYc3Rl5SckexyqEEEL0kZ3r8fMFOhEmzh6gkImd70cpqtQUSlLQKeezTtcxYWMiN5DN6NgFlszs54DrJfCvB19VKJmhO8Hm0M2UAdYiMBdC+rXRjzVZ2S8FzwIIbg8lMPgrQ4kjh9KDoLeA1gKBGjBlgqUQFDPYvxlqOWGk4inQ3NT1RXSjNVTD0ONit79EN3g4fOfm0H2fD0q3w+5t4GqGgB9MZkjLgOIjYNQ4sCZXqX3Re3mMYio3sJ5XcFN32PMqZkZwKmM5Lw7RxU8T+wiQXMlzLvzxDiFl5ObmUlFRwe7du8M+/8EHH7TeP/308JV2D1Z5ADCbZe68iL4+/5YtXryYJUuWMHv2bH79619z5JFHGhGXYTweD88++ywPPfQQ5eXl3HvvvfEOKelkZGQwbNiw1gSFtWvXRrTdmjVrWu9PmCAnxIUQIul5a2DlD8C1j/TmTHSTjmtwZBm4ZpeZ7C0DUP1B2Hg/oMMQKQks+h/ThImhGUERzdzSsU7d26dkhoMUewDbSWV4Px0RcaUGdeKkPu9XCCGE6AmVgWTwKM38Ep2GCLdKJ51HMCE9z3tCQWUM32IQJ1LOJ1SzBg0/oGMnlyKmU8hJWMmKd6jJQ1EhbQ5UXgB6D4/fgs3g2QW5vwJVXvNOKWbIvB+qL4RAD9q4BZ2hSg62qZD+k+7X76ntX0FzrC+0KaFqBDNjvNtkYLXCmEmhmxCEkhpO5zaq2UI5a/HRTIvXTbHtGIYyFSvp3Q+SYtIZRjrJldij4I13CClj0qRJVFRUsG/fPjZu3MikSW3vlyUlJXz55ZdAKFHhtNNOCztG+0ruAwYMiG7AQgCG1JDVdZ1XXnmFY445hgsvvJClS5caMWyfVFVVcf/99zN8+HB++tOfsm/fvniHlNTav2l99lnn2fsH+f1+li9fHnZ7IYQQSUjXYd1d4Gr7PM0oyyJrey7mls4vjioBFUdFOjkb8zH5TG1jbfodOLdHO2ohEo6Sk4P5hGkRrWseXYdpYEv3K0a6b3sA67HlRNJbVnGkYT7tDMP2LYQQQkTKxBgyeAoTx0Sw7gQy+StmEmtyTTKxEiCHJgqpZiDlFFLJQGrJoIV+Xsi+5wINsOv30FQAei9OubYMgtJ/gnun4aGllJo3wWnp+WscNENtAzQvMz6m958Fcw496g/XV6ZsKNsM21bGbp9CJDEFlYFM5Fi+zQn8kFH132AUZ/TLZAYhzjnnnNb7N910E01NTUCo0v1PfvITdF1HURTOPPNM0tPD/42sWrWq9f7o0VLNS0RfnxMa7HZ7631d13nvvfeYMWMG48aN47HHHqOysrKvu4iYpmm8++67XH755QwbNowHHniAmpoa9AN96nRdx+FwxCyeVHLJJZe03t+8eXOH6gvhvPXWWzidTgBUVeWii2QWrhBCJLU9r0L96sMW22sd5G0oIPfrfBz707A22LA22rDVOsjcmUP+qkFklmajBg855NAC8PV9oAVjE78QCcR8Wfd9qJV0H5bx1YbvWy1wYSpu6HY987kXoKSlGb5/IYQQIhImhpDJk2QyDyuXoJBD6BSWikIWVi4gg3+Qyd8wMTLO0SanAA3s5W72cDtOPgLcmFFQ0QlQSS3Ps5sfUser8Q41eZQ9BN49EEwD5ygIRHiRLGgD5wjwZYcqNZT8BvQYti5IJo0Lof7l0GvsGgXBjAg2UsA3AFwjQFeg/B7wGTjxrWIX7FwNigXMBcaN2yVz274+ey1G+xRCCJEqvvOd75CdnQ2EJjAPGzaMk08+maFDh/Luu++2rveTn3Re1WjRokUAKIrCscceG9V4hQADWk5s2bKFX/ziF7z++usoSigLVdd1tm/fzh133MGdd97JSSedxKWXXsoFF1zA+PHj+xx0e42NjXz00Ue8+eabvP3229TX17fGAKE/Jl3XGTRoEL///e/57ne/a+j++4sLLriAgoICqqtDJ9YffPBB5s+fH3bdYDDIww8/3Pr4/PPPZ+DAgTGJUwghRBQEfbDjb12uYmm2Ymm29mzcpq1QuQgGX9CH4IRIPqaTT0EtGoxW0XmZXPPoWjB1X0mhNyxjagmW5tDVDDLL5d0nXQghhBDRZmIUafwS+CU6OmWVJQwqlgSGvgolM/waPxVdrqfjo5b/EsRJAd+LUXRJquETaFjS9lizQPNwMLeArSH0r9IumVtXIegAbw74M+lwXObeDvv/A4XymncQqIP9/9f2WLeAexioHrA0gMkNqpdQNTIVgnYIpoM/B/R2p8A1N1TcD8V/Nyauz9slFJjyQu0tdLcxY3fGUgTKgRoqG5ZCYw1k50d3n0KIlOKknCCRtaNMFC5i3dondeXn5/PUU09xzTXXoOs6TqezQ8V1gG984xvMmjUr7ParV69m27ZtKIrCpEmTWpMjhIimPic0DB8+nPnz5/Phhx9y++23s2rVqg6JDbqu88UXX/DFF19w6623UlBQwKmnnspxxx3HkUceyaRJkxg+fDhmc/eh1NTUsG3bNr7++ms2bNjA559/zoYNG9A0rXV/EEpiOJjI4HA4+OlPf8pdd91FZmZmX3/clHPw/wrg+uuvZ968eWHXS09P58477+SWW24BYMGCBTzxxBPcfPPNHdbTdZ1f/epXfPXVV63j//a3v41K7EIIIWKk8n3wN0Zn7D2vSUKD6HcUVcV82Wx8c/8UfgWThnloU/T2n+ZHHdSCtj/8jDbTccejjpJygcnIhY8VlLGecjz4KSCDEylmIoXxDk0IIfqkGg9fU09VmhMbbgqR6pt9Ucn/dZvM0F4D72BjJFmcGcWoklzV8+GXB9LbKjUoAVCC+H0BbOY0umxPUP0yDLoOlD6fuk0d9a9CMMwxsmYHb9uxjt/nxWbtpi+8azW41kPa0X2Pa8uXbfcVBSyDwVcKRKnKhmkAmNodx2tB2LEKppwbnf0JkUL20cQy9lBBM4FcN6dh4RgKMRvTmT2pZDCUNLp5r0wwKt54h5BSvvWtb5GTk8Ott97Kxo0bW6+vOhwObrzxRh566KFOt/3DH/4AhK4HXnCBnNcVsWHYUfFZZ53FypUrefPNN7nvvvtYt24dQIfkBoCqqioWLFjAggULOmyfn5/PoEGDSEtLw+FwYDKZ8Hg8uN1u6uvrqaiowOfzddjm4JgHtd/XwT+6O+64g4KCWJX7iq4f/OAHPPfcc92uc+ONNx623OPx9Hn/c+bMYf78+Xz++ecA/OIXv2DJkiVcffXVFBYWUlJSwjPPPMNnn33Wus0vf/lLJk+e3Od9CyGEiKPK96M3dsN6cFeAoyh6+xCih6r9kKGCI4qNoy2zv0Xg3YVou3Yc9pxpYDOYtejtHDAVOsMmNCgWK7ZbbovqvkV01OHinyyjnrYZgfW42UY1UxjG5RyNEsu+zkIIYYAgOs+zky+pRkPHl+XjQ9ZwPAP4DmOw9MMLEH3lYRtuNvZ4u3rekISGznjKoPnw9nyH0c2hm6bQZTIDgL8WGj+FHHnNAdB1aHg9wpUjPN5pmN/3hAZPC9Ts6bhMtYJ1OPjKMDypwZQHljBVcMs2SUKDiIuluHgXF/UEGY+V2WQwLEFn/X/ILv7H9tbHPpuPfWzgM8r4IVNwJGjcQkTTeeedx3nnncfevXvZu3cvdrudCRMmYLN1nexy/vnnM3PmTADOPFOOVURsGJ7me8kll3DJJZewePFi/vSnP/Huu++i63qHSgCHJiIAVFdXt7Yz6G7dgw5dT9d1hg4dyk033cQPf/hD8vLyjPiREobf78fr7ToLLRAIEAhEJwPYarXy+uuvM2PGDDZs2ADAO++8wzvvvBN2/W9/+9s88sgjUYlFCCFEDDX25ISnHqrwqfTgolnTZkloSGHbqmB5iZ1z82BgghfL2u2B35TBVjfYVfh2PtwUpV9NxWLB9pv7cN9wfWhWVTtqTt8TUbuj5oQvg2v5/g9RR46K+v6F8V5jbYdkhvZWsYeR5DGFYTGOKjK6DtWN4JUKokKIQ7xBKV9Qddjyr6jFgZlrkIpCPdXAe73azsceXGwkjUkGR5QCWtZFZ9zmdZLQcJCvDAI1xo7pWtX3MfZsCR3IHEq1gbUY/OUGtZ9QwFwA5gGdxLHZgH0I0TPzaOIlnK2PywjwKW4ep4DRCZYcsIO6DskM7e2hkdfZzLcxoGJLEmmkAn+C/T91R1pORM/QoUMZOnRoxOtfffXVUYxGiPCiVrds5syZzJw5k927d/Of//yHF198ke3b2z40lG4udBxMguhqvfYlUC666CKuueYazj//fEymKE6n6+cKCgpYsWIF99xzD3//+99pbDy8BPmIESO4++67+d73pNefEEIkPU9V5+0mdA3cTvC7wecBv6ftZI4CmCxgdYDFDvZMMFvDj9O0FQadFZXwRXy9twnu+R94vDn8az3MuxqGJ3C+6W2loaQGAI8Gz1bBKDuclxud/ZnGjcd67Xfw/fuZDsuVrOiXUVQzfRzIPmqLZ8IkLFdfF/V9C+NV0sRu6rpcZxklCZnQoGlw+7/how3gMA3kX7+AIwbHOyohRCLwEOQT9nf6/DKquJhhZNHJMaYIq4Xl3a/UxbaS0BCGa2t0xnVHadxk5Nli/Jj+Sgg2gqkPfb9r93X+nGoNJTUE6yBQTejYuxcUB1iKQkkSvYlDiCioI8hrNB+23I3O8zRxL50k38TJZ5R1+fw69nMRXjKTrAVDX0jLCSFEsol6I7aRI0dy7733cu+997Ju3Tree+89Fi1axJdfftlpG4T2iQydVWgYNWoUM2fO5Nxzz2XmzJmkp6dH7WdIFPPmzWPevHmGjtlVBYzO2O12Hn30UR544AGWLl1KSUkJ9fX1DBo0iAkTJjBt2rRuE1aEEEIkicDhX1AJ+KClDlyNoStR4ehAwB+60QSNVWBLh4zcUHJDd/sQKeGl1aAdONRo8sA7G+GmU+MbU2dKPW3JDO191Bi9hAYAy3dvILhuDcG1bWWKlSi3mwBA1cGkQzB0zKZk52C757coqpTuTkb76CTxrJ1yGtHRE67txKY9oWQGgEaXyoufwD3fim9MQqSqoM9H444deOrrCXq9aH4/ismEyWbDkp5OzhFHYM3KineYrfbhwkOw0+cD6JTRwpGS0BAxHT9aJ9V8IhGkycBoUkiw+8/hXglEadxkFGyIzriBhr4lNPi7ubimKKGqCqas0L6CDUTchkJNB1MuqBndV0DsLg4hDLYeL4FOknTWJOBF5z3dfF8KolGOk3FJdoFfCCH6k6gnNLR3zDHHcMwxx3D77bcTCATYuHEjq1evZvv27ZSWlrJv3z6amppwuVwEAgHS0tJIT0+noKCA4uJiRowYwVFHHcXxxx+fcu0kkpHdbue8886LdxhCCCGiqv2JEx2cNeCsDV9WszveltDNlgY5RW0VGxS5gJqqchxdP04kmSZQlbYEjINyony0rFgs2B97As9PbyS4ZVN0d3aogwVV0jOw//EvqMOHx3b/wjDmCHrIm1ATLpkBIDej499efuJcSxUiqemaRt2mTdRt2kT9li3Ubd5M065d6MHOEwQA0gcPJnf8eHInTCBvwgQGHH00lrS0GEXdkTWC97ZI1hHtmQgd3/duprgS29OISSRKv4fyPalNtF6Lvo4baTKwYgFLAZjzQXOF2lBoHtAPVk0DMIFqB8UOalqowoPRcQhhkPQu3ve6ei5eLHRf0TuS71RCCCHiJ27fRMxmc2uCgxBCCCESlH1gaDaI3wN15aF/+8rrgqpdkD0I0nPBNrDvY4qEdOsMqGqGLeVw1liYPTneEXUuzwIX5MA79W3LbCrMjkGlTCUtDfsTc/H86ucEv16P7on+IbruV0FTUbJzsP/xL5jGjY/6PkX0jGUgFkz4u5jJPInCGEYUuSED4HfXwIJlkGVx8f2ZMitKiL7w1NWx64032Pn667gqKnq8fUt5OS3l5ez98EMAzGlpFJ9/PkfMnk3OEUcYHW6XhpFOIQ4qO6kokIuV0UgWVE8oqJgpIEBVr7a3MMjgiFKEtQe9knSdiBNKejJuqrMMMX5MxQzmPv5O23pYMVhRwJQOGFxp2J76lYtFYpmMjQGYqA3z/WMG8UmE7MpRDOQjdnf6fBY2RpATu4ASQCPl+JKsypUbX7xDSFlLly7l888/Z8uWLTQ0NOByuSKu7q4oCkuWLIlyhELEMaFBCCGEEEnAnA5KDlQvB63rGX09ouvQUAlBP2RPMG5ckVCG5MCL10NpaSXFxcXxDqdbvxkGYx3wWRPkW+DqAjgiRlUllMxM7H/6K95Hfoe283lMQ6Jb0llvcKAeMRb7A79HLR4R1X2J6HNg4SRG8Ak7wz5vRuU0Rsc4qsjNnBy6lZY2YbNEsceLECmset06drz6KnuXLEHz+w0bN+BysXP+fHbOn0/+scdyxOzZDD3rLEwWi2H76MoVjOCvbEE75AKwAlxGMaYErDyT6LI5m1pe7MWWJrI4y/B4UkJaF99n/E4IOCHogWCoDLtF18FrBZMj9H3LkhW+UkBX4/Y39ii8FrbRPauCEM7g2CZ6dWrwmHhHIPoZMwp3kct91OGkrWXiZGx8m4w4RhbeKQxnBfto6eSC+AxGYepnFRoyGEZakrXYMCVgO5Nkt2DBAn75y19SVlbWq+11XZf28yJmJKFBCCGEEJ2r3AHbdoDDwGSG9prqYNUXMPP46IwvRA+YFfh2QegWD4rdjv3e3xL4YCSs/QUEI+yv2/M9oUw4G8fD/0Exy9eBVHEu4/ERZDklHS77pWNlNscymD70hxZCJKyWykpW/va37F++POr7qlm7lpq1a0kfPJjjf/MbCk84Ier7PIpcfsYEFrKX7YSS/UaSwQUM5WikFWlvZHE2dbyKTs8SX9I5HjMxKF2VjDKPA9UBWrtqIr468NaC1snxnOYP3fxN4NkP1lywFYRm8B+UdUp0404m5lxwHA3u9caNmXFG38coHAUWG/jjfJFtqFRbE7E3CRv/ZhCf4qYBjQlYOTpBL5DnYOdHHM+LrKeS5tblNszMZBSnIO0XRf/z6KOPcueddwJEXI1BiHiSM5giocydO5e5c+cS7KavpxBCiBjwe+HFW6E5DYZGaR/NWbD0PzBsMow/NUo7ESK5mGd8Fz3wOvruVehNjYaOrdjtKIWDUS58GCSZIaWoKFzCkZzBaNZTgQc/A8lgEkXSD1aIFLVjwQLWPfEEAZcrpvttKS/n4zlzGH3ZZRzz859jSYtuaekJ5DCBHNwEKN1fxvjho6K6v1RnJodcLqOOlyPeRiWNAVwVxaiSnCkD8s6DmtdDSQrucgj04O9S10LJD34npA0OVW5IPxrSxkYv5mSUe6VxCQ2KGXIv7fs4qgpDx8FuAxMtemP4xPjuX/Rbaaica3QLlSgZTCa/4hR2U08lzTQ11HHGoEnY5BKZ6IfWrFnDXXfd1ZrIoCgKp556KtOnT2fIkCGkRfn4XojekHdrkVDmzJnDnDlzaGpqIjtbZpEJIURcvT8XavcADvDaweYxfh+NB2bWvfl7KH4FHJnG70OIZKMoKGOuQvFWoOcXoDfUozc2QK8TPhWUrEyUnDyUNAcUTIMMmYGSqrJxcCpysU+IVBbLqgyd0nV2zp9PxRdfMPXuu2NSrcGBGYduivp++oMBfJMgTTTyLgA6HnRaAA3FFETHDmSiYELFQRG3Y5PZq10b9F2ofgOad4Pey2M2zQfNpZA+FIpuNDS8lJB1DtS/DO4NHRbrShDd3ohubwBTAFUPEsQEATuKJwfFm4lyaHuavOvAnG9MXJPPiW9CQ2YeHDElfvsXIsmMJJeR5FLq0fp1MkMjFfjoY9udGHN30jJE9NyTTz6JpmkoisLQoUNZsGABU6bIZ4lIbP33HVsIIYQQndvzNSx7qe1xdREM3W3sPhpzQ4kSAE3V8O4f4bJ7jN2HEMlqxBVQsgCluQRl4ED0ggJwOtFdLeDxoHu8QBclAS1WFLsdHA6UrGwU84ELQIoZJv0sJj+CEEII41UsW8YXt98e86oMnXFVVPDxnDlM+O53Ofqmm+IdjuiBAq7HRA0NvI2ftopQiqqhoQJVpDGafL5DGkfFL9BkoVug0Q9KXyuO6uB0g5Z4PejjTlGh6F4ouQ40VyiRIaMKzdYISvvjYh1dCYK1Bd3agqKZUVx5KO68UGKDbSwU/MC4uE6YBQvngtfd/brRMO0bYLbEZ99CiKSVyRDSErRFSGfMxLm9Twr5+OOPW++/9tprkswgkoIkNAghhBDicJ/+J1T69CCvHeryIa/GmPH9Vqgd2HHZ2v/B2TdBlkEzZYToBS9OfDhRMeNgACpxmglqssLke+HT7wOhrHmyslCysoAD/Q29XvAHQNfw+/1YrFYwmcBmRzF10mJg7PcgW8oXCyFEMir74AOW3303mt8f71A60nU2P/ssvqYmptx+e+gzSyQ0jTrc3IaFzRSg4CUdD340dIJaEJtqJQ0rJmoIcB9eyrDx/XiHndi+/h14zGDJAXND78fR0sA7ANbfA6e8GDomFG1sI2Do/6GX/wQtaye6qfvZuroaQM+oQrF4UD0noQz/MygGJgA4MmDK+fDFAuPGjJSqwsmXxX6/QhzgopomSgjiw0oGeUzAlGSz/oXojyoqKlAUhTFjxjB16tR4hyNERJIyocHlcrFlyxbq6upwOp243W4cDgeZmZnk5eUxbtw40tOTo3eTEEIIkXAaq2Dzx4cvr88HcwCyGvo2fsAM5cNAP+SCazAAKxfAjB/2bXwheqGKjezhC2rZhn6g8oGVDIZyIsM4GTtxaIWVdxQcfRusf/iwpxRFAbsdDhQ50b0+FFs3J44Kz4BxNxgfp0go+ymjnF0ECZBGJiOYSBrSzkeIZFe6aBFf3n03aFr3K8fJztdeQ/P5mHr33ZLUkMB0nLj4KRolrctsWLARusDrC/qwmjseU3h5Fp0Adn4Uy1CTR/n7UPVZ6L6/EDCBubbn4wQzwTcYUKG5BHY+A2N/bGCgqUFPG4dWmIPuU7osWHb4dqDljcFkVKuJ9s77AaxZDG6n8WN35YyrIa8wtvsUAqhjG2V8QB1baf+HaCaNIk6gmJlY5TtIQmugEm+SJZ9IywnjpKWl4fV6GTp0aLxDESJiSZHQoGkaixYtYv78+SxZsoSysrJutxk+fDgzZszgsssu47zzzkNVO5mlJoQQQoiOVr8NWrhSqQpUF4YSEnpbqcHjgP1DINDJjJiv3pCEBhFTOhobeZV9rDzsOR/N7GIJe1jGcXyfHIpjH+DIK0L/rn8U6MNFrMEzYcoDoVK9IiVVs5flvEcjHS+grOVjhjOeEzkPS5KdsBJChJR/9hnL77knoZMZDtr91ltYMjKYfMst8Q5FdMLNgx2SGSLl4z+YmICF04wPKtntfr7dAwX8AyGYAZZKUCMoj62bwT8Iglkdl5e+CqO/B6bkKgkebbrvCXSlFmwjIVAPwTrQu6hco6aBeQCoGejBJWiB91HN5xgbVHYBXHoLvHi/seN2ZWAxXCAJLyL29vE523gVPcz30wAu9rCUajYwmTk4kAqciSqLwaQdnCGRJCx44h1Cyhg5ciR1dXU0NDTEOxQhIpbwZzTfeOMNJk2axKxZs/jXv/5FaWkpuq6HyuyGcfC50tJS/vWvf3HRRRcxceJE3njjjdgGLoQQQiSrkjVdPKlAfQHsHRFqQxEpTQ21mNhX3HkyA0BTFdSXRz6uSHgtusZ+EwQ6OXaLt628HTaZoT0/LlbzT1wY1HKlp0ZeAafNg8xRPd/WnAHH3g1THwJVeuumqir28AEvHZbMAKCjU8pmlvASARKsTL0Qolv127bxxe23owfDJZsmpm0vvsjWF1+MdxgiDI09BPi819v7+K+B0aSIxs3QuOnw5VoaeEeBdzgEskE7JClBt4YSGHxDwHPE4ckMAP4mqFgcnbiTlK43oQXeO/BIAXMe2I4ItaKwFIIpF03JCi23DAbbaLAWg5rRNob/5egEd+JFcGSMEn5MZvj2vWCRZFURW7Vs6jSZoT0PtazjaYLy/UNEwdSpU5k4cSJz586NdyhJ69JLLwVgw4YNNDU1xTkaISKTsAkNuq7zq1/9issvv5xt27aFTWI4uKz97dDnAbZt28bll1/Or371q5jFL4QQQiSt8s3dr+N1wN6RoQQFZ3b4JAVNBXdaqKpDyRhoGABEUH54XwT7FwnPp+v8SXdyhV7LL/NNfEuv5S3dHe+wOvDQSFmEJ/X9uNnN0ugG1JXciXD683D0HZA5unWxhsIXytEsNp2Mk7S29a05cMR1cNYrUHxJ7OMVMaOj8QUL0ej6YmctFWxieYyi6hlNh21N0BSQEvVCtKcFAqy47z6C3ghmePfQ1pHH8O5p32TF0Wfisxg/+3v9X/5CU0mJIWM16ToPe92c3eLkqsw0HvC4qdMTv1pFIvLxOj2q0X+IIOsJstO4gFJBbdeJsWjp4B8cSm5wjwf3OPxNo8EzOpTMEMyiy+9ItSsMDTfZ6f43QQ9TclxxgCkXLIUE1YFgHgSmbFAOv+CvB9ehB7dHJ8BrH4TiI6Mz9kGqCtc8ACOPju5+hAijhEXdJjMc5KKK/ayKckQ9V+WFhVXwtVsS/pPVypUr2bRpE3PmzIl3KEnrBz/4AQMGDCAQCPDoo4/GOxwhIpKwLSceeOAB/vCHP6AoCrquo6oqZ555JmeeeSbHHXccxcXFFBYW4nA4sNlseL1e3G43lZWVlJWVsWrVKpYuXcqHH37Ymuzwxz/+kczMTO699954/3hCCCFEYmqoBFdj5Ot70kI3ADUI5gPZ95p6IMmhFxenyrfAkTN6vp1IKHNp5p12CQz1aPxJd5KNwulKYpQ13MvyiE/GAFSwmnHMwhyvsowma6haw8groGEzrtrN/KjsCDb7cgiag+RYNOYWrWPiwMEw4LjQ+iLllbOLFiJ7397BOo7kZNQEymsvaYafr4B9btB8g7hFgWt6UYxEiFS06ZlnaNi2zfBx3zz7epYf23astWzyTG588X5sfuMSJzSfjxX338+MZ55B6WML0Ns8LjYcqFDhR2FRwM8OLcg8RzqqIolQkdLR8PO/Po/j5x1M/NyAiFJEuOoMnVLa3SIdX5K929MDbxs2jmKKQmscexr8+C/w95th11rjxzeZQ8kMxxncMqMLzZWVVG/eTHNFBQGPh4DXS11tLbWFhZhsNhx5eeSPH0/uyJF9fr8Xic3JXhrZ3aNt9vEpg5kWpYh67sMauGsbBDTw+QbwkQ6Pjge1Hx5O1FOJJ8laEroJk9AmeqWgoIDnn3+eWbNm8fDDDzNixAhuuOGGeIclRJcSMqFh8+bN/O53v2tNZrjssst4/PHHGTFiRKfb2O127HY7ubm5TJgwgXPPPZe77rqLsrIyfvWrX/Haa6+h6zq///3vufLKK5kwYULsfiAhhBAiWTTX9X5bzQQ+U99jaKnv+xgirpp1jff18L0NF+juhEloqGVrj9YP4qOBEvIZH6WIeiBnAgtaJrDZAlgg6PPitNp4ktE8NTDewYlY2suOiNd100wdleQzOIoR9cwTm0PJDAABHf68Gc4ugkJHfOMSIt7qt25l07PPGj5ubc5Alh9zVodl+wuGsmbSdKatXWLsvjZsYMvzzzPhuut6PcaGYKA1maG9nZrGimCQaeaEPK2VkHSa0HH2eRwNaQ/XQcve6I7vivL4SUbXKxNqnLAcGXDTXHj7L/Dpy6AZVFGmYBhcdS+MPtaY8cLwu1zsW7GC6k2bqN68mdotW3DXH/793OfzUWrteCHUbLczYOxY8sePp2DiRAZPnUrGoEFRi1XEXgM9r2ziZA8BPPGbFNCOpsPju0PJDActrYVl9XBKXvziipcsBpOWAP8vPWEh/Hkm0TvnnnsuixcvZvbs2fzoRz/ilVde4Qc/+AEnnXQShYWFmOU4WySYhPyNnDdvHoFAAEVRuPnmm/nDH/7Q67GGDx/OK6+8wi233MITTzxBIBDgX//6l5RREUIIIcLREqA/czAQ7whEH9Wj4euknPH+bsrix9Jh/Tx1DYK+0L8ooJrB1LEMZSCBZgTsckW2TKS2QA/70voT6HcYYMch7To1YHezJDSI/k0LBFh+333oYS7k91VNbiGEqWpQnRedRKevn36aIaedRlYXE1S6UqF33h6hXNpO9JAxFwF0EquFWNzpUe4Pr0n/+Q46SZruuShfFLPY4LJfwjFnwX8fgOo9vR9LUeC0b8GsOWCNzsXH+l272PTaa2xfuBBfS0uvxgh4POxfv57969cDoKgqw6dPZ+IVVzD0pJNQpKJO0jvs+3PE2/kSIqGhJRhqN3GoXW44JfbhCBFXJlPHCWm6rrNkyRKWLOl5grOiKAQCci5XRF9CJjQsWrQIgIEDB/LII48YMubDDz/Miy++SHV1Ne+//74kNAghhBDhmHrTQ1AH1QsmD6iB0GNdBc0GQQfoPazaYE6uknficIMwkYVKU5h2DmNInD6VVtIg4AFPA/hdEAhzdkNVwewAaybYsrGq6TGPszNTs+Gt/R2XHZ8dn1hE/NhJi+r60XZiAbzZ7hx/mgmOyolbOEIkhF1vvEHj9uj0dx9WsRNT0E/wkGO+EXu3RGV/ms/Huj//mVN7OVFlgmpCgbBpkhNUAyqD9SMKxhzDKGQYMk7KMEX5Il20x08yipKBrjd1v2K3YvR7PHoy3PEKrPsQPnu1Z20o0rLghFlwyhUwcLjhoWmBALs/+ohNr75KxerVho+vaxqln3xC6SefkD1sGOMvu4zxl1yCLSvL8H2J2LD04nuEgoqFxMhUzjTD2HTYdkjOTn/9Dl3Pfmk50Y/put5aIV9RlA5JZ3oXCcVCxFNCJjTs3bsXRVE47bTTsFiMOelttVo5/fTTefXVV9mzpw9ZsUIIIUQqyymMfF2TG6z1YGkCpYuD3aAdvLngz4JI+rb3JAaRkKyKwtWk8ZTe3HE5ClcrCXIxdf96BpV9Ru2IblqcaBr4WsDXgq1uPzn7FsJxPwKzLTZxduHcAljnhNcPVMw9OgtuGRnfmETsjWQSW/gqonVzKCCXxOpJ8osJ4AnCx5VQ5Ahw9/E2MhIn7ym5BVxQtz7Uf72ljJy6KqgfBBnFkD0Bco8KJWyJhLP91VejNnaap4VLPvgPb559PUFT6JTQsZs+Z9L2yN5HeqP8s89oqaggvaiox9sOU1VmWSy87e84K/RMs5kJJklo6JkMVIrQqOjTKCaOMCieFJExGho2RnH8UdEbOxmpIyG4rs/DKGoMX1ezBaacG7pV7IRtK2HP5tCtvgL8PlBNYE+HwWNg2AQongQTTwlVeoiCfStX8slvf4uzPDYtZBr37GH5n/7Eqr/9jeN//GOOuuoqFDWCcwMioQzgSBReQw8zcaHzbSaiJtCkhvvHwu1boMwNNlXnpyNgQj/N08uiSFpO9HMHExckgUEki4RMaHC7Q+XrMjKM/TRJTw9lo3s88sYnhBBChJWeE0ooaOiip6jiB0clWJo7X6c9kwfSKkCrBnchBDK7Xn/w+IjDFYnrCiWNHFQW6C5KNS/HYuUaJZ3xSpxPZgR9sHIubPwvRarOtqH5BMyRnUwbutuJuuU/ULIUTrsXCo+JbqzdUBW4YzT8eDhsK61m6hFD4xqPiI88CilgKNV032N7HFNiEFHPZFjgd5ND90tLayjOT5wqKEnLuQt2vwT73gslNRxg9/mgpd0sLHM6DL0QRn4LMoyf+Sl6p2r1app27ozqPo7f8DHjd66hdPAY8usrGVS7L6r7Q9PYMX8+x/zkJ73a/DarnSNVEx8EAjQG3Vxis3OROXEujiQLBQUL38DLU30YxYSFiw2LKSVkj4e9b3Wzkg8UN+AFNExmDZQ00O2ADeiiFH/2BMNCTQWK+XL0Pic0mFDMlxgST48VjQ7d4sTvcvHln/7ElgUL4nIBK+Dx8OUf/8juDz/kjHvvJXu4HH8kEzs55HMU1UT+NziE6VGMqOfGpMP842CvB1oqqxg/VH4HRf+0e/fueIcgRI8lZEJDUVERu3fvZv2BnltG2bBhQ+v4QgghhOjE4AmdJzSYm0LJCUoveharAUjfC77sUGJDZ9UaBstJu1RxtmLnbMVOabWT4uKceIcDXics+jlUhY4xzUEYv8HJ15O7rzGZ4QxQvOPAhcGmMlj4w1BSw5gLohlxRLItMNBifJ91kTymczHv8wItNHa6zmiO5gjim4QjokwLwLZ/wo5/gR7Be0KgBUpegbI3YOwP4IjrQZHZkvG247XXYrKfDFcTk3asism+AHa/+SZH/uhHmHpRhVNVFGZZrMyyWCmtqqa4ILnKIycSC7Pw8gz0smSzmdNQyTc2qGRXcCooj4N+6PcjHZRGUOpB6TixSkUH9cBntm4BPTd0C/f9aNDpUQk7WSnms1F8f0TXu6my1uUYp6OoBQZGlRxiXZWhK/vXrWP+VVcxdc4cjvzWt6RaQxIZxQXUs42A3gJBJ+hu0HyE3vNMoNhBTQM1jQHKRPJIvPM7igLDHFCqyqx00X8VFxfHOwQheiwhExomT57Mrl27WL16NR988AFnn312n8dcvHgxq1atQlEUJk+ebECUQgghRIoaMw02fXT4cktDKJmhr6yNoPqhZRiHnbQrGgsZuX3fhxCH8rth0c+gakOHxUPKPOiKwuZjMtGU8LPjshv8TP6yAUug3QkPPQif3BcqDzv63OjFLUQE0sjkXK5hHZ9SwiaCBFqfyyCX8UxJyOoMwkC+Rlj+s96VPdd8sGUuVH0BJ/wRLP207m4CcNfWsvfDD+MdRlR46+vZ88EHjDj//HiH0q+p5GDlCny8ePiTOkAQOi0lbsXGtdELLlmlFUHBKVD1abuFXlDLD0tkCEvxg1IFej1oRUC7SkVpQyD/JKMjTmqKYkWxzEb3/f2QZzygNQIBTEoANAsoVlBy6Hj6W0W1XB2zeBOBrmks++Mf2fjSSwlVVjzg9bLsD39g94cfMvOxx3DkynmAZJAesHFMvcr6tG34wyYEOAHI89o4Up8e+hPsogiNiJ96qvCQXEmi7l4mZAohUkNCJjRcddVVzJ8/H4Arr7ySF154gfP78KV30aJFfPvb32593P6+EEIIIQ5xzPnw3p/A21amGnOzMckMreO5IK0cXIeUyD/hCuP2IUR7yx47LJnhoKGlbgoqvewd4aBimB2P3YQa1Mmp8zN8t4sBVb7w52B0DT65HwaMg5wR0YxeiG45yGAa53McZ1LFHoIEcJBBAUNR5CxiavM7YdmPoWlb38apWwNfzoGTngJzmjGxiR4pe+899ECg+xWTVMnbb0tCQwKw8WM09hHgY9B1dJzo1AOh9q+qRUfTTShkATkoih0w4eBeTIyLZ+iJa/R3ofrzA1UamsG0lwMZIpFT/GAqA20Q6HkHxv1+aCqx6ECx3ICibUEPfAJ6YygZRHe3Pq+ig64c+C+oBiUTlDxQ0lBtv0Ax9Z+KVVogwId3382uxYvjHUqnKteu5e0bbuCCv/6VjEGD4h2O6IpzKVQ8SHawgRNMCuWZNsozbXhNbRNVcjwBhjg9DGypR+FRaPoQBv8WLP2vKkqiy2YwadjjHUaPWJFW8kL0ZwlZz+nSSy9l+vTp6LpOQ0MDs2bNYubMmfz3v/+lsrKLnt7tVFZW8tJLL3HOOedwwQUXUF9fj6IoTJ8+nUsvvTTKP4EQQgiRxGxpcOyF7RYEwWFgMsNBFidY2pVHt2fAsXKSW0TBni9gW9e9jW1ejdFbW5j+QS1nv1PFWe9Wc9zyBvI7S2Y4KOiDj+8LU2ZYiNjT0fCwFQtbsLEJhY34qIp3WCLa1v2u78kMBzVshK8fN2Ys0WM1BrfdTDS1Gzcm1Ozg/kpBxcFvMelj0diBTjkHkxnaaOg0oFOCpu/Drt+ChTPiEG2SyD0air8FuHqXzNCeuh+UBig4CYZdbFCAqUVRVFTrPSiaBlp5h2SGsHQnaKWoyrGolqtiE2QCCPp8LPrlLxM6meGghtJS3vr+92nauzfeoYjONLwFe2+DYAMAtqDOyAYPJ+9p5KS9jZy4r5HpZQ0cV+lkUIu/7Tu06yso/T7498crciGEECkiISs0KIrC888/z5lnnsnu3bvRdZ0PP/yQDw+UXhw0aBAjRoxg0KBBOBwOrFYrPp8Pt9vN/v37KSkpYf/+tg/Jg1+YR44cyXPPPReXn0kIIYRIKqdeB2sXhqo0OKpAjdJsQcd+CKSDbg7t0+qIzn5E/6Vr8PnD0d1H9dew9S0Y/43o7keITugEqGYRtSzBS3WH58p5kUyOpIBZZDIxThGKqCn/ACo+MHbMPW/B4LNh4MnGjiu6Vb95c7xDiKpASwvNe/aQOXx4vEPp9/zas+j6FkwMRVMa0ZUmDms1oVtRyUHRs/DzFCZ1HCYl8XqhJ4wjvgsVf4SAAUk75joY8/2+j5OqdC9Kyy2oQQWdInSlHr2L9h6Knomq56H41oL6JDh+GrtY40TXNJb8+tfs+fzzeIcSsebKShbedBMX//OfpA8cGO9wRHuutVDxIOFaEimAI9BNcr+/HPb8Akb+B5SEvBwlhBAiCSTsJ8jw4cNZvnw51157LYsWLeqQxV9ZWdkhYeFQB9dVFKX1/nnnnce///1vCgqkvFEimzt3LnPnziUYDMY7FCGE6N9yi+Dcn8HbD3asomA0JQjWBsg/DU77TvT2I2JOR6OMEkrYRU1ODfsoZSwTyCfGx2Jln0FzefT3s+kVSWgQcaHhZTd/xMnGsM/r6DSxASdfM4TryWdGjCMUUaNrsPnJ6Iy96U+S0BBjvqYmWspj8HkVZ3WbN0tCQ5z5tdfw6c8CoGDDpA9E1/MBDzoaWiCAyexAwda6jU4THu2XONR/oiqD4xR5git/BtIKoMUNwW4qBnRFtUDaUCj/G+Q8ZVx8qcT1IATWo6CgkAN6DrruRlca0fGjaQFUxYKCDUXPQcHStq3n36COAtuFnQ6fCj7+7W8p+eijeIfRY87ycv43Zw4XP/MMtqyseIcjADQvVDxAuGSGHvFug5pnoOBHhoQl+q6e/bjbfdYnAw/eeIeQMr73ve8ZNpaiKDzzzDOGjSdEZxI2oQEgPz+fd999lw8//JAnn3yS999/H7c79KUgkjKFdrudc889l5/+9KeceeaZ0Q5XGGDOnDnMmTOHpqYmsrOz4x2OEEL0bydcDqvngjPKpYFtTXDZ3aAmZCcs0Qs1VPMB/6OJJgB8dh+1VPM16xjKcGZwLrZY9Wrc/Fps9lO3Dfavh0FHx2Z/QhxQytxOkxna09HZx78xk0UOU2MQWfeCaKynjFXsopZmggV+jqeRExhNDunxDi/xVS0D177ojO3cCbWrYcBx0RlfHKZuy5Z4hxATdZs2UXzuufEOo9/SdSc+fe5hyxVUIC1UIlzzoWA9fFvq8el/x67cF+0wk0+gGareBEWF9GLwVoO3tufjWLLAXgiqCZpWQss2SB9rfLzJLLgPfO8dtljBgaKHqv0F/D5M6uG/w608z4D1AlC6bCyXtLa+9Rbb3n473mH0Wv3u3Xz60EOc/dBD8Q5FADS+Db4yY8aqfQ7yrgZThjHjiT7JpghHrM7LGMRN59V4RM/MmzcPxcDPQUloELGQ0AkNB5111lmcddZZuN1uli1bxsaNG9m6dSu1tbU0NzfjdrtxOBxkZGQwYMAAxo0bx6RJkzjppJNwOKR0tRBCCNErigLDCmGbDQJRzIIeUABWqcyTKhppYCGv4+0kc34vZbzLW1zEZZiifSiqBaHiq+juo719X0pCg4gpJ5toZE3E6+voVPBfsjkehfiexA8Q5L98wS6qWpd5TV6WsZ01lHA10xlKXhwjTAL73o3y+O9JQkMMpXq7iYP6y8+ZqAL6QvQ+XAwI6h+h6z9HUXINjCoF1LwH2oGqDIoC9oFgzgwlNQSc3W9vSgPbALAccpGvagGMvMP4eJOZ9zWgjwn3WhkEVoLlBENCSiQtVVUs+8Mf4h1Gn+1avJhdZ5/NqBlSWSzu6ucfvszvA5/nwM0b+t4Nofc/kxms9tDN5ug4cUX3QOM7kPet2MQuhOhSJJPGD3UwCaL9tkYmRgjRlaRIaDjI4XC0JjcIIYQQIsqCfnCWQH4x1JaB3+hMaAXyhoAjE2o3Qd54g8cX8bCK5Z0mMxxUxX52sI1xTIxuMPU7IeiL7j7aq+kfs2tF4qjlgx5v46UaJ+vJ4pgoRBS5T9jcIZmhPQ9+XmEZP+d8TEj1nk41bIry+N1X/hDG6Q/tJgBaKiriHUK/pes6fn1B38bAh19/G6tynUFRpQhnmORCswPMQ0ELhCo4BN0Hjks1dEUHsx1MdjCng6mTkt/OtdGMOvnoPvC9ZcxY3ldTMqHhkwcfxNfcHO8wDPH5ww8zeMoU7Dk58Q6l/wrUgnd76L6mQXMjOOvB382El5amtvtpmZCZC44D1ddavpSEhgRRRxV2aTnRb917770RrxsMBmloaODrr79m2bJleL1eFEXh0ksv5aijjopilEJ0lFQJDUIIIYSIoabdoPnBZAolNTTuB1eDMWObrZA7GKwHKinVbzNmXBFXHtzsZmdE625iQ/QTGuq2R75uwBdK2gn4QNdBARQzWGxgsUfWEqVOfo9F7ATx0MiqXm1bz2dxTWgIEGQVu7tcx4mHzezjSIbFKKokE3BBy57o7qNpZ+hCnCqnDWIh6O0fJ2j78nN+8UWAsjIzxcUGBtSP6OxFo+/vG0GWAZLQ0EFLF0mtqhmsOUBO66KA14fJ1kVLhINcu0DzQVftE/qT4HbQG40ZK7DSmHESyNa33mLPF1/EOwzDuOvr+eyRR6T1RDx5toS+GzdUQ1M96FrPx3A5QzeLFXIHgTn+lZo8Hp1FiwLk5Kj9+pgih0JpOdGP9SShob2amhruv/9+/vrXv7Jo0SKuueYavvGNbxgbnBCdkDMTQgghhAjP125mh6pCbhE4sqChIlS9obcyBkBWQceepb6mztcXSaOeOoJE1j6klpooR0PH3+Fw/B5oqQe3s61MZjgKoaSGtBxwZHee3NDd/oQwUIBGdHpxUhHwU29wND1TgxMX3VdPKaNGEho642ukzyW3u6MHINAC1uzo7kcAEPTFsKJQHPU2oWH16iA/+5kHn8/B4MEBTjtNTmf1lI4xx9s6Bl1QTiX+uigNrIG/AWwDozR+ktEN/M6ot4QuziqpUQkqVVpNHGrX4sXsnjmTkVKtOT72rITyXaEWE33l90HVHnA1weAmSM/q+5i99Oc/+3jlFT9mcxqffKJjtUq5fCEilZ+fz5NPPsmYMWO4+eab+fa3v83nn3/O5MmT4x2a6AdS46hNCCGEELFhT4dBoyF3CFjTDizUgADgB3ztbgEgCOihmUmZ+VA4BrIHdkxmAIhzL3cRe0o8/899Hqgugard0NLQdTIDhK4Z+jzQUAn7t0NTVWimihBx1Ze/ofi+56oR7j+u7xMJL1avjfwfCGP1tseuzdZ2+GhLrurICcSov2d5XzhcFF8T6UvdjpGvhWLwePG1/vnnU6bVxKG+evrpeIfQP739T1gw15hkhvaaG+GeK6E0fu0a7QeKElitkRViFEIc7mc/+xnTp0/H4/Hwox/9KN7hiH5CUtqFEEIIEZ4tJ/xyRQklNuAHxQvBYOji7sFb63oHyvargD0NHBlg6uTQwyazP1PBAPIxYyZAoNt1CxgU/YBsh8z60HVwVkNzbe8nNmsaOGvB0ww5RW1tUwCs8ZtlIvofM1moWNDoecUcK/lRiChy+WSSiR1nNyVDRyEzUjtlzQnNKo2k9G/QC5oPNeADxRoqXd5Zv/b2VGuot7uICVM/uUqvWntXOn/SJBP//reDsrIGTjwxz+Co+gelXcuDvo0jxzuHseaDOwoV5xQzmHOMHzdZKQZ+Z1QyUiZZJODxsO3tt+MdRtTU79pF+apVDJ4yJd6h9B8v/QEWvwiDTMaP7TZDQw089iO4+Uk44mjj99GNOXOsTJ5swm6vw2weEPP9J4paqrGTXMefHvpHi7Zkcc011/DZZ5+xatUqNmzYwFFHHRXvkESK61cJDX//+9+prKwE4J577olzNEIIIUSCyx4RuuARPOQLg7sBWva3XURRTUA3X3S9TaGbLQsyCg9s007eeIOCFvFkxcZoxrKVTd2uO4kYfNEZMK7tvhaE2j3gcxsztt8LNSWQXQTpOaFl+eO62kIIQ5mwk8OJ1PFZj7fN4/QoRBQ5FZUTGM0SNna6Th7pjKEohlElGbMd0ouheXf45/1O8DZAsKU12dCk6+A7cPFGUcGcBtZcsGSEHyPriMM/r0XU9JeEBrO9972aJ040kZ4eWWsrcThVGYyqjEHTt/dpHDNnGhRRCkkfD+5dXa+j+UHzgq6hasFQkTvF2nWRAMdoUC1GRprcTGNByQfdgNZ1lpP7PkaC2PHee3idzniHEVUbX3lFEhpiZcFfQ8kMAPWOrtftjYNjulvgiZ/BbX+H4WON308XTCaFU081U1rav6su5lCIg94fl8WDu5uEeBFbY8e2/e2uWbNGEhpE1PWrojpPPfUU999/P/fff3+8QxFCCCESn6JCbvsLwho07oHmishmhIbjbYL6neBr6bg8b2Lv4xQJ5XhOJJ12M3p1DQh2+J0ZwjBGckT0g8kZAWZHKJmhptS4ZIaDdKChItS2AiB/grHjC9GNAczo8TZ2hpBB/JPITmYckxga9rkM7HyTkyNuTdFv5R55+LJACzTtgJa9EGjuvD2OroG/GVr2QNNOCIR5f8wJM76Imoyh4f8eUk1/+TkTlUW5rE/bKzgwKxcYFE0KyTo+/PKgFzyV0LwNWnaAew949mHyV0DLTmjZCu59EHB1Mq5cwO1AMYHtG8aMZZttzDgJYNOrr8Y7hKgrXboUV40BiSyia+s+g4XPtj32maDO4AveFe3OFbib4anbwCsXqYVIRoFAW3XWioqKOEYi+ot+ldAAoEu/YyGEECJyww9cLNOC0FgKPgP6cmrBUGKE98AskqwRkBuDi9siJtJ1Oxc1FzDQVQae7eDdikXbDd6tKN6djGnez7nuYtRYHIYqKgw5Eer2hioqREtjRagFxdBTorcPIcJI5wjymB7x+gomhnBNFCOKnIrC5ZzAtzmZsRQxgAwK/BmczZHcxEwGSknz7g29sONjdyU0l4VmAfeE5oPmEnBXdVw+bFafwhM9kzcxdsmdqkUju9jNgPHN5B7RgjWj+1ZRRsmdIMl/8WTmXBQ6qcoSyfbKOShK77dPWQP+n737DnOjvBo+/JtRl1ba3r3rdW+ADTam9xIg9BpeOgHygRMSAm9II0ACgZAECIlJQvFLIBCK4xB6JwQwxWCqe9v1ensv6tLM98dsX+2uykja8tzXpcvSaOaZs+uVNJo5zznHg2HA70UNg68WPDsh2KY9jkRVINQJ3irwVA1//y48K3kxT1SWM4lYHVD1g9IO4UYMNEG4CZQuUCO8vxnmgnFxsiNNiYavvqJ5y5Z0h5F0SjjMpjVr0h3G5ObpgkdvH758R7Z++wjKsHtI65jGPfDPP+q3D0EQUmbt2rV99zMyxPGhkHxTquWEIAiCIAgxmnkKfL4S2rZCSM+seRU6ayBrOswRJ+omje73oPEOXKEGTgcazQ4q7dl4FXARZo67hYxwAHgFbPtC4U1gLk9uTMEM8I8w600vKtDZBY6S5O5HECIo49uohGjjQ1CDqHQAIbRa1gYkrIALWTJTzv/DyfiZdS8hMYfivtYSVS1VTM+YnuaoJpC8ZeCcCV07tYoMwQTLTftbtAs/9hLIWqjdhJTJnjdP6+eepEkYkqxSuKSTskPayKzwDmsd72kxUftRFnvWZhP0JK/ViEhoSC9JsmGR/xefcgvaAQyAF5Q2wAMoGGUVFBNILpCy6D11KFOMWboqHWGPfwYrFJ4Ltasg7NMqMUS6kD6asEdLgLCWgNEJ2YeDTXwmDiMXaEkN/p6qBEoXKC2g9FcaklEhPOBNTnaCIQ8kKyCBdfL8HW957rl0h5AyW557jqVXTZ7/u3HnybuhvWn48t2ZMKcVsnSYILAxH8IRJja89TQsPQbm7Zf4PoSoNdOElYnV8sxHEieqCDHZtm0b9957b9/jRYsWpS8YYcoQCQ2CIAiCIIzM4gJbKYS+SMLgKribofz4JIw9OYXoJEQ7IGEkCyPOdIekUVVo+h20PzVocUHATUHAjT8QwGI2D97G+xlUnQ+FvwDXN5ITV3MVfPIqYIFkf/H12+Hl38GZorWZkFoSRkqVZVjVT2hlMz5p+MVQp9pKASeRIVeM3qs7xQJ8gZfnCfIlKt3IhQqtzMTGiVg4Bhl7ukMc/xb+EN4+O/Fkhl6BDq1f+8If6jOeEDWTw0FGWRndu3frPraj0M9eF9TimjZycqo9N8jsk5ooP6KVzf8souHz5FRJyREJDWlnlI7HInXiV24FtZHhx0iKdlObQG0GnEjyQqzyvUhSTuoDniimXQGNz0L3B/G351MV8O4Bxxyo+LGu4U0qthsgvAt8z2oJDWNRukDp1pIaHL8E85HJjjBlGr/8Mt0hpEx3fT3upiYc+fnpDmXyqd8Na1+I/JwqwboSOKYS5ASSLpvtsG2Eag+qCs/+BW58IP7xhZhlU4gNW7rDiIkXnduICjHbuXMnzzzzDHfddRcdHR0AFBUVcdhhh6U5MmEqGJcJDbuT8AUeIBAIJGVcQRAEQZi0WrZBYxVIZlCT8DkqZcFnj8Ah1+s/9iShotDNZ7TyGt18Qe9sOgmZDPYlm+PJYDFSOq9SNt4JHf+MfTvVD/U3aTNSnUlIbHn7AQgFgSIwVOk/fi/VAWomfP4iHHYp5M9I3r4EYQBVVQmF/0RIeQwX4ELCB/gk7Z3CADhUMBAAnsUXfguz8XcY5CXpDJsgX9PFvYTYNWi5JAUIsYUuttDNA9g5CzuXpPf9bSLQe0a/ojKuMl+mkJwFC3RPaMie5WbJFXswWqK7wGp2hNnn4hp2FATY+VqerrGYXS4ySkt1HVOIjyHUjCkUJGRUUEd9uavI4TDmgA/J2hWx0r/QQwlAwN9f+CIRwSCExUWbEalu8LaBIsXwcaVCwACGSrCqDCtTMwGFfD7adu0ae8VJpHnTJpHQkAz/WT368WSHFT4shQNrIiQ1qIPf9yK9tjossHYao75gt66Hmp1QOjOGwAVBiNfMmbG91oLBIO3t7Xg8WgVUtec9Q5Ik7r77bgwGcZAoJN+4TGioqKhAmgQHloIgCIIw4X32f9pMIXMx+Hejzxm6HoYsMDhh42rY73Kw6dibcZII0Uk1v8XD1mHPqSh08SldfIqDRZRxPQYcqQ+y67X4khn6KNBwG1j3ApOOLRu6W2HjWz0P7KDmgNSq3/h9ZFCK+x9+/Ax880dJ2I8gDBcK30tI+cegZVYkrCO+VXcSCH0Pi/F+ZHnvpMcXiZ+1dPIrVEZPklPx4OYxQuzBxU+RiFCedqpTQvD57WAt1C6khXVor2N0gCUfPv8lHP0MSOL3nkp5ixez+9VXdRvPlheIKZlhoFknNOFrN1L7cZZu8eTus49uYwnxUwKrUAIPYSADQyCDsOQhbOhAkb0gKYCEpBqRw06MYRcSJqAbxfc9ZNvDSLJI3Ixo5z0QcoOpHELVoIbjGEQCYzFINth6Kyx+SLwPR9L6EwjuAEpAygS5DaTuEVaWQckEJRuwgOc5MM4A50UpDDg5WrZuRVXirAYyQTVt2sT0ww9PdxiTS8A/cnWGgWqd8M40WLoH7EHtPJGiRD5FJEvae5csQbUTviiDYBQXO/+zGi4Q36VTpZlm0XJiCqusrIz5Gqw6JPHJarVy9913c9555+kZmiCMaFwmNMDwF4ceRJKEIAiCIMTA0wq7ei4Iy3Ywl0KgBl2SGgxOMBVp95UgbH4W9r0s8XEnkTAeqrgNH2NXFnCzgSpup4KbkVP5hTTshsa7Eh9H8WhVHkrvS3ysXuv/DeHggH0UgOwHya3fPpBAKQVM/Ys+fxGO+x6YJ1bpRmHiCYVfHpbMEB0//tD1WE1rkKQM3eMaTZAtdHLbmMkMA/l5m26ycPLdJEY2QdW+Bd467YSxvUwrUx5K4D3O6ARbiTazrrsKGtZC0aH6xSuMafoJJ/DFH/5A2K/HyVqVvc6vjSuZode8Mxpo2eLA32Eae+UozDztNF3GEeKnhr9CCfx50DKDascQ6m/xEwgEMA9tFQaoaieK70YM9qeTHueE462G+ue0+7INTDMgVAdKDO/JkgWMJSBbtcedX0LLu5B3hP7xTmTuZ8H/Uc8DCdQMCGcAQZA7gSBKOIhsMINqAdUFQ5Miu/4MtiPAWJ7S0PXWtGlTukNIueYp+DMn3YYPwd05+joBP7S3wfYO+ESB5SrsrTBidzhFhToFPjbCDi9YqiAzG1yZII+SpPXxayKhIYVyKBAtJ6a4eK/BzpgxgzPOOIMVK1YwY4ZIdBVSZ9wmNPQmH+iZ2JCMJAlBEARBmLS2v6LN/uxlcIK5DIK1oIZG3m4sxhwwFgwuRbjlBZHQMEQDj0WVzNDLyw4aeZIiLkliVEN0vgDhdn3Gcq8F/06w6FRicvsHQxZIoEwDuWaUGVyx6BlPHXJB2O+G6q9g1nId9iEIIwspf09g63bCyvMYDefrFk803KxCjWNWjZd/Y+csDBSPvfJUUjmgOo4kg60Mgu3gawAl3DNzTu3p5a4i9XWSGDBrTpJBNmpVHsxZw8cXCQ0pZXa5KDv+eCqffz7hsXLnu8makdhJX6NFoeLoFrb8qyjheGwFBZQeIS7MppsSfIpEkpNVZSdq+GMkgzjOGaR2NYN+r5JJq9SgdEO4Tft3JJINDNkgu4aXaq9bLRIaBlIV6F41wpMmUHIBCAcDGKXhSTn94wSg+zHI+pn+MabQVLy4PxV/5qSr3DjycwE/NDaAZ0ByliLB+yb4wAjlChSqkKNoeUN+CRolqJGhZUDigt8PjfXQ3AhZ2ZCbH7k1RXc7NNdBnjjmF4Rke/vtt2Na32w243Q6KSsrIzMzM0lRCcLoxmVCg9PppKurC0mSeOyxx5g2bZou415xxRXs2LFDl7EEQRAEYdJr/Hr4MoMD5JkQbIBwR2zjSWYwFYMhQhp/RxX4u8DijC/WSSZMNx28F/N27bxNPudiSFWWfedzOo/3POR/P/FxVBXqNkd4QtaSEKRWkJuI/4S+FcIlMFI1jNpNIqFBSCpF+RJV3ZbQGCHlnylNaAhRQ4BP49xawcvzZHCVrjFNaOEAtH4xeFkoBF1BcAOyAubQkFbFKqhSz79hCAMBo/avMwiuIBgHzMRv/kS7eCTKnafUnHPO0SWhYdrB7YkHA5Ts38G25wtQQon9Hcw680yk0WZlCkmnqm2o4TcTHkcJrsYgEhoGaxnhooCcod3UMKg+UP2gKoTDYWSTXUtmkEY5Ndv+EYQ8YBxpGvQU4/8YQrX6jOV5GVw/1CpqTFBtU/Act6elBV9HB1ZxMU0/VSMkibS2QEuT9t06EkWCSgNUxrAvRdHG7e6GomKwRnj9VW0SCQ2CkAJHiERjYQIalwkN++23H++88w6g9WHR68WVkZHakqpC7FauXMnKlSsJh+PpNSgIgiDoqmmETH3JAOYSUPK02fnhjlEqNkggO8CYrf07Wvunpk0wLbUnR/c0w8dbwSWbmD49pbseVTv/QYmhJHuvMF46eI8cjktCVEMoPvAndkF1GN9X+ozTshv8I/WSl0DN1UrTyk0gdcUwsAmUHFCzGXKVcLBaMXNISK6Q8mzCY6jqbsLKegzyfokHFAUfL5DIrGAfr+Dgsp5e7gKd2/o/e0MhaKkH98D3MyMEDCCrYFBAVlFRkZBAkSEsaSeikQAF2pu1W4YLcgvBYISwF7oqwaVT5RwhKjkLF5K9cCFtG0eZMRmF7JkjfQ7GxmhVcJb66aiK/6KfZDQy84wzdIlHiJ8afBHU4NgrjjVO6B1UtRVJytEhqkkg2AG+MS6ySwaQHIADAEUJgDxKBYFeqgLdmyErNZ/V417gM/3GUn0Q3AKWJfqNmWIBt56t9CaOoNstEhr0tHvL4MfBINTVgC+Jpf0DfthdCTm5kFcw+LmqzbD06OTtW+jTRAvWVLYs1YEvjmp/giBMHuMyoWHp0qV9CQ2ffPIJZ511VpojElJlxYoVrFixgs7OTlG6RhAEId26xjgxJ5tBLgBTgXZyVPENSGyQQbZovWBHS2IYtL+ahMKNVX0bXHQPdHkhFMhlVT7sNyulIYzITfwXxD1sSk1CQ2AXEH9f7oj82/UZp7MxipUsWrUGgiC1g+QFyYc2VXkgM6g2UJ097SWi+HuOav+CED9V3aXTOJVAai6ShEjs9a3QgUKzaDvRq7unJVFXh5bMoER6P+5JWlB6ZsWr6tifyd2d4HVDbpGW3NBdJRIa0mDOeefx8c03x729NSuIya7fJIGMEl9CCQ3Tjj4aW26ubvEIcVJ36zRQGJQ6MIiEBgA8O5M8/q60JjR8+OEejEaZZctK0hZDn6DOydShbRM6oSHsn5oX9kJT9OdOmq72/vsBP+zZrSXLpkJri5ZAUVTSf4zqjrESqBC3HAqwpaq6p068JDHRZoq5/PLL++7ffPPNTB9Ps7wEYQTjMqFh2bJlffc/+eSTNEYiCIIgCFNUONTTcztKkgkMCc6aDSc+YyxqQR9ffVZLV2sOoEIoxIcfutmvNAesrtTFMQIF35AFCoR82q33/0UygNECRisMKOE8bNukBZmEL5KqTmPG9LdkAjV/wMTxEP2JGka0ZqAxUlJ0AkiYslT0mXmtkrqZfYoOMSu4MegQy6Tg74aGPUOqMugkHIbGGvB0QUCfvzUhNhUnnsjONWto/uKLsVeOwGDRN+HQaI1/PKPdzuJrr9UxGiFeqqrn63lqzgyPSEnyxdVkjz+G669/DbvdxOuvX5TWOAD9viv0Uib2Z1w4mMLvz+OIMkV/7qRQVVB6EiADfqiu0o4DU6mrU4ujpKfleEj8/wpCKjzyyCNIkkRhYSGrVq1KdziCEJVxmdCwdOnSvvvr169PYySCIAiCMEUZjGgz0eMvDx4zOcmHJb5O2Pw8bHkRWraz0JuL3XM7nrAVo6qwtPK38PAGyJwGs4+HRWeCsyi5MY1AxgqKCv4O8Lb1JDKMsLIEGG1gywarC1mypijIKPajhiEcRAoHIKxqVT1Gmx2sV+wJJdfo8HeY7L9lYcqTsOvy7iz1lL5OBVmH2T8yooc4AF4PrFkFpiQkMwzU3Qn/fBCuPQ5MUZRGF3QjyTLLb76ZV88/P64ZuOFglNWxoh3PH0dyX4/FP/gBjqL0HE8Jg0mSPp8dmtR9fox7cpLLdUfTmiKJfvWrozCbx0k6oaTzTGK9x0sxg2lqtuGSjeK7lm4kCWRDf2WGdLWA7u6C+jooKgbj1Py7FoRUc7lcdHV1MXv27HSHIghRG5dHAHPmzMHlctHZ2Ul7ezs7duxg1qzEa0AvW7aMrKysxAMUBEEQhKnAWTx22wk9uUqTM27IDx//Bb56Wrvfo9TaxCN73cr77YuZY9nCAVk7tCc69sCnq2D9IzD7ODj0erCnsKSuqmLf00GXdVv/bIlR1weCXu3W3YDNvw9MS3qUYJ6BVr1gyKzNoBv87RDygqLNrjCqKnh7Lq4YLGBygCUbDENO0Jp16vnhzNNnnIm6f2HSk6RyUDfoME4q3iw0BmYA8fe+lnAiI15bBANw9/VQWQ0LU7C/jTvg3h/Bdb8DcQEhpZzl5ex9zTV8fs89MW/razUR8skJVVYYqLs2vgu2hQccwOwzz9QlBkEHkl7H2jJIIkmlj60iuePbZyR3/DEcfXR69z+IaTb4/qvveBOYwZLkZJpxymhNUQL/VJGRCZs+T12biZF0toPDAfb0V8ycKpppxsLEej35U1WRdAooLi6mq6sLJWLrQkEYn8btGYk333yT7u5uAPLy9Dlx9eCDD+oyjiAIgiBMCXkLUpvQkLdA/zHrv4Q3b4H2yD2DZ9prmGmvwR8IAEMurqsKbHsV9nwEh/8YZh+rf3xDdTXAG7eQ1fQxjaeEUWOcECkHw2Q9/y8obYRjfgGOJF78k21gmQn+7drjYDd4GiAcGH27sF+7+Vq1xAZ7UX9ig20vfWLLnQ4WO/jTVEa2JAl/y4IwgEE+jbDy8vAn1CCEfaAGtNKtkqxVU5Gt2v0BJKkUWdo/RRGDjVPwsibu7a0cjzT0fXoqevxe2LAOJIuW0KbvRPzBFAm8ZvjsPVj9F/jWd5O4MyGSueefz5633oqj9YRE+047eQu7E44h5Jfp3BP7yW6j3c7+N92U8P4F/UjGb0Lwz6AmdtFKMh6KJOfqFNUkYM4GSxH465MwuAQZ85Mw7gRlXqzfWJIZTBP7d2uyT83KVUbbxK6sMe4oJnCPkzZCjfWQW5LuKKaMHAqw6VBFL5W8JKH16RR14IEHsmXLFjZv3oyiKMhy/BXZBCFVxu1f6dKlSzniiCM44ogjyMzMTHc4giAIgjD1FCxK3b5c08Cqcyb+jrfg2e+MmMwQNW87vPpj+CTJPeVad8Hqy2DPOox+iczq2A/TMitlDCEJqtbC6su1ahPJ5DpZS/xw10FX9djJDEMF3dC5U0tu6B1PD7IMRXPj2E6BTC/kdUOuG2wx/jy9REKDkGQGeT8kqWfGpKpAsA28O8GzDfzVEGiAYCME6sFXCZ4t4NsDYc+AMc5EGq0FjM6MlGNiyfAnVAUUL4S7kfCMcKFNwsapyQ5x/Nv4Kbz+jHZflaE7yScgu+z0ZUy88CjsSLwqiBCb3tYTpoyMmLfd82GWLjHUf+pCCcV+TLLf//6vaDUxzkhyHpLhyITHkY1nJx7MZJN7xBgrKCB7wNQKpmZkSzsYuoExqrFlLQOjaO/Rx3IQGAr0Gct2PMgTOyEge+bMdIeQcracHGzZ2ekOY/JobICNW9MdRb9wGF57I91RCMKUcPHFFwPQ1tbGmjXxTzwQhFQatxUaBEEQBEFIs9knwMcrQU1BH8U5J+k7XuW78NpPomvZEK2P7geDEfa9WL8xe3XWwrPXgLupb1HRegPeHBW/M7pux9YOicIvBvS37ayFf10NZz8MGTqd+BvKciR03gDhBPq4q6pW2SFUAOY5uoXGzAOg6vOx15NUKO6EaW2QHSHbP2CAehfszgZ3FGVdzTYo2yfmcAUhVkb5AoKBn4K/VqvIMCoVwp3azZAJltkY5dNSEudAGVxGGzdo8SodEG4Htf91Z1RVCEggGUHOBDkbZBNWTsSYkl4645jPC3+9VXvP7NWUDc4kzlJqHHDBQFG0/d/+dzCJShmp5Cwv57B77+Wd736XsC/6MrtNGzLorLbiKou/NG84ILPrrdhn4u99zTXMOOWUuPcrJI9sOpdwKNLFIn/P+3EYWQqDagUpg6HzoCS5HAwHpSLUiaXkHKh9avhy2aclMRg70crqaAwmVetdDxDOgGAOhCMkLhSL5JFBJBkyLoWOuyI+rUp+kEJgDKDKQVAsSJFOfUtGyEjCd7oUy1uwgG0vvZTuMFIqb/7Erqox7vztrxBKXYLz2Azw0Uew4UtYJL5TJ1sTLaLlxBR21FFHcd555/HUU0/xve99j8WLFzNnjo7n5AQhCURCgyAIgiAIkWUUwPTDofLt5O5HMsACHfsrdzfCGzfpm8zQ64M/QuHeULKvfmMqCrz680HJDACGoMT0t43sPjyEL2v0pAZbq0T5u0atOsNAXXXwxi1w2sr+k6Z6CQdg7S/AlwF5CSQ0AKgS7PSA/EdYcq0+8S09Hd55aPS/A5cX9q6DDP/I65jDUN6m3XblwvY8UEaZqbrPiVq7C0FIMmNjN4qvnXBWjJVEQp2Y94SQKppT3qPWxF64AufQqd4GjPK6U0MQboFwK2Z1GU7L95LbWmEieOUf0DSkDVSrE6YZwZyEnsd+E7QPqQqwZye8uQZO+Jb++xNGlb9kCYf89re8d/31KIEoX/OqxNdPlHDgD3chm6JLjhxq6/MF+FpjS2CZf/HFLLz88rj2JySfZNgP2Xw5SmAVoILaBWrroOQyg6RqLWckCaRMkLIBK0h2ZMudKa3uM2HYK6DgBGh8pWeBCuYmMLWMva2hW7uFMsFfCPQkKGfMh7wjkxPvROY4B3xvgH89ACoKqqET1dSGKmsXumRVJdzzdyqFncjBbCRlQMKI8wowTfzqBvkLpl5VuLwp+DMnTVcnvP3qgOQ1Jd0RgezU/v330yKhIQVyKcA6wVpO+HpaTuy///4YDAZWrFjBihUr0hzVxPXggw/S3d3Niy++yP7778/NN9/MpZdeSraohCOMUyKhQRAEQRCEke17GVS9o5UEH4UqqXQWQcCpospg8Eu46sDki+KE5/zTwJGnU8DAf24Df+I9oyNSVXjrVjjvSTDplMn+xRNQ/2XEp0w+iZmvG+mcptI6J4wnb/AFCUejRM52A84aCUkd4Xdd/TF8vQb2PkufeHt9/QA0fwlkgdUDGR3xj9VSBCEzbH4Uig6EouWJx+fKhwVHwoY3Iz9f1An71GoVGqI1owWyPfBpGYQMkddZfk7MoQpCzOqfhqq7MVEIqkQ4uy267RQZc00pBo8fNv0/WLQKrCmsfND1LNaWvyKbM+jKChE2jJxwJKkSVo+djM49SNbvQ8HdIE+sE266URR485/Dl6syVBXBnCS0F9pVTMQsktefEQkNaVJ80EEcdu+9vH/DDYQ8nrE3ANwNFj7/v2ksuXwPsjG2pIbKt3PZ835sJzMXXXUVe111VUzbCKknm69BVepQA38ENTjyiqoKajvQDnIBsvXPSIY4WnpNFbP+F9o+hmAzWPeAIcae9MYOMHjBOx0kG8y7RUv8FgaTJMi+E5qvQFU2olhqUaWRjydUQxdhQxeSYkX2T0OyfhMyJkfSVe68eUiyjKqMgwvRKTIVkziS5uXnwO/XKp/ImaBE+X0imeSe447/vgnXXA9Z4qKqENm6detwuVKbnD/ZXN6TgJyXl4fT6aSzs5MbbriBH//4xyxYsIBZs2bhdDqR5bFbz0mSxMMPP5zskAVBJDQIgiAIgjCKgoWwz0Xwxd8iPh02qjTPUWmdoRIadH1fpXYxuOok8rdI2NtHuNieUQQH/kC/eHf+B6rW6jdeJB174LNHYbkOJ+x9HfDhn0ddRVIlMqslMqtlAnaVkE27IGHySJi8Uc6QW3sfzDsRzDpVDmjZqCUf9Gou1v6NOalBguYi6M7qX/TxL+HEp8GkQ6xHXgWb/wvhISfr87phcU18Y2Z5Yb9qWDddqywx0KJjoUiU6BOSzL0Vqu4GQELC3FhI2GMnlNWOYvdETtIJGzB0ujC2ZSMHe2ZbB1th+y9g0UPaicykx/0mtNwOqJgDFnIaCwhY/HjtHoIWP6qkggqGsBGbx47VY0dWe+LyrYOmG6HgD/pXm5kI1v8XWhoiP9fuhOZMyEsgqWyohmzoGqFne10VfP0x7KVD4pkQs6Llyzny/vt57/rr8bVEMfMbaNmcwbo/TmfR/9SRUThKZZQeIZ/MlmcLqf04K+q4JKORJdddx9zzzot6GyF91PAO5MBaVDUPhRZg9KofEhlISgaS/wlUw35I4iJ7ZKZMWHgXbDk59mSGXlIArNVQ9hA4Zusb32RiyEHJugDFe03U7RFV2YfiCCBnXImUiuOeFDDZbGRNn07brl3pDiVlRIUGnagqvDAgWdaQnf6EBskGcs9JpWAQXnoW/ueytIYkCJPZI488MqjqliRJqKpKMBjkq6++4quvvoppPJHQIKSCSGgQBEEQBGF0y74Dez6Eli2DFgetKpWHqPgyR5jxJ0NnqUpXscq0T2Sy9gy5CCUZ4Mib9bvIDvBVhN61ybBxDSz7NsgJntDd8G8IjX1xoZfZI2H2xHExL+CGzS/CPjpVD9j48JCqHRI0l4A3A3LqYZRZ1/0xWbVEiMCQSheeetj1Asw9N/E4C2fBkVfAmwOSRoxh2KsusXGzvVq1hp0DKos4suHkGxMbVxDGoqqw41atJcMAhm4nhm4niilAOLMD1RgCWYGwAdlnxdDpQlIjnLzv/hLqn4Li85Mbd7ilL5mhl4SExW/F4tfeA1RUAv4gFssI5e29a6HrGXDp8N4w0bz97OjPVxaDKQSZcV5AG6jNCbsLx45HJDSkTe5ee3HiM8/w6V13sfuVV8beAOistvHR7yso3r+DskPacJYMP/YIdBuo+TCL6vey8Xeaoo4na+5clt9yC9lzxcz9iUBVWsFzLagdSGQhkwm4UWlDxUt/yXETEi4kspDoeV8OvQu+u8D2kzRFPwFIdeB0gbcz6gvtg7eXwJ4Dxtqx153C1PB6lNDvwFgGSgcoLaCO8p1KcoAhH1Wyofi/j2z7G5I0OWZ+F+y995RJaHDk55NROMYxihCdmmrt1kuygOwCpTN9MRnyBz/+eK1IaEiyRlqwoFPl0RTx40t3CJOKqkY+nzvS8pGIdmRCqoiEBkEQBEEQRmc0w0l/hOevgvZKQKvMUHnwKMkMA6gyVC9TMARlnA09B7mSDEfdCqX76xdnWxXsWaffeKNxN8Ou/8CsY+IfQ1Xh6wglxJPl69X6JDS466H23RGec4EnAxydWrUGs0+7qNorbASfDbqywOcgYjlzgO3P6JPQAHDYpVqVhpoN2uNZzWDRod/8rGbYkwWBnsPpU36iJTUIQjJ1fACeLSM+LQfNyM35Iz4fUd3foei85FZpaPvzmCdIpZHeDwaN8yfI+CbII1QPmKy2RW5L1EeVYFsZVNQlVqmhMRuqChnxvbnXls/j34egC7PLxUG33Ub5ccfxya9/HVW1BiUkU/NBNjUfZGNyhHCW+DE5wihBie46C97WEZKJRiAZjSy87DIWfvvbyEZxamnCCDwJSn/FF+29NwOJjL5l/mAAi3mEv4fAGlTzhUiGsiQHOgGpIWj+Axjs4JgJvnoIdUW/vcEG1mKQLdD2KGSeA6aC5MU7gSmBu/vbpciZ2k31guoD1YcSDmGQzSBZQbYD/UlaqlKLGnwcyfzd9ASvs7mnnMKW555LdxgpMfeUU9IdwuSxddPwZYZCUNxAHMlYiZKzhh/fb9+itV2Loty9EJ9cCrAysVr6+fCmO4RJ4+abb053CIIQs5R+63z00UfHXilOBoMBp9NJVlYW2dnZzJs3D/NIX8AEQRAEQYiNPQdOfRBe+xHUf0ZbhYovK4aMXRnq9lFwvm4AsxOOugUqjtA3xuoP9B1vLFVrE0to6KiGzjjbHsSjZQd0N0FGjBc7h6p+Y0h1hiFUWWsh0Z2FVj8+RDAYwGK0gBLloWfnLmjbCtk6zPaUDXDBPfDwFdBWCaU6lWWXVZjWrlVp+MYPYOHR+owrCKNpWKP/mIEGaHsPcg7Xf2yAcBe4o5tFPibVA90vTq0qDQ17oDuK2XKqBLtKtAoL0+vBHEPiVsAEu4qgM2PsdQFaG6GjFTJzot+HkBSlRxxB/r77sv63v6XqlVe0ZMkoBN1GWrfFfzooa948lt98s6jKMMGoahACzyY6CgRXg+E6PUKaXLrfglCzdl8ygm0ahL0QbINQZ+TXpySBwQGmbDAOeA9Ww9CxBvL+X2pin0DU8Neo4c3Dn5Bs2g0IhwMYDCOfE1aD/0Y1fQdJir4azXhVvO++5MyeTev27ekOJakkWWbBWWelO4zJY8vG4cskIxiLIJTCcxQAkklLphjK64HqKpg+I7XxCMIUIRIahIkopQkNl156acrKjxiNRhYtWsShhx7K5ZdfzpIlS1KyX0EQBEGYtGzZcMpfUb/+By2ue4g1c9/vhO699iFj8Z2QkYTZRo0RZhkkU1OC+2uMcCIu2Ro3JZ7Q0Brh5MeIJAibIKiCHONhZ+tGfRIaADJy4PIH4d/ngknHGSdFXTDvDjgoyeX6BQG0CyGdnyRn7M5PkpfQ4PtAmzGpF89bUyuhYVeMnzXtTuhwQE4X5LdBhjdywQUV6LZrVRnanFpCRKxxLTkktm2EpDC7XBz4q1+x6Mor2b56NZUvvECgU/+S0ZLBQOkRRzD7nHMo3F/HCltC6gTfArU18XECz6NarkGSLImPNZl0vzN8mcGm3SgBxa/dVIVwKIxsdoDBwohVcdzviISGCJTgMwmPoaptqKE3kEwn6hBR+i08+2zeu/POdIeRVOWHHSbaTegpUoUG0NpOyF5QdPisiIoMhtKRK8Vt3SQSGgRBEIQ+aakLGGsPlngEg0E+//xzvvjiC1auXMmBBx7I/fffz+LFi5O+b0EQBEGYtGQZzz5LCYRngq8NvO3DerkPJ4E5A2zZtB2ylAySVDq1ZWtyxh1J204Ih8AQ5+FU08hl4/uoCvjcEPBC0AchPyg9x1GyBEYrmK1gsoI1Q5vlNZrmrTAzwYuWbSlKxNB7P85cOOEs2LMF3G2Jj2c0wYxSmHt24mMJQjT8NRDuTs7Y7iQmhPljSYKKZrzNWnLHVOnTWV899jpDqTK0ZGo3SQG7H6wBwkoAWTaDzwwei7ZevOqqRELDOOMsL2ffH/6QfVasoOrVV9n+zDO0bUr8tW3Nz2fWGWcw64wzsOUnmBQppFfov/qMo3ZC+AswLtdnvMnCP8brTbZoN0BRAzBKBQEAAjtBCYAsqs8OpIb/o984kyShYc5JJ/HRffcR9HjSHUrSLDpHh9aJQr/G+pGfMxQACijtSQ5CAuM0kEdpeTBanELCGmnFgjXdYcTEj46J8oIgTDhpSWhIVZUG6E+e+OCDDzjggAO48847+cEPfpCy/QuCIAjCZBOgSbuI78gHez4EPRDyaTclBKhahr3BAkYbmGx9F/0DNCUvMF+MrQTCAe2mqsjBEMgKGEeZJTVs+5D2sxtcMYcKgH+U2ZMhP3S3gadj5PYOYbSLm/6eC5ySARyZ4MgG4wgnPkfbZ7R8OiQDRMOfjP00Q1YR2FzQUQ9Bf+xDSBLYs8BVoPXzDDWBqUT3SAVhmEBjEsduGHudeIVq9R1P7QalK/733okmkOBJO1UGtw3cNpRAAPRqyxiI4/1TSAmDxcLMU09l5qmn0l1bS9vmzbRt2kTrpk20bdpEoGPk4yXZbCZr7lxyFiwge8ECchYsIHPWLCTRv3pyUHVquwWgtus3Vrw6anuSq8Pa942s8pGPgVMhWKfveGoYQg1gLtN33BjdcMNr2GxGfvWr9LdXU9UwqG6dBtPx9ZBmJrudOd/8JhufSbx6xXiUWV5O6QEHpDuMySUYGPk5SQJDEWAApSVJARh6khnso68WGCVOIWF55GFllISScciHN90hCIKQRilPaBhanWFgckO0lRti2WbguoFAgOuvv56MjAyuuOKKqPYlCIIgCMJQAy6wS4DZrt2iksQqTWMdR6iKlvTg69SqHQxIFDCoKrgl7cu70QIWJ9iyomiTkMDPEyleVYGOxvgqCKhh6G7Vbhk52gX3oUmkulTJSn6lLW03ydhPz5gWOxTMBL9H+137usben9GsJTI4skA2DHhihIQTQdBdGt8/x50p9Lobr/834zUuYZCMkhIySkooO7r/QqS7rg5/ezvhQAAlEEA2GjFYLBjtdjLKypANhlFGFCY2Hd87R0q4TSZvB2z4N1R9oLVu83cNfl4yQO5MKN4bFp0GRYtSHGASj13TaOfONmw2U7rD6KFj67hJdiyx+KKL2Pbii5OySsN+V16Z0smRAj3nRQpAcUC4DtSgfmPLTi1hQorislQ6PmsEQRCEcSulCQ2K0v8hdNddd3HLLbfg9/tRVRWTycSJJ57IiSeeyOLFi6moqMDlcmGxWOjs7KS1tZWvv/6ajz/+mKeeeoqdO3ciSRKSJHHAAQewatUq5syZQ3t7O/X19Xz88ce8/PLL/Otf/yIcDvetq6oqK1asYNmyZSxZsiSVP74gCIIgTApGMhPYNokzas0OcEeoAKGq2nJP29hfiFVVS3YI+sDdDBYXOAsiJzZIklaBIu54hySB+D3QVgthHU4WdLeCrxuyS8A8IMaoE09GYcqAYJLK3g/dj94MeYMfW+zaTUWrMBLwaFU3ev9OZJOW3GKyjtBaRAZDjv5xCkIkxuzkjW1K4tiGXH3Hk8zaidCpwjROS42bLemOQIiTo7gYR3FxusMQ0kHS8b1TSmGVnK5GWHs/bH1Nq642RF8XIjUMzdu021droHAhLL8CZiXYbi1ahlytooJupHFxnPn00+eMmy5PkmQGyQKqDlWC9Hw9jAPOkhKWf+97vP+b36Q7FF1NP/xw5pw4OVqDjCvRHl/KDpBmQLippwVFAklWkhEMhSDH8PlhmVjtECaaBtqwTLCKB6LlhCBMbSmv0BAOhzn33HN59tln+5Zdfvnl3HHHHeSP0I8xOzub7OxsZs2axWmnncbtt9/Oc889xw9/+EN27tzJRx99xEEHHcQ///lPjj76aHJzc1m0aBGXXXYZu3bt4uKLL+b999/vy+YMBoPceuut/Otf/0rFjyzEYOXKlaxcuZJwWM+sa0EQBEFPDhZhJJMQsZfpzCSJ/bZzZkFb5eBlQY9WjjaeJAFV1So6BLrBWQjWIYkcmWWJlbXNnd1/39sJrbXoOgsrFICmKsgtBatz+D7jlTUXPCnoZZk9V/8xzfOHLwv7tfYWwa6elikDKGizAYNWMGeBOXNw1QtT+dhlMgVBL7YKrfe2MsJJfBXtOcWn9dwGtKQbC8jW0SvOOCK8NvRiXhB5uRLUXndhn3ZDwaioELKAwQoGBxgdw7sAmeZqs3Cnityi+Le1BiDLDRk+sPkxqmHACF4zdFuhPQP8cc66TSQuQRDSw7AfBN9MfBzJDIYUVT/Y8By8czfh7jYUn5ewz0fY60Px+1AVpa9qq4QEsoRsMmOwWTFYrcjeTzHUb0CafyIc9SOwJjkJwzofunVMaDBNA0MSEnxjZDSOr5YzkmEpamitDuMs0yGa8WXh2Wez6803qf3kk3SHoguLy8VhP/1pusOYnLJzoD7KtnCSAYxFoOZpSQ1Ke2wVGyQHGLJByhheQXIsWUlMuhbIJxcrE+t8ho/JV4VGEITopfyo9Morr+Rf//oXqqpiNBp59NFHeeihh0ZMZhjJqaeeyvr16zn44INRVZWOjg5OO+00NmzYMGi9GTNm8M477/CNb3wDVVX7khqee+45tm7dqtvPJehjxYoVbNy4kXXr1qU7FEEQBGEEMiayOSrm7Yxkk0kSTxwVDLlo5m2D1qrEKx4oYS0pomvIRfz8ES7SRas3Xm8XtNaQtDK1LTVatYaB+0xEjg5jRLWfhfqPaV2mnYQH7WJqdzV07tQSGoYmM/RRIeQFTx10bNXW7f2vsh2sf4yCMBJJhoy9hi9XQuBvAvc2cO8Eby34m3tujeCphu5t4K6CYGfktxrn4uTFbTuAQV87Q15wV0PXdvA1QLCjJxEjiKQEIeQGfwt4dmvr+FsHx2yfYq+7mXG8F2a6YeFu2G8HzKqHwnZweZGcfsj0QFE7zK6HpdthQTW44jgxOCNFnwWCIOjHfDJIOvTKNh6HJMdfsS0qSpjAU9fifewaur5eT/eO7XhqavC3tBDyuFHC4UEtaFVUVEUh7PcRaG/HW1+Pu7KSrs1bcL/2AP4/HIfavCO5MdsP0nc8x4H6jjdJyMZzEx9EsiIZT0l8nHFGkiSO+MUvMNl0eJ2PAwffcAP2vLyxVxRiNyeOZGbJqFU8NM4C4wwwFIOcrX2uSBbte7ZkBTmjZ71pYJrTMwnAGXsyA8BccbwpCIIg9EtpQsPLL7/MI488AmgHWbfccgsXXHBB3OO5XC5eeOEFioqKkCQJt9vNZZddNmw9WZb5xz/+QU7O4FJtr732Wtz7FgRBEISpLJfjMJIV0zaFnImUzOJQJUv773vboFPnKgKeNuis639cunTkdaORM1Obbd1ak9g4Y1KhdQ+YXeAqTXy40iMSH2Ms1jzIScLMP0Mm2I+DQIeWyBBr6wxV0apTdO/WEl2cZ+sfoyCMJv+0wY8D7eDeoSUvjJiU0yPsAW8NeHZplUl6GZyQc4zuofYxFoLtMK3qjbcB3JUQivK1pwa1pIfu3pgNkHFG8mIdj0pnRF9u1xCG2bWw127Idg+vbjGUBOR0w15VMLMe5Cj7FGe4oKAkunUFQRg3JMkBpiGl29UQhFsgsBv8W8G3CVN4OwR2QLAWlK7hA5nPSVqMSjhMwxuvU/eDZXjfephAWxtKAhU8VVRCHje+nV/T/vMDqLr/TvwtLTpGPIDrJH0rd2WK48yIDAcjyYl9BsnGE5Ck9Fe/SAZnSQnLr7023WEkbPrhhzPnpJPSHcbkNSeBRAFJ0qq/GbK0yg2mCjDNBNMsMM0AYxkY8nuSGBI4/2MyQcWs+LcXBEEQJp2UJjT8+te/7rtfUlLCj370o4THzMrK4he/+EVfZvann34aMVEhKyuLa665ZlCVhnfeeSfh/QuCIAjCVGQimwp+hIHoeo/mczo5JPGCGUDR3pA3FwJu/ZMZennbwdMKZjvMOSHx8ToDJKcywxCqCp0JVqrolT0X8vaJbrfGMOGMAEqWn7AjgCpH+bPOOgPkJJWUb8vXqm2oUV64iyTkhoYAhCZWeUZhEsg9FswF2mvaswd8dbH/LYd94N6lVUYAKDhDa/GQTM6LtaoMgdb4tld8WlKDfBAYY6vsN+HJcnTVEMxBWFwJhbG3g0ICittgn0owjZEYAzArQqUQQRAmBvMFPVUaFAjVQ2A7BBtBcYM6IHFACUC4AwJ7wL+tP7HBeACSMTnvAc1r1/LeaafR+sdvY/frX1FVVr3YPr6T9045gS333ks4EBh7o5h2YIfsS/UZy3k8WMSFvEgkSUYy/b8EBnAgmS7WL6BxaOHZZzPz2GPTHUbcXNOmcfjPf57uMCa3iVD5YMZsLalBSJp62qijdULd6mlL969NEIQ0SuI0ycFqamp4//33+5IJzjzzTAwGfU5Un3POOXz3u9/tS2p45plnOP7444etd8YZZ3DbbbcBoKoqmzdv1mX/giAIgjAV2ahgFrdSz+N08hkw/KKamWIKOI1sDk9NUPNPgc0vJXcf3Y2w93laUkMi/vsYdPjHXk8vLV2w9ik45FuJj7XgUnj3hyM+Hcr2EizrJFjgAVlFVVSCsoQUlDHVODFXu5C9I5ycMDpgdpJmpFW/Bl89Aq4CyEsg6SVogjozuL8LRz0KBrNuIQrCqGQzVNwIn58bfZWDiFStNYUxF6ZdqVt4EYUD8Pm9EHJorRDiFTTDxg/BsR5y99MtvAnhsG/C5s9Gft4Y0qoy2BK8OOfww6Ld8NV0CI/yXf3wkxPbjyAIaSMZpqMavwfd3wE1yvcMNaQlNsgV4LxN95iC3d1svftuap57jgyHl5J5SaqgAFgsQcqLatn197/T/O67LLr5ZrL2iS5RNyo5l4D7P+DbOOwpRVLxm8MoMoTkMAYUjEqEeWaGXCi4Ub+YJiHZdBKou1ECD8W2oWTGYP0tklyenMDGCUmSOOpXvyLgdrPngw/SHU5MHAUFfPP++7ENqbIs6GzGLMjOgbY4k41TYUkS25UKAOSRi5WJNUnDRxyt8gRBmDRSVqFh3bp1AH1JB4sW6VdGODc3l4KCgr7xP/7444jrLV68GNuAPmKtreP4Q1sQBEEQJgALRUzneubxBwo4i0wOwsX+5HAMFfyEufwudckMAE27Sf7hjQwtCbaJCPjgnb8BZiBbj6DGkAsY4e1VEI5i9u1YSg+H8uHJo4olhPuAGjz71xEscsOQigyqSSFQ0UH3odV4FzWhShEqNux7HdhyE49xKG8zfH6ndr8zG9ri3EfICHXloBqgYzts/LN+MQpCNNo2QliP2UoSeLzgrRt71URsvR/av4LuXOiO8/0uZIKWMq2txhc/16qkTCUHnwCOUSoizapPPJmhl8MPMxtGfj4rF/Y/Wp99CYKQev6dSHV/he5CYjpmDtug3YxUf1tiVa6GaF67lg/OPZea554DVGZOrx27XU6CCvLbcWa4cVdVse6KK/St1iAZoORuMPdfMA+YwjRl+6gq7aa20Et9vpem0iC7S9005HnxWgYcmxtcUHqf1iZNGJVs/n/I5u8DEioqnQaF3ZYgW20BdrpUtlkD1JpDeHraKUmSC4N1JZJheXoDTxGDycTxv/0txUsTbJOYQvbcXE5auRJniWhrlXQGA5xwarqjGJkkwclnpjsKQRAEYZxJWUJDZWXloMc5OmdaZmf3nxyrqqqKuI4sy+Tl5fU9FgkNgiAIgqAPM7kUchblfI/pXEcp38bJ3kjJPiM5kK8TNjwHtiSfALEWQv1GqNsQ/xhfvAre3p7EBUAySylagJ7jn+5W+PotfYZdeiPYC/seKtYg7gNqCWdGUXVCgmBpF9596wcnNZQcDrNO1ye+ob64CwKd/Y/bCqCxGCLNjBuJxwE1FRAaUJFh2+PQJqp+CSnSuRkqHwGpEKRELnZIIE8DTLDxFl0vTg3S/jVUPtH/uKMI2otie915ndBU0Z/E4WuETffqGeX4Z7HCYSNURcjrhLwIPe4TUdAB2SNUADnydDCmrNCjIAh6UgJQ92MIdyCFMqBzJvhztSTNkYSt4C2G7nIk1QDd70DrI7qEs/2vf2X9tdfia2wEICerC5teyVljKCnSqkCoikLV3//Ox5deil+vc4TGPJj2EDgOpc3lp7rYQ6czOOyjT5Wg2x6ittBLY44P1TIPpj0M1nn6xDEFyOaL8NpvZ4c9jzqzikdWUdAa+oUl6DQoVFtkquyzCdtXIRn2TXfIKWW0Wjnpj3+k/LDD0h3KmJwlJZz68MNkz5iR7lCmjpPP0lqbjUdLD4DSsnRHIQiCIIwzKfvU8nq9gx43NTXpOn5LS39JuqH7Gigzs//EX2+1iIlm7dq1XHXVVSxcuBCXy4XL5WLhwoVcddVVrF27Vvf9VVZWIklSzLdXXnlF91gEQRAEYURfPw8hv9YL3lo49vrxMGdqN4DPn4l/nA9XD3ggA6UkZzqaDJQw6JBv0L4TYMmEo/4MtnxUg4Jnv3pUa2zVH0J5XnwLm7UHBUvh4Dv0iW0ody3U/mf48u4sqJ4J7Tmjl1f32qGhFOrLh8+MVxXY/kTk7QRBbzv/CoS1WUtSsZbYEOtXOsmilQ2XMrTHXRuh6T/6xtlr+6rhyRLubGicqVVrGCmxQQV8DmiZBq3TQBlyAX3Pc1piw1Ry8sWRqzSUNSdnf5HGzcyBE/8nOfsTBCH5WldBYGffQ0k1IfkKoHM2eEogkA1BF4rPqSU6dFcgdc9ACmQhDfysaX0QApEnEkVDVVU2/+537HzwwUHLC/Pb4x4zVlkuNxZzf/JE19atrLviCrz1CbQkG8iYQ1vpYbTm52mfu6ORTHRl5dBYvh+qpUKf/U8RXXxKtfwIYTkL5DlIcimSVICi5CBJhVprCXkWPlmlUvoNQZL0mTmOGcxmjv/d75h32mnpDmVEefPnc+pDD+GaNi3doUwtRcWw/JB0RxHZqeekO4IpoYF26mibULcG2tP9axMEIY1SNrUiPz8f0Pp4AXz22Sg9QGNUW1s7KEFiYBWGodzu/vKkdvvE6hHkdru59tprWbVq1bDnNm3axKZNm3jwwQe5/PLLue+++3A4HGmIUhAEQRDSZNNL/fctOdpFNL+OCZQmF1iL+x9vfR2O/xkYYqyu4OmEmk1DFtqAacAetCt5epB7xrQOXlz5udbywmyNsE2MnOVwzMMEd1yIklEZ1xDBki4swbOQF98JBvPYG8Rj1z9HnoEeNkFrIbQWgMUHZh8Ywtq0uaAZ/Naxy/vXvAH7/BAsWbqHLgh9vHXQ8n7/Y0kCKQfUDFBbQO0ERqu0YAYpu+c2JIFqz2oo0LmNgLcemt6L/FzYpFVr6CgAk1973clhwsEwMnYI2IYnMQykhqH6WZhzlb4xj2c5+XDxDfDnm/uXuTxgj6IqTjycXnD4wD3gs+KyH4NTlEEXhAlJ8UH7UxGfkpAhmKndACUQQDKPckymBqHtCSj8SVyhbPnd79j91OBYTKYgLmcK2wlJkJfbQU1dft8iz+7dfHLVVez/8MNY8/NH2XhsPrbRyt+11hGGTO33r3hA9YOqoIQVDEY7SDaQ7SBBN+9iZwlOjkn0p5sSgjSzhz+gEtYWSBLgAgkUNQCyecj6rezmd8ziztQHm2aywcARN91ExRFH8O6vf42neXwkdshGI/tdcQVLLrsM2TBKcrmQPJd+B9athXA43ZH0W7AXHDT+q4pMBvnkYmViXR/z4Ul3CIIgpFHKEhpKS0v77quqyrPPPssf/vAHbDZbwmM//vjjqKralywxcF9DDazkMFriw3gTDoc588wzee211/qW2Ww2Fi1ahNFoZOPGjXR2amWUV61aRU1NDS+++CKGJBwQfuMb34hqvfwEvwAKgiAIQtRCAWjaPniZNQ9kI/gaEi+nbskFS/7gi4AhPzTvgML5sY01LJmhVwZQDtQCwfji7GNCq/oQ4ThLVaBuK0zfJ8F99MgoIbBPKfhqwdtETAkZshHsxQT2q8BKkpIZAOqjqWAlgd+m3WIVDkDTpzBNnIAWkqjpbSImLEhmrVqDWgB4QPUBvbNOZcCiXTDBOjyRoVfbOgh2aolbeml8N4r3XhmCNu2GdhGN0S6iDdTwn6mV0ABw2Dfhozdg/bva41ydW00MldvVn9Bw0PGwXOekF0EQUqf7DVB0fM/oehnyrx920Xgs2//yl2HJDAAZDl9yipWNIsPhG7bMW1vL+hUrWPbgg5gz40/g6uRFBh0Ty1bt1iPsD2AwDv/ddfDiuEpo6AjDfzzaf81RdnCOo2vOrbyOQmxJfT524WYDDhYlKarxbfrhh1O0ZAlrf/c7tr300tgbJFHevHkcccst5M6Zk9Y4prw58+Fbl8DjwydPpoXZDD+6Zfy2whCECezpp5+mvqcSVUFBAd/61rfiGmfXrl08//zzfY/POuusUa/HCoKeUpbQcMghh2A2mwkGtRP0LS0t/OxnP+Puu+9OaNyamhpuv/12JEnqS2o4+ujIJ1qqq6vp7Ozsa4lQUVGR0L5T6aabbhqUzHDllVdy5513kpOTA2jVG+68805uu+02AF599VV+8YtfcPvtt+sei2glIQiCIIw7TVu1GbtDmbPA6NBmNofimPVlsICtGAwjXORu2KRjQgOAHZgJNMDQUnqqqt36To5KPTO0h579zQYKGLUMfc0m3RIaQnyBIu0EW65WocDfAYF2CI90glECow0s2WDWZlEFeQkL30FijJK88QgHoGvn2Oslqn2TSGgQkqtz4+jPSwbACVKEtgRjUqFrM+QsjyeyyDpGe6/TQfdO7fWdrMou49WVN8Evr4C63VoFhWTqHb9slladQRCEicv7hb7jKR7wbwHb3lFv0vTuu+x86KGIzznsSX4/i2Gf3Tt3suGXv2Tf3/8+rnHDdNHN+2OvGIGfnfjYipW5cW2vp3Ve+GE9eHu+etwtw31FsI8ORd4SpRCknbfj2raV16ZsQgOAxeXiqF/+kpnHHpuWag2iKsM4dNGVsPa/sGv72Osm26X/D8or0h3FlFFPO+YYE8PSLcDIreaFkX322Wecf/75ABiNRl5//fW4x6qoqOCll17qG+PDDz/kiSdEG1YhNVKW0OByuTj++ON54YUX+pIP/vCHP1BYWMiNN94Y15g1NTUcd9xxfUkKvc4777yI63/88ceDHi9cuDCu/aZaTU0N99xzT9/jiy66iAceeGDQOg6Hg1/96lcAfUkN99xzDytWrKCkpCR1wQqCIAhT2qpVAbZtU7juOjMFBSnMqm/bPfJzsgkc5RDyQqANQp09iQGjMGaAOVtLhhhpRjNAW3UcsdaNsYIMFIOaDaF6oKeM/EgxSxJgADLBWDh2n96oYohemAEXLWUD2HK0m6JA2AdKkHAwgNFk1hJEDJZhv1OVLhSqMTBbt7j6dFWCkoISmp0pSJoQprbuJJ9k7N6ub0JD9w79xopECYG7Elzpv+iTUpk58JP74VdXgX1rcvfl8EFxOfx4JWToWL1DEITU829Jwphbo05oCHZ1sfHXvx7xeaslMOJzyWIyhZBlBUUZ/p2l6Z13qHv5ZYpPPDHmcX1sRE2g2pqXz9Oe0KCq8Ovm/mQGgG4F7myGJ6alL65ePnYSoiOubbv5XN9gJqjphx9O6QEHsOPVV9n4zDM0bUpuIqojP5/5Z5zB/DPOwCEq+o4vJhPceCt8/3Lwp/Hi9t77wjkXpm//U1CBaDkxZdx00019k8F//vOfc/jhh8c9liRJPPHEE8yfP5/m5maeeuopfvzjH7PPPjpVgRWEUaS0fs8vfvGLvhYIvUkNP/3pTznhhBP4+uuvox7H7/ezcuVK9tlnH7Zs2TKoOsOpp57KvvvuG3G7f//734DW8gLg4IMPTvAnSo377rsPn0/LHLfb7dx7770jrnvTTTdRVlYGgNfr5Q9/+EMqQhQEQRAEdu9WuP/+AK+/HuLxxxNtmRCjUBQnQY02sJeAcy44KsBWBOYcMGejGDPBWqAlPrjmgqMMTBmjJzPAKFUIEohVUaCzGeqrocELDUZoNUGXEbwG8MvazWvQlrWaoMEADW5oqIau5rHLvEfz+4pad+TFsgwmO1gyUUyZYMkE48gl71WSVDo9nKIZf2ExU0BIsnCST97oPX4oBa+JVL2+x5u8Irj5IbCZkrsfhw1+8RBkT5xWjYIgjEAZ4XgtRWNu+d3v8Dc1jfi8LCfYHi5Oo+13829/i39A29poKcRRFU7H7fXQFIbqCF/ntga0xIZ0CycwQ1fBh0oKkp0nAKPFwrxTT+WMxx7j9L/9jbknn4wh2tZfUSrZf3+Ou+suzn/hBZZedZVIZhiv5syDW34LxpTNfR1s1ly47R7RakIQkqCuro5XXnkFSZIoLi7mf//3fxMeMycnh5/+9Kd9jx9++OGExxSEaKT0U2rZsmX84Ac/4Pe//31f2wdVVXn99ddZvHgxixcv5oQTTmDJkiVUVFTgcrkwm810dXXR2trK119/zccff8zzzz9PV1dXX2JCb3WGrKwsVq5cGXHf3d3dPPfcc337lGV5xNYU482aNWv67p977rl9bSYiMZvNXHbZZfzyl78E4F//+he/+c1vkh6jIAiCIBQVScybJ7Nrl8pBB6W4fKQcw/4kWUtuoL+NRNgfwGiJ4+SNFMfPaRjl8MvvgbZaCA08gyhBUIJgFF/uQ0HoaAJ3B2QXg2WEbPvRYoiZPm0iJJJUv1ZO0eGulKaTP8LUkey/Mb3HT8Vrbyq/7nIKYPp8aNoNna36j5+ZC4VztYoQgiBMAklIgJKiG7Pp3XepffHFUddR1TGSiJNktP0GOzvZ+Otfx9x6QiKxC8JJacEWo0wZ7DJ4hiQvZBvAnp7/qkHkBP6eJYxIiFYHQxUsWkTBokUc9MMfsvu992jatImmjRtp3bqVoDe6BBJJlsmeOZO8BQvIX7CA0gMOIGv69CRHLuhm+cFw813wqx9DIIVVc+bMh9/8CTIyUrdPQZhCVq9ejaIoSJLEtddei9Wqz7m3a665hltvvZWOjg6efPJJMbFaSImUnwG66667aGxs5LHHHhuU1ADw+eef88UXY/f1G5rIoKoqWVlZvPrqqyO2V3jooYfo7Ozse3zEEUeQlzf+Z5ps2bKF7dv7y8uecMIJY25z4okn9iU0bNu2ja1btzJ37hQrxSoIgiCknNks8fjjdsJhFYMhxWe6HGn6TI9nv/bM4ctUFTqboLsFxuiGEZVQAJqrwJkHrgizYCLFECeZYl1GkSjUYZwI7FHEF/ZDsEub7R3291e4kE1gsGoJMGYnoxY3i2Y/gpAI+zTwjtJep5eqghrS/pXk6BMLbDrXkLaVQudoLRFUCHkGve4MigJhq1bNxWDTXoOjsU/x1nqOMlD84HBCcx0EdTj5bLJAfglYrJBRnvh4giCMD+YKCIzQCkgNa1V1FD+oYQyhMKg9xz/y8FZhg8YcgxIMsumOO8ZcLxhMfYKaokiEw6MnDDe98w6N//0vBTGUZjaT2HunmbKEtteDRYYLM+GBtsHLL80CeRwkNFiYhoQRlVDM21oRF9hHY3G5mHPSScw56SQAVEWhvbKS5s2b6aypIRwIEPb7aW1pIa+wEKPVijUri7wFC8idOxejJf0JOUICDj4c7vgj3PYTaEtCwuxQyw+Gn98BDkfy9yUMU0c7ZtLYZiQOgQQq9ExVH3zwQd/90047TbdxzWYzJ5xwAk899RTNzc1s376d2bOT0EZWEAZI+TcGSZJ45JFHKC4u5ve//31fdlAvdaye1jBs/QULFvDEE0+wePHiEbc588wzOe644/oe50+QEldDEzwOOuigMbfZb7/9MJvNBHqyKb/44guR0CAIgiCkTMqTGQAK56d+n/Hut2Te4MeqCm114ImvD+yIVLTWFeGQVq1htBgSYORwJFyodI698ohjHIxMkmYBW7LBXgiehuHPBbvA1zJyaXwlpD3nbwOPDOYssOVGnhWevUDXsAVhGOcCaFkb+blwAILtEHL3XJAa8J1KMmjJASYnmDJHvjDl0vlvOHMBNLw9fLkSBH8rBDq0i2gDyKoKYTd959VMDq01kCnCjC1bsfaanMoyF0DXdrDaYdos8HRBZxt44yhXbssAVzbYB/yuXWn6bBUEQX/WRdD95oAFKgS6INCmJZcNIKsqhHo+KyQZTC7teMowcEafBJaxPzca3noLX2PjmOu5PUmq1DUKj8cKjP29Zfc//hFzQoOV+fjYHHNMBjJxcGDM2yXDVdlQZoSX3VpK7ykZcMw4mUBtJBMn+9PJB2OvPEQ2xyYhosmrt+pC9syZg5ZXVVUxXVRfmJyWLIVVz8Af74K3Xk3OPuwOuPqHcJJ+F1eF2BWSg4URqnqOU36S3IZxEvrss88AKCwsZN48/c4FAhx55JE89dRTffsRCQ1CsqWlMZEkSdx55518+OGHHHjggaiq2nfrrdow2q13XZfLxc0338xnn302ajIDQHl5OYsWLeq7FRQUpOinTcymTZv67pvNZsrKxs7UHrrewDH0cPHFFzNnzhwcDgcOh4Py8nJOOOGEvuobgiAIgpBy9mxwFqV+v4VxXAAsHbJNR4P+yQwDuduhY8jn89AYEiBhxsQ3ExrDzBk6RTOC3CWDH6shcO+B7j0jJzMMpSraRdiOnRCIkLyRO/qxqCAkLOeA4cuUIHiqoXsH+Fu0agdDE8TVMIS6wVsHXVvB3zy8Eoy1VKuooKfcpcOX+Vuha4f2rxpF/+qgG9zV2k0ZMgszJ8L4U03OssGP7U4oKteSG3ILweWEXAkKg1DuR5oRgHK/9jhH6nm+CMpmQ1HZ4GQGgNwh4wuCMHE5j6PvFGDYB127wFMzLJlhGFWBQHvP+nX9Vazsy8GYPeZuq595JqrwutOQ0BBtEkXrunW4KytjGtvFiXFEBE6ORUpGe5A4neiE+4rg3qLxk8zQK4fjY97GQAaZHJqEaARhknFlws9uh1t+C3k6TwpdfjA8/LRIZhCEFGlubkaSJIqL9a8qOrBavrguKKRCWpuOLl26lPfff5+vv/6aVatW8fbbb7NhwwZCoZFLhuXl5XHAAQdw9tlnc+6552Kz2UZcdzKoqqrquz9t2rRB1SlGU15ezo4dWjnByhi/eI3lscceG/TY4/FQXV3Nq6++ys0338wNN9zALbfcgsEgetIJgiAIKTTrcPj86ShWVCHHDVkeyPCBUcEYVMFngw47NGWAGkXOZ+kSsDpjjzN3GjhzoasFvJ3Q3Tb2NonqagGLHawZkF2i7V9HZs4gwD+B2Mudy8zAQIQLtXqqOB2qe2aXhP3QvXv4xdFoqWFw91wAsPck0eTuA66Zo28nCInK3g8cM8G9U3sc6ABfff/FpWioCviatOoktlIw9PT5nnZWEuJdDM5ZWgKDqmhJRKE4KgcABLshtENrsWDsmUVUfqZ+sU5UxcfCpt9DcEiSlVnq+XzrRsteMQH9Ewi0Gckq0A0hGQLO4UkuljwoOCIFP4QgCClhKoaMw6Hln+CN84RzoF17H3eUQdZ5Y67etX077Z9/HtXQXq8Fv9+ExRKML7Y4tLZHfxxfvXo182+4Ier1MziULt7Ey5dRb2OihCxOj3r9qc7BQnI4gVZeiWp9CZkS/h8y5iRHJgiTyGFHwUGHwbtvwb+fga8+i28cmw2OORFOORtmiyrS40UdHZjjOIeTTqLlROw6OrQJVNnZYyeixmrgmJ2d8VdtFYRopTWhoddee+3F3XffDYDX62Xz5s20trbS3t6O3+/H5XKRlZVFWVnZlCtnNfCNIDMz+n7XLper735XV5euMRUXF1NRUYHNZqOtrY1Nmzbh8/kA8Pl83Hbbbaxbt47nn38ekym6zHK/34/f39+zSbwBCoIgCDFbfPbYCQ1FHTCjCayDT5ZKigqyD6a1QdAA1TlQlcuoZWgXnxN/rEtPhTcfhPb6+MeIVVsdFM6E/U/XfWiZUmzcjJebgOgvrkpkY+c3SFGU+01Iwf5awkH7ZuiuAiWKmeFj8bcBktbOYtbYJ/UFQRflF8GmW7VqDL4EZkCEfeCuBMd0sORDyel6RThYxf/Al78E9+7oq6GMRFW0cRzlWuWA7H30iXEiM1ig/GzYsap/mbEDLPUMfy+WhvwLoGrrG7vBVwzhARf3pp8LskhQF4RJpbMIPM3RdFkYmRKE1nYoLRlz1WirM2gkGpqyKZ+Wmtl9Pp+Zzq7oy2zXvvACc777XQzW6Ko6SBgo5EbquQ0fY1dNNVFEMb/AQBzJ0lNYEZcAKq30lsUPoxIEyY+KioQZkJAwUco1uNg/jdEKwgRlNMJRx2u3XTvgnTdg2ybYuglaWyJvI8tQPgPmLoBF+8BR3wCHI7VxC2MqJFu0nJgCXC4XbW1ttLXpP5lq4JhOpziGEZJvXCQ0DGSz2dh3333THca44Xb3z2KyRvnFCRhUuWLgGPGQJInly5dz5ZVX8s1vfnNYeRq/38+aNWv46U9/2lcN4tVXX+Xaa6/lz3/+c1T7uOOOO7j11lsTilMQBEGY4vJmQtn+UL1u+HMGBRbWQF732OOYwjCzCfK74Otp4IuQnOfIg7lHxx/rgWfBv34NYR0urEcrHIKuVlh+elKGN3Ek8Eu8/JJoKjXIFGPj98joXOZ+JPv8EF76pj7JDL38rZC7N0yLveStIMSl5BTY+QB06NBSTg2DZzcsvEXrj54M006FL3+VeDJDL1XVKqQc/Ig+400Gs78N9a9rbTlMrWBuiGOQMFj3gL8YQlngnA0zL9I7UkEQ0qn2TdjyJNgKIasu/nHCRmjNhQ+uhaOfBlPkPgSqolD/SnQz53s1NWcxrbgZ2RBD5aE41TdmE0tmR6i7m6b//pei46M/5jPgoJhbaWcNXbxGiNZh68jYcXIU2ZyLgegnMQkaCZliLsdGJs08gZtdgIpkVAkjIWPExX7k8x3s7JfucAVh4psxS7v1am6CPbsh4IdQCMxmyHBCxSyI4TqGIAjJk5+fT2trK3v27NF97IFj5uXl6T6+IAwVRT1lIZ2Cwf4ZpEZj9PknA9cNBBIrHTR9+nQ++ugjrrjiioi9diwWC+effz7r169n6dL+XrZ//etf+fLL6Mrr/eQnP6Gjo6PvVl1dnVDMgiAIwhR19P+CPCQBQVZg8e7okhkGcvpg3yqIVPr26B+BIYH+tkZL/NsmQgKMySuzauIoMngUM+ciEfkEt0wpFlbgYBUGUlh5q/lLMOjcqkySwdfZU61BEFLA1wS+VpB0ykuXHdDyqT5jRdK4FgIB7bWiF1M27IimvdAUYbDAPreCyRtnMsMAljowBbXxhn6WCoIwcfnb4Is7tfveLOgojG+csBFapoNi1KoEfX33iKu6q6oIxTi5JhQ2sLtG517tEbjdVhqaYi+73LFhQ8zbyJjJ4VuU8yCF3EgmJ+PkaIyeI8hnBdNZRR5XimSGOCl00cZ1BLgfF+0UkEkOTpwhKzk4KcCJje108yO6+QvqsP5KgiAkJC8fliyF5QfDwYfDsgNh/iKRzCAI40hvxfvm5ma++uorXcd+8803++5XVFToOrYgRDLuKjQIg9nt/WV/ets6RGPguo4UlXTKzs5mzZo1zJs3D5/Ph6qq/OlPf+KBBx4Yc1uLxYLFkqaLO4IgCMLkkTcTDroS3r+/f9nsRsiMc3awNQgLa+Gzcvpmcc07PrHqDADrngVXPni79K0YMBqDATJy4NMX4JBvJW03MmVY+T4WvoOb19nDLtoCrRRYCiljCSYOTH6LiaH8HbD5EbAUghLQ+j8nTAJbKYR82thLfqjDmIIwhi33QNgP1nLw7QY1FP9YRieYi6H+NSg9BfIO0i9O0KopfPU7kM1gKQN/tdY2IhHGbDDlQf1/oGkd5IvS0QA4Z0BuBnRL2u89XpIE+U7IKNMvNkEQ0m/zXyEwIPnSkwMhK2TVgiFC4m4kXhd0FIE6oBXN7ueg4mzIXjhs9c5N8VUSamjKJie7C5czOSWlVUViR2UJ8fTdiPdnAq0FRQYHkYH2WevtrMKVPbVa6upNoYt2fkCIyr5lBmQMyEiqipmBiXkqHp5BoQsX/5vyWAVBEMajWjoxE+VxwDgRQKfKf1PIsccey2uvvQbAE088wR133KHLuC0tLX3jOp1Oli9frsu4gjAakdAwzmVk9M9u9Hqjf8P2ePq//A0cI9nKy8v51re+xSOPPALA66+/nrJ9C4IgCAIAyy+F2i9h13vg8kBpgrPnszxQ0g612ZA7E479ceIxfvo8GIyQVQittYmPF42sYq0f+qfPJzWhASBIgA/5gG3sIYREwOzETAgHm9gbK/uQ4vZiu/4N4YB2sc42Dby1EOqKfzxJ1pIZjD3HWJUvwN4rtJnSgpAsvkZo6JkBIVvAWgGBOgjHmqAjgTkPjLnaawKg6h/6JzQ0fqC1QQAw2MEyHQI1WlJRzHpiNg0oY7nrGZHQ0Kv5HyCHwVEOnhpQ4kh0kU1gLwV80LIaCi7WPUxBENIg6Ibql4YvD9ihcSbYOsHRBqYIE2hUCXxOcGdDcIQe27uegeybhy3u2rw5zoAlduwqYeG8KiyRqqQlQoVdu4vw+uI7XuvasgVVVZGkFCfmChF1csegZIZo+HgFIzOxc1ZyghIEQZhACsnGwgif7+OUn+QkPE5mJ5xwAj/60Y9QVZX77ruPa665hrKyxBPYb7nlFrq7u5EkiWOPPRZZFs0AhOQTf2Xj3MDeM3V10fc5rK+v77ufm5ura0xjOfLII/vuV1ZWJtzyQhAEQRBiIstw6m+g4mAoG96rNi5lrZA7A86+H6wJ9pr3dELzbu2+PRMcWQmHN6aMHLA5tft12yAQfdWnWAUJ8gL/YhNfE2LwRTU3bj7kPd7nnaTtP6LKF/rvSzLYp4G1OL4y+EYHOGb2JzMABDqhJsU/kzD11DwH6oCKLrJJq9RgKdESHMYkaVUZbDO0xICBF2RaPgRv/cibxmP384MfG6xgnQGmHGKaGSvbwFYxOJkBoP4dCHQkGuXEp4agZY1232AH5yywZA/+/x2NJIElB5wz+9vytPwzsUoPgiCMHzWvQXikk/+y1oKieQbUz9PaSbRNI9RYDE0ztWXtpSMnM/SOHxo++SaRagaBoIlNW8vx+3VsfdOTzNDUkhX3ECG3G08C7VF34OF+qvk521mV3clndMY9Vip0EeJfNHIzO7iFHTxPEx5SVFluDCF2EOCjuLb18AzqOPk5BEEQBCHZ9tprL4499lhAmzB98skn097entCYq1atYuXKlX2Pr7/++oTGE4RojZuEhurqah599FGuvvpqDjzwQGbPnk1eXh4Wi4W8vDxmz57NgQceyDXXXMNjjz3Gnj170h1ySsybN6/vfktLy6DKC6OpHvAla/78+brHNZri4uJBj1taWlK6f0EQBEHAaIFTb4MKnWbMZ1vgzB9CRt7Y646lZsgJ3uxiLbEhWRxZWiWIXqoCdVuTtrvP+IQmGkddZwNfUkP8J4RjEuiGrl3Dl5uzwDELLHkgRVG0zOjQqjvYyyP3lm/5MuFQBWFUbesjLzdmgm0mWKeDKR8MGVqCg2wG2ao9by4C22ywTIuc/KAq0P65vvG2fjF8mSSDuRDsc8BcoF1Aj5RYJJvBmKVVobBVaD/HsJjD0BZ7P/NJx7MRgs0DFshgLQLnHLAVgMkBkmHwNrJBW24r1NazFjLo1IC/Bnw7UhG9IAjJ1hrl8Ykqa1UbfE5UrwNCFqJKPlP80D68GkPXtm2xxTmEP2Bmw+YK2jsSrzgaDBrZsqOMxubshMfq2hrfMfR/aOVmdvAe7ezEywZLgN9SxRNEP3EplVoJ8nN28AwNbMPDVjz8g3puYgcdJNDuSidenot7W4UmAryvYzSCIAiCML79+te/RpIkJEniq6++4pBDDmHdunUxjxMMBvnpT3/Kd77zHQAkSeKb3/wmBx2kc7VHQRhB2ltOvPXWW/zhD3/gpZdeQlG0nqrqkNkgra2ttLa2snPnTtatW8df//pXZFnm5JNP5vvf//6gigCTzYIFCwY9/vzzzzn44INH3aampoampqYRx0i2oUkXdvvEKl0kCIIgTBLKdnDmg9UBHXVay4FYyQZwFmlVGeRqQIeD9EjJBDklYDBAdyvoNSlWApx54Mof/lztFpi+j0476hcmxBaiu8C4ga8oJQV92ts3jzzTWDaCJV8rZa/4INxzQwEkLdHBYNUuukZKYhioLf6ZiIIQlc4xyncb7Not7vE3QfEJ8W8/kL9Va5ExEskAplztpqqgBgGFYCCIxWIffgF+JB2boXD070aTnmeE9x7JAOZc7QaghggFApjNluh+v56NWhKMIAgTW3sKjk86NkHe4HZiIXes7ZCGC4aMbNleRl5uO9OnNWI0xjirXoXm1kwqqwsJh6P8XBlDOI6fy02Yv1GHEuG5F2jmYLKowJZ4cDp6knqaGP7dqQ4/a2jgMkrTEJVGJYSPNxMaw8urWDhcp4gEQRAmpho6MKNze6ckC4iWE3FZtmwZt912Gz/72c+QJIlNmzZx8MEHc8opp/Dtb3+bI488EofDMeL227dv56mnnuKhhx5i9+7dfS24ysvLeeihh1L4kwhTXdoSGjo7O1mxYgVPPPEEMDiJYbR+dL3rhcNhnnvuOZ577jkuvPBC/vSnP+F0OpMbdBosX74ci8WC3+8H4L333hszoeHdd9/tu2+1Wlm+fHlSYxxq48aNffctFguZmUmcdSoIgiAIIwlVaf+a7JA3C/xd4GmDQBQnIo1WsGeDNbO/bHeoUp+4vF2Rl2cWgtUJbbUQSvBLpdGsJUmYRzg5OlIMCWqmCS/Dyw5HsoeqpMQwjGf0ahGA9n9ssPWXW4+Ht2nsdQQhXiEPBJNcmlrPlhPeKF53vSQJJHPPfTn6ZAYAb0NscU1GgSgrF0pGVEmJ/vcb7biCIIxvvhS8Tw55Lw4HArq2rWluyaKl1UVuTieF+e1kOEY/1gwFDTS1ZNHQlIU/YNYtDoBwz7m5WKyjA3/EdAbNe7SPq4SGECofMXJLp/doT3NCQxdqlN83RqKMUU1OEARhKigiBwsTayKqnwiV+4So/OQnP6G6upq//OUvSJJEOBzm3//+N//+97+RZZm5c+dSXl5OZmYmZrOZzs5O2tra2LBhA21tbQB9iQygtbl/8cUXKSgoSOePJUwxaUlo2LNnD0cccQSVlZV9CQpDkxiGVmnoXWfger3r/P3vf+f999/nnXfeobQ0fQfVyZCRkcExxxzDSy+9BMDjjz/Oj370o1G3efzxx/vuH3PMMaNmV+lNVVWeeuqpvsei3IwgCIKQPkNmcVmc2k0Ja71+gz4IB0FVUMIKstmqJTKYrGCINBtfp/Kq6sgnNLHYoXCmVqmhuw3CMe7TaAJHNmTkjN4/fbQYEhCOoR9tLOsmJjk/6/DdpL/8rjCJJek1O3gfOr4mUxFvKvcznun5/5aKcQVBSC0lBa/lIe/Falj/faqqTHNLFs0tWRgMYRx2Hw67D6MxjIRKWJHx+Sx0e6z4/SaiapcRTxyh2I/3vGMci7pTdkwcnSAKwVFKxvlQUFGRkvQ7HosaoXJEOsYQBEEQhInm/vvvZ/HixVx33XX4fD5Au54XDofZtGkTmzcPrwo59PqtqqoceuihPPnkk5SUlKQueEEgDQkNLS0tHH/88ezapfUyHvhC6FVaWsqCBQvIysrC4XDgdrtpb29n8+bN7NnTP1Nk4LY7d+7k+OOP59133yUnJyeFP1HyXXrppX0JDV9++SXPP/88p5xySsR1169fz8svvzxo21RauXIlX37Z36Px9NNPT+n+BUEQBKGPnDV8mapAoEub7Rzy9bShUJFVFUJ+UANa6XOLS2tHMGi8xPvuAlr1hNFIstYqwpmnVVLwdkKgJ9ah5xalnvFMNrC7wBpln+GxYoiTExcSEmoUfTNcpKiCkzFFMw5MqUsgFaYgg1V7b0jmBXyjjn/DqXrdpWo/45khSVUKjaLKniBMCiYHhKMsz6yqPZ8zinbMGe316iHvxQaLJZYIYxYOG+jsctDZlfpjL4M19pmhc8aY/Tp3nM2OtWGgDAvVRK5GMRt72pIZACQS/9yTdRhDEARhoqulE5NeE3dSJChaTiTsO9/5Dsceeyy/+c1veOyxx/oqw0cy8JqtqqosWrSIG264gYsuughZllMRriAMkvKEhquvvprNmzcPq7SwZMkSrrjiCs4+++xRy5Q0NTWxevVqHn74YdavX99XtUFVVTZv3szVV189qELAZHD22WezePFivvjiC0B705kzZw7z588ftF5dXR0XXngh4Z5s+CVLlnDWWWdFHPM///kPRx11VN/j//u//4uY/LBhwwbuvvtufvSjHzFv3rwRY1RVlfvuu4/rr7++b1lJSQlXXXVV1D+nIAiCIOjKNOBzUgmBtxn8HSNfEAwHtVugU2tTYHaCPQ8MluHjJSJnWvTr2pzaDUBRepIuer5QSDKYzNq/scqNIYYYOHFRShl72D3muvNZmJQYhslMUQ/4VO1HmJpkIzhmQPeO5O3DOVe/sRxlIFtAGaM0t6oCQVB9gIJMGFQbYI3uvc0lXnfYRv6ONi7HFQQhtVxzwDdCWywVCHZpt7Cv7z3bpKjgNWjJdEYbmLPAMEoyrGvOoIeSLCMZjXFVMxjvZHPsScGzsbMQBxsZ3vYuHzOHkKVDZPo6lQJWUj3Cc/kpjmYwGTtG5hNi+CzSaJnYT8eIBEEQJqYiMrEwsSZm+IlUTVWI1axZs3jggQf49a9/zeuvv867777LJ598QlNTEy0tLfj9frKyssjJyWHmzJkceuihHHnkkaIau5B2KU1oWLt2LatXrx5UWcHhcHDPPffw7W9/e1jbiUjy8/O5+uqrufrqq1m1ahU/+MEPcLvdfUkNq1ev5sMPP+TAAw9M9o+TMpIk8dBDD3H44Yfj9Xqpq6vjgAMO4Oqrr+bwww/HaDTy8ccf86c//YmGBq13oc1m48EHH4zqdzqaYDDIqlWrWLVqFUuXLuXoo49m8eLFFBQUYLPZaGtr47PPPuMf//jHoJI0FouFp556Cptt/PQBFARBEKYY4zQwloH7a3A3xFg+W9USG4JdYMsDezFYdDrxVRprYoQKWd2Q4QGbD0w9J4eDRvBYodsOHRnEVFq3dEGMMURvX5ZRyx6UUcrrZpDBfBYlLYbBOyvTZicGh59E1lV28n6nggBA5sLoEhqkgHZDBQygWLR/x+LS8W9YNkDmXGj7KvLzqg+UNlA7GdgWxiCpEO59L7NplXEk58jJDVkpSowazxz76F+9QzaBTfxuBWFSyJwPjWsHL1OBQBv4mkEdKelA0So7hD3gb9Gq+NgKtCSHoSK8F9tKSvDsHjvBdaKxxlla+Tqm8xB7WEdn36fePOxcTRlmxt8Mx0PIwkOY1TTQ1dMSIwsj51LIUlxpjg5snEpX3AkNMjYiV70VBEEQhKkkLy+P888/n/PPPz/doQhCVFKa0PD73/++776qqmRlZfHyyy9zwAEHxDXe5Zdfzl577cUJJ5xAR0dH3/Lf/e53rF69OuF4x5Nly5bx+OOPc8EFF+D1euns7OQ3v/kNv/nNb4ata7PZePzxx1m2bJmuMXz66ad8+umnY65XVFTEY489xqGHHqrr/gVBEAQhJqoCtUYw1CYwhgqeJmjPhXwTupxvzK8Aix38Y5TKk1QobIH8tv4khoGsAXB6oLAVAkZoyoGGHMZMbHBkQXZxnMGPrZhSjuYbvM1rhCP0BHbi5EROxULsJXvjIklQfCjsfjW5+ykWxz1CkhUdBzXPR35O8oGxDQxdIEVI3lIsEM6EUBYRkxusBZC9RMdggaLDhyc0qCFQGnoSGcbiBcULmEAuBnnI7CH7NHDO1CvaicuUB85DoPNd/cbMPBqMohy3IEwKJUfBtlX9j8NB8NRG34aiV8gNXZVgyQVrfv/hpmsuOIZf5HfNnz/5EhokCdf8+Cq2OTDwfabTQoA6AniaGlg+bZbOAerrOHI5kmy240UGZmHHmMZWEwNZOQo3f0EhmuOJwSwchCHNVSYEQRAEQRCE2KUsoSEYDPL666/3VVKQJIn77rsv7mSGXsuXL+e+++7j4osv7hv79ddfJxQKYTSmvKNGUp1xxhl8+umnfO973+Ott94a1MMGtEoOxxxzDH/84x+HtaOIV3FxMeeffz5vv/029fX1o65bWFjIlVdeyfe//33y8vJ02b8gCIIgxEVVYe1tsGMHLDCDJRD/WIoM24LQdC0ctxKMCfYFlmWYdwh8+frI69h8UFELtjHKtfcyh6C0EbI7obIEfKPEOP+w2OKNw0xmU0Qxm9lAJTvpCHeQRz5zmc9s5mJIddezWWcnN6Ehfz/IFBdWhSTLPUi7iO/ZM2BhGMwNYOgYcTMAZD/IjWBqhkAhhLMGPz/tzPja14xm+umw+QFQg9pj1QPhPVrMMQmCshvUHJALtCQlgIqz+u9PdQUX6ZfQIMmQf4E+YwmCkH5ZCyBrEbRvgLAfuqtirFo2kAr+Zq01hb1Uew+ecXbENV0LFlD/2mvxxz0OOcrLMdrtCY2Ri5lczFSFW3SKKrlMyCwYh+XIJcw4uZ4OboVRqsINJZNDBlcnLzBBEIQJpIZuTDG8h44HQWJMyBQEYVJJ2dnkjz76iO7u7r4WCPPnz+fCCy/UZewLL7yQO+64o6/lQXd3Nx9++OGkrBCwYMEC3njjDaqrq1m7di01NTUAlJaWcvDBB1NWVhbVOEceeeSwhIhICgsLeeKJJwCorq5mw4YN7N69m7a2NoLBIE6nk7y8PPbdd18WLFiQcIsLQRAEQdDF5qdg+3OADFXFMGe3VvEgHnsKIWCGxs/h47vg4JsSj+/As0dOaMjwwKxqMMTxxdLug3mVsK0cPCO0fTronNjHjYMdB/uxnP1YTlVTFdOnT0/JfiPK3xdy94aWEcrfJ2rexckZVxAGkiSYfQ18+dOex36w7AYplh7lCpjrIOyGQAkggSUPys/VP15LtpbUUPlMTzLDbrQ653FSW0FRwFAM5hyYfppekU58GftB7hnQ8q/Ex8r7FthFuwlBmFTmXQFrv5tgMsMAwS6tykP+/jDtpIiruBZMvlZck/FnmsgsHIqL/6WT3wNjHwvJ5JHFrzGQvEp1giAIE0kxmVjGYdLaaPyY0h2CIAhplLKEhurq6r77kiRx5pln6jr+WWedxW233RZxf5NRWVkZ5513Xsr3GW3ChCAIgiCkTdceWP+n/sduO+wqhYoakGO8mFabDy1Z/Y+3/RumHwulByUW48ylUDATGncOXm7xx5/M0MugwOxq2FyhJWIMNG2hdpuKlt0Eb1wI4QSqdURSdjyUTL4kWmGcKj4eGl6HxlfBUhW5vUQ0DJ1gViFQCgt/BqYk9cNe9D2oewvcW0komaGX2q61z1h8F5jT38N7XCm5DjwbwLs1/jEce0PxCv1iEgRhfCg8FGSDPskMvYKdUHQUGCO3EHMtWKAl4kUxkWaicC2cosfQ45iV45EpxsPj+FiHmyABwoQMYUwo2DBiw4GVY3BwEQYK0h2yIAiCIAiCEKeUJTQ0NjYC9LWbmDVL315xM2cOLvPbuz9BEARBEKaYdXdDyDd4WYcTtlbA9CjbOASNsLsYOjOGP/fhHXDms4mXZz/xe/C36wYsUKGiLrFkhl7GMEyv0yo19Pa6lSQ44buJjx0jD124DR348WJhhKoRqZA5E/ZaAV/co9+Y9kLY70b9xhOEaCz8GbifgXCCF6YMXVCyBAqS2IbGaIesPHDrWMrUGIKsufqNN1kY7DDrfth5LXg2xr69YwnMuAfkBNsqCYIw/lSu0RILZDMoOiV2WnKh+jmYczFYc4c9bXQ4yNxrLzq+SlJ1rDTITbBlrpAcBubQzXxaqSVEEyoBFClEACMebFiooIC9cYlkBkEQBGEKOvfcJFRjHEKSJJ566qmk70cQUpbQ4PcPvnhgs+l7Qttq1bLCe1seDN2fIAiCIAhTQFcN7Hkv8nNeK2yeAdldkNcGDu/gNhQq4LNCcya0ZoEyQsJCd622j7LDE4t1wWGw70nw2Uva49x2LSa9OD2Q0wmtmdrj5WfC7OX6jT8KBYWdfMVW1tNGI/58P59hpZSZzGMZxVSkJI5h5l0AvhbY8mjiY9ny4PD7wZKZ+FiCEIuOl8CeBZ4uCPvGXH1EljxgKwQawZykk/xtn4J7i9Zr3VNDwlUaTC6wFcDOP8Net+sS4qRizII5q6DhYWhYFd1sbNkEhVdBwSWJJ+oJgjD+qAps+z+tQkNGOXTvTjypwZytvRcHu2DXM7Dg/0VcreyssyZNQkPWkiVk6DwxS0hciG52cCdeqgCtrQRAOBTAYNAq1QXpoIbH8LGHMi5PW6yCIAjjzR66MKFj9aYUCOJJdwgTzurVq5PaJr53ArsgpELKEhry8/MHPa6trdV1/Lq6OqD/BZSXl6fr+IIgCIIgTABb12gnbkckQZtLu6GC1Q8GhZA/hDmcAWqUF3O2rE48oQHglBtg5yfQ0QgFbYmPN1R+m5bQkFMKJ31f//EjCBPiHdZQx64hz6jUsIMadrCYw9iLg1MSzzCLr9WSEb76U/ztJ3IWwoF3QEapvrEJwlhUBZqeAMkIjgrwN4G/JbYxZCNYS8DogLAXWlZD8TVJCZfqp7V/zU6Qp2tJDUowvrEseWDN14rONL4FgVYw5+gW6qQhGaHoO5BzKrSsgbaXIVA/fD1zCWSfBLlnJi+hRRCE9Kt/D7w97wGyCTIqtMfBzjgGk7VEBkt2/6KqZ2HeFdpnyxCFxx/PlnvuIdjREU/k40rZOeekO4SU20I9a9lJJS1ISMwgj0OYyexxVOmgkj/0JTOMpYW3MZNLIaclOSpBEISJoZhMzDjSHUZMApjSHcKEpU6iNmDC1JWyhIaCAu2Atzdb58033+S6664bbZOYvPXWW4MeFxYW6ja2kDorV65k5cqVhBMtoSsIgiBMTXUfx7CypFVkANRAAMwxzExt+FS7sJjobFa7Cy7/E/ztf6JrhRErhxdy7XDZn8Bi13/8CD7hjQjJDIN9wbs4yWE681MS0zBz/wcKD4RPfgUtMcwcNFhgwbdh/iXaTEdBSLWuDwdcnJbAUgCmTO3ifrBz9IQu2azNqjVnAQPeu1qfhaKrtbY0egr7oPmd/sdGGzhngrcJAu1AlG0oDHawFQ7u064GoeENKEt++cwJy1wMxSu0W7AVfDtpq6uiqKQCrLO0ag6CIEx+dW8PfiwbwFEKAZeWFBeO5vhTApNTS2aQh1xI8DdD61eQt++wrQxmM6WnnkrlY4/FH/84YM7JofDoo9MdRkq9xRbeYvOgZdtoYBsNnMheHEL6q1V08TXdQ2IcSyMvksc3MGAde2VBEARBmEQkSaKiooLDD9dhcpYgpEnKEhqWLVvWl8ygqipvvPEGO3fuZObMmQmPvWPHDl577TUkSeqr0LBs2bKExxVSb8WKFaxYsYLOzk4yM0UJZ0EQBCEG4SC0b0/NvkJ+aN8J2bMTH6twJpxyAWz4OSihxMcbyGCEMy6DvDJ9xx2BFzc7+TqqdTfyYfoSGgAyZ8Ix/wfNX8D2Z6D+fQh0DV9PksE1E2acChUng9mV+lgFoZf7s+HLZAtYi8FaqFVcCPt6qiCogKwl4hhs2nqRBFshUA2Wcn1j7doK6pD3NEkGe6FWaSHQDqFuLd5BrRGk/pjNWYMTGQbq3KhvvJOZKQdMOfhb8yFjerqjEQQhldo3RV5udmq3kEdrHRH2ackNve/HsgkM1p734syIFRj6dGyKmNAAMO3ss6n8+99hAs8KLD39dGTT1JkRuoe2YckMA73CBuZQQAHOFEY1XAtvxrxNGC/trCWXqZWgIgiCEEk13ZiiTTIfJ0TLicRUVlaiqioXXnghF198MbNn63BOUxBSKGUJDYWFhey3336sX78eSZIIBAJcfvnlvP7665gS+GIQDAa5/PLLCQaDSJKEJEnsu+++okKDIAiCIEw1XdVaUkOqtG3XJ6EBwNQJBTOgvQ583fqMaXNCVhEYWvUZLwq72IASZQ/GVhpoo4Fs0nzMlrdYuwF019C5ZyePPp3Bwjl+jj7WCllzwZSa6haCMCbvllGelMHg0G7xjKt3QkP31pGfk2Ww5gA9LSOUEKgKoWAQs8UeXbWI0cYXBEEQQAlD187R1zHatdsAQX8Ai8Uc/X46to34lL20lNLTTqPm2WejH28cMWdnM/3889MdRkp9ROWoz6uofEwlJ7N3agKKQCFEB+vj2radj0RCgyAIAlAqWk5MCStWrODJJ5+kpUVrVVlVVcXtt9/O7bffzoEHHsgll1zCeeedJyYXCxNCgnWSY3PBBRcM6tXy7rvvcsopp9ARZz+9jo4OTj75ZN59992+6gwAF154oS7xCoIgCIIwgQRTnKkd8uo4VqdWTSG3DLJLEmtnIBsgpxRypmmz6UIRqg4kSTftMa3fxTjrqZxRyoMvLueR5+bw43v2otWwWCQzCONLqD1J48bTS30MsfRnl41gMKNKpuhbX4R0Sv4SBEGYrMJeom7vk4iQe9Sn5113HdYJOulo/o03Ys7OTncYKVUXxfF5NOskU5hu1Dj/tkOk7ruRIAiCIKTbH//4R2pra1mzZg2nn346RqMRVVVRVZUPP/yQq6++mqKiIs455xyef/550QpeGNdSmtCwYsUKZsyYAdCXgPD6668zb948HnjgAbq7ozsp5Xa7+etf/8q8efN44403+pZLksSMGTO45pprkhK/IAiCIAjjmBTjYU04CEE3BLqQQu6eMrsxlMONdX+jjjUggcGeCUVztMQGUwz9Xc02bZuiOWAb2BYhdYd7BmJLxDCk9lA0KrNmaTEVFck4JtZkBWEqkJJUYE/P97O+MRNIzIpuB0keXxAEYYJLxnt7HPsxOhwsvOmm1MSio8JjjqHo2GPTHUbKmaI4njem+RheSqDgcCLbCoIgCMJEZDKZOP3001mzZg11dXXcd999LFu2rC+xwe/39yU8lJSUcN1117F+fXyVkAQhmVJ6FGcymbj//vs55ZRTCIfDfUkNjY2NXH311fzwhz/kmGOOYenSpcybN4/MzEwcDgdut5uOjg62bNnCp59+yptvvonX6+2ryNA7jtFo5P7770+ohYUgCIIgCBOULXf051VVS2Dwt2v9gpX+rGOjqoJX0k7IGm1gyQSza/SZwtYcfeIGsBQNfixJWmKDPVNLvAj4IOiF4ICkC0kGk0VLejBbwTDC8Y+1WL84x1BAGZv5JKp1ZQzkUpLkiGJ3+ukm9t/fQHa2hMUiLpgK44y5BNxfJmHcUv3HtBaNvc54Hl8QBGGiM9jAmJH8ijbWgjFXyTvwQEpPP33CtJ4wZ2ez4Mc/TncYabGAIqoZvWXdQlL3/SISAw5MZBKMo1KEZRx+/xAEQUiHatyYiGFSzzgQRKvMuv/++2MwGFixYgUrVqxIc1QTS05ODt/97nf57ne/y+bNm3nkkUd44okn2LNnDwBNTU3cd9993HfffSxcuJBLLrmECy64gOLi9H72CwKkOKEB4Bvf+AYPPPAA3/72twEtGQFAVVU8Hg8vvPACL7zwwqhjDExk6H0sSRIPPvggxx9/fBKjFwRBEARh3HIUgjULfO3Dnwt0g6cBwoHRx1AVLekh6Aa5AWz5YMmKnNiQu0CHoHtkjDKWwQQ2E9ic8Y3t0DHOMUxjNnaceKIo5VrOfKyMz3YOpaXjr3KEIABgWwBtryRh3Pn6j+lK8ntPsscXBEGY6CQJsuZDc3TJpnHLiu4zZN5119G2fj2e3buTG0+CJFlm4c9+NuVaTfRaxnTeZwdu/BGfd2FjCWUpjmowCYkcjqSBf8e8bS5H6h+QIAjCBFSKCzMTqyxloOdy5rp163C5XGOsLYxl/vz53Hnnndxxxx28+eabPProo6xZswaPR0sc2bhxIzfeeCM/+clPOProo7nkkks444wzsNlsaY5cmKrScrb20ksv5cknnyQrK2tQckJvpYWxbr3rgpbMkJOTw9NPP80ll1ySjh9HEARBEITxInfh4MeqAt210FU9djLDUEoY3PXQtVurkjCQPR/seYnFOpBraXJKycsWcC3Wf9wRSMgs5RjGKgVvwc5iDk1NUIIwmWQeNnrlGADCgBfwAD4Ya9aNYzEYk3AyyFYG5vxRVlBBcoOhGYx7wLgbg7UWDA0gd6D9HKPI2k/PaAVBECan7H1SsI+9o1rN6HCwdOVKrAVjV3RIp/k33kjBkUemO4y0sWPmUg4iM0LicS4OLuMgLOOgbUMuRyPF2H7KxjQySEISpyAIgiBMYJIkceyxx/Loo4/S0NDAqlWrOLLnWEhVVcLhMG+88QYXXXSRqNQgpFXapp+dc845fPXVV5x33nkYDIZhyQqj3XrXNRqNnH/++Xz11VecddZZ6fpRBEEQBEEYLyqO67+vhKGzCvyxlyIdJOiBzkoID5ilNHA/ejDnQO7R+o4JkPcNMMZZ2SFO5czjEE7BSOQWGBlkcyznk0FWSuMShEnBUg4Z+0d4Igg0AduBrUAlUAXsArb03O8gYnJD3jnJiVWSoPT0CE+oILeCaQeYdoOhCeQukN3IBg8YWsFYC+Zt2r8Ehw9hKYA8kRQlCIIwpvKTGSvRNCE5+0JG9LP1bcXFLL3/fix5OiYG62ju979PmTi/SDGZXM8xfItlHMAMDmAGF7Cc73MM+aT2u8VIzORQwv9Evb6MmTKuTGJEgiAIgjDxORwOLr30Ut566y127drFr371K2bMmNF3Tbara+yKrIKQLGlNqS0pKeEf//gHdXV1PPTQQ7zxxht88skneL3eEbex2+0sW7aMY489lm9/+9siI0gQBEEQhH4zvgGf3KO1neiqhpBPn3GVEHTuhswKMJhh3tn6jDtQ6SXQ8oZWVUIPsglKL9RnrBhVsIBSZrGLr9nDdtoDbeRbCpnBIkqZhZS+nFpBmPiKV0D3Jz3vFSrQAjQzciUGFa1ag6dnvWLonXVpnw9ZOidoDVR6JlQ9BkrPe7Hk15IUpGjem1WtUoO5C0IFoAwo/V32LZDE+4ggCMKYMsoh/wBo+jA548+IPSnOUVHB/g89xKfXXIO3tjYJQcVBklhw442UnZ2EY/wJSkZmL0rZi9J0hzKifE5AJUQdT6OOUpHKgJ0ZXIedmSmMThAEYXzbTTemsar5jTNB3OkOYUrZunUrW7ZsoaGhoW+iuSCkU/prhAHFxcXcdNNN3HTTTYTDYbZs2UJzczNtbW10d3eTkZFBdnY2eXl5zJs3D4PBkO6QBUEQBEEYjwxmWHgBvHcLhEZOkIyLEoLuOtj7MnCV6zs2QMY8Lalhz//pM960K8GevpN2JszMZT/msh9VrVVMd05PWyyCMKnYF0HBxdDwMLAHLVEhWgG0ag2FIBdC2S0gJfG7lSUfZq2Abb/XkhiMu0Eao5XEMAoY67XWP+ECyJgLZdHPyBQEQZjy9voB/OdCUEP6jpuzBEqPjWtT+7Rp7P/ww3x90020fvKJvnHFyJSZycKf/YzCo5NQLU1IugJOxsneNPM6bXyAQn+bQTPZ5HAUuRyFSVSHEwRBGKQUF2Yc6Q4jJgHEdcFk27RpE3/72994/PHHqR2QeNqbzLDXXnulKzRBGB8JDQMZDAYWLlw49oqCIAiCIAiRFO4LoVgu8MUg7IO8RckZG6DsKuj6Ejo+TWyc7INh2iX6xCQIwvhTeBW0PQiBON/rpAbIuwRss/WNK5Kyb0HTa6YaFXEAAQAASURBVOD+ZxzJDAMYWgAHLLwF5HH3NVYQBGH8cs2GeVfA5r/oN6ZsgX1vTqhajjU/n6V//jN7Vq9m6333ER6lWmuyFB59NPN//GMsOTkp37egHxvTKeMKSvgffNRS21pJafEsbJQjiYtfgiAIgjCqlpYWnnjiCR599FHWr1/ft7w3iaGgoIDzzz+fiy++mH333TddYQrC+EtoEARBEIQpz+eDXVuhow0CfqzNzdBYDcVlUFqu9SUXRvbFg5BRDB2VoHc5NEcxbHpCqwIhJ+HkmGyCBffC5hug/aP4xsg5DObemdxZ11HopIldfEwD2+ku6GAHeUxjb6azH5YJNgtAEMadtkfAaAI1B0KtI3ebiEQygLkE3K9C4BIwVyQpyN79SZCVAX4zhBO5WCWBywxmu26hCYIgTBlzL4eObVD3pg6DybDsdsgoS3gkSZIoO+cc8g45hA2//GXKqjWYMjNZcOONFB1/fEr2N1E1UksrTQDkUUgeRWmOaHTNNFNDNc3WVnzYqCAbp6jMIAiCEFE17gl3cTAkWk7oJhgM8txzz/Hoo4/yyiuvEApplbx6kxgsFgunnHIKl1xyCSeccIKomi+MCxPtPUsQBEEQJp9QCNa+BZ+8D9s3wZ5KUJS+p7MCATCbtQd2B8ycB3MXwZEnwsy56Yl5vOqohLp1YLCCswy6qvVLanAUgdkJnmbY/TZUxFdid0wGGyz8I9Q+Drv/DEpg7G16t5v+PSg6J61JLyoKX/IyO+lPyAjKATqop4N6NvE2+3E6ZeyTthgFYUIL1kDrKu2+qRAMTgg0gOIbfTtJAkMmmAq0pAY1AI2/gWl/Tm68XR9D1wdgnw6+egi2xz6GbAFbiZb0VfcnqLhT9zAFQRAmNUmGZb+Gz26FPS/FP47BCktvg+IjdQsNwFZSwtI//5m6l19m95NP0rlxo67j9zJlZlJ62mlMv/BCUZVhFHvYxXreo5XGQctzKWIZh1FMEtrvJaCFOj7gJTpoBsBv99PELr7kPUqZzUGchAVbmqMUBEEYX0pwTsCWE/FXhhI0H3zwAY8++ihPP/007e3tQH8SA8DBBx/MxRdfzHnnnUdmZmaaohSEyERCgyAIgiCkS1MDvPxPeO1ZaG+NbhuPG75er93WPAbz94GTzoZDj+1PepjKdrzYf9/kAFc5dNWAkkDPYEnWkhksAw7kd7yQvISG3n2WXgR5x0H9amj4NwTbIq9rzoXCM6DwTLAUJC+mKA1NZhhKIcSnrEHGSCmizZggxKz9mcF90GU7WGeA4oVwl5bYoPq1qg2SDLIVZJuWzDC0cotnHfh3gmVm8uJtfrrnjgTWYjC5wN+otfAZi2QAUzZY8rTtATrehmAzmPKSFbEgCMLkJBtg6S+h4CD46rcQ7Bz0tNtgZZOrHJO3i318dQxLj81ZorWZ0KEyQySSJFFy0kmUnHQSHRs3smf1aupefRXF70947My99qLsnHMoPO44DOI706h2sZn/8jIqyrDnWqjnddZwJKdQzqw0RDdcM7W8yZOECEZ8vobtvM7jHM+FmLGmODpBEARBSL+qqioeffRRHnvsMXbs2AEMTmKYMWMGF154IRdffDGzZo2Pz3dBiEQkNAiCIAhCqoVC8PQq7RZK4EI7wOYvtdvjf4Hv/wL2WaZPjBNV89eDHxvtkDUT3A3g74h9PJMdMnpmBY+2n2SxFMH070L5NeDdDe5NVHX4kSSVcpcdMhaAtWzctCHppHHUZIZeKgpf8TIlzEcSGfaCEJvOlyMvl23aLVZdL4NlRWIxjUTxQ+e7g5cZHGCf8f/Zu+/wtsqzj+Pfoy1vx7GznUUmsxDCTqABygqlQKFljxZow2ih0LesUrqggx0oo+xRRhllt+ydBMLO3omT2I7jbe1z3j+UOHbiIckalv37XJeIpPOM20JxpHPu536i20+EG6KJDWYALDOas2BzR1cA23OjyQ/bX1KzIlD/Fgw8KTUxi4j0dSOOhLJ9YOUzsPo58Ffz9IhpPDbyUPx2F5ZpMcK/id8seJyxzRugZE8Y/UMYOiOaKJcGhZMnU3jttYz/xS+oevtt6r/9loZFi2hatgwz2H31Mu/QoRRMnEj+pEkM3H9/CiZMSEPU2c+Pjw94vcNkhq1MIrzPq5zEeTjJfHLIJ7zSaTLDVvXU8DUfshcz0hSViIhI7zB9+nQ+/PBDLMtql8RQUFDAiSeeyJlnnslBBx2UwQhFYqeEBhERkXRasQRuvg5WLknuuJXr4aqfRas1nH0xePphSU3LgppFOz5v2KNJCd4B4K+FQEP0wllnDMCZD57iaJWHjvjroGkD5A1JRuTdM2wE3KO47OtRfBKtpMq0MrhhT3D1jlwGAFYyL+a2PurZwGKGMimFEYn0MaFKiNQkd0z/t8kdry3f4mgCQkfs3uitjVAwiDuWlbMtHfyuFxGR2LkHwMTzYPy5fNC4kH+6rS3JZRHMiMm6ohKuPuBPPGQW4cpNTUWGWDgLChj2/e8z7PvfB8AMh2lavpympUsJNzcTCQTANLG5XNg9HrzDhpE/cSIulUhOyFK+IUL3CfchAixnIRPZPQ1Rda6SNdQT2+eiFXzD7kzDgbP7xiIi/cAaWnDsWI+pVwvTkukQss77729bYOBwODjssMM444wzOO6443C73RmMTCR+PU5osNvt3TdKM8MwCPd0xauIiEiy/e8/MPtPMVdlMC24b2054zy1HFLW2H0Hy4KXn4bPP4Hr74DBw3oYcJYJtUCwi9fJ7oHcIdHtI8J+CPsgEgQszEgEm9MLDk/0tn1Z9o40b0xfQgPw3BpakxkA3quCVyrguF60hW0ly+Jsv1QJDdLrrVhhcsEFPmy2XP71L4uiogye9AmuTMGYq5I/5laB1Skad1VqxhUR6W9sdl4uHAxs29YhEghid7uoBT6kmEMyFtyObA4HBRMmqOJCiqxleVxtM53QUBFHvEH8VLOOIYxOYUQiItljOPm4yMt0GHEJqsJnQowtVV2HDBlCdXU1f//73/n73/+e1PHnzOm+WqtIT/U4oaFtmRKRnpo9ezazZ88mEulkJZeISLZ64Qm476Zo0kGMqgJu7lkzku/k5XNIWRwraNevhSt+An+8C0aMij/WbGXFmsxogMMbvW0RCQZxxLufrpne5MkVTbE9l0kRui8B3L591+VhRXqDefMibN5sEQzaWLQowr77ZrDInRXf37HYxuz53uSdj52iv+OpeB1ERPqpajo//9LVMel7QnF8lo+nbaqE44whpO8eIiLSj61bt45169YldUzLsloTJkRSLSkpTYZh9JqbZLdZs2axYMEC5s2LvWS1iEiv9/rzcO/f40pmABjsCXDPrl9x9dgF8c+5uRqu/jlUboi/b7aypXkPV3t6S7PtO3DH5/YrTWsI3XLTyRYdnXCRk6JIRJLnyCMdHH64gyOOCDFlSoar09lSsILGFt/f214xdipjFhHpZ3bqogT/ONL8+VoyyhvHZ/l42qaKJ84YekPMIiIi6WZZVspuIumUlOVFeuOKiIh0YvE30W0mErRnYT2BYBASOZlYUwV/uAxufhgcGVxRnC5OL+SWQXNVeuYrHJWeebb47hC4aCI8sRJsBpw2uvclNAxjF+rZGHP7EeyWwmhEkqOgwOBPf/KwenUlDkeGE6jd41IwZgrLdntTEG8qxxUR6YdOJI8P8ROi/bm9SbjYQwkN/cpYJrOeVTG3zbRRTOZrPoypbR7FDGRoiiMSEckeq/HhyLItHML4Mh1C1vntb3+b6RBEkqbHVzceeOCBZMQhIiLS9wSDcPN1YJqZi2HlEnjqfjjlvMzFkE4DJqUnoSFvKLgLUj/Pds4cG731VqPYi0W8g0n323EUMYxihqUhKpE+xJ4PrjEQXJG8MT0pTCxyjwJ7HkSSvD9Ozi7JHU9EpB/bCRd/poSHaORrAngsOJJczqEAA1VC7U9GMZ75fEAzDV22K2QAIxidpqg6V8AAhjKW9Szvtu0E9tT7WUSkjeHk4iIFFQBTKPObHWUfJTRIX9LjhIYzzzwzGXGIiIj0PY/9A9atynQU0YSGfQ+GMeMzHUnqDd4L1r6bnnlkB25y+Q7f5zOeBTqv4OXEy14cn77ARPqSwuOg+qbkjGU4oeDo5IzV4fg2KD4KNj3VRSMLjAAYEQx7GLBvuXXCng+FByc3ThGRfm4X3PwVN2Es1lWuZtTIokyHJBlgx86h/IDXeRo/LR22ySWfGRyH0UtW9e7HUfyPx2mgptM2o5jMBPT9TURERCSb9YP60yIiIhmwZgU892imo4gKh+HOP8Pf+kFVpbFHw/w7IJLivO1xP0jt+FmsnN2x4+RrXsHXwequIoYxhePJp5ftlyHSAcsysViBZTVgd1RiWhY2Y1RmgyqYCZsfgEhtcsZyDOj5OF0ZeBLUPANW22pFFtgbwVEHtha2JkA5XBYYBlhOCBdCuJgdvrKWHAc2T2pjFhHppxwYWsXezxUzkJmcxrd8xjK+JYgfADdexrELO7MXXnIzHOU2HnI4nFP5mg9ZwTeECLQey6OICezFBPbS+1pEZDvackJEso0SGkRERFLhpacyu9XE9hZ9DUu+hfE7ZzqS1HIXwqjDYflLqZtjwAQoS2GJ9j5gGJMZykQ2sIhKlrHZV02peygj2E3bTEhWsKwawuZzRMznsKxqAPIKAwRCbgxjFA7bCdhtx2AYGTihb8+Hsv+DDb/u2TiOMhh4cXJi6opnFJSdAZUPRh8bfnBtAJu/8z5GCJybwLkZQqVbEhsMcA2FQT9NfcwiIiL9WC75TOVg9uJAmmgEII8C7F1VUMogN16mcCi7M41q1lFRt45Rg8YwkGFKZBAR6cSILN1y4uNMByEiGZNdKVgiIiLZwNcCb7+S6Sh29PLTmY4gPb7zc3Cl6EuZYYOpl6dm7D7GwMZQJvMdjmWn+kPZjSOVzCC9nmVZhCJ34Q/NJBy5pzWZoX2bVYQif8cfOppw5Pn0BwmQPwOKT+30sAmEjS42frF5YcgNYE/TCaxB50HOzmBrBM+qrpMZ2jHBWQmu9WBzQvnvwJ6TykhFRERkixB1GFRhUEWYukyH0y0nLoYyhjL/SEoZrmQGERERkT5EFRpERESS7a2Xo0kNcbAiEfD5IOADvz96MyNgWjgsC8tuB6cTPB5we6N/ejwYRhwnad77L5z7SygojPMHyjK5ZTDlUvjo+i6bNeU62DjEQ8hlwwqEGLI5THFtqOuxJ/0IBu2RvFj7sCCNVPAJtSyjvqSWWsooY3cGswc2nJkOT2QH0WSG64mYL8fYo4VQ5E9YbMZpPyelsXWo9JdgeGHz/YBJxIDqHCcb8p00u6J564YFJS1hhjSFKAxEov0cA2HIX8CbxkozNhcMPx8qXgGz0zSLztkboXhXyPtO8mMTERGRVhYmm5lPJW/TwOLW5w0MCpjEIA6hmD2ULCAiIiIiaaWEBhERkWT7+J2Ym1otzVBXC02NXSylJbp9RSAQvVEffc5hxyosgsJiDGcMF4hDQZj/MRx8RMzxZa1xx0LNt7D43zscasx3sGDnQjaXuFqfsyyL1YZBfkOICYsaKa0O7NCPIXvDnhemMuo+wcJkCS+wjo+wiF5ADTgDRNjEJhawlBcYz/cZwt4ZjlSkvbD5jziSGdr0i/wDg0E47EenIKpuDLwAcvejafPvWVBUTdDe/uKCZcCmXAebch2UtEQYH/wu9tLLwF6Q3jhNP9T/FdzlEK6C0ObY+9o80a0mwvPB9z54D0pdnCIiIv1YhADLuIdavtzhmIVFPQuoZwElTGEsP8Gm08oiIllrFX4cvXQroc6EibXSn4j0RfrkKSIikmzLFnbbxKqvh82bIBhMfJ5wBGpqYHMNVm4+lJZiuNxd91m6oH8kNADs83/RLSIWbdtqo77Qydx9Swg7Ol5R1Fjg5LOpA9j981qGrG/zRWnIVDjk72B3ddhPoiwsvuERKjs4CbpViBa+5QkihBjO/mmMTqRzllVNOPJwwv1Dkduw276HYaT/61WLt5Svh40kEskFswFMH1hBollytmhCgC2HmqIiFtlKmUxe+tdUNv0LwmvBMMA5COyFEN4M4QY6zeazecFRDI42VYXq/g6eA6PjiIiISNJYmJ0mM2yvhk8xsLET56UhMhERSYVycnGSpi0IkyQEzM10ECKSMUpoEBERSabK9dDU0OlhKxyCjRuguTl5c1pEKzw0N2GVDISSgZ1frFq+KHnz9naGAfv8GgbuCvP+RiTUwGdTijtNZtjKAr7avYjCumpyAjbY7Sewy1lgy67M9UxYz5wukxnaWsS/GcA4cihNcVQi3Qubz8GWiiKJqSVivYXDODxZIcVsGU8QwQf23OitC7UsoIpPGJTOZCLLhKbtquVsrbrgHAKWP1rBwYoQCUewuXKjxztKDgmvA//H4FUylIiISDLV8mVMyQxbbWIupRxIIZNTGJWIiIiISJQt0wGIiIj0KUs7r85g1dfByhXJTWZoN4EFm6ph9UqsYAdbJkA0ocFKYP/ybDb2KDj2KTZO+S4BbwxbcwCmzWDN7rvD0Y/AbucqmSFGa/kgjtYW6/goZbGIxMqyIkQiz/d4nEjkmZ4HE6dmKmhgeVx9NvBeiqLpRGgZRDZ0fMwwtlVicA7EtBeDPa/jZIat/GmOX0REpB+o5O0E+ryT/EBERERERDqgCg0iIiLJVFPV4dNWdRVsrklPDH4/rF6FNXwEhjen/TFfC7Q0Q252lZXrsZyBrJs0BkwTAvUQboGwHyJttvywOcDhjd7chawbWMAExqS/NHuWamAtTayPq8965jKOmRjKsZUMsqzlWGzq8Tim9QWWFcAwutn6J4kq+TjuPk2soZkKchmWgog6EOx+G6aMjiciItLPBamlgfj/fa3lC8K04CCn+8ZpZJr9LIFfRCQBK/HhILsW74TxZToEEckgJTSIiIgkUyi4w1NW1UaorU1vHKYJ69ZgDSvHyNnuBFMw0P8SGoAWasBmA28xUBx90or+JxQM4nK3vwgZooUwfpy97ARdb+Uj/oSdMD69xpJxFvVJHK0B0riNSoDNCfdLW0JDpLp3jyciItLPBanDIv4kAAuTEHW9KqHh8ce/5m9/e5/HHvshkyZpazsRkc6Uk4uTrrcs7G1CWHyW6SBEJGO0HE5ERCSFrE1V6U9m2Mq0oGItlt/f/nmjv9Yc6ODnNtjyenT2mvTX1yp+RoKvVaL9RJInlvegRWzn+dP7fk78708avwb2239zRERE+oPedWq5oMBNSYkHb4xbDYqIiIhIdlCFBhERkWRybVvlbzU3QU2atpnojGnC+nVYo8Zg2LacbHKlrxx6b5LPIPzUxdzeQyEOPKkLqI/JYVDcfdwUYNdrLBlmGMU7PhlqhmAjRPzR7WksE6dlQYsD7J7o1jSuAnC0ff/agIJ0hQ2Ah7KE+nkZmORIumAfktzxHEOTO56IiEg/52YgBjYszLj62XDioig1QSXomGPGs+uubkaOLMp0KCIivdoq/Niz7PJgBH/3jaTVd7/7XQCmTp3KDTfckOFoRHouu35jiYiI9HaDohdarIgJGzdkOJgtQiGoroJBgyGvAHKyq6RcsoxgH6pZHEf7qaoeEIc8BlPIKOpZFXOfYeyr11gyzmAMhjEcy1oH/lrwb4ZIoOPGZgTM5mjCg29TNLHBOxBc+dhs+2IYrrTGPpgDWMd/ibF8BACFjMObQAJSwlyTkjueM8njiYiI9HNO8ilmdzbzeVz9SthbyckiIlkqW7eciO9fqv7tnXfewTAMPJ4d/60eM2YMAAcffDD3339/ukMTSUjvqgsmIiKS7cZOjP5ZvRHC4czG0lZdLVZLy7b4+qEyJpMb42pmBx5GsG+KI+p7ypkec1sbDoaxXwqjEYmNYRg4ggdDw2po3tB5MkNHwj5oXAtNFTjCR6Qsxs54GEgxO8fVZ0gcf0+TwjkanGOSN17OjOSNJSIiIgAM4pC09BEREZHMW7VqFatXr2bjxo2ZDkUkZkpokF5l9uzZTJ48mb333jvToYiIJGZgGZbDCfX1mY5kR5UbsHbqvytbDWxM4Ww8FHbZzo6LPTkDN/lpiqzvGMTulDOt23YGNnbhdNzd/L8QSYuqz7G/9iQEfAkPYdS3YHv1dmhYk8TAYrMTP4653PMg9mMge6Y2oI7knZSccZzjwb1HcsYSERGRVoVMpiyGz/FbDeEw8hidwohERESkJxyOaIH+SCSS4UhEkkNbTkivMmvWLGbNmkVDQwOFhbrIISLZyfKHemcR/WAQKxTpnbGlSQ4l7MeFLOF1NvAFJtuqaBjYKGUi4zicArRHe6LGcxxuK4eV1jOEqAYrhMMewYo4wHCTy0gmGD+hxOi/1UKkF6n+Gt6+GCMcwLmslND4ygQGMXAuHoTRUglvXACH3wd56fsd4qaY3biMhfyDZio6jXEoBzOaE9IWVzu5P4Cm5yG0qAeD2KD4/5IVkYiIiGxnNKdhYFDJu122G8LhlPPDNEUlIiKpsJIAdpyZDiMuEeKopigUFRVRU1PDmjXpX3ghkgpKaBAREUkia1M1Vl1j70wasNmwFi3OdBQZ56GQ3TiJSRxDFYsI0kxtfT2Tyg7AS3Gmw8tqltWAFbyDYeFXGWL5qLK7qbM5CZomHpuN0sgmis1VGLaFmI4fYThPwzBUMEwyJNgI718R3TYCcKwrxnKFCY+qiWMQA+fCwdhr8qIPfVXwwW/gew9AGt/bHkrYgyupYxEbeI8mVmISxkEOA9mTwRyIh4Fpi2cHhh1KrofKc8BqSmyMgnPAvVty4xIREZFWBjZGczqlHEglb1PDPExCQLSKXQn7MIhDyKU8w5GKiEhPlZODk5xMhxGXECZfZTqILLLzzjvz7rvvsmTJEp588klOPvnkTIck0iMZTWg455xzWu+Xl5dz3XXXddjuuuuua80iMgyDf/7zn+kIT0REJG7WS89huXOxbHYMs3eV9DK9hVhffIa1vgJj6LBMh5NxTnIYtqX0us23WskMPWSZGzD9F2GZq4DovmaDIwEGRwIEg0FcLlebtlVYwdswzG+wuf+AYbg6HlQklT67CXzV7Z5yrijF8DsJ7VQNjq5/hxt+J87Fg7YlM2xV8y0seAR2PjPZEXcdDwbFTKKYXrq1kHMMlN4Bmy4BM85tmfLPgMILUhOXiIiItJPHaPIYzWhOI0QDYOCkAFuWreQVERHpz4455hjefTdademUU07hN7/5DSNGjMBut7e2mTt3Lt/97nd7NI9hGLz55ps9GkMkFhlNaHjwwQcxjOga1t13373ThIYXXniBr776CsuylNAgIiK9mvnGa2DYsHKKMJriWeWbelZuMZgm1puvY5x+TvcdRGJkWXWY/llYZnxl7KzwW5j8Fpv7T62fCUXSYvNiWPFih4cc64uwbyggMqiRyPA6zAJfm6MGtppcHBVF2DblYnRWj+eru2GnH4C7IPmxZzP3LjD4Sdj8R/C/T4vdzhpvDus9XoJbEgFLwmHKW5opDQYw7AOh+CrwHpTpyEVERPqVCBHWsYx6osmfxQxiGOOxoepqIiJ9gbac6PsuuOAC7rrrLlasWIFhGKxevZrVq1e3Hrcsi9ra2takh0RsvWYrkg69YssJy7KS0kZERCSTrMZGqFgbvZ9bBM2boZf8+2V5csHpjt5fvCDD0UhfYwZuiDuZYSsr/D8s+94YzuOTHJVIF5Y81eVhw7Lh2FiIY2Mhlj2C5TQJ+kO4bR4MM4YT+WYQlr8Ak09PUsB9iH0glN7MytBjLDZewzKbYUs5a9OwUe32Uu0ZQDGj2NPxa1yGqueIiIik02LmsoCP8NPc7nkv+ezCgey0pcqdiIhkr5F4cOLNdBhxCRHm20wHkUVyc3N57733OP/883nllVc6vMaq666STXpFQkMsDMPQXy4REenVrKWLtiUwOFyY+aXYGqoyGxSAYcMsHNz60FqyMIPBSF9jmVVY4bd6NkboSVBCg6RLyAerXu/8uGlCwA9BPwT8GOEghmXhNE0MuwOcLnB7wOWJ/tnZaoRlz6c9oSFAhI/YwDyqaCbMMHKZxlAm9rItdVbzEYucXwJDok9YEcAkFAzhcuaAAbWYfMqj7MMFWbdySEREJFt9wVss5OMOj/loZB6v4qeFXTgwzZGJiIhIvIYOHcqLL75IVVUV8+fPZ/PmzQSDQc455xwMw2CXXXbh0ksvzXSYIjHJmoQGERGRXm9x+0QBK28Alr8RI+jrpEN6mAWl4HBte6KqEquuFqOod13gkuxkhZ8FzJ6NYS7HiszHsGu1l6RB7SKI+Hd83u+Dhs3Q3NhhdR3DssAIgr8FGrc8abNBXiEUFIPL3b5D42rw14GnKNk/QYf8hLmNr1jTGhzU4OMrNjGT0XyP8rTE0Z0QPhbzSvsnDTtgByza7uJRz1rWMY+R7J/OEEVERPqlKtZ0mszQ1te8y1B2YgCDu20rIiIimVdWVsYRRxzR+vicc6JbEQ8bNowzzzwzU2GJxEUJDSIiIklirVrR/gnDwCwagr16Zca2nrDcOVi5HSQurFoBe+yV/oB6mTXV8MliKLI7GTky09FkJyv0QlLGMUPPY1dCg6RDzXZValqaYXNVtCJDvEwTGmqjN08OlAyKVm3YavMCGJqei/GvsLpdMkNbL7KSXSlhKLlpiaUrFXxGhGDM7dfwiRIaRERE0mAJn8bcdimfsQ9HpzAaERFJpRWEsMfxvaw3iGzZqlCSQxXxJdsooUFERCRZfC07Pud0ExkwHPvmdWlParCcbswBwzssh261tNBJkfR+Y8NmOONmaPJDOFjCgIEwZVymo8oulhXAsqqTNNi65Iwj0p2mLe8104SaSmisS864/hZYvwqKSqBoYPR3b2N63tcmFp9Q2WWbj9jAieyUlni6UkV82x41sZEWasihJEURiYiIiIlJBUtibr+WhUpoEBHJYiPx4MSb6TDiEiLMokwH0Uc88MADQLRCg0i2UEKDiIhIsoTDHT/vycMsHoqtdn3akhospxuzpBxs9o4bhJTV/M3qaDIDgGnB3KVKaIhf845PRUIQaIKwH0I+MMM4TTP6XrQ7wekFpwfc+WDYtvWzOkgIEkmFSBD8fqha2/nv7URZFtRuguYmGDQ8Olca+InQ0s1qlc0E0hJLd0LEvw1TiASqZ4iIiEjMwgQxicTcPkQACxMDW/eNRUREpFfRNhOSjZTQICIikiyOzv9ZtbwFRAwb9tqK6KrgFLJcXsySEZ0nMwA4nSmNIRvsXA45LmgJgs2AKZlfuJyF2pSvDzZDy+ZoMsP2LCuaNWKGo0kOEE1m8BRCzgBwuMDISU/IIjXVsHF1an8XB/2wYRU0NqRujjY82PHiwEfnCRrFuNMSS3eceLpvlIQ+IiIiEjsHLgxsWMT2+WhrexERERGRdFBCg4iISLJ4u7kg68kjUjYGW91GDH8HF317yjAw80ux8gZ0uM1EO97sKiuXCkNL4OFfwkeLoNhRw9TxQzMdUtYxDDeGWYDVuAD8jfF1tkzw1YKvDvJKoECvv6TB8m/hjddhQGoTy4Bo9YenHoExP4DSISmdyobBvgzmbTrf4mJ/Bqc0hliVMokalsXcPo9B2m5CREQkxWzYGM541sZYzHsEE1MckYiIpNJyQthJT0XBZIl0U5VQemb58uX85z//Yc6cOSxbtoza2loCgQBFRUWUlpay5557ctBBB3HMMcfg6GJRn0iq6F0nIiKSJMaoMXS7oYTdiVkyAqOlDqO+CsOMvaxnVyyXF7NoCDhjW4FrjBqTlHmz3ahB0dvq1fpSlJBVczCWrccaHWcyQzsWNG3C9smncMhGKOgdF12lD2qsg7/9EkI2GJCmOat8cNNl8PuHu6zikwxHMpIl1FHBjglzRzGSYeSldP5YDWcKS3mdSIwnz8rZL8URiYiICMA4psSc0DCOvVIcjYiIpNIoPDjJrsVOIcJxpMZLrJYtW8Yll1zC66+/jrXdVsmWZbFhwwYWLlzIe++9xy233EJZWRm//vWv+cUvfpGZgKXfUm0wERGRZBkf+yoVK6cIc9BOmEVDsJwJltI2jOhWFgNHYpaOijmZgdIyjOJ0Xc2TPmv5e/DcLzCWuOk+k6drRqMbY9km+Ne5UFeRnPhEtvfgX6B+M/g9YHVTxSYZgi6IOGD1Enjh/pRPl4ODX7I7P2AMw8ijGA87U8LP2JWjGJXy+WPlxMs4vhdT2wKGM5wpKY5IREREAAYxkglM7bbdLhxECaquJiIiku2eeuop9thjD1577TVM08SyrHY3YIfHlZWVXHbZZRx88ME0NvZkgZNIfFShQUREJEmM8ZPi62CzYeUWYeUWQdCH4W/CCPkh5Ad3CMotyLOwQhZWgw1WGeDwgNOD5fRgeQvAHv8/5XHHKbK9dV/Ai/8HZgjD58TYkI81NPEvMcaK4uidxkp4+mdw+qPgKUhOrCIAc9+Cj/8bvW/aoL4AiupTO2dd0bb7L9wPUw6GkeNTOqUHBzMYwQxGpHSenhrNQZiEWcJrdJYRVUQ5e3IWdlzpDU5ERKQf25PD8JLHAj4miK/dMQ+57MyBjFeyoYhI1ltBEFuWbTlhZlm8vd2rr77KaaedRjgcxtiydXFhYSGHHnoou+66KwMHDsTlctHY2Mjy5cuZM2cOn332GRBNcnj//fc55phjeOutt7Db7Zn8UaSfUEKDiIhIkhj5+TC8HNatib+zy4vl8mIN88OBm+E79eCwAAMz+gdsdsHHhTCnCFoS/6BoTNw54b4iBH3w6rUQ2fZF0vbFYMxCP1Zu/Ft3GOvzMVYWbXuiYT28+Rc4+g9JCFYEME14+G/tn6stTm1Cg2VAXeG2x+EwPPJ3uPru1M2ZZcZyCIPZhTV8wno+J0gzhmVnIOMpZz/KmIShgoIiIiJpN4n9GM/erGUR9VQDUMQghjMBO7pgISLSF4zGg4MEK8ZmSJgQKzIdRB/R0tLCeeed15rMUFxczB/+8AfOPvts3O7OKwAvWrSIK664gpdeegnLsvjggw+44447uOSSS9IYvfRXOkMkIiKSRMZ3D0+soycCP10Dl66EqfXgBAxb+1tJCI6pgt8uhYM2JxigkXiMIgDv3x5NOmjDCDqwfViO0RTfSmpjQx62T4disF35/0WvwdJ3ehioyBafvgObq9o/5/dCfWGHzZOiemB0u4m2FnwG63T6pa1cSpnETGZwLUdwA7tXXsze/IRB7KxkBhERkQwKs5EcvmEgixjIIrx8Q5iq7juKiIhIr/fwww9TUVGBYRgMHTqUjz/+mAsuuKDLZAaAiRMn8p///Idf//rXQLRSw4033piOkEV0lkhERCSZbDOPh3jLbHkjcOFqmNgcW3uHBcdVwlHxn1AypuyLMWx43P1EAKhfD18+0+Eho8WF7b2R2FYXQcTosE1rW78D24JSbHOGY5idfBx9/zawOi5FLxKXNzp+z7JxEIRTULDO74GakvhikR0Tm0RERCTtmvmWVfyOZVxGNc9RxzvU8Q7V/Jtl/JLV/IEWFmc6TBEREemBF198sfX+3Xffzbhx4+Lq/+c//5l99tkHgMrKSubOnZvU+EQ6oi0npFeZPXs2s2fPJhKJZDoUEZGEGKVlGPtPw3r/7dg62Cw4dy0MCcQ/2YwaqHPCR8Wxx3fcD+OfR2SrL/8NltnpYSPowPh8CMY3ZVjl9VjldeANY9kiGBEHNLgxVhZhbMjHsLq5eFm7BtbMg5FTk/szSP9SVQHfdPLF2rTDumFQvib6uzgZwo7omJ1dnH/vJTj1F+CMr5qJiIiISKrV8R7r+QcWnZ2Ts2jia5pZxHAuooB90hqfiIgkzzJC2Ih/29BMMrMs3t7s22+/BWDIkCEcddRRCY1xzjnnMGfOnNbxpk7V+TtJLSU0SK8ya9YsZs2aRUNDA4WFKSwDLCKSQrYTfkQk1oSGPRpgtC/xyY6ugnmFEIqh6NKQYRj7HZj4XNK/mRH45j8xNTVCdozlA2D5AADCgSBOdwIXcL/8txIapGcWf9n1cV8OrB0BI9aBrfNknZiEHbC6HEJdvNf9LbBmKYzduWdziYiIiCRRE191k8ywjUWIddzGKK4hh4lpiE5ERJJtDB4ceDIdRlzChFid6SD6iKqqKgzDiLsyQ1vjx49vvV9dXZ2MsES6pC0nREREkszYYy+Mw2LMbj2wtmeTeUzYqz6mprZfXYVh0z/9kqBNy8HXw/drvNZ+mt75pO9ZuaD7Ni25sHI0+LyJz9OYDytGQ7Dr/SYBWLEw8XlEREREUqCSx2JKZtjKIkwV/0phRCIiIpIqHk80maW5OcbtjzvQ0tLSet/tjuFciEgP6aqGiIhICtgu+hUM6GQP9a2G+mFkD6ozbLV/XbdNjJnHY9tLK92lByozcBHWXw/1G9I/r/QdsSYPBF2waiRsHARBZ+zj+z3RLSbWDYdIjMXvViqhYXuL6uHeJfB2jYdQDwtliIiISHxaWIyfVXH3a2YhftYmPyARERFJqSFDhmBZFt988w0NDQ0JjfHBBx+0G08k1bTlhIiISAoYBQXYLrsK86pLO2+0c1NyJhvmh6IQ1HVyEW7QEGw/+0Vy5pL+q3pJ5uYt1BcjSVBlPCfZDagdALXFkNsM+U3g8YEnAIYVbWLaokkMfg80FCRW1WHjmvj7xOk/b8DCZXDikTB2ZMqn65E31sOVn4MJBANFfBqCO7Qlt4iISNrU8V4P+r7DYE5PYjQiIpIOS60QNiuU6TDiYmZZvL3ZtGnTWLhwIYFAgD/96U/ccMMNcfWvrKzk7rvvbn180EEHJTtEkR0ooUFERCRFbAdMwzr5dKwnH+m4QW44eZPlRjpOaPB6sf/2zxg5Ocmbqw9ZurSGX//6DX74w5GMHNnLr/plmr8xM/MGMjSv9A0BfwKdDGjOi94AsMCwCAWDuJ1J2GM0GOj5GF2Y9yVcf1v0/vvz4KV/pnS6HntgeTSZYatPNsGCOphclKGARERE+pkQie97HWJTEiMREZF0GWO5cVjZtU1A2AqyLtNB9BE/+tGPWhMS/va3v1FSUsLll18eU99169ZxzDHHsHnzZgzD4KCDDlKFBkkLbTmRhT766CPOO+88Jk+eTEFBAQUFBUyePJnzzjuPjz76KOXzf/3111x66aXstttuDBgwgLy8PCZMmMCpp57Ka6+9lvL5RUSyif1nl2Ac84OODybzX2GbteNzLhe2P/wdY/IuSZyob2lsDLJuXQN1dam9wCg9YHXw3haJWQ/fP7ZItEqDtwUjxwduHxg93BPBSu2eCs1tdjJqSSSfI80CHWzX7Y99C28RERHpIYuefDbRZ3UREZFsM336dI4++mgsy8I0Tf7v//6PqVOn8uijj7Jp047JiqZpMn/+fC6//HImTZrE119/DYBhGPzlL39Jd/jST6lCQxZpbm7m4osv5v7779/h2MKFC1m4cCH33nsv55xzDrfddhu5ublJnT8cDnPttddy4403Yprtv+wsWbKEJUuW8Pjjj3PMMcdw//33U1pamtT5RUSyle2yKzHdbqx//6v9gRZ78ibZfixvDvY/34yxx17Jm6MP2nPPIXzwwTls2KAc7245EyitnwwuVReRHnC6wO/rvl27PgEorIWcZnAGW592WBYYRvRB0B2t4NBQDOFOtvvpdPzUroKZvg+ccTwsWApnnZjSqZLi+HK4aeG2x2PzYI8BmYtHRESkv3FSlHBfB4XJC0RERNJmqRXGZiWxcmwamFkWb2/34IMPtm49AfDZZ59x5plnAlBWVkZJSQkul4vGxkbWrVtHMBg9P2K1WXh08803M3Xq1PQHL/2SEhqyRCQS4fjjj+e///1v63Ner5edd94Zh8PBggULaGhoAOD++++noqKCl19+Gbs9eRfLzj///HbJFE6nk8mTJ5OXl8eiRYuoqakB4KWXXuKwww7jww8/THpShYhINjIMA/tFv8IsH435j1vB1xI9sDQHDkvCBJud0dtWO43HfuX1GGN2SsLgfZ/LlcTEkr5s4NgMzav3sfRA6VBorI+trTMApZXgbe6+rSsQvRXXQFMBbBoEkRi/WpUOja1dggwDLj4rpVMk1SljYKAH3tkIOf4mLpzixmZkOioREZH+o4ADqeP9hPoWckCSoxERkXQYY7pwmK5MhxGXsOliQ6aD6ENKSkp4++23Oeecc3jllVeA6Dlsy7KorKykqqqqte3WJAZjyyKPwsJCbrvtNk4//fT0By79lracyBLXXHNNu2SGn/70p6xbt4558+bx8ccfs379eq6++urW46+//jrXXntt0ua/55572iUzHHvssaxcuZIvvviCDz74gA0bNnD77bfjcERP5H755Zecd955SZtfRKQvsH3/BOz3/wvjO1OiTyzPhcokrNT9qBgsAxwObGedh/0fDyuZQZJv0KT0z+nMgeLy9M8rfcfoWN63FhTVwIiVsSUzbC+vAcpXQF6MiRNjMvB3qZc7fCj8aU84fVgTRdl1Tk1ERCTr5bE7Lsri7udhJDlMTEFEIiIikg5lZWW89NJLPP/88xx++OGtCQsQTWLYettq0KBB/OY3v2HBggVKZpC0U4WGLFBRUcHNN9/c+vj000/nnnvuadcmNzeX3//+9wD84Q9/AKLlXmbNmsXQoT1bBdbS0sJvf/vb1scHH3wwzz77bLvqD06nkwsvvBCv18tPfvITAJ544gkuu+wy9txzzx7NLyLSlxhDhmK76S6sl57HfOIh+HAzHF+Z+IBhA+YVY0zdH9t5F2LsND55wYq0VTYhuu1EKM7y/T0xdLdtJf5FEjGqu5PsFpRtgPwYkxE6Y4vAoPXRLSpqu9l2rduYRERERNLHwKCUE6ngzrj6lXJCiiISERGRdDr22GM59thjaW5u5tNPP2XZsmXU1dURCAQoLCyktLSUPffck5120gI6yRwlNGSB2267Db/fD0BOTg633HJLp22vueYaHnroIdauXYvP5+PWW2/lxhtv7NH8Dz30EBs3bgSiJWXuuuuuTreyOPfcc7n33nuZM2cOlmVx44038uSTT/ZofhGRvsYwDIyZP8A45jjMeW9jmeeDfT1Y3fdtx26H+sOx33MrxtBhKYlVpJXDBZOOhK+ejbmLZTcxvRFMbwjTsGG02DGII0Fh1+Pij1OkrXG7dX08GckMbQ3YBJYN6ko6Pu5wKqFBREREep0iphOkkmr+HVP7QZxKAfukOCoREUmVpWYEmxnJdBhxMbMs3myUm5vL9OnTmT59eqZDEdmBEhqywLPPbrtwcNJJJzFgwIBO27pcLs4++2yuv/56AJ577rkeJzT8+9/bvsxMnz6diRO7Pgl7/vnnM2fOHABeeeUVAoEAbncSSqqLiPQxhmFgn/pdLPNtIg2ng389+P3RW8AHkci2JAebEb0Q5vGCxwMeD0bOUdhy/oJhaAcpSZPdT4wpoSE8IEBwfCPBUS1gNzEti4BhYPgcuJfm4VqWh83XzcfQ3IEw7pAkBS79VvlO0S0eVizc8Vh+fXKTGbYqqQK/F/w5Ox7bZwZ4O3heREREJMPKOAknA6nmaUJs7rCNizJKOYkiDkpzdCIikkxjLRcOK7uu2YStAFWZDkJEMqZXJDQYKiXcqcWLF7Ns2bLWx0cccUS3fY488sjWhIalS5eyZMkSxo9PrAR5U1MT7733Xtzzt+3/7rvvcvjhhyc0f3V1dWt1ir6otrYWr9eb6TD6NL3GqafXOBlcGNxCrvsqbJ517Q9ZFqFQCKer/abiwcjR+JsvguZNaYyz79L7OFZF5A7dB9fqDzs8arkj+KdvJjIk0OZJwLKwMLA8YXy71uHbpQ7nwjxc8wo7rdjQMulEAptqUvAz9E16D3fONeVQcpd83f5Jexh7yUbiKY1jYWHG2rh0PZFV5dFqDW007jmDcJVOwXRG7+PU0uubenqNU0+vcerpNU693v0a70I+O9GQ8wzN7vcxbU2Agc3MJy8wnfyWHxDETVUvvqTUu1/fvkGvcerpNU69bHqNGxsbMx2CiEjGZTShoby8vDWZYejQoZ22GzJkCHV1dWmKqnf58ssv2z3eb7/9uu2z55574nK5CAaDrWMkmtCwYMECQqFQXPMPHjyYUaNGsWrVqtb5E01ouO+++/B4PAn1FRHJNjbbnowuL2LSuG8pK63c4Xg44mDFqrEsWjqZTZtdwN3pD1L6PY+Zxw+bG/BY2yUc5lg4jvJDsQnhjnq2Lw0YGl9Ls62ByMtusNonNay3D+Xlt9fBO3clN3jpl+yRMKfW1uMOb0u0yRvdhMcMEHuGQpyMMM22tfg2bjtBVpNbwrP/fQ94r/N+IiIiIhk0aHIF5VNWYg9v/4F+M9U8R9j/IqvnjKV6yZCMxCci0h/15QWfIiKxymhCw9YL3t155ZVXUhtIL7Zw4bbyuC6XixEjRnTbZ2u75cuX7zBGT+YHGDt2bEz9xo4d2/r/tyfzi4j0J6ZpZ/mqcSxfNY4BRZsoHViF2xXANG34A17WVJQTDCrJSzLLb8vhA8+BzPC9ibF1dbvdwn7clmSGOBg7RbAdFMJ8b1sFkoDh5l3vdFAFL0mSiN3BZ6P2Yv9lHwFg2E3cAwPd9Oo5zyAfvo0e2FKFZM5Y7TMtIiIivdfwvVYyfM/VXbZxeMKMnb4YhyfEhq/K0xSZiIgk25KIiS0S6b5hL2JGUrUiQUSyQa/YckI6t3r1ti8Sw4cPj3l7jvLy8taEhlgTR7qb3+FwMGRIbBnY5eXbvtT0ZH4Rkf5qc91ANtcNzHQYIh1a6RzLJ1Yz+/k/BsAYF8EoS+yLpe07Icz5DmiyETKcvOY9giZbQTLDFeHbYbswunolQ+o34C4JYNhi32oiUXaPiTM/TKjRyaIhE6kY0H1isoiIiEgmDBhV3W0yQ1sjp66gZXMe9esGpDAqERFJlbGWA4flzHQYcQlbDrQxqUj/Zeu+iWRSQ0ND6/3CwsKY+xUUbLsQ0JM9ltrOn5+fj80W21sm3vkDgQANDQ3tbiIiItJ7fePajfc9B2Fiw7Z7qPsOnTHAtmsYn+HlpZxjqHIMTl6QIlsZBu9OnE7Y5sCZ3+GeKCnhyA/R5M7jk7Hdb9smIiIikilDd18TXwcDhu62NjXBiIiIiIhsRxUaernm5ubW+x5P7GXGvd5t+/W2HaO3zv/nP/+Z3/3ud/EFJyIiIhm1yDUZX5mbw4e8jIPES//5d3PxzLcn4icnidGJtNfoLeTtSYdwkv2ptM1pyzf53+DDCDlc3TcWERERyYDcgY3klcW/GKpwaC2eghb8DfoMLyKSbZZGTIws28LByrJ4RSS5lNDQy4VC21Y8Ohyx/+9q2zYYDPb6+X/zm99w6aWXtj5uaGhgxAiV5RUREentbINM6uxFeC0/HtOHndj3YAwZTnxGDsE8F7Y8E5pSGKgIsKp0DC1WDvn+xCuYxcoyDDYNGsgmW1nK5xIRERFJVNGIBAt4G1BUvpmN3yihQUQk24zFgSPLLg+GcfBppoMQkYzJrt9Y/VBOzrYvBX6/P+Z+bdvm5ub2+vndbjdutzu+4ERERCTjnK4QYOAzvPjsXpxWELcVxEEYuxXGwGpta2EjbDgI4SBguIkYjjbjJJ6AKRIrGxECTjeWYZDvb8Cwuu+TCNMwaPAWErY7IX07XIiIiIjEzeFK/MNKT/qKiIiIiMRKCQ29XF5eXut9n88Xc7+WlpYOx8i2+UVERKR3i4Tt7R6HDBchY1t5fQMTLMAwsDC6GEcfSyX1zC3vwaDDRW1OMfn+JpyRUDe94hNwumly52EZBia2pI4tIiIikmxmxN59o876hvVZR0RERERST2eOe7mBAwe23t+wYUPM/TZu3Nh6v6SkJCnzNzU10dTUFFOCQrLm/8lPfkJ+fn7C/Xu79evXM3To0EyH0afpNU49vcapp9c49fQa94DjM4z8lV02CYVCOJ3OLlo4Of3UiwFvUkPrT/Qejl3h6x9g828prWxZGE112OpqwOp6P07LsjCMzpNysDswi0vx5OTj2fJU0cA9+NkBP0tO4P2A3seppdc39fQap55e49TTa5x6ve019jm/oCbvvoT6Tpp+Jp4DJiY5op7pba9vX6TXOPX0GqdeNr3GjY2N3HDDDUkdc0nEwginqGRhiliR7IpXRJJLCQ293IQJE1rv19TU0NLS0m4biM6sXbu29f7EiYl/sWg7P8CaNWuYPHly2uYvLS2loKAg4f69nc/no6xM+yqnkl7j1NNrnHp6jVNPr3HiLL5HA/dhUd1pG9M0u0xocPI9cstGpiK8fkPv4TgM2R3WvrftcXEpFA2EpnpoqIXAlq3TnCbkWOA1wW5hWWCEDfDboMUG4S3JDd5cKCiGnHxs2+U7OIfvSY7+v8RM7+PU0uubenqNU0+vcerpNU693vYaWxyKj/8QYnNc/VwMYcSAgzC6qMKWCb3t9e2L9Bqnnl7j1Mum19jj8XTfKE474cCeZZcHIziYn+kg+ojrr7++9f65557LsGHDMhiNSGyy6zdWPzRp0qR2j7/44gv233//LvtUVFRQXb3tosL2Y/R0/u4SGkKhEN98801S5hcREZHezcCGm2Px88+Ex3DzgyRGJNKN0p3bJzQAGAbkF0Vv1ICrBpyhaNUGa7tVIIYJhg2CORAqBQo7n2tg94nAIiIiIplkYGMA36WSZ+LqV8KhvS6ZQURERLp33XXXYRgGxcXFXHXVVZkORyQm2uisl5s6dSput7v18QcffNBtn/fff7/1vsfjYerUqQnPP2bMGIYPHx7X/J999hk+n6/18bRp0xKeX0RERHo/FzOB3IT62tkNB7ro2y+EV0LLM9DwJ6i/Ghr+CC1PQWhJeuMYcwR0dPLdCEHuGiisAm8EHE5wusHlAZcHa+t9pzt6LCcEhevBux6I7DieKx9GHJTqn0ZERESkxwYyk1xiX5CUz+6UcHgKIxIREemfGhsbefHFF/ntb3/L0UcfzaBBgzAMA8MweOedd5IyR25u9BzehAkTsNvtSRlTJNVUoaGXy8vLY8aMGbzyyisAPPbYY1xxxRVd9nnsscda78+YMaP1l1Oijj32WO68804Ann76aW655RZcLldM8++8886MHTu2R/OLiIhI72ZjALn8kWZ+BYTj6DeYXK7vvqFkJcs0Ca1cSWjVf7Dbn8DmWYEVCoJpRSsfGDYwDAyXCzNQjhn6IfbyE3CNGYPhSOHXlPxhMGw/qPho23N2fzSZweggMaE7rnpw+KCpHKw2W6uMmwkOd+f9RERERHoJG05G8ivWchuNfNll2wKmMoKfY6ALICIi2WpR2MIIW9037EWsLIs3UW+++SY/+EFqK5kOGTKE5cuX40jluReRJNO7NQucddZZrQkNX331FS+++CIzZ87ssO38+fN59dVX2/VNxvxbExo2bdrE3XffzUUXXdRh23Xr1vHQQw8ldX4RERHp/ZzsSS5/o4WrsWjqtr2NseTxF2wMSEN0kk6h9etpfOYZGl98gfzpi8ndvxYssHzbNbTM6B8+HwaLsdv/QMsLt7PxtZ3IO/JYCn74Q5wjR6YmyN3PhfWfRGOwBRJPZtjKFoS8NdA0Ciw7OHNg8ilJC1dEREQk1ex4GckVNPENm3iFej7E2pKsbOCiiGmUcmRclRxERKR3Gm9zYLdl1+XBiM3BF5kOIk1KS0vZa6+9mDJlCpMnT+aUU5J7fmGPPfZg2bJlLF26NKnjiqSStpzIAieeeCK777576+Pzzz+fRYsW7dBuw4YNnHbaaUQi0ZOxe+yxByeccEKHY77zzjutZWoMw+DBBx/sdP69996bY489tvXxlVdeyYcffrhDu4aGBk455RQaGxuBaJbXrFmzYvoZRUREJPs52ZN8HsHDORiUdtjGzkS8/Jp87sbWSRvJTi0ff8zGSy5h3XHHUf/IQxTO/JbcA2o73N2hMzlT6ik+eRENzzzOuhNOYMPPfkZzkkoqtjNod5h0MmBBzvqeJTNsZQuCd2P0/pRLIG9wz8cUERERSaMgG2nkQ/x8iwMXDjxbbk58fEk9HxKkKtNhioiI9FkzZ86kqqqKV199ld///vedLm7uidNOOw2AyspK3nzzzaSPL5IK2ZWC1U8ZhsF9993HtGnT8Pl8bNiwgX322Yef/exnTJs2DYfDwdy5c7njjjuorKwEwOv1cu+992IYcZxB7sKtt97Kxx9/THV1NU1NTcyYMYNzzz2Xww8/nLy8PL766ituv/12Vq5cCYDNZuPuu+/G6/UmZX4RERHJDjZK8HAWbk4nzBxMNtDcuI4i90jsTMTBxEyHKEkWqa2l5oYbaG7zJThvRg3eXRsTGs89rpmCI6ppeGkQ/nnz8M+bh3f//Rl49dU4ysqSFTbsNQs2PgURf/LGdDbA0ANgwvHJG1NEREQkDZr5lrX8lQjRsloG9nbbSpj4qeV/NPAJ5VxODhMyFaqIiPTQ4pCFEcquLRysLIs3UXZ76rd0mjlzJt/97nd56623+PnPf84HH3xAaakWHUnvpoSGLDFlyhQee+wxTj31VHw+Hw0NDdx4443ceOONO7T1er089thjTJkyJWnzjxo1iueff56ZM2eyefNmAoEAd955Z+tWFG3Z7XZuvfXWlGSOiYiISHYwsONkfwDCzatxD0zR1gGSUU3/+x81N96IWVfX+px9YJD8wzb1aNy8aZvxfVFAaF00Odb30UdUnHQSAy69lPw2lcN6xOaAgTmwyQWRYHLGdOZAaS4kKalYREREJB18rGQNf8Gk+0TPCI2s4UZGcz1uhqchOhERSbYJNjt2W+ovnCdTxGbvN1tOpJphGDz++OMcddRRzJ8/n7333pubb76Z73//+9hsKuwvvVPKExoCgQDvv/8+n3/+OZs2baK+vp7CwkIGDhzIHnvswbRp03C73akOo0/4wQ9+wGeffcZFF13EW2+9hWW1z0gzDIMZM2Zw++23M3Fi8lc/7r///nz11VdccsklvPDCC4TD4R3aTJ06lVtuuYX99tsv6fOLiIiISO9ghUJUX389za++usOxvAM3Y9h7uHLCgNyDNlP3xLDWp8ymJjZdfz0t77xD6Z/+hM3j6dkcNW9DpBEKR0JjBYRaejaeuwDyhkLTt9C0FPLG9Ww8ERERkTSp5KGYkhm2itBMJY9Rzq9TGJWIiEhyVVdX8+mnnzJv3rzWPzdu3Nh6/IEHHuCss85KePyPPvqIBx98kA8++IB169YBMHz4cA488EDOOuss9t9//57+CElx/fXXA3D44YezdOlS1qxZw4knnkhpaSn77rsvY8eOJT8/P+bkhmuvvTaV4YoAKUxoqKio4LrrruOxxx4jEAh02s7tdnPKKadw3XXXMXy4snq7M2nSJN544w3Wrl3LRx99REVFBQDDhg1j//33Z8SIETGNc/DBB++QEBGLYcOG8cwzz1BdXc17773HunXrCAaDDB06lL333pvx48fHPaaIiIiIZA/T56Pq8svxffJJB0ctvHvWJ2Ue726N1D1tQrj9F+iW995j489/zqBbb8Wen5/4BHXzon/aHNGkBn8tNFeBZcY3js0OeUPA1SaWunlKaBAREZGs4GctzSyMu18TXxCkGhcqUS0iIr3bxo0b2XfffVm9enVKxm9ububiiy/m/vvv3+HYwoULWbhwIffeey/nnHMOt912G7m5uSmJI1bXXXddu+3qDcPAsiyqqqp48cUX4x5PCQ2SDilJaHj++ec59dRT8fv93V409/v9PPDAAzzxxBM88sgjHH+89puNxYgRIzj55JMzNn9paSknnHBCxuYXERERkfSzgkEqL70U/7x5HR53lAaxeeNMCOiE4bBwDg0QWuPd4Vjgq6+ovOgiBt95J7acnMQmaFrU/rGnGFwFEKiLJjdEQl33d3iifdwFYGy3amH7sUVERER6qTreSqifhUkdb1PGSUmOSEREUm1xEIwk7byYLlYP4vX7/SlLZohEIhx//PH897//bX3O6/Wy884743A4WLBgAQ0NDQDcf//9VFRU8PLLL2O3Z3bLj86u3ca7ENrQlpuSJklPaPjXv/7F6aefTiQSAWJ7M1uWhc/n4+STT+bRRx/N6IV6ERERERHZkWVZVF11VafJDBBNaEgmR1nHCQ0AgW++ofKyyxh8xx0YiZwI8K/f8TmbHbwl0VskCGF/9GaZmJEwNqc7msjg8IDN2fnYgQ7GFhEREemFAiT+uSXIhiRGIiIi6TLBZsduy+wF9XhFbHa+SMI4paWl7LXXXkyZMoW9996b73//+z0a75prrmmXzPDTn/6UG264gQEDBgDR6g033HADf/jDHwB4/fXXufbaa/njH//Yo3l74swzz8zY3CKJSmpCw9q1a7nggguIRCI7JDJ0lNWztc3WPyORCBdccEFcWyeIiIiIiEjqNT79NC1vv911I3v8W5p1ZfvCB9vzz5tH3QMPUPyTn8Q/eHdbS9hd0Zu7AIBIMIjD5Ypx7Ej88YiIiIhkgEXin1tMuqloJSIi0gsMGDCAp59+mr333puRI0cmbdyKigpuvvnm1senn34699xzT7s2ubm5/P73vwdoTWq4+eabmTVrFkOHDk1aLPF44IEHMjKvSE90c4owPldeeSUNDQ3tkhksy2LQoEGcddZZ/PWvf+Wee+7hr3/9K2effTaDBg3aIdGhoaGBq666KplhiYiIiIhID4QqKth8++3dtjMbk1sAzmzqfsVI3X33EVy6NP7BHXkJRBTr2PmpG1tEREQkiewk/pnI0YO+IiIi6VJQUMCJJ56Y1GQGgNtuuw2/3w9ATk4Ot9xyS6dtr7nmmtaF3D6fj1tvvTWpsYj0dUk741hTU8MzzzzTmsxgWRZ2u53f//73XHrppbg6WM0UDAa5+eabufrqqzFNE8MwsCyLZ555hltuuaW1JIv0H7Nnz2b27NmtW5aIiIiISGZZlsWm3/0Oy+frtm1ovQcsIElbKAYrPN03Coepvu46hj78cHxbT+SO73jbiWTIHZ+acUVERESSrICpNPBxQn3zmZrkaEREJB0WB8FI7o6RKWf1wnifffbZ1vsnnXRSl9c0XS4XZ599Ntdffz0Azz33HDfeeGPKYxTpK5KW0PDCCy8QCARakxIMw+Chhx7ilFNO6bSPy+Xi17/+NeXl5Zx66qmtyRCBQIDnn3+ec845J1nhSZaYNWsWs2bNoqGhgcLCwkyHIyIiItLvNT73HP7582NqawVtBFbm4B7T0uN5QxvcmPXOmNoGFy+m/pFHKDrrrNgnyN8Zat5JKLaYxhYRERHJAgVMxUEhYerj6ueijDz2SE1QIiKSUhPsBnZ7klYipEnEbvBFpoNoY/HixSxbtqz18RFHHNFtnyOPPLI1oWHp0qUsWbKE8eO1IEIkFknbcmLu3Lmt9w3D4LjjjusymaGtH//4xxx//PHttp9oO56IiIiIiKSfZVk0PPpoXH1aPipOytzNcY7T8MQTWOFw7B3KjgQjqTvwRTkLYcAByR9XREREJAUMHJRwdNz9SjgGI7m7GYuIiGSNL7/8st3j/fbbr9s+e+65Z7tq9tuPkWktLS18/PHHvPjiizz66KM8/PDDmQ5JpFXSKjTM37Jqa2t1hosuuiiu/hdddBHPPvtsa4WHzz//PFmhiYiIiIhIAvxz5xJasyauPr6v8sld6cU1uvstKjoTWu+mZW5RXH0iNTU0v/02eYcdFlsHz2AYcBDUvBt/gF0Z9H2w7bjdnoiIiEhvVcKxBFhLHe/H1L6YwxjA91IclYiIpMriIBiBTEcRn9625cTChQtb77tcLkaMGNFtn63tli9fvsMYbW3atKn1fnNzc+v9+vr6dscGDBiAzdaz5ELTNHniiSe48847mTdv3g7bwZ9xxhk79Ln44otb47j99tspKSnpUQwisUhaQkNlZWVrMoLL5eKAA+JblbTffvvhdrsJBqO/lTZu3Jis0EREREREJAENTz8dfyfLoPbJoZResgqbN9J9++27B2zUPjkUzPjLXzY+/XTsCQ0Aoy+B2k/ATNKZHHcZlGvbPBEREckuBgZD+TkOBlDDK1iEOmxnw81AjqWUE9McoYiIJNMEO9iTdnUwPSJ2etWWE6tXr269P3z4cAwjtnMY5eXlrQkNq1at6rBNaWlph88fd9xx7R6vXLmSUaNGxTRvR1asWMEpp5zCvHnzANpV0Qc6/ZnKysq44447MAyDfffdl4svvjjhGERilbS6YPX12/ZZGzx4ME5nbPvdbuVyuRgyZEiH44mIiIiISHqFq6poee+9hPpGalzU3DMCs8keVz/Tb6Pm/hGE13sSmtc/fz7BFSti75BTDqPjqyzXOQPGXQ2OvCSNJyIiIpI+BjYGcQrjmE0++xMmQIBNBKghTJBCpjOO2UpmEBGRjGpoaGh3CwQyU2qioaGh9X5hYWHM/QoKClrvNzY2JjWmeKxatYqDDjqIefPmYVkWlmWRk5PDHnvsQXFx11uA/vSnP22tDPF0IgthRBKQtISGtn/xioqKEhqj7V/kpqamnoYkIiIiIiIJ8s2ZA6aZcP/QOi9Vfx+D75v8mNoHluZS/fcxBFfkJDwngO+TT+LrMOxHMOyUHs0JBuz0axiwfw/HEREREcmcWt5nOVdRzxxs5OBkEE7KsOGllg9YztXUE+dnLRERkSQaMWIEhYWFrbc///nPGYmj7VYQHk/sizK8Xm+HY7S1NcGgu1tPqjOcdNJJbNiwAcuyGD58OE8++SR1dXXMnz+fqVOndtl30KBBHHDAAViWxZw5c3Q9V9IiaUVlLMtqLT8Sa2mV7bXtt31pExERERERSZ9gJ3s5xsNsclD70HCahvnJ2bcW95gWHKVBMAALwjUugiu9NM8pIrS6Z4kMWwUSiXvspeAqgdX/ALPjEsudcuTBTr+BMu0jLSIiItmrmhfZyBNdtglSzRpuZyiNlBDHNl8iItKrLA6CkZnCBgmzorvVs3bt2naLo91ud0biCYW2nTtwOGK/1Nq2bTAYTGpMsfr3v//Np59+imEYjBkzhg8//JCysrK4xjjwwAN5//33iUQifPnllxxwwAEpilYkKst2yRERERERkXQILFqUtLFCFR7q/71lezmHic1lYoVsWKGkFYxrlXAixogzYcABsOxGqP+8+/aGDUqmw9jLwR3fF38RERGR3qSeT7tNZtjGYj0P4WIw+eya0rhERCQ1JjjAnmVXByMO+IJopfe2CQ2ZkpOzbVGG3++PuV/btrm5uUmNKVbPPPNM6/1//OMfcSczAOy2226t95cuXaqEBkm5LPuVJSIiIiIiqWaZJsHFi1MzeNiGGTaIlmlIvtCaNZgtLdhyEqj4kLsT7H4vNC2BjS9A49fQvHRb1Qa7F/ImQMF3YPBx4B2W1NhFREREMqGa5+PsYVLNC0poEBGRfisvL6/1vs/ni7lfS0tLh2Ok05w5cwAYPHgwM2bMSGiMgQMHtt6vqalJSlwiXVFCg4iIiIiItBNetw4rkIz6kxZuZzMuhw+n3Y/T4cduC7ceNU07wYiHUNhLMOwlEMqlx4kOpklwxQo8u+yS+Bh542Gny7f8CBEIN1O5di3loydFKzOIiIiI9BEtLMfHirj7NbMAP+vxMDQFUYmISCot9oORZVcHrdiLIKRF2wv6GzZsiLnfxo0bW++XlJQkNaZYVVZWYhgG48ePT3iMtlt9ZGrrDOlfsuxXloiIiIiIpJrZZsVAImxGmBx3HbmeOuy2UOftbBE8tmY8zmYAIqaDlkARzf4iTMuZ8PxWD+NvKxS28cADHgKBYi66SMkMIiIi0rc0MLdHfT0cl7xgREQkLSY4wZ74V+6MiDijW070FhMmTGi9X1NTQ0tLS7ttKDqzdu3a1vsTJ05MSWzdcTiil4ZN00x4jM2bN7feLy4u7nFMIt1JSULDxo0buf766xPq11YiY2x17bXXJtxXRERERKQ/sxLOrrfI9dRS4K3CMKy4e9ttYfK9m8jz1NDoG0iTv4REKjYkp7pE1IsvhrnnniDBoIcDDoiw5572pI0tIiIikmlhGhPuG+lBXxERkWw2adKkdo+/+OIL9t9//y77VFRUUF1d3ekY6TJo0CAaGxtZsSL+Ck1bzZ8/v/X+0KGq1iSpl5KEhsrKSn73u98l1NeyrNY/Ex0DlNAgIiIiIpIwW/yVCOy2IMW5G3A5e14dwTAsCnKq8boaqW0eSjji7r5Tu2CSl3QwZowNh8PA6bQYMqSH22GIiIiI9DJGD04P96SviIhINps6dSput5vAlgUVH3zwQbcJDe+//37rfY/Hw9SpU1MaY2f23HNPli1bxvr16/nqq6/Ybbfd4h7j6aefBsAwDA444IBkhyiyg5R86tyalJCpcQxDJxpFRERERBJluFxxtXfafZQUrMVmRJIah9Php7RgFTWNwwmGc2PuZ7jjTIDowh572Hn5ZS8bNmxiyJDM7G8pIiIikipuEl9V6WJIEiMREZF0WewDI8uKD1q+TEfQXl5eHjNmzOCVV14B4LHHHuOKK67oss9jjz3Wen/GjBnk5sZ+niOZZs6cyVNPPQXAlVdeyUsvvRRX/7vvvpuFCxdiGAb77rsvJSU6VyKpl/SEhkwnEyQrmUJEREREpL9yDBwYc1un3cfAgjUYRuJ7L3bFMExK8tdS0zgi5qQGe5K/TJeU2GhqSuqQIiIiIr1CEQeykX9hEd+WYzZyKGK/FEUlIiKpNMEJdmemo4hPxAlfZDqI7Zx11lmtCQ1fffUVL774IjNnzuyw7fz583n11Vfb9c2Uk046ieuuu44VK1bw6quvctFFF3Hrrbdii6Fa5+OPP84ll1zS+vg3v/lNKkMVaRV/LdkuWJaV8ZuIiIiIiPSMfcAA7GVl3bazGSFK8temLJlhK8OwKMlfh93W/Yl2IycHZ3l5SuMRERER6Ssc5CWUmFDMNGwkryqWiIhItjnxxBPZfffdWx+ff/75LFq0aId2GzZs4LTTTiMSiVa13GOPPTjhhBPSFuf2nE4ns2fPxr5lu84777yTXXbZhTvvvJOFCxcSDodb29bW1rJo0SIefPBBDjnkEE4//XSCwSCGYXD88cdz9NFHZ+rHkH4maRUa3n777WQNJSIiIiIiGeaeNImWqqou2xTlbcRmS+42E50xDJPivPVsahgJdF4Vzj1hAkYMqwpEREREJGoQJ9HEN4Soiam9i8GU8YMURyUiIpI8P/3pT3nkkUe6bXPBBRfs8Lzf7++wvWEY3HfffUybNg2fz8eGDRvYZ599+NnPfsa0adNwOBzMnTuXO+64g8rKSgC8Xi/33ntvxqvdH3744dxzzz389Kc/xTRNFi9ezEUXXdSujWVZDNyugufWheX77rsvDz/8cNriFUlaQsP06dOTNZSIiIiIiGSYa9IkWt59t9PjXlcdHmd692FwOXzkempp9g/ovM2kSWmMSERERCT7OSlmNFeyihsIUg2AhR/YmrjqwNhSjcHNUEZxBQ7yMxOsiIj02OIWMLJsHYDV0rP+oVCIQCDQZZtwONyuOkEspkyZwmOPPcapp56Kz+ejoaGBG2+8kRtvvHGHtl6vl8cee4wpU6bENUeqnHXWWYwbN44zzjiDlStXtj5vGEZrwsX2lfFtNhvnnXcet9xyCy6XK63xSv+WtIQGkWSYPXs2s2fPbi29IyIiIiKZ4d555y6OmhTmdF29IVUKvNW0BAqxLHuHx7uOW0REREQ64mYIY7icSm6nlg+J0H41qhMvxUynjAtx0v3WZCIi0ntNcIM9y3YNioTgi0wH0Ykf/OAHfPbZZ1x00UW89dZbOyQBGIbBjBkzuP3225k4cWKGouzYAQccwJIlS3jmmWd49NFH+fDDD6mrq9uh3ZgxY/je977HxRdfzIQJE9IfqPR7SmiQXmXWrFnMmjWLhoYGCgsLMx2OiIiISL/l3Xtv7AMHEtm0acdjroa0bTWxPcMwyXHXd1ilwZabS860aRmISkRERCS7BfgfTfwVD0EGYyeAhwjRCzJ2bLixYfABDXxKHlfiRp+5REQk/fbee2/sdnvrtaRYPfjggzz44IMpi2vSpEm88cYbrF27lo8++oiKigoAhg0bxv7778+IESNSNndP2e12Tj75ZE4++WQA1q1bR01NDc3NzRQWFjJo0KAdtp4QSTclNIiIiIiIyA4Mh4P8446j7r77djiW66nNQERt5nfX0uwvBtrvOZl39NHYvN7MBCUiIiKSpfy8SBM3wZYEBgMDTyenjS38NHEdcCVuDk1bjCIikjyLfVm45YQv+ue8efMoKCjIbDBdGDFiRGtiQLYaPnw4w4cPz3QYIu0ooUFERERERDqUf/zx1D3wALTZDsxuC+Jy+LvolXoOexCn3U8o0j55If+HP8xQRCIiIiLZKcRXNHMzW5MZYmFh0sSN2CnHwfjUBSciIikxwaUtJ0Qku2RZDpaIiIiIiKSLo6xshy0cXA5fhqJpb/s4PHvthWv06AxFIyIiIpKdfDyBhRl3P4sQPp5KQUQiIiIiIu1ltELD2rVrWbJkCevWraO2thafL3pS0uv1UlxczLBhwxg/fjzl5eWZDFNEREREpN8q/tnP8H34IVYwCIAzw9UZtnI6/BDY8sBmo/jCCzMaj4iIiEi2ibCREHMS7h/kXUwuxEZR8oISERGRtFu+fDnPP/888+bNY+nSpdTV1REIBCgoKKCsrIw999yTAw88kJkzZ+J0OjMdrvRDaU1oaGho4KmnnuLVV1/l3XffpbY2tr13i4qKmD59OkcddRQnnXRSr94fR0RERESkL3GNGUPRT39K7ezZADjtvSShoU0chaedhmfXXTMYjYiIiEj2CfBaQtUZtrIIEeB1vGT3XuEiIv3N4hYwjExHER+rJdMR9E3ffPMNv/zlL3nrrbd2OGZZFhs2bGDx4sW8//773HrrrQwYMIBLL72Uyy+/HIcjo2vmpZ9Jy7tt9erV/OlPf+LRRx/F74+eeLSs2Pdlq62t5YUXXuCFF17gkksu4dRTT+Wqq65i5MiRqQpZRERERES2KDzzTFrefpvAggXYjEimwwHAZouefHeOGkXxBRdkOBoRERGR7BNhXRLGqEhCJCIikk4T3GD3ZDqK+ETC8EWmg+hjbr/9dn71q18RDoc7vWbb9nnDMKipqeHqq6/mySef5NVXX2XIkCHpClf6uZQmNITDYf74xz9yww03EAwGd3jjx2NrX5/Pxz//+U8eeeQRfvOb33DllVcqC0hEREREJIUMm42B113H+tNOg16zisOCLXEZLlemgxERERHJOlbr/l09GaN3VO8SERGR2M2ePZtLLrkE2Ha9dsCAARx66KHsvPPOlJSU4Ha7aWxsZOXKlcydO5e5c+cC0eu1X331FdOmTePTTz+lsLAwYz+H9B8pywRYv349J554InPmzGlNRugoiaG7Sg1b+7Tta1kWgUCA3/3ud7z22ms888wzDB06NInRi4iIiIhIW64xYyj94x+x/nBipkMBwMJg4DXX4Nlll0yHIiIiIpKVbOQmYYy8JEQiIiIi6bJs2TIuv/zy1uuugwYN4sYbb+THP/5xlwvIV61axVVXXcUTTzyBYRisWLGCyy67jPvuuy9doUs/lpKEhpUrV3LIIYewdu1aLMvaIRlhq4KCAr7zne8wdOhQCgsLKSwsxDAM6urqqK+vZ/369Xz++ec0NDS09jEMo3U8y7L45JNPOOCAA3j77bcZNWpUKn4cEREREREBcg85hOD/DsL69H+ZDgXnznvimjkz02GIiIiIZC0Hk4HXejjGpOQEIyIiabO4BeIsop5xVkumI+g77rrrLvx+P4ZhMGbMGN555x2GDRvWbb9Ro0bx2GOPsfvuu/N///d/ADzyyCP85S9/YcCAAakOW/q5pCc01NTUMGPGDNasWbND8gHAHnvswTnnnMP3vvc9xo0bF9OYS5cu5b///S/3338/n3/+ObAtscGyLFavXs2MGTOYO3cuJSUlyf6RRERERERkC9dBRxHZsIDw+vXQTbW1VHEMGYJ9+tEZmVtERESkr3BzKM38A4vErhLZKMLFwckNSkREUm6CB+yeTEcRn0gEvsh0EH3Ea69tS2b85z//GVMyQ1tXXHEFr7/+Om+//TbhcJg33niDk046KdlhirRjS/aAP/rRj1i1atUOVRmmTp3KnDlzmD9/PhdeeGHMyQwA48aNY9asWXz22WfMnTuXffbZZ4dtLFauXMmPf/zj5P4wIiIiIiLS3ohJ2AsKcJaXYzid6Z3b4cAxYgT2oiIYodWAIiIiIj1hkIOb7yXc381RGKT586CIiIj0yNYF6eXl5UybNi2hMc4444zW+2vXrk1WaCKdSmqFhgceeIA333yzXVUGh8PBTTfdxKxZs9olOSRqypQpfPzxx8yePZtLL72UcDjcWqnhzTff5IEHHuDss8/u8TwiIiIiItKBUbuCzY4tJwfnmDFEqqqI1NamfFpbYSGOwYMxbLZobczRu6d8ThEREZG+zsuPCfIeJjXbnrQswAdEAAOwA5529cntDMLLD9MbrIiIJMXiJjAyU3AxYVZzpiPoO5xbFqeMHj064THa9nWme7GL9EtJS2gIBoNce+217ZIZ3G43TzzxBMcdd1yypmk1a9YsRowYwcknn0wwGGxNavjtb3/Laaedpr9AItLrRerqCC1cSGjhQsIrVmD5fFihEIbDgeF2Yx8yBOfEiTgnT8YxfHimwxUREYnKK4JdD4Yv38Sw2XAMHoytoIDwhg1YwWDSpzOcTuyDB2PPy9v25Li9YWB8JRFFREREZEd2yijgBhr4Faa1CaxaLOqIJjO0b2lYxWAUYTMGk8+N2CjOQMQiItJT2nKifxsxYgR1dXXU19cnPEbbviNGjEhGWCJdSlpCw1NPPUVFRUVrYoFhGNxzzz0pSWbY6thjj+Xee+/ljDPOaE2kqKio4KmnnuLUU09N2bwiIokKLVlC8zPPEPjoIyIbN7Y7FsmFSK6BLQD2eou2NW1s+fm49tiDnB/8APeBB0ZXp4qIiGTKQT+EL99sfWjLycE5dixmUxNmbS1mU1OPp7Dl5mIrLsaWn88Odd4OPLHH44uIiIhIlN0aS254D5qNB4jYAp20imCxCUekiTzrWOyOkez4IU1ERER6u6OOOoqvv/6ar7/+mqqqKsrKyuIe43//+x8AbrebQw45JNkhiuwgaQkNjz/+eOt9wzD43ve+x+mnn56s4Tt12mmn8fjjj/Paa6+1JjU8+uijSmgQkV7DCoXwvfEGLU8/TfCrr9ofs0PTFDv1Mxz4Jtpbn3dWmxS+FabgnTD2ZjAbG/G//z7+99/HPngwOccfT85xx2EfMCDdP46IiAiMmwLDxkPFktanDMCel4c9Lw8zFMKsq8NsacHy+8E0ux/TZsPweLB5vdiKirC5XB23KxkWrRAhIiIiIj1mWSaR0NUY5n/Jo4yIESRoayJk82EZ0c9whmXDaebgMvOwW04sniZCAIfz2gxHLyIiIvE677zzuO222/D7/Vx22WU88sgjcfX/9ttvue+++zAMg1NPPZWioqLUBCrSRlISGsLhMO+++2676gw33HBDMoaOyZ///Gdee+01ILrVxXvvvUc4HMbhSFq+hohIQoJffknd735HeM2aHY6FC2D9ZR4Co3esthAqtbHpZBebj3Ey5JYAOYu3XQiKbNxI45130vTAAxRcdBE5P/xha0KXiIhI2vzoGrj5LDC3L0cMNqcTW2kpABZgBYNYfn90SwrTjO7LbBjRJAanE8PjwXC7u1/kZxjw42tAlYpEREREkiISvg3T/G/rY7vlwhsZgDcCFtEN1o0OPqWZkf8QMQZjd5yXtlhFRCQ5FjeBYWU6ivhYzdE/9957b+x2O7NmzWLWrFmZDSpLjR49mrvvvpszzjiDxx9/HIfDwa233kpBQUG3fd966y1OOeUU/H4/u+yyC7feemsaIhZJUkLDl19+ic/na72gNm7cOHbbbbdkDB2T3XffnQkTJrBkSXSFmN/v58svv2SvvfZKWwySHLNnz2b27NlEIjueGBfJJlYgQMPs2TT/618drko13bD+Cg+B8q4vyJi5BusvdzP8jwE8K9uPY/l81P/lL/jefJOi3/4Wx9ChSf0ZREREulQ+CWacCf+7v8tmBmC4XNBZxYV47H9CtDqEiIiIiPSYZVVhRh7v9HhHiQxtRcIPYrP/CMPo/gKIiIj0HhO8YPdmOor4REz4Apg3b15MF96la6eddhrFxcWcffbZPPzww7z88sucdtppHHHEEeyyyy6UlJTgcrlobGxk5cqVzJ07lyeffJK3334bgJNPPpm7776bnJycDP8k0l8kZWnTsmXLWu8bhsFRRx2VjGHjcuSRR2JZ21LK2sYk2WPWrFksWLCAefPmZToUkYSFli2j+sc/pvnxxzstsV17lLPbZIatLJdB1VmdXwQKfvYZ1SefTMtLLyUUr4iISMKO+CmMTlMi89Cd4NiL0zOXiIiISD9ghp8FYtgarFNBzMgLyQpHREREksRut3d7O/bYY6mpqcGyLDZt2sStt97KkUceyYgRI8jJycHhcFBcXMyee+7JBRdcwNtvv916Hfapp56iuLhYlfIlbZKS0LBx40aA1jfyiBEjkjFsXMrLyzuMSUQknYJffUXNeed1uMXEVpYNGg6O7x/6wGgb/g62pmgd0+ej7rrraHr00bjGFRER6RGHE867BYaNT+08peXws9ngUea/iIiISDJYVphI5Pkej2NG/t1ukZmIiIhk3tZ/my3L6vIG0YXqWyvwd9Vua9u2c+gzgKRLUlJnmpub2z0emoGy54MHDwa2/WXaPiYRkVQLfvMNNRdeiNXS0mW7ll3thIu73SV8Bw3THHhWBrtuc8stYJrknXFG3OOLiIgkJKcALrwb7v0lrPgi+eMPnwAX3A75A5I/toiISLJsWAKrPoeKhbB+ETRvhkgY7E4oHARDJ8KwSTB2KgwYluloRbCs5cCm9k9GwhD0Q8gH4QBsvUhhGOBwg8sLTg/YHW3GWQfWOjDSv8BNREQSs7gJjJ4U6MkAq+tT7tKBWJINYk1IUOKCZFpSEhrsdnu7x36/PxnDxiUQCLR7vH1MIiKpFFqxgs0XX9xtMgNAuCT+ZIZ4+jXcdhtGQQG5xx2X0DwiIiJxy8mPJjW8+RC8fi+EQz0f02aD754BR5wHzs63XhIREcmYcBC++i/MeRrWfdt5u6YaqFgA84heGN5pX9jnRJhwUPTfO5FMsOq3/An4G6C5FgJdndNo3HbXnQu5xeDJBwMsGkjsTIeIiGTCBC/Ys6wAYsSCLzIdRBZZuXJlpkMQSaqkJDTk5+e3e7x+/fpkDBuXDRs2ANEsIcMwdohJRCRVrHCYuquuwmxoiK1DotmvcfRr+MtfcO22G84xYxKcTEREJE52Oxx+DuwyDZ6+oWfVGsonww//L/qniIhIb7TiM3j2d1Ab5zkwy4KlH0dvwybDCdfBIH1vkwww7OBvgroN0coM8Qg0R28OJxQOAZcSc0RERHqTkSNHZjoEkaRKSkJDeXk5sG27h8WLFydj2LhsP+eIESpzJiLp0fTPfxJaujTm9s4NiWU0uDbG3s8KBqm77joGPvgghlb8iIhIOg3dCS65D9Ythg+ehs9ei5Yu7o7DBXscCgf9EEbtmvo4RUREEhEOwqu3RKsy9LT0bsUCuPM0+O55MO3MaPUGkXTwNWK88yCMX9uzccIhqFmD8clDcMi14M6y5b4iIv3U4kYwIpmOIj7ackKkf0tKQsPEiRNb71uWxUsvvUQkEknbtg/hcJgXX3wRwzBa93FpG5OISKqEFi+m8f774+rjXWzi3GgSGhxHooEFBW/Ht2IitGABTQ8/TP5ZZ8XVT0REJCmGT4AfXQ0nXAHrl8LahdFbU2305LfdAXlFMHwijJgEw8aDy5PpqEVERDoXaIFHfgkrP+u0iRkKYYXDWOaWhHTDwDAMDKcTm6OD03DhIPz3DqheBcdfqy0oJPUaquChWVC9AmOICys/2KPhjM0ejI/egJVr4Yw7oltRiIhIr6YtJ0Qk2yQloWGnnXairKyM6upqAGpra3n55Zc59thjkzF8t1555RU2b97cWiFi4MCBjBs3Li1zi0j/ZVkWdb/7HUTiS2c1gMI3w2w6Nfb9wHMWRHBVxr/6p+mee/DOmIGjv1etsSwIroXASjADYPOCZxy4Bmc6MhGRvs/pgpE7R28iIiLZKhyEh38Bq+a3PmWGw0RaWjD9fky/n4jPB2bnlfUMux2b14vN48Hu8WDPzd1WUe/zl6LJDD+4RpUaJHUaa+CB86FmLQYGtsVFRKZU9WhI2+Ki6J0Ni+GBC+Dce8Fb0PNYRURERES2SFra99FHH41lWa1VEi699FL8/hhKy/aQ3+/nsssua53XMAyOPvrolM8rIhKcN4/QkiUJ9S36X5icr2NLhLDXW5T9M7EVE1YwSPNTTyXUt0/wr4D1N8KiGbD0eFhzGay7Etb8EpYcA4uOhI2zIVSZ6UhFRERERKQ3e+mvrckM4eZmfOvW0bJ0KYGKCkI1NUSam7tMZgCwIhEiTU2ENm3Cv24dzUuW4N+wgcjW82ef/Qc+eiLVP4n0V6YJT1wGNdu2mbAtLYJIDxJoQjZsywu3Pa5aDv+6oufbsYiIiIiItJGUCg0AZ5xxBg888EDr45UrV/KrX/2KO+64I1lTdOjyyy9n+fLlrdUZAM4888yUzikiAtD89NMJ9zVMGHJzgMrzXTTt0/mvYudGk6F/D+DclPjJAN9LL5E/axY2Tz8q420GoPJOqHkC6OKkYrgaNj0ANY/BoJ9DySlgqMSriIiIiIi0sfQTrLnPEqqtJVRbixXsWYn+VpZFuK6OcF0dNq8XZ3Exjv/OxphwIAwsT84cIlt9+DCs+6bdU0bQjv2zMiJTE0vyt88dhBHZ7jv0yk9h7tOwz0mJRioiIim2uBGM+IoOZ5zVkukI+q53332XDz/8kIULF1JXV0dLSwtWjMmJhmHw5ptvpjhCkSQmNEyfPp199tmHuXPntlZLuOuuu3A6ndx8883JmqadX/3qV8yePbtddYa9996b6dOnp2Q+EZGtIlVV+N99t0dj2MIwZHaQwIsh6g510ryXnUiegS1g4VlmUvhGmNzPIxg9XNhgNjbif/11cr7//Z4NlC3Cm2HVReBfHHsfKwgbb4GmuVD+V7C5UxaeiIiIiIhkkUALoYcuJ7hiRfISGTpg+nwEfD5CtbW4Hr4Cx6X/Stlc0g9Vr4S37+nwkH3hAPCEiexWE9eQ9vml2JcVdXzwf7fD+AOheGicgYqISDpMyAV7bqajiE/EgC8yHUQf8+STT/LrX/+atWvXdt+4A1uvy4qkQ1KXod50002tb96tSQa33XYbJ5xwAhs2bEjaPJWVlfzwhz/cIVHCMAxuuummpM0jItKZluef77acaKzcaywG3R9kzCwf485sYex5Pob9JUDe/J4nM2zV/O9/J2eg3s70waoL40tmaKvpI1j7fyqPKSIiIiIiRAIBKn//MwIL5qc0maEt0+fD/+FLVN1xPVaSvnOK8N4DEO78PWz/vAz7J4MhaO9+rIAd+wdDsX89sPM2QR98+EgCgYqIiEg6XHPNNZxyyimsXbsWy7ISuomkU9IqNADst99+XHrppfztb3/DMIzWpIbnn3+eN998k6uvvpqzzz6bkpKShMbfvHkz999/P3/84x9paGhozf7Z+ucvfvEL9t9//2T+SCIiHQrMm5fpEOISWrgQs7kZW26Wpd7Ga+Pt4F/SszEa34fNT0OJymOKiIiIiPRXjQsWsPSqqygPvwvONE9uWQRfupOv569i/B/+gGeoVrlLDzTXwbdvdNvMvrgY27JCzDENmBNqsUr87Y4b1V5si4qxrcrHMGNYI/fly3DYReDOSTBwERERSYU33niDP/7xj62PHQ4H3/3ud9lnn30YPHgwOTn6t1t6n6QmNADccMMNfPPNN7z22mvtkhoaGhr49a9/zdVXX80xxxzDEUccwV577cWuu+6Kw9FxGJFIhK+//ppPP/2U119/nRdffJFQKNSa+dO2lMlhhx3GX/7yl2T/OCIiO7BMk9DiBCsAZIplEVq0CPdee2U6ktTxLYwmIiRD5e1QeCg4BiRnPBERERERyRp1c+ey6LLL8Jg1eAYFMhJDobeRim/m8/W557Lz7NnkjBmTkTikD/j8P11WZ2jLiNiwLy3CvrQIyxMGdwQsIGDHCMR5GjnQAl+9CnufEH/MIiKSUosbwAhnOor4WC2ZjqDvuOOOO4DoNdZdd92VZ555hp122inDUYl0LekJDTabjeeee47jjjuO119/vTWpAaL7qQSDQZ577jmee+45AJxOJ6WlpRQWFlJYWAhAfX099fX1bNq0iWCbkn4dJTJYlsVhhx3G888/j82W1B00REQ6FF6zBqsl+z5BhRYu7NsJDTVPEj3TkgSmD2pfgNKzkzOeiIiIiIhkhc0ffMDiK67ADAbJLcjc9z7DgFx3C/XV1Xzz05+y8113kTt+fMbikSy2Ym5C3Qy/A/w9PHW8Yq4SGkREeqEJeWDPskX4ERt8kekg+og5c+YA267njh49OsMRiXQv6QkNAG63m5deeonLL7+cW265pTUBoW1iw1bBYJCKigoqKio6PN7W9okMABdddBE33XQTdnsMe7yJiCRBaOHCJIxi4bT5cNh8OGx+HDY/NiOMgQkYmJadsOkmbHoIW15CkVwsepa0lZy4eykzBPX/6+SYCUE/hAJghsGyomcHbU5wecDljj7eXu3LSmgQEREREelH6ufPb01mAMhx+bvpkVpel596XwGh+nq+vfBCdr3vPrzl5RmNSbLQ+gyeC8jk3CIiItKhzZs3YxgGu+++u5IZJGukJKEBwG63c9NNNzFz5kx+/vOfs3hLefa2FRvasiyrXSJDR222tgMYN24cs2fP5tBDD01B9CIinYusXZtwX4MIHkcdHkctdiPUSSsLmxHGZQ/jsjdvfYZAuBBfuJiI5U5o7vCaNQlGnQX8S8FqUwo2EoGmOmipjyYydMmIJjbkFkZvW6v9BFdDpBnsuamKWkREREREegnfmjUs/MUvWpMZALwuXwYjghz3toSK0ObNLLjwQnZ/4gkcufqOIjGq2xD9XpwptevB1wDegszFICIiO1hcB0ZsuxH1Glu3nNh7772x2+3MmjWLWbNmZTaoLFVcXEx1dXVr1XyRbJCyhIatDjnkEL799lsef/xxZs+e3VrKBNonLXSWwADtKzZMmTKFCy+8kFNPPVVVGUQkIyx/Iqt0LLyOGnKdm0hkWwQDE4+jFo+jlkCkgKbgIKw4f4Vbgczs/ZoWgeXRP8MhqK+GloZoJYaYWBD0RW91VZBXBAUDwW6PjpuzW6qiFhERERGRXsAyTZb97ndEttta0GnP7ObSDlv7+f3r17PqppvY6ZprMhSRZJ3GTZmOIBqDEhpERHqVbN5yYt68eRQU6N+Vnthrr7149dVXWb16daZDEYlZz+qXxzqJzcZpp53Gxx9/zOLFi7npppv4/ve/z4gRI1orM3R2Gz58ODNnzuRvf/sbCxcuZO7cuZxxxhlKZuijZs+ezeTJk9l7770zHYpIp6xQZ5UVOmY3AhS5V5HrrCaRZIbtue0NDPCswGVviK9jnHFnFdMPjXWwYQU018eRzLAdy4TGzbBxBfiaouOKiIiIiEiftuFf/6Lhyy+3e9bqcGe6dDKMHb/XVL7wArUffZSBaCQrRXrBeYDeEIOIiIi0OuOMMwBYuXIlX3zxRWaDEYlRyis0bG/cuHH84he/4Be/+AUAwWCQiooKNm/ejH/LqmePx0NxcTHDhg3D7U6stLpkp61lghoaGlTuRnotw+mMua3L1kiBu4JkJDK0i8GIUOCqwBf20RwqA2I40xZH3FnF1wSvPQTFG5I3ZiQM1Wth1UNw/F7Rag0iIiIiItLn+NasYfXs2R0cMbAsMprUYFkdT778D39gj6eewpGXl+aIJOvYe8F5gN4Qg4iIiLQ66aSTuPPOO3n//fe54IILeOutt8jJybKSHdLvpD2hYXsul4vRo0czevToTIciIhITw+OJqZ3L3kCBqyKlsXgdmzEwaQoN6bat0RcTxJob4I6fQcNKOCAF43/4EWz+FZz7F3DoJIyIiIiISF+z/A9/wOxke75QxInLkbnV5WGz49N2gaoqVt92G2OvvDLNEUnWyS/NdASQPzDTEYiIyHYW14MRzHQU8bF8mY6g7zAMg2effZZDDz2UuXPnMm3aNP7xj38wZcqUTIcm0qmMJzSIiGQb+4gR3bZx2loocK1PQzTgcdRhWnZawmVdtnOUl6clnrTxt8BdF8G6xWB4IGKAPYmVMJpcELHDN+/Dg1fBOTeALS07NYmIiIiISBo0fPUV9fPnd3rcF/RkNKGhJdB5Mn3Viy8y4oILcA0YkMaIJOsUDYacImipi6+fKwhePzgi0cdhB7R4IBRnon/xUPBqn3MRkd5mQh7Ys2xBfsQOX2Q6iD6kpKSEjz76iCuuuIK77rqLffbZh5133pl9992XsrIyXC5XzGNde+21KYxUJEoJDSIicXJOmtTlcYMI+a7kbzPRlRxnDSEzj5DZ+SfR7uLOOv/+O6z+NnrfMmBDAQyvT974FW22vfnyLXjrUTj0jOSNLyIiIiIiGbXxmWe6PN4S9FCY05imaHbkC3ae0GCGQlQ+/zwjzjknjRFJVho6CZZ93H07RxhK6qI3ZyeJPEEn1BRDTVH0ylIsc4uIiEivtGHDBhobGzEMA9M0+eabb/j222/jHkcJDZIOWmoqIhInR3k5Rhd7SuU6q7AZ4TRGFJXnWg+YnR7vUwkNCz6CT15o/9zqJK5MithgXVH7517+B2xclbw5REREREQkY0J1ddS88UaXbZr8mVu6aFkGzYGu56989lkss/PvgCIAjJ3afZsBdTBpOQyu7jyZAcAVgiFV0bbFMSwoGLNPzGGKiIhI+rz77rt85zvf4ZFHHsE0TQzDAMCyrLhuIumiCg0iInEybDacEycS7KA0qdPWgsdRl/6gALsRIte5ieZQB1tPGAbOiRPTH1Qq+FvgiT/s+HyDB1YVw6jans+xqAyC2/0TGQ7Co9fBZQ/Alg94IiIiIpJ8FiYmzRg4sOHNdDjSR1W+8AJmsOvNo1uCOfiCbryuQJqi2qbel0/Y7Pq0XWDjRmo/+IAB06alKSrJSt85Ft68K/qddgcWjFwPRQ3xjWmPQPl6yGuGtUOADr4ju3NgtyMSiVhERFJscR0Y6f940yOWL9MR9B3Lly/nqKOOwufb9qIWFBSw++67M3jwYHK6WMwpkilKaMgyX3/9NQ888ABvvPEG69atIxgMMmzYMKZMmcLpp5/OEUek5ouCkcDFu7vuuosLLrggBdGIZJ57ypQOExq8jpoMRLONx1FLS2gg1nYFeJyTJmHLzc1QVEk250Woq+r42OIyGOCDAn/i41flwZqijo+t/gYWzYFJ+yY+voiIiIh0yMcXNPIqLXzC1spjNnLJZQYFHIWTYZkNUPqU6pdeiqldTVMxwwdsTHE0O9rUWBxTu6oXX1RCg3QtpxB2PhS+fGW7AxaMrICiHmyrMmBLlYa1Q3c8tscx0aQGERHpdSbkgz3LfkVHHPBFpoPoI2644QZ8Ph+GYVBQUMBtt93Gj370I5xOZ6ZDE+mUtpzIEuFwmCuvvJI99tiDm2++ma+//pra2lqam5tZsmQJjz/+OEceeSQzZ86kuro60+GK9Hk5xx0H9vb7RdqMEC57U2YC2sLAxG3fsexj7oknZiCaFHn/6c6PmTaYOyJarSERVXnw+TA6XF2y1XtPJTa2iIiIiHQoxAYquIhKrqGFj2i7jZpJM438hwp+RjV/wSTLlpJJrxRuasK3alVMbWubCwmG03tytymQ0+12E1s1fvNNiqORPmHaOeBwtX9uYG3Pkhm2GlC/4/YT7hw44PSejy0iIiJJ97///a/1/rPPPsvpp5+uZAbp9VShIUucf/753H///a2PnU4nkydPJi8vj0WLFlFTE10V/tJLL3HYYYfx4Ycfkpui1djTpk3D6+2+7Gd5eXlK5hfpDexlZXimT8f/1lutz3nsSdjqIAk8jlr8kW2reWwFBXi/970MRpRESz6FylVdtwk54OORMG4TjK7pMjehVcSAJWXRLSu66/DtB7B5IwwYHGPQIiIiItKZEOvYwP9h0t1e7BbNvE+YTQzi99hwpyU+6ZuaFy2Kec9f07KxdvMQxpatSXFUW+czWFszJOb2wepqgjU1uEpKUhiVZL3SUfDdC+C/t0UfO0MwJIkLooZthMZcCG851XzYxVAU+/tYRETSa3EtGD0ocJsJ2nIieTZu3IhhGIwdO5ZDDjkk0+GIxEQJDVngnnvuaZfMcOyxx3LnnXcybFi03GYoFOLuu+/ml7/8JeFwmC+//JLzzjuPxx57LCXxPPTQQ4waNSolY4tkk9wTT2yX0OCyN2cwmm0ctgAGYawtv+K9xxyD4e4jJ3y/eT+2dqYtuv3EukIYWQtDG8AZ2bGd3wHriqJbTARizEK1TFjwERx4fKxRi4iIiEgHLIJUcl0MyQzbBFhIDbMp5dIURiZ9XdPChfG19+dS01RESV5dagJqY0NdGcGwq/uGbTQtXMiAAw9MUUTSZ+x/Gix8B9Z+Fa3OYDO77RIzuwkldVA5EMZMhb1PSN7YIiKSdBMKsnDLCae2nEiW4uJiqqqqtChZsoq2nOjlWlpa+O1vf9v6+OCDD+bZZ59tTWaAaLWGCy+8kH/84x+tzz3xxBPMnz8/rbGK9DfuqVNxTpy45ZGFw9Z7yt86bNEUW8PlIvfkkzMcTRKtje/EI81uWDAY3hgP746Fz4ZHt5SYNwLe2gneHgdLS2NPZthq3aL42ouIiIjIDpp4jzCVcfdr5l3CVKUgIukv4k1oAKjYPIgmf2rP/G9uKmRT44C4+zUn8PNIP2SzwY//BiXDo8kHyVZSC4N3gpNvACOWUokiIiKSCWPHjsWyrNbK7yLZQAkNvdxDDz3Exo0bATAMg7vuugu73d5h23PPPZd99tkHAMuyuPHGG9MWp0h/VXTtteBwYDcCQGwlS9PBuSWhIf+CC3C0SYDKapYF6xYn3r/FBVX5sLEANuXFn8TQ1hqdMBQRERHpqUZeSbCnSSOvJzUW6V9ali2Lu4+FjZXVI2hMUVLD5qZC1m5OrER/cwI/j/RTeQPgR1eAJwVFe3Md8KOrwFuQ/LFFREQkaU7esgDym2++obIy/gRzkUzQlhO93L///e/W+9OnT2di62rwjp1//vnMmTMHgFdeeYVAIIC7r5SaF+mFnOPHk3/OOQT/+ddMh9KO3RbAucsu5J52WqZDSZ76avD3jm092Lgy0xGIiIiIZLUQFQRZmnD/Jt6imNOTGJH0J5GWloT6mZaNlVUjGFJcxcD8WpKxBt20DDbWlVLdOAASHNFM8OeR/qoSBo6C+kpoqev5cAaQUwwFZWBuAHbt+ZgiIpJSizeD4ct0FPGxsize3uyss87i1ltvZeXKlVxxxRU89NBDmQ5JpFtKaOjFmpqaeO+991ofH3HEEd32OfLII9v1f/fddzn88MNTEp+IROWdcw4Nrz4Km9ZnOpRWht2g6LrrMGx9qBBPoBd9ag35oxUjVEZTREREJCFhelbeNMLmJEUi/ZEZSHy7QAsb62sHU99SwIiS9bgdoYTHag54WVszhEC4ZwtRevLzSD8Uqo5uP1E8BLz5UL8Rwgm+jx0uKBoC7i2VS4LaDkhEJBtMKAR7anfSSrqIC77IdBB9RH5+Pv/+97857LDDePTRR/F6vdx88814vd5MhybSKSU09GILFiwgFNr2hWK//fbrts/gwYMZNWoUq1atAuDLL79UQoNIihkOB7mnnYp1+xdYkUimwwHAPXUqzlGjMh1G36aEBhEREZEeMHs8goWFkZQ18iLxaw7ksHj9WApzGhiYX0uuO7YEbAto9OWxqbGYRn8uiVZlaDem1Xu2P5Qs0Pb94skD907gb4TmWgg2d7+bpgG48yC3OPpnu7ew3osiIiK93daF1DfddBO/+MUvuPfee3n22Wf50Y9+xD777MOgQYNwuVwxjzdt2rRUhSrSSgkNvdjChe33aB87dmxM/caOHdua0LD9GMlw+eWXs2DBAtauXUsoFKKkpIRx48Yxffp0zjzzTEaPHp30OUV6O8fwcszycsKrV4PZ85OzPWEfVIZ94uSMxpASzh5un2OY4AyCYYFlg5Az+mciHK7oihYRERERSYidoh71t1GgZAZJmC2OE7RdsTCoaymkrqUQjzNArruFHJcPr8uPwx7BwMLEIBR24gt68AU9NPpzCUWcSZl/K5u2GpV4OIvbPzaIVmrw5kMkHK1IGPJDKADWlvMbhi36ndzpAacX7PZOxh6Q0tBFRESk5w4++GCMNgv1LMti06ZNzJ49m9mzZ8c1lmEYhMPhZIcosgMlNPRiq1evbr3vcDgYMmRITP3Ky8tb729NbEimZ555pt3jiooKKioqeOedd/jjH//Iueeeq/I00v+UDsfm8eAoLyeydm3GKjXYBw3CPmAAlI3IyPwpVVQWPYESiqOcqtsPhXWQ07wlmaHNMcuAgBtacqGuCMJxnNQs7YOvr4iIiEgauRiFk+GEWJdQ/1wOSHJE0p/YUnC+wh9y4w+5qaG4+8ZJZtf5F4lH7sTOj9kdYM+LVm5I9tgiItJrLN4MRkumo4iP5c90BH2PZVkYhtGa3KCqX9KbKaGhF2toaGi9n5+fjy3G1cAFBQWt9xsbG5MeV2lpKWPGjCEvL4/6+noWLVpEU1MTAOFwmLvvvpu5c+fy9ttvU1hYGNOYgUCAQJs9H9v+7CJZYfh4sNujJ8ZGjiSybh1WMJi++W027IMHY9/6d658UvrmThebDYaNh1Vfd9/WFYCyjZDTxSdzwwKPP3orroGmfKgaBLGslhrRB19fERERkTTL50g2c2/0gRmCcD1EWsAMgLUlQdhwgt0D9lxwFERXCQP5HJ2hqKUvyBk9Gl8KFoBkileVMiUeuRPAlgNmkq9kOQrBq/eiiEg2mFAI9izLh4z44ItMB9FHlJeXt6vQIJINlNDQizU3N7fe93g8MfdrWxmh7Rg9MXnyZM477zxmzpzJmDFj2h0Lh8O8/vrrXHnllXz11VcAfP755/zoRz/i1VdfjWn8P//5z/zud79LSqwiGeFyw5AxsG4pNrcbY8wYItVVmDWbUz61LTcX+5AhGM42F+JH9cEtJyCaqNFdQkNxDQysjiYsxMoA8hujCRBVg6Cxm2SskX309RURERFJozxmUGc+ghlcDuFOktqtIISD0eOBSnAW43UdjstQxSxJXO6kSdS8/Xamw0iavIlaFS9xsLlh4JFQ9e/kjlv6/dakMxERkVTZe++9sdvtzJo1i1mzZmU6nKyUisruIqmmhIZeLBQKtd53OGL/X9W2bTBJK8S//fbbLuc7+uijmTFjBieeeCIvv/wyAK+99hovvvgiM/+fvfuOj6Ja/zj+nd30SkIoAaRDBBUVBAXpqKBeC6Jy7b385F7rFRWlWbE30GsFu15U7A0pAtaAREUxSu8lhBDSN7vz+yNmTUjb3ezuZLOf9+u1urtzzplnT4bZ2ZlnzjnllAbbv+2223TjjTe6X+fn5+uggzhBhRDTs5+05U9JFXNHRbRuI1dikpzbtgVmtAabTfY2rWVrkVJ99uBW7aWU1v5fX1Nw8DHSkv/Vvbz1DqnFXt/btzul9G0V/8+rZ+7PngN8XwcAAAAkSbbdy9R6+zbt7Jwv06NrYC5F7N+rtK2rpO5/SvE9Ah0imqnmlgAQ34sR5OCltv+Udr8vmX6a89qIktqc6Z+2AAABl71HMjy/h7ZJqJxyIjMzs9oo5QDCAwkNXpozZ44uueQSv7c7e/ZsXXzxxdXei4uLcz8vKfF8gqCqZePj4xsdm6diYmL0xhtvqEePHtq5c6ck6cknn/QooSE6OlrR0dGBDhEIrKFnSAvfrPaWLTZWRreuMvP3y7l3r8yixg/paERGypaSIluLFjLs9lriGNfodTRZhwyWWrSR8nbWXNZyd+OSGapqvVNy2msfqaHHUVLbzv5ZDwAAQLja/j9p/YOKMU21WZugXZ0L5Yqsf4St6EK7Wq+Pl925WVp1hdT7KSmRkbPgvYRmlAAQ2aKFYtLTrQ4DoSaui9TuEmnrc/5p76D/k2La+actAEDAZbRgygkAoYVxwJqwhIQE9/Pi4mKP6xVVuWBatY1gSExM1P/93/+5Xy9dutSrZAwgpLXrKvXsW+NtQ4ZsSUmK7NRJEV27ypaSUn16CEnOKEN7D0vU7mNaKLdvkspaVM83M+x22RITFXHQQYro3l32li1rT2aIjJKOPc2vH6tJsdmkwbUkbMQUS6k5/l1Xmx1ShKPm+0PO8u96AAAAwk3uMmn9g5JZkcAQUxShDquT1HJzrKKKDjjGNaXYfRFqszZebdckyO786zRGeYG0+t9SmZ+PAREWIlNSFNOueVx8TehNUg981P4yKfHIxreTPFBKP6/x7QAAAAB1YIQGL8XGxqpNmzYBafdAaWlp7ucFBQUqKCjwKEFhx44d7uctW7b0T4BeGD58uPt5SUmJNm/erB49GAoUYWLUudIfP9a52BYdLVvbtpIk0+VUSWSZth4dqV19Y+WMtVWc1DUMyWUqdXWJ2n9bpuRd9hoJEHU6+kQpoZZRBZqTQWOlha9KRZXzLJtS222qPu+GH9hcFVNYbKsy/U3rTlKf4X5eEQAAQBhx5Etr73YnM1SymYYSc6OVmBut8kiXnBEuGaYhu8P4O4mhRlv7pLX3Sr0eCULgaG7SxozRlhdftDqMRksbM8bqEBCqbBFSxmNS9nXS/izf2kg+Wur5oGRwzxwAAAACh4QGL40fP17jx48PyroyMjKqvd60aZN6e5B5v3nzZvfzgy2YFzL9gKEOc3JySGhA+DhyuHTEMCnrqwaLFraN1K/nJskRV3El/sDr8XuPiNLew6Vun5UqfWUtIwUcKClVOuNar0P22p5d0rrfpZ1bpbJSxe/eLbVrL6W1lbr1kloHeLjTxBRp3H+kV6ZUvI4vkKLKArOuhAIpqlQqi644QXPeVKm2kTEAAADgma2zGxxVIcJhU4TDw4tjuUukvd9JKcf4ITiEk7ZnnKGtc+bIdLmsDsVnkSkpSjvuOKvDQCiLiJd6PS1teU7a9pIkp2f1jEipwxVSu4skg9/IABBqsvdIRozVUXjHZCBwIKyR0NCE9TpgTsesrKwGExocDodWrVpVZxvBUHXKC0mKi4sLegyApc6bJP25UirMr7NIaaKhX8+NdScz1MmQ1p4YrcgiU2nZ5Q2s97bAjM5QXi59t1Ba8pn05yppX261xYmlZVJ0VJU3Wkjde0uDR0vHHi9FRcnvBpwkrfxSWrVEarHX/+1XlbxX2t1WGnGu1LVPYNcFAADQnLnKpJ3v+7/dHf8joQFei27bVimDByt3yRKrQ/FZ61NPlS0Qv7cQXmyRUsdrpLQTpO2vS3s+l1yldZSNk9LGSOnnSrGdgxomAMB/MlpI9pqDhjdpzmIpy+ogmomuXbv6rS3DMLR27Vq/tQfUhYSGJqxr167q0KGDtmzZIklatmyZzj333HrrrFixQsXFxe7XQ4cODWiMtfntt9+qvW7dunXQYwAsldxSOv926dlbawylW2nr0VENJzNUsXF4VP0JDQP/IR05wttI65eXK336P+nL96S9Ne+i+61NZ33aa5BKXaZOWrtcR2z9s2LB/jxp5TcVjzmPSqNOlU4aL6X5ebqec++QHrlYivvdv+0eKL5QSjhc+sc1gV0PAABAc7f3G6m87qRf39tdJpUXSBENT9EIVNX2rLNCNqHBsNnUdtw4q8NAcxLXXeo2Rer8H6ngN6lwteTIlWRIUWlS/MFSfK/QuwIGAACq2bBhgwzDu/mbzQOucxiGIdM0vW4H8BUJDU3cqaeeqqeeekqSNHfuXD322GOKqif7/rXXXnM/P+SQQ9StW7eAx3igN9980/28c+fONaagAMJCv1HS+P9Ibz5YY5EzQtrVx7vdb3FLm/I62dViYy3DPx42WLrgDl8jrd3iT6QXH5IKaj/hPO+wYbr3+ItkquLA5d2jTtC/l87VRZmfVC+4P09672Xps7elC6+VRo+T/HWQk5gqXXij9OkSyenBlBwyparHXZ7GkWCXzr1XiuTOJwAAgEYp+K3hMr4wXVJhtpTcLzDto9lqccwxiu/eXYVr1lgditdSR4xQTLt2VoeB5sgeJyUfVfEAADRL2TlMORHuDkxQ8FRlAoOv9QFfkdDQxF188cXuhIacnBw988wz+ve//11r2S1btuill16qVjfYPvzwQ3344Yfu16effnrQYwCajJHjJZtdeuP+aiM15He0qzzG+4v6ew6OqJnQ0HekdPk9UoSfdue5OdJ/75WW132XUklElJ4YerZMVf8Mzww6Xaf/8pWSSwprqVQkPTtD+naBdM1kqY2fTrzZC6U2naXdmyTHgUNimhUntysfqu0gy5AM21+PWub9jImX0jpIjl2S/DzCBAAAQLgpCuBF48I/SWiA1wzDULcpU/TLxRfLdLmsDsdjEUlJ6nrzzVaHAQAAQlRGSugNuMOUE/6zaNEij8s6nU7l5eVp1apVev/997Vy5UoZhqELLrhAl156aQCjBKojoaGJ69+/v0499VR98MEHkqRJkyapb9++OvbYY6uVy8/P17nnnqv9+/dLktLT0zVhwoQ6292wYYO6dOnifj116lRNmzatRrl9+/bp0ksv1aRJk9SvX/0nh9544w1dccUV7tdxcXG65ZZbGvyMQLM2/EypTUfppTul3B2S5FMyQ416kVHSqVdLx58v2Wz+iFTavF6aPkHK3VVvsfUt22l/dFyN98vskVrdprOO2fhr3ZV/yZQmXihNfkLq3ruxEUvOkopkjrZdpH27pfw9FckjZrlk1jKaRQ1mRTnTKckhGREViQ02u9SitZSQIhl/rQcAAACN4ywKzbbRrCX27q32F16oLXPmWB2Kx7r85z+KSkuzOgwAAACEoGHDhnld54wzztCUKVP0zjvv6PLLL9err76q9PR0zZgxIwARAjWR0BACHn/8cX377bfavXu3CgoKNGrUKF122WU64YQTlJCQoJ9//llPPvmk1q9fL0my2Wx65plnFBvb+BQ70zT17rvv6t1339XBBx+s0aNH64gjjlB6erri4+O1f/9+/fLLL3r77beVmZnprmcYhmbPnq22bds2OgYg5PUaIE37n/T2Y9KSd2Ur9204Jpvjr3pdDpUuniald/ZXhNKmddLkKyumiGhAm/25spsuOY2aiRTt9uU0vK79edKUq6VpT0k9D/U+1qpsf32NGYaU3FqSKeXt+GtEBh+Y5RUJDCnpFckM7vVENi5OAAAABPaYiuM1NMJBV16p3CVLVLRundWhNCh16FC1Pukkq8MAAABAGBo3bpxat26tESNG6MEHH1SfPn107rnnWh0WwgAJDSGgc+fOeu+993TKKacoNzdXpaWleuqpp9xTUVRlt9v1+OOP65RTTvF7HL///rt+//33BsslJibqmWee0dlnn+33GICQFRMnnT9JGvlPJX7zmgwtkikvLrobhpLsGdK/LpUOHeS/URkkafeOipEZPEhmkKTUonydumqp5h1WPZNz5J8r1DFvp2frLCmS7r5WuucF6aAuDZevS9xfU1c4y6XcrVJZUcXoFaZLcjollyejNPzFZpfsERXJEft2VLTVop1kM/5eDwAAAHwXc5CkbwPTdmynwLSLsGCLilL3adP0y6WXyiwvtzqcOkUkJanbpElWhwEAAEJc9m7JiLE6Cu+YDKDbZAwZMkTjx4/XG2+8oUmTJumcc86RYfg2KjXgKRIaQsSgQYP0888/67rrrtP777+v8lp+YA8YMECPPfaYBg4c6Lf1xsbG6pJLLtHChQu1cePGessmJyfroosu0k033aSOHTv6LQagWWnXVVFnTlbL8jTllCyVSoulspKKh1ll5AZDUkSUFBUrRccoIqaNWnV6WJKf7zwzTemJqdLe3V5Vu/XLl9Uhb5c+6T1IDlMavWa5Lvn+I+/WXZAvPXaH9MDLkt3uXd1KLXpVJDPs3ig5y/5+37BJETZJkRXJDS6zyqgNpio6WBWJIYatIonhQMX5ktMhtTtcim3tW3wAAAD4W3yvALZ9cODaRlhI7N1bPe68U3/ecYdMl48jvgWQPTZWvR9/nKkmAABAo2WkSvbGD/AdVM5iKcvqIOB2yimn6I033tDmzZu1ZMkSn6axALxBQkMIad++vd5++23t3r1bS5Ys0ZYtW1RWVqZ27dqpf//+6tmzp8dtde7cWabZ8LD30dHRevHFFyVJu3bt0s8//6xNmzYpJydHpaWlSkhIUGpqqvr06aM+ffrI7utFSSDMtI8Yoz0Jv8pM+OtEmWlWjCZgmhUX1w1btVEY2mm0bP5OZpCkT+dKv67wuprddOmizE90UeYnKi0tU3R0lG/rX58tvTNbOvty3+qXlUu79kiusrrLGDbJLv31Hy/bL5a27ZHKyyoSTAAAAOC7lGMlI6Jimi9/SjhYiiYBFY3X6oQT5Cws1Lp77/XonEmw2KKidPDDDyvxsMOsDgUAAABQ+/bt3c//+OMPEhoQcCQ0hKBWrVpp3LhxQV9v69atddxxxwV9vUBzlKgu6q5z9adek/RXEoO99l1ymvrpIJ3o/yB2bpNeebJRTVSc42vkib65z0sDhkmde3hfd95dUm6U1KJxIdRrW6n05X+lMdcGcCUAAABhICpVajlCyplfZxFTphThkGx/Jf46I2Q4Gzh10fYsPwaJcNd27FjZoqK0Zvr0JjFSgz0uTr0ee0zJfftaHQoAAAAgSdq3b5/7eW5uroWRIFyQ0AAAFmmjQYpUojbofRVpW43lkUpQukboII2WIVstLTTSOy9WTHnhAdNRLldJicySYpnFJXKVlkhOp+QyZZqmSm02yW6TLSZGRkysjJgYGbExskV6MKqEs1z633PSxAe8i/+nz6TVX0lGspS06++T3v7kiJZK46Rlr0qHjJQOOtT/6wAAAAgnB10h5S6WXI5qb5u2cpnJeTKT8mRGVF9mlMTKyE+RUZAowzzguDi2s9QqAMm/CGutTz5ZEYmJ+nPaNJXn51sWR0y7duo5Y4YSe/e2LAYAAND8ZO+WjGiro/COWWp1BKjqgw8+cD9v2bKlhZEgXJDQAAAWStVhStVh2qc/tUc/qVyFsilKSeqqNPUNzDQTklRYIC35rN4ipsuUKz9fzr17ZRY3kPhgmlK5U66CQqmg0P22ERMje0qKbMnJMmxG3fV/+Eras0tq6eFQwSUF0od/JUCYNmlfGyllu2d1PWVKymsryZBMl/TundK1b1WMpgEAAADfxHWVOlwhbXpKUsWIDGbaLrmS96qukb/MmGKZMcUy0uwydreRrSC5YoFhk3pMk2xMDQb/Sx06VEfOnau1996r3K++Cuq6DcNQmzPPVOd//1v2uLigrhsAADR/GamSPcbqKLzjLJGyrA4CkqS5c+dq9uzZ7tcDBgywMBqECxIa0KTMmjVLs2bNktPptDoUIKiS1UPJ8mHKBV8t+lAqK6l1kekolzM3V859eVJ54/4tmiUlKt++Xdq1U/bkZNlSW8oWVUuShsspzZ8n/fMqzxr+8UOpuMqdUkUtpNj9UkxBo+KtpjBVKqty8nDXOunPb6Weg/y3DgAAgHDU4WKp6A+ZOfPlSt8iM86zYzjT5pTZZpsUUS5bXkupy0QpkRG0EDhRLVuq18MPa/enn2rdgw8GZbSGmHbt1H3KFCUfdVTA1wUAAIDws2nTJq/KOxwO7d27Vz///LPmzp2rL774QqZpyjAM9e3bV3369AlQpMDfSGhAkzJhwgRNmDBB+fn5Sk5OtjocoPla8EGtbzvz8lS+c6fk9PP0DU6XnLl75czbp4jWrWVLSak50MGX73uW0GCa0vdv13w/t52UtkmKqj1RwyvFidK+WkaL+P5tEhoAAAAay7BJPe+RK+l7mYb3CamutN1S6/Nla3VmAIIDamp14olKHjBAW196Sbs+/FDl+/f7fR3RrVurzRlnqN255zIqAwAACKjsXUw5Ec46d+4soxGjEJtmxch6CQkJevbZZ/0VFlAvEhoAINwUF0mb1lZ7y3SUq3z7drkK/DjCQW1cLpXv2CEjP18R7dpVH60hd5dn005s/kXK2VjzfdMu5XSUUrdKMYU1l3uqsMXfU00cKHuZVJArJaT63j4AAABkulbKTNwvlXeQynZIrnLPKtpjpeh0uexLZZjFMozYwAYK/CWqZUt1ufFGdbzmGuV8/rl2zJ2rgt9/b1SbhmEouX9/tT3zTKUOGybDbvdTtAAAAHXLaMmUE/g7McEXvXv31pw5c3TkkUf6MSKgbiQ0AEC4WZ8tmX+PwOAsKFD51q3+H5WhHmZRkRzr1imiXbrsSUl/L1i7uuGEhk0/19OwXdrTUYrbKyXvkmxefCZnREUiQ0liPe27pC2/SgcP8bxdAAAA1OByzK14EpEoRSRI5fmSI09yFVeMyFWVYZfs8VJkimT/6851s0Bm+acyIs8IatyAPSZGbU47TW1OO037f/tN+zIzVbh6tQp++00l27bVW9ew2RTbubPiDz5YCb16KWXQIMV26hSkyAEAAIAK3iQzREZGKjExUR07dtSRRx6psWPH6sQTT5SdZFwEEQkNABBu1q52P3Xm56t867aaJ42DweVyJ1LYU1pUvLfmN2nAsPrrbfmt4baLUqTiJCk+r+IRUVZ32bIYqTBFKkqSZGu47a2rSWgAAABoBNOVI7N8cZV3DCkiueIhSa5SyXRKhiEZEZIRWVszMh1vSyQ0wEKJvXsrsXdv92tHfr4Kf/9djtxcuUpLZZaXy4iMlC06WtFt2ii+Z0+mkwAAAIClXK7g3dgI+AsJDQAQbrZskCQ58/dXJBRYkMvgZkrlO7ZLhmRv0ULaWstUEgfa8aeHbdulgpYVD5tDiiqR7A7JMCXTkMqjK5IZTC8zSXf84V15AAAAVGM6F0py1l3A5tmEvqbrD5muTTJsHf0TGNBIkUlJajFggNVhAAAA1Ct7l2R4dsjdZJilVkcAwEokNABAuCkrkauwSOXbLE5mqGRK5du3S3a77GUlDZcv2e/9OlyRUkntd/Z5rdiH9QMAAOBvZq6f2yKhAQAAAPBURkvJHmN1FN5xlkhZVgcBwDIejK0NAGhOXCUlcmzbKrmaQjbDX0ypfNt2uYqKPChr8ZBYVq8fAAAg5Dn82FY9U4sBAAAAaFb69++v3r17a9asWVaHAiCIGKEBAMJMcWamIhzlVodRk9Op4hU/Kr6hchEWj4dm9foBAABCXmITbQsAAABAU5aZmamkpCSrwwAQZCQ0AEAYKfr6axX/sbbJnvYt3bpd5iefKOGkk+ou1PIgKW978II6UBpDGgMAADSGYe/jp4YSJFsX/7QFAAAAhInsnZIRYvdsmaVWRwDASiQ0AECYcJWWKueeexRpa7oTpDlssdr/0EOKHTxY9roybdv3ktb+ENzAqmp3sHXrBgAAaAYMe18Ztq4yXesa1Y4t4h8yjKZ7bAsAAAA0RRlpkj3EDqOdJVKW1UGEmIkTJwZlPQ888EBQ1oPwRkIDAISJws8/l3PXLskWa3UodXLYYuTKz1fB++8r+YILai/UrpfvK4gpl+wuyWGTynz8CmzM+gEAACBJMiLPlFnamBNfhozIs/wWDwAAAAA0Jw899JAMwwj4ekhoQDCQ0AAAYSJ/7lxJktMWKZdhl810WhxRdaZhyGGrGOss/513lHT++bUfcPU4RoqKlcqKPWlVSi+QOudJLYulqCqfuSRC2h0nrU+RcuI8C7LlQVLb7p6VBQAAQJ2MiJNlOF6S6dpZY5kpU5JTkiHJJkM1jwmNiJEybJ0CHicAAADQ3GTvYMqJcGKaZsDaDkbCBCCR0AAAYaH0119Vtnq1+3VxRKLiHXnWBVSLEnuC9NcBUPmWLSr+9lvFDRpUs2BMgnT4GClzXv0NJpdIR22v+H9tYsqlg/IrHrvipRXpUnFk/W0OGOeOEQAAAL4zjHjZYp6Qq/hymeZ+mTLltBeqPCJfTlvV4zdDEc54RZQnye6qGBfXsPeWLXqaJXEDAAAAoY4pJ8LD0KFD/Z5wsHHjRm3YsEGGYQQ0UQI4EAkNABAG8t9+u9rrwoiUJpfQUBiZUu31/rffrj2hQZKOPqv+hIb2+VL/bZLNw4Oq1oXSceukrw+ScusYrSEyWup7qmftAQAAoEGGrZtssc+prOwClUaskWnUNoKYqXJ7gcrtBbK5ohXjPE726KdkGE13GjUAAAAAsNrixYv91tbWrVt111136euvv2ZUBljCZnUAAIDAK/7222qvy+0xKrM3nZPA5bYoldnjq71X/MMPMl2u2iuk95SO/Efty1oXSgO2ep7MUCnSJQ3eLCXWMX7Z8MuluCTv2gQAAEC9HLZfVBotydZSUj2jZRlxMiPSVBK9Wy5jc7DCAwAAAICwlZOToxtvvFE9evTQc889J6fTKdM0ZZqm+vTpo/fee8/qEBEmGKEBAJq58pwcOXNyarxfEJmqVOdWCyKqqSAytcZ7ZkmJHBs2KKpr19ornXyTtPZ7KX/33+9FOKV+21TLNMueiXBVTFOxqJOqNdK+tzT0Ih8bBQAAQG0cWqISPSIZNsloKcNsKalAMoskVSa2RkhGonuSX1P7VaSJitczsqmdVaEDAAAAISt7h2REWR2Fd8wyqyMIL/v27dODDz6oJ554QoWFhdWml+jZs6emT5+u8ePHWxghwg0JDQDQzJWtXl3r+yURSSqJ2KeY8oIgR1RdqT1ORREtal+2enXdCQ2xidLYKdLL10nmXye8e+RKseWNCyilWDooX9qcXPE6Ok4aN02yMagRAACAv5gyVaon9Xfigv7KJ02QjIQG6uaqVK8oVrcEMkQAAACgWcpoJdljrI7CO84SKcvqIMJAUVGRHnvsMT300EPat29ftUSGTp06acqUKbroootk41w5gowtDgCaudI6EhokKS8qXS7DHsRoqjMNQ3nR6VId827VlYzh1nOgNPaOivqGKXXJ809gXfdW/D8iSjrvYalNHUkVAAAA8IlT38ulbT7XL9d8mbI2MRcAAAAAmoOysjI9+uij6tKliyZPnqy8vDx3MkN6erpmzpypP/74Q5dccgnJDLAEIzSgSZk1a5ZmzZolp9NpdShAs+FYu7bOZS5bhPZFt1VKiTVTT+yLaiOnre7xzcrqid2t36mSPVJaeIsU08jRGSq1LJYSYqV/Pi516eufNgEAAOBWpncbVd9UsRz6VFE6y08RAQAAAEB4cTqdev7553X33Xdr27ZtMk1Txl83H7Zs2VK33HKL/vWvfykmJsSG9ECzQ0IDmpQJEyZowoQJys/PV3JystXhAM2Cq7i43uXFEUmyR5UpqWx3kCKqUBDZUkWRKfWWMYuKPGvsiBOlVmul3KlSWUnjg4uJl66cLLUkmQEAACAQnH4YMLZcWSQ0AAAAAF7K3iEZdd9j1iSZZVZH0LyYpqlXXnlF06dP14YNG6olMiQmJuqmm27SDTfcoISE+qcDBIKFhAYAaObM0tIGyxREpUlS0JIaCiJTlR/dusFynsTulhwn2TtL+/dIBbmSy4eRXuwRUlIrKa6FFM/QWQAAAIFgyiVTHiau1tvOfj9EAwAAAISXjNaSPdrqKLzjLJUfUqIhSW+//bamTp2q33//vdr7sbGx+ve//62JEycqJaX+GxGBYCOhAQCaO7vdo2IFUWlyGXYll+2U8df8WP5mGob2R7ZSQVRLzyp4GLskybBLMqTENCmhpVS8TyrMkxzFUn0fxzCk6DgpPkWKSayygK9IAACAQDBkk2ST1LipBg1F+iUeAAAAAGjuPv74Y02ZMkVZWVnu90zTVHR0tK666ipNmjRJrVs3fBMiYAWu1gBAM2dEeT5+WFFkikrt8Uop3a4oZ+PvmqvKYY/R3uh0lds8n2/LiPYiVdjeqUpFo2KUhbgWkumSHKUViQ1OpyqyGwzJHilFxUiR0RWvDxTRqeZ7AAAA8AubWsmlHY1qw1ArP0UDAAAAhI/sbUw5EU4WLVqk22+/Xd9//737PdM0FRERoYsvvlhTpkxRhw4dLIwQaBgJDQDQzEW08u5Er9MWpZyYjoov36uEsj2ym+WNWr/LsKsgMlUFkS0rEg28YE9L87xw5CGqSEw4YDgGwyZFxVY8PGVLqJ4gAQAAAL+K1GiV6qVGtwEAAADAOxltmHIiHHz33Xe64447tGjRIkkVSQySZLPZdM4552j69Onq1q2blSECHiOhAQCauaiDD/a+kmGoMDJVhREpinHuV7xjr6K9HLGhzB6rwogUFUckeZ3IUCnam9jtraSo/lLZDz6tq5qYEysSIQAAABAQkTpdpXpFksun+jZ1VYSO9G9QAAAAANBMDBo0SIZhuBMZDMPQ2LFjddddd6lXr14WRwd4h4QGAGjmohtzcGIYKolIUklEkmwuh6JcJYr86xHhKpNkynS5ZNjschqRKrPHyGGLkcMWK6et8XMaR3kbe/wFjU9oMCKkuH82rg0AAADUy6bWitQIObTAp/pROtPPEQEAAABA82P8dbNh9+7dZbPZNHXqVL+2/dZbb/mtPaAuJDQAQDMX1b27FBEhlTdy6ghbpEpskSpRYrX3y8rKFBUVmEnXvE7GiB4oxZ4kFX/i+0rjL5cimG4CAAAg0GL0Hzm1Ri5t9KpepE5QlE4LUFQAAABA85a9VTICczo3YMwyqyMIfWvWrNGaNWv81p5pmu5kCSDQSGgAgGbOiIpSVI8eKlu92upQvBLRrp3sLVp4XzHxVql8g+T4zfu60cOk+Eu8rwcAAACvGUpSnB5TkSbKpT89qhOpMYrRbQGODAAAAGi+MtpI9miro/COs1TKsjqIEFQ53QQQ6khoAIAwkHDiicoNsYSGhJNO8q2iLU5KeUraN1kqXep5vbgzpMSJkmH3bb0AAADwmk2tFa+nVKZ35dB7cmq78mVXmWwyJMXJqTi5ZNdhitKZitRxVocMAAAAAE3eRRddZHUIgN+Q0AAAYSDhlFO096mnZJaUWB2KZ+x2JZ5xhu/1bQlSyqMVU08UvlgxYkNdIg+REq6Roo/2fX0AAADwmaE4ReocbVe6NutjFWunJKckQ5JdLXSwOutUxauPxZECAAAAQGiYPXu21SEAfkNCAwCEAXtiouJHj1bB++9bHYpH4oYOVUTr1o1vKPakikfZSsnxk1S+RjJLJSNeiugpRR0lRfZs/HoAAADgM6fKlKXntVcV87na1Kba8nzl6mfNURcdp27ycRQvAAAAAJKk7G2SEWl1FN4xHVZHAMBKJDQAQJhIOvvskEloSDrrLP82GHVkxQMAAABNzm96053MUJ/1+lIxSlV7HROEqAAAAIDmKaOtZI+2OgrvOEulLKuDAGAZm9UBAACCIzojQ/GjR1sdRoNiBw5U7IABAWk7r0xauUcqKg9I8wAAAPBSoXZqpxenJtfrS5lyBS4gAAAAAADQpDBCAwCEkZYTJ6okM1PO3FyrQ6mVLT5eaXfcEZC2P9gszVgllbmkhAjpgX7SgLSArAoAAAAe2qJvvCpfolzlaLVa6ZAARQQAAAA0b9lbmXICQGghoQEAwog9OVktb7tNu26+2epQapV6ww2KaNOm4YJeKiqXHvq1IplBkgrKpftXSe8M9/uqAAAA4IW9Wut1nTytI6EBAAAA8BFTTgAINUw5AQBhJn7ECMWPGWN1GDXEDhyoxNNPD0jbOSVSkbP6e5sKJZcZkNUBAADAQy6VeV3H6UMdAAAAAAAQmkhoAIAwlHbHHYru08fqMNyiundXq3vuCVj7B8VLHeOrvzewlWQzArZKAAAAeCBS8Q0XOkCUD3UAAAAAhL7+/furd+/emjVrltWhAAgippxAkzJr1izNmjVLTqez4cIAfGaLiVGbxx/XjquvVll2tqWxRHbsqDazZsmelBSwdRiG9HA/6cFfpex86aiW0i2HBmx1AAAA8FAbHaF92uhVndY6IjDBAAAAAGEge4tkRFodhXdMR8X/MzMzlRTA88gAmiYSGtCkTJgwQRMmTFB+fr6Sk5OtDgdo1uyJiUp/5hntuP56lWZlWRJDVM+eajtzpuypqQFfV5dE6aljAr4aAAAAeCFd/bVGn8glh0flW6irEtQ2wFEBAAAAzVdGumSPsjoK7zjLpCyrgwBgGaacAIAwZktIUNuZM5V45pkVwxgEUcJJJyn92WeDkswAAACApilSceqhUzwqa1eUeur0wAYEAAAAAACaFBIaACDM2WJilHbrrWr71FOKaNcu4Ouzp6WpzSOPqNWdd8qWkBDw9QEAAKBpO0iD1VOnSao7wTZCsTpCVyhJHYIXGAAAAAAAsBxTTgAAJEmx/fur/ZtvKvfJJ7V/3jypvNy/K7DZlHDSSUq98UbZmecMAAAAVXTUMKWpt7boa21TpspVLEmKU5o66Filq78iFWdxlAAAAEDoy94sGZFWR+Ed07MZ6gA0UyQ0AADcbHFxSrvlFrW47DLtnzdP++fNk3PXrka1aU9NVcJppynxjDMUmZ7up0gBAADQ3MSplTpriFooSqXKlU12xaidWuho2RVjdXgAAABAs5CRLtmjrI7CO84yKcvqIABYhoQGAEANEWlpSrniCrW49FIVffWVChcsUNnq1XJs3iyZZsP127dXdK9eihs+XPGjRsmIDLGUXwAAAARVkdZrp95TvlbKVPXjzW16TSk6Vm01VhFipC8AAAAAAMIJCQ0AgDoZdrviR45U/MiRkiRXYaFKf/9dZdnZcu3bJ7O0VLm5uUpu21b2xERFZWQo6uCDmVICAAAAHtunH7VRM+VS7ePIOlWsHH2p/fpJXXWbotUqyBECAAAAzQdTTgAINSQ0AAA8ZouPV2y/fort18/93v6NG5XaqZOFUQEAACBUFWldvckMVZVqt9bpAfXUnbIrNgjRAQAAAM1PRnumnAAQWmxWBwAAAAAAAMLTDr3jUTJDpVLtUK6+CmBEAAAAAACgKSGhAQAAAAAABF2pdmm/fvG6Xo4WyJQZgIgAAAAAAEBTw5QTAAAAAAAg6PL0jU+JCaXaoSKtVby6ByAqAAAAoHnL3iwZIXZ10Cy3OgIAVgqxXRYAAAAAAGgOHMqzpC4AAAAQzjLaSfYoq6PwjrNMyrI6CACWYcoJAAAAAABgAaMRNTmdAQAAAABAOGCEBgAAAAAAEHTRauNz3Si19mMkAAAAQPjI3sSUEwBCS4jtsgAAAAAAQHOQokHarrfkkndnJ+PUVbHqEKCoAAAAgOYtoz1TTgAILYzRCAAAAAAAgi5CSUpWf6/rpem4AEQDAAAAAACaIhIaAAAAAACAJdrqLEUqyePyieqtFA0MYEQAAAAAAKApYcoJNCmzZs3SrFmz5HQ6rQ4FAAAAABBg0WqlrrpF6/SQHNpbb9kE9VJnXSeDUxkAAACAz7I3SkaIHVKb3s1SB6CZCbFdFpq7CRMmaMKECcrPz1dycrLV4QAAAAAAAixWHdVTdylH85WrxXJoX43laRqlFA2VjdMYAAAAQKNktJfsUVZH4R1nmZRldRAALMOZAAAAAAAAYKlIJStdZypFQ7VFH6hUu2UoQgnqrPY6RXbFWB0iAAAAAACwAAkNAAAAAADAUsXaoQ16R3laJVMu9/t5WqPtWqZWOkadNJbEBgAAAAAAwgwJDQAAAAAAwDIF2qDf9ITKVVjrcqdKtEOLtV/rdIhuUITighwhAAAA0Hxkb5CMELs6aJZbHQEAK4XYLgsAAAAAADQXDhVotWbVmcxQVaE26Q89r966NgiRAQAAAM1TRkfJHml1FN5xOqSs762OAoBVbFYHAAAAAAAAwtNOLZND+R6Xz9OvKtDGAEYEAAAAAACaEkZoCBF5eXlasWKFli9frszMTC1fvlwbN/59Emfq1KmaNm1a0GJ57bXXNHfuXK1Zs0a7d+9Wq1at1L17d5111lk677zz1KJFi6DEAgAAAAAITaZc2qmlXtfbocXqrosCEBEAAADQ/GWvZ8oJAKElxHZZ4alnz55as2aNTNO0OhQtWLBAF154obZt21bt/a1bt2rr1q366quvdO+99+rll1/WqFGjLIoSAAAAANDUlWi3SpXjdb19+j0A0QAAAADhIWSnnFhudRQArMKUEyHgzz//bBLJDAsXLtSYMWOqJTN07txZw4YNU8+ePd3vbdu2TSeeeKIWLVpkRZgAAAAAgBDgVImP9Ur9HAkAAAAAAGiqSGgIIcnJyRo5cqQmTpyo//3vf0pPTw/aunfu3KkzzzxT5eUV4/q0bdtW8+fP1/r167V48WJlZ2crMzPTndjgcDg0btw47dy5M2gxAgAAAABCh10xQa0HAAAAAABCD1NOhIDXXntNRx11lHr06CHDMNzv33zzzUGL4Z577tHevXslSdHR0VqwYIF69+5drcxRRx2lJUuW6NBDD1VOTo727t2re++9V48//njQ4gQAAAAAhIYYtVaMWqlEu72q10K9Gy4EAAAAoFbZ6yXDbnUU3jGdVkcAwEokNISAc88919L15+Xl6dlnn3W/vuGGG2okM1Rq06aN7rrrLv3f//2fJOmZZ57R9OnT1aJFi2CECgAAAAAIEYYMtdUwbdDbXtVrq+GBCQgAAAAIAxkdJXuk1VF4x+mQslZaHQUAqzDlBBr00UcfqbS0Yo5SwzB05ZVX1lv+/PPPV3x8vCSptLRUH3/8ccBjBAAAAACEntYapCileFw+RX0Urw4BjAgAAAAAADQlJDSgQVUTEjIyMtSlS5d6yyckJGjw4MG11gcAAAAAoFKE4tVL/1Kkkhosm6iu6qnLghAVAAAAAABoKphyAg366aef3M8HDhzoUZ2BAwfq888/r1EfAAAAAICq4tVBh2miNupN7dFSubRfkuuvpRGKVCu10cnqqNNkU5SVoQIAAAAhL3udZNitjsI7ptPqCABYiYQG1Ku8vFxr1qxxv+7WrZtH9aqWW7NmjcrLyxURweYGAAAAAKjOpW0y9YzS9ZXS5NA+2eT4a1mMTCUrT3bNUZlyFK1LZSja0ngBAACAUJbRUbJHWh2Fd5wOKesXq6MAYBWmnEC9tm3bJofD4X7dsWNHj+pVLVdWVqZt27b5PTYAAAAAQGhzarUKdZUc+lKSQ5GS0uRS+l+PFJmySTKVpzK9qiJdK1P5FkcNAAAAAACChVvmUa/8/OonipKTkz2ql5RUff7T/fv311u+tLRUpaWlda4XAAAAANC8uLRZRbpJpvZ5XMepVSrSRMXpCRlMPwEAAAB4jSknAIQaEhpQr8LCwmqvY2JiPKoXGxtbbzsHuu+++zR9+nTvggMAAAAAhKxizfAqmaGSU7+oTK8rWhf7PygAAACgmcvoFKJTTqy2OgoAVmHKCdSr6nQTkhQR4VkOzIHlysrK6i1/2223ad++fe7H5s2bvQsUAAAAABAynFovp7J8rl+m92XK5b+AAAAAADR5/fv3V+/evTVr1iyrQwEQRCQ0eGnOnDkyDMPvjzlz5lj90WoVFxdX7XVJSYlH9Q4sFx8fX2/56OhoJSUlVXsAAAAAAJonh95tVH1Tu1SuZX6KBgAAAEAoyMzM1G+//aYJEyZYHQqAIGLKCdQrISGh2uvi4mKP6hUVFdXbDgAAAAAgfDm0uNFtlGuRIjW08cEAAAAAYSR7nWTYrY7CO6bT6ggAWImEBi/FxsaqTZs2AWm3KUpLS6v2evv27R7V27FjR7XXLVu29FtMAAAAAIDQZcqUqTw/tNP4NgAAAIBwk9FJskdaHYV3nA4p6w+rowBgFRIavDR+/HiNHz/e6jCCJjU1VWlpacrJyZEkbdq0yaN6mzdvdj9v1aqVUlNTAxIfAAAAACBcmVYHAAAAAAAAAsxmdQBo+nr16uV+npWV5VGdlStX1lofAAAAABDeDBkylOiHdpL8EA0AAAAAAGjKGKEBDRo6dKiWLl0qSfr+++9VXl6uiIj6N53K8pX1AQAAAACoFKFBcujTRrZxrJ+iAQAAAMJH9lrJsFsdhXdMp9URALASCQ1o0GmnnaZ77rlHkpSfn68PP/xQY8eOrbP8ihUrlJ2dXa0+AAAAAACVonRGoxIaDKUoQiP9GBEAAAAQHjK6SPYQuzroLJey1lkdBQCrMOUEGnTUUUfpkEMOcb++77775HTWnQ5XmfwgSYceeqj69esX0PgAAAAAAKHFrt6yy/fpCSN1sgxF+jEiAAAAAADQFIVYDhb8qXPnztq4caMkadiwYVq8eHGt5QzD0F133aUzzjhDkpSZmambb75ZDz/8sAzDqFb20Ucf1bx589yv77rrrhplAAAAAACI0X9UpH/JVHHFG6YkFcg0CyW5/ioVIcNIlIwYdz2buipaFwQ5WgAAAKB5yF4jGSF2u7PpargMgOaLhIYQcPfdd+vuu++u8X5paWm1MjNmzKhRJjs7W506dWp0DGPHjtVZZ52luXPnSqpIXMjMzNTll1+uTp06aceOHXrttdf00UcfueucddZZOv300xu9bgAAAABA82PXwYrVvSoyb5WprZKZJ8lRo5xp5khmrGSkyK7DFGc8LEMJQY8XAAAAaA4yOofolBMbrY4CgFVCbJcVnsrLy6slL9TG6XTWOg2EaZp+i+Oll15STk6OFi1aJElatmyZli1bVmvZESNG6KWXXvLbugEAAAAAzY/d1UrRDqnMXiCXrWYyw99KZC/frygzSUZkgsRAgAAAAAAAhIUQG1QGVoqNjdWXX36pGTNmqHXr1rWWad26tWbMmKEvv/xSsbGxQY4QAAAAABAqTNcmOcqukGHmK7o8XdGODrI7k2SYkZJpl2HaZZhRiihPVUxZR0U5W0muFSovu1amWWZ1+AAAAAAAIAgYoSEETJs2TdOmTfN7uxs2bPC6js1m0y233KKbbrpJS5Ys0dq1a5WTk6O0tDR169ZNQ4cOVUQEmxUAAAAAoG6m6VS543pJee73bGaUopxpUs3BBw+omyVn+UOKiJwUyBABAACAZil7jWSE2O3OpsvqCABYiSvP8ElERIRGjhypkSNHWh0KAAAAACDEmK5FMs1NPtd3OT+UGfF/MowUP0YFAAAANH8ZXSV7iF0ddJZLWVutjgKAVUIsBwsAAAAAAIQ6p3NuI1twyOV8zx+hAAAAAACAJoyEBgAAAAAAEDSma6NM14pGt+Mqf9cP0QAAAAAAgKYsxAaVAQAAAAAAocw01/qnHW2XaRbKMOL90h4AAAAQDrL/lIwQu93ZdFkdAQArkdCAJmXWrFmaNWuWnE6n1aEAAAAAAALANAv82FqBJBIaAAAAAE9ldJXsIXZ10FkuZe2wOgoAVgmxHCw0dxMmTNBvv/2mzMxMq0MBAAAAAASAYcT4sbVYP7YFAAAAAACamhDLwQIAAAAAACHNSPdTQwl/PQAAAAB4KvsPppwAEFpIaAAAAAAAAEFjsx0mw+gs09zQuHbsJ8sItTOxAAAAgMVCdsqJHKujAGAVfvkDAAAAAICgstnPbHQbdvtZfogEAAAAAAA0ZSQ0AAAAAACAoLLZ/yEpvvaFZrlklv31qH1sWcM2QIatc8DiAwAAAAAATUOIDSoDAAAAAABCnWEkKCLyPpU7rpfk+itxIU+mubcikaFa4XgZRoqkRMmQDLVWROS0oMcMAAAANAfZf0qGYXUU3jFNqyMAYCUSGgAAAAAAQNDZ7INkN++Rs+xqmeYuSbWPxiCzUKZZKBkRMnSIIqJnyTBaBzVWAAAAoLnI6CrZ7VZH4R2nU8paYXUUAKzClBMAAAAAACDoTNMllS+W4YqRodgGSttkuBJkOEtkOlcGJT4AAAAAAGA9RmgAAAAAAABBZ5Y9JLP8cxmKlWF2lKkymcqTjEKZf43WYChCMhNlKFmGKm4jc5XOkIwU2SJGWBg9AAAAAAAIBhIaAAAAAABAUJnO3+Ry/K/ae4aiZKi11OD8uC6ZpffJtA+WYUQGLEYAAACgOcrOlgzD6ii8Yzb4GwFAc0ZCAwAAAAAACCqzfG7j6pu5Mp0LZUSM9lNEAAAAQHjI6CHZ7VZH4R2nU8pi5jkgbNmsDgAAAAAAAIQP08yXq/yLxrfjaFxSBAAAAAAAaPoYoQEAAAAAAASNWb5EMksb344zS6ZrtwxbKz9EBQAAAIQHppwAEGpIaAAAAAAAAMFj5vqxrb2SSGgAAAAAPJXRM0SnnMiyOgoAVmHKCQAAAAAAEETlTbQtAAAAAADQ1JDQAAAAAAAAgsdI9GNbCf5rCwAAAAAANDlMOQEAAAAAAILGsB3un3aMNMlo55e2AAAAgHCRnS0ZhtVReMc0rY4AgJVIaECTMmvWLM2aNUtOp9PqUAAAAAAAAWDYe8qwHybT+Uvj2okcK8PgtAYAAADgjYwMyW63OgrvOJ1SVpbVUQCwClNOoEmZMGGCfvvtN2VmZlodCgAAAAAgQIyIsxrZgl1GxFi/xAIAAAAAAJoubmUAAAAAAABBZUQcJ8PxokzXhmrvm3LIZRRJclWUU4QMM17GAfdj2CJPk2FrHaRoAQAAgOaDKScAhBoSGgAAAAAAQFAZRpRsMU/IVXypXOZumUahXEaeXEahpAPPVtpkM5Nld7WQoWgZ9gEyoiZaETYAAAAQ8phyAkCoYcoJAAAAAAAQdIatnYyYJ+W071O5bYtcRoFqJjNIkksuY68c9vVyRqTKiH5UhsH9GQAAAAAAhAMSGgAAAAAAQNCZZqHKXNNk2ltItnaSEVNHSUMyEmXYOsply1O565FghgkAAAAAACzELQ0AAAAAACDoypyTZJp/SrLJMFpIRgvJLJapQkmuv0pFyDASJUW66zld81Tu7KgI+3lBjxkAAAAIddnZkmFYHYV3zNoGcgMQNkhoAAAAAAAAQeVyrZLL9W3NBUasDMU2WN/hfEl221kyjKgARAcAAAA0XxkZkt1udRTecTqlrCyrowBgFaacAAAAAAAAQVXumtvIFvLkdH3pl1gAAAAAAEDTRUIDAAAAAAAIGtPcJ6drQaPbcbre8UM0AAAAAACgKWPKCQAAAAAAEDQuM1tSmR/a+VWmacoItQmAAQAAAAtlZ5syDNPqMLximqEVLwD/IqEBAAAAAAAEUYGf2nFJKpIU76f2AAAAgOYvI8Mpu91pdRhecTqdysqyOgoAVmHKCQAAAAAAEESRfmwryo9tAQAAAACApoYRGgAAAAAAQNAYSvNTS0kyDH8mRwAAAADNX3a2S4bhsjoMr5hmaMULwL9IaAAAAAAAAEFjs/WSYXSSaW5sVDt222g/RQQAAACEj4wMl+z20EoQcDpdTDkBhDGmnAAAAAAAAEEVYRvX+DbsZ/ohEgAAAAAA0JSR0AAAAAAAAILKbvuHpDif69uMfrIZXfwXEAAAAAAAaJKYcgIAAAAAAASVYSQoKmKyysonSTK9rN1CkRG3ByIsAAAAoNnLznbJMEJrygnTDK14AfgXCQ0AAAAAACDo7LZRirTfJodzhiSXnHKq2FaiUlupzL+SHGymXTFmtGJc0bLJJilF0RGPyWZ0sDR2AAAAIFRlZLhkt4dWgoDT6VJWltVRALAKU06gSZk1a5Z69+6t/v37Wx0KAAAAACDAIuynyx5xj/bZI7QnYq+KbMVyyiWXTLlkqtwoV4GtsGKZvZ2iIl+QzdbL6rABAAAAWKB///7q3bu3Zs2aZXUoAIKIERrQpEyYMEETJkxQfn6+kpOTrQ4HAAAAABBA5crRHtvrKlcLGWaMpL0yzUJJLkmGJLsMI1GGUlRkK5OpF9VSt8uQ3drAAQAAAARdZmamkpKSrA4DQJCR0AAAAAAAAILOVKlyNFnl2i5JMowYSekyjLrrFOs77dVTStW/gxMkAAAA0MxkZztlGE6rw/CKaYZWvAD8i4QGAAAAAAAQdIVaKIc2+lDvcyXpLEWobQCiAgAAAJq3jAzJHmIDnjmdUlaW1VEAsIrN6gAAAAAAAED4KdAnPtZ0NaIuAAAAAAAIJYzQAAAAAAAAgqpMf8ihtT7XL9R8JetiGdynAQAAAHilYsqJcqvD8ApTTgDhjYQGAAAAAAAQVA5tbVR9l/bJpXzZ1cI/AQEAAABhgiknAIQabmUAAAAAAABBZarUD22U+SESAAAAAADQlJHQAAAAAAAAgsqm+CbRBgAAAAAAaNqYcgIAAAAAAARVtA5RxSkJ3+bujVR3EhoAAAAAH2Rnl8swfDsOt4pphla8APyLhAYAAAAAABBUdqUqVgNVrKU+1U/QSX6OCAAAAAgPGRmS3W51FN5xOqWsLKujAGAVppwAAAAAAABBl6B/+FTPULziNNy/wQAAAAAAgCaJhAYAAAAAABB0MTpMCTrFy1o2peoG2RQTkJgAAAAAAEDTwpQTAAAAAADAEi10lUw5VKjPPCgdoVRdpzgNCnhcAAAAQHOVne2QYTisDsMrphla8QLwLxIaAAAAAACAJQzZlKprFaPDtV8fqEyraykVoVgNUpLOUJR6Bj1GAAAAoDnJyLDJbg+tAdydTpuysqyOAoBVSGgAAAAAAACWitMwxWmYyrROeVqiQuXKkF0t1F6JGiW7UqwOEQAAAAAAWICEBgAAAAAAYLkcbVa2VmibtsqUS5IUqVJ1VqJ66hjFK9niCAEAAIDQl51dJsMoszoMr5hmaMULwL9IaAAAAAAAAJZap5VaoY9lyqz2vkOl+lM/aJNWaajOU4raWhQhAAAA0Dww5QSAUBNaeywAAAAAANCs7NbGWpMZqipVkZbqDZWpJIiRAQAAAAAAq5HQgCZl1qxZ6t27t/r37291KAAAAACAIMjWt/UmM1QqUYE26ucgRAQAAAAAAJoKppxAkzJhwgRNmDBB+fn5Sk5mflQAAAAAaM6KlK/tWuNx+XVaqR4aEMCIAAAAgOYtO7tMhlFqdRheMc0yq0MAYCESGgAAAAAAgCUKlefR6AyVCpQbwGgAAACA5i8jwy67PbQuDzqddmVlWR0FAKsw5QQAAAAAALCEISOg5QEAAAAAQGgjoQEAAAAAAFgiSa0UoUiPy6eoXQCjAQAAAAAATU1ojSkDAAAAAACajSjF6CAdovXK8qh8N/ULbEAAAABAM5edXSrD8DypuCkwzVKrQwBgIRIaQkReXp5WrFih5cuXKzMzU8uXL9fGjRvdy6dOnapp06YFbP3Dhw/XV1995VWd8ePH68033wxQRAAAAACA5uBgDdIWrZZD9Z+kTFG6OujgIEUFAAAANE8ZGRGy20Pr8qDTGaGsLKujAGCV0NpjhamePXtqzZo1Mk3T6lAAAAAAAPCrRLXUEJ2jZXpLZSqutUyK0jVE/5RN9iBHBwAAAAAArERCQwj4888/rQ6hmkMPPVTt27dvsNwRRxwR+GAAAAAAACEvTQfpRF2j9VqpdVqpQuVJMpSqduquo9RBvWTnFAYAAADQaNnZJTKM0Dq2Ns0Sq0MAYKHQ2mOFueTkZPXr109HHXWUjjrqKF133XXavn170OO46aabdPHFFwd9vQAAAACA5itacTpYx+pgHStTLhmyWR0SAAAA0OxkZETKbo+0OgyvOJ2RTDkBhDESGkLAa6+9pqOOOko9evSQYRju92+++WYLowIAAAAAIDBIZgAAAAAAABIJDSHh3HPPtToEAAAAAAAAAAAAAACCioQGAAAAAAAAAAAAIAxkZxfLMOxWh+EV0yy2OgQAFiKhAQAAAAAAAAAAAAgDGRmRstsjrQ7DK05npLKyrI4CgFWYlBIAAAAAAAAAAAAAADQ5JDTAay+//LKOPvpotWzZUlFRUWrTpo369eun66+/Xl9//bXV4QEAAAAAAAAAAAAAmgGmnIDXFi1aVO31rl27tGvXLv344496/PHHNWLECM2ZM0cdO3a0KEIAAAAAAAAAAAAcKDu7SIYRWvc7m2aR1SEAsBAJDfBafHy8evbsqZSUFBUXF2v9+vXasWOHe/miRYt05JFH6ssvv9SRRx7pUZulpaUqLS11v87Pz/d73AAAAAAAAAAAAOEsIyNKdnuU1WF4xemMUlaW1VEAsEpopWDBMm3atNFtt92mzMxM7d+/Xz/++KMWLFigb775Rtu3b9ePP/6o008/3V0+NzdXp556qnJycjxq/7777lNycrL7cdBBBwXokwAAAAAAAAAAAAAAQgEjNMAjb731Vr3LjzzySM2bN0933XWXpkyZIknasmWL7rvvPj388MMNtn/bbbfpxhtvdL/Oz88nqQEAAAAAAAAAAMCPsrOLQ3DKiWKrQwBgIRIavDRnzhxdcsklfm939uzZuvjii/3ebrBNnjxZ3333nT755BNJ0rPPPqv77rtPUVH1D18UHR2t6OjoYIQIAAAAAAAAAAAQljIyIkNwyokyppwAwlhopWAhJEycONH9vKCgQN9++62F0QAAAAAAAAAAAAAAQhEjNHgpNjZWbdq0CUi7zcWgQYMUGRkph8MhSfrjjz80bNgwi6MCAAAAAAAAAAAAAIQSEhq8NH78eI0fP97qMJq0yMhIpaWlafv27ZKknJwciyMCAAAAAAAAAABAdnaRDMOwOgyvmGaR1SEAsBAJDQiIoqK/v1zi4uIsjAQAAAAAAAAAAACSlJERI7s9xuowvOJ0OpWVZXUUAKxiszoAND9bt27Vvn373K9bt25tYTQAAAAAAAAAAAAAgFDECA3wu7feeqva60GDBlkUCQAAAAAAAAAAACplZxfIMEyrw/CKaRZaHQIAC5HQAL/asGGD7r33XvfrI444Qp06dbIwIgAAAAAAAAAAAEhMOQEg9DDlRBjr3LmzDMOQYRgaPnx4neUuv/xyvf/++3I6nfW2t3LlSh133HHas2eP+73p06f7K1wAAAAAAAAAAAAAQBhhhIYQcPfdd+vuu++u8X5paWm1MjNmzKhRJjs7u9EjJCxfvlwvvPCCWrdurZNPPln9+vVT586dlZycrOLiYq1bt06ffvqpPvzwQ7lcLne9a665Rqeeemqj1g0AAAAAAAAAAAAACE8kNISA8vLyaskLtXE6nbWOoGCa/psHadeuXZo9e7Zmz55dbznDMPSf//xH9913n9/WDQAAAAAAAAAAgMbJzi6QYfjv2lEwmGah1SEAsBAJDWjQOeecI0n65Zdfqo3AcKDIyEidcsopuvnmm3XMMccEKzwAAAAAAAAAAAB4ICMjVnZ7rNVheMXpdCkry+ooAFiFhIYQMG3aNE2bNs3v7W7YsMGjcrfccotuueUWFRQU6Oeff9b69eu1c+dOFRUVKTo6WikpKerRo4cGDBig2NjQ+hIEAAAAAAAAAAAAADRNJDTAYwkJCRo0aJAGDRpkdSgAAAAAAAAAAAAAgGaOhAYAAAAAAAAAAAAgDGRnF8gw6p5evCkyzSKrQwBgIRIaAAAAAAAAAAAAgDCQkREjuz20pg93Ol3KyrI6CgBWsVkdAABpw4YNMgzDo8fLL79co/7mzZt17bXX6uCDD1ZsbKyio6PVpUsXXXjhhVq5cqUFn8h627Zt03XXXafhw4crJiZGqampGjFihN58881ayzscDi1YsEA333yz+vfvrxYtWigyMlJt27bVqaeeqo8//jjInyB07Ny5U9ddd5169OjhUV9XVVZWpieeeEKDBw9WamqqYmJi1KFDB5144ol66623ghB905Gdna0nn3xSF198sQ477DBFRETIMAxNmzbNo/pz587V8OHDlZKSovj4eB1++OF64IEH5HA4apQNx+09mP1bKdz2zb72sS/1wnEbloLbx5J08cUXN3hcUlJS4r8PaLGmsC3OmjXL3bcXX3xx4z5QE+Trtjh79mydf/756tOnj9q0aaOoqCglJSWpb9++mjJlinJzc+ut78s+PNTV1tedO3cOaF+Hw/eeFdtwOPRrpWB+X4XjsYQVxwPhtP3Wxdf9cSV//GZurscXdW3Tjz76aJ11Gnv+7UDNtW9rU7W/R48e7dVv6sbsC8LlOO7A7blbt24e92/lOVBfzsuFS/8CAEIfIzSgSZk1a5ZmzZolp9NpdShBlZCQoIsuuqjO5evWrdPSpUtls9k0fPjwassyMzN1/PHHa9++fUpLS9OoUaMUExOjrKwsvfLKK3r99df1yiuv6Jxzzgnwp2g6VqxYoTFjxignJ0dpaWkaPXq09u3bp++++06LFy/WggUL9Nxzz1Wr89VXX+n444+XJLVt21aDBw9WfHy8fvvtN3344Yf68MMPdeWVV+q///2vDMOw4mM1SStWrNCJJ56o3NxctWnTxqO+rrRlyxaNHj1av/32m9LS0nTssccqPj5emzdv1pIlSxQfH6/x48cH+RNZ5+mnn9bjjz/uU93rr79ejz/+uCIiIjRy5EglJCRo4cKFuuWWW/Thhx/qiy++UGzs31nX4bi9B7N/pfDcN/vax77UC8dtWApuH1d17LHHqnv37rUus9vtPrfb1Fi9La5Zs0YTJ06UYRgyTdPnz9GU+botPv744/rll1/Uu3dv9e3bVykpKdq5c6e++eYbrVy5Us8++6wWLFigQw45pEZdX/bhzUGw+zpcvvfo18AK5vdVOB5LBPt4INy237o0pt/98Zu5OR9f+NK3jTn/dqDm3Le18XVbbsy+IJyO43zt36rnQL09LxdO/YuasrP3yzBC6xoMU04AYc4EmqB9+/aZksx9+/ZZHUpAbdiwwaNyF198sSnJHD16dI1lhx9+uCnJPOmkk8zCwkL3+06n05w6daopyUxKSqq2rDkrKSkxO3XqZEoyzzzzTHP16tXuZb/99pt72QsvvFCt3oIFC8xx48aZS5YsqdHmm2++adrtdlOS+dJLLwX8M4SKA/u66jZWX1+bpmkWFRWZBx98sCnJnDZtmllWVlZteWFhobly5cpAf4Qm5bnnnjP/85//mK+99pq5evVq84ILLjAlmVOnTq13XzFv3jxTkpmQkGCuWLHC/f7u3bvNww47zJRk3nTTTdXqhOP2Xl//mmbd+2Nf+tc0w3Pf7Os23NDfpjbhuA2bZnD72DRN86KLLjIlmbNnz/bvB2mifNlP+GtbdDqd5sCBA83ExET3cd9FF13kj4/VpPi6L/7mm2/MvLy8Gu/n5OSYgwcPNiWZAwYMqLHc1314c+Drv3tf+zpcvveCvQ2HS79W8mS7ra2Pffm+CsdjCU/3Cwf2sa/HA+G2/dbF1/2xP34zN/fji7r69rrrrvO5zfrOv1XV3Pu2NlX7+8svv/R4W/Z1XxBux3EHbs9nnHFGg/3bmPNy4da/tfH0vHxT4M9rJZVtHXHEu2a/fp+H1OOII94Ni2tGAGpHQgOaJBIa/pafn2/Gx8ebksy5c+dWW5aTk2NKMiWZ33zzTY265eXlZmxsrCnJ/OGHH/wWd1P2xhtvmJLM5ORkMzc3t0Yfz50715RkdurUyXS5XB63e9lll5mSzFGjRvk75JBV2deJiYlmbm5ujeX19fXkyZNNSeaVV14ZrHBDTuWJw4YuVPbv39+UZN599901li1dutSUZEZHR9d6Er0u4bC9V+1f06x7f+xL/7JvruDpNlxfPV+FwzZsmoHv43BLaDiQp/uJ+ni6Lc6YMcOUZD799NPuE7vN/aS4afqnj5csWeLe5x54PBKI78hQ5Y99a119Hc7fe4HchsO5XyvVtt36K6GhIeFwLFHXfsEfCQ1sv3XzdH/sj9/M4XZ8Udm3viY01Hf+7UDh1rcH2rBhg0fbcmP2BeF+HDdu3LgG+/fAc6AHqu+8XLj3r2mS0EBCA4BQYxOAJu2NN95QYWGhWrVqpVNPPbXasujo6AbrVw6PmZaWFpD4mpoffvhBktSvXz+lpKTUWH7CCSdIkjZu3KjMzEyP2z3yyCMlVcz7hwqVfX3YYYd51dcOh0NPP/20JOnmm28OQqTN19atW919e+6559ZYPnjwYB100EEqLS3VJ5984nG7TX17nzZtmnue0jlz5gRsPb72b3PaNwerr/2tqW/DCB+ebIurVq3SlClTNHLkSF111VXBCq3ZqBzm3DAMRUVFud8P1HdkOKurr5vT954V6NemKRSPJZrScRvbb+P44zczxxfeq+/8W1Wh0LfffPONzjvvPHXr1k1xcXHufUPnzp2DGoev+wKO4zzj6zlQ+hcAEIpIaACauBdeeEGSdMEFF1Q7wSVVzP03ZMgQSdLdd9+toqK/55EyTVN33XWXioqKdPzxx6tLly61tt+5c2f3D5vFixc3GM++ffs0dOhQd534+Hh99tlnPn46/ysoKJBU90mRxMREdz+uWLHC43b//PNPSVJ6enqdZar2pWEYSk5OrvY3acijjz5arb5hGPrvf//rcf1gq+zr2n40SXX39Y8//qicnBy1a9dO3bt31y+//KLp06frqquu0q233qqPP/5YLper3nUf2NdVHxEREUpNTdVhhx2mCy+8UO+9957Ky8v99KmblpUrV0qSUlNT6/w3ftRRR1Ur6wlftvcD/wYtW7bUEUccocsvv1xffvllSM4p6mv/+mPfXJtly5Zp8uTJGjZsmLp06aLExERFR0erbdu26t+/v6655hq99957Kisr8/qzNjeebMOV9uzZoyeffFKnnnqqOnfurMTEREVERCg5OVk9e/bUiSeeqEmTJumDDz7Q/v37Ax16k7Ro0SLddNNNuvLKK3Xbbbdp3rx5Ki0t9bh+OPdxQ9uiw+HQhRdeqKioKL3wwgsez9N+3nnnufe5o0aN8ngf+/7777vrJSYmav369Z59kCYqPz9fU6dOlSSNHDlS8fHx7mX++I6s77uu8uJzq1atNHDgQN1000366aef/PnxmpT6+tqK3yTNRaD7tTbN+Xiisd9XVXlzLFHV8uXLdc899+iEE05Qjx49lJqaqsjISKWmpqpbt2469dRTNW3aNK+S65sKb/rX3/uFqg+bzabExES1b99evXv31tixY3XnnXfq888/bza/+xr7m9nX4wup4e++uh7BvlAeCPWdf6vkr7715rtu8eLFXvXzf//7Xw0ePFivv/661q1bp+LiYo/X5W++7gsacxx35JFHepXctXv3btlsNnedMWPGePTZjjvuOHed+++/36M6/ubrOdBAHyf7ck5o2rRpmjZtmh577LF6y8F/srPztXr1vpB6ZGfnW91tACwUYXUAAOq2atUqd7bt5ZdfXmuZ5557TieddJI++eQTderUScccc4yio6P1008/aePGjTr33HP11FNP+SWeXbt2acyYMe6D2ZSUFH300UcaNGiQX9r3h9atW0uS1q1bV+vyLVu2uE/O1VXmQDt27HD/CBo3bpzHseTn5+vtt9/WhRde6FH52bNne9x2U1DZ13XdtVRXX//888+SpA4dOujWW2/VAw88UO2Hzf33368jjzxS7733njp27Oh1XE6nU3v37tXevXu1atUqvfLKK+rTp49ef/11HXLIIV6315RVXoiqr58OOuigamUb4uv2XpXT6VRubq5yc3P1008/6YUXXtCQIUP06quv+vQ3tUpj+tef++aFCxfq9ttv13fffVfr8p07d2rnzp1avny5nn76aaWmpurGG2/UDTfcoLi4OI/W0Zx4sw3PnDlTkyZNqvUien5+vvLz8/Xnn3+6E/ciIyO1adMmtW3b1u9xN2Uvv/xyjffS09P14osvNnjCL5z72JNt8c4779TKlSs1a9Ysry4EPPnkk1q0aJG2b9+uhQsXatasWfrXv/5Vb52cnBxdeeWV7tcPPfSQVxdBm4IPP/xQ77zzjlwul3bu3KlvvvlGBQUF6tevX43jqEB8Rx7I4XAoJydHOTk5+u677/Too4/qiiuu0MyZMxUZGelTm02FN30tBfc3SSizsl/D4XiiMd9XVflyPLx06VJNnjxZX331Va3LK3+frFu3Th9++KGmT5+uLl266Oabb9Zll11W58XTpsTb/g3UfsE0TRUUFKigoEDbtm3T6tWr9d5770mS2rZtq0suuUS33nqrkpKSvG67qWjsb2Zfjy/CmSfn36Sm37e7d+/WjTfe6N5eTjjhBPXv318tWrSQJCUnJwc9Jl/2BY05jhsxYoSysrIkVSSDXHzxxfXGt3jx4mr/vr7++muVl5crIqLuyyZlZWX65ptv3K9HjhxZ7zoCxddzoIE+TvblnND06dMlSZ06ddL111/v9TrhvYyMBNntoXGMV8nptOmvf94AwhAJDUAT9vzzz0uSBg0apF69etVaJiMjQ999950uvPBCffbZZ/roo4/cy3r27Kljjz1WiYmJjY5l48aNOv7446vdqfL555/rsMMOa3Tb/jRq1Cjdc889WrFihZYvX65WrVpVW145bKNUcSGlIeXl5Tr//PO1b98+HXbYYR4PJ2gYhkzT1OzZsz1KaMjMzNQvv/wiSbLZbA2OUNAUVPb1L7/8ouXLl7uztyvV1dd79uyRVJHl/cMPP2jChAm69tpr1bZtW/frlStX6uSTT9aPP/7Y4AWBq6++Wt26dXO/Li8v144dO7R48WL3nZI///yzRo0apeXLl6tDhw6N/uxNReUFwqp38x0oISFBUmC39wP/Bg6HQ1u3btWnn37q/tG8dOlSjRw5Uj/88INSU1M9atdqjelff+ybTdPU3XffralTp1Y7wdKtWzcNHTpU6enpio+PV05OjtatW6eFCxdq//79ys3N1R133KHc3Fw9/PDDXn/uUObNNjxlyhTddddd7tfJyckaNWqUDj74YCUmJqqwsFCbN2/Wjz/+qFWrVsk0TTkcjmZz558nDj/8cD3++OMaNWqUOnbsqOLiYv3888+aPn26li1bplNPPVVffPGFhg8fXmv9cO5jT7bFzMxMzZgxQyNGjND//d//edV+amqqnnvuOf3jH/+QJN1yyy0aM2aMunfvXmedq6++Wrt27ZIkjR49uskOkVyfn376SS+99FK194477jg988wz7pOulfz9HXngd50klZSUaPPmzfriiy+0YcMGmaapZ599VqWlpZYP995Y3vS1FLzfJKHOin4Nh+OJxn5fVeXt8bBpmrrvvvs0efLkar/hDjroIA0ePFgdOnRQSkqKCgoKtGvXLi1fvlw//fSTTNPU+vXrdc0112jHjh3uCzlNka/968/9woH74NLSUuXl5WnHjh1avny5srOzZZqmduzYofvuu0+vvfaa5syZoxEjRvilD4KtMb+ZG3N8caDavvvqYsWFcn/y5PybP/s2UObPn+8ekeGcc87R66+/bnFEvu0LGnMcN2LECD366KOS5NFIGAeWKSgoUGZmpgYOHFhnne+//97dz0lJSerbt2+D6wmEA8+BenpeLtDHyc3lnBAAoGkhoQFoosrKyvTqq69Kqj87/Ouvv9a4ceNkGIZeeeUVHXfccYqNjdWKFSt08803a8KECfr000/1wQcfeDUUXlWrV6/WCSecoC1btkiSunbtqvnz56tr164+tRdII0aM0PDhw7V48WKddtppmjJlis4++2zt379fL730kh588EFFRkbK4XDIZmt41p2rr75aCxYsUMuWLfX22297fOfMyJEjtWDBAn311Vdat25dg3314osvSqpIZhg+fLgWLlzo0XqsdGBfz5w5U8OHD2+wrytP9DkcDp1zzjmaOXOme9lxxx2n+fPnKyMjQ6tWrdKbb76pCy64oN44xo8fX+fJyddff10XXXSRysvLtXPnTk2ePDnkRsIIJl+397r+Bi6XS/fcc4+mTJkiSVq7dq3uvPPOsBhC0B/75sq7sSqNHDlS999/f42TFJUcDoc++OAD3Xnnnfr555/ldDoD8tmaMk+34crhoCvddNNNmj59ep0ndLZv3653331Xzz77bEDibqpuuOGGaq8TExN13HHHadSoURo3bpzmzZun66+/3n0HVFXh3scNbYslJSW68MILFR0d7fVwxZVOPvlkXXrppXrxxRdVVFSkiy++WEuWLKn1+Oa1117TO++8I0lq0aKFe0jlUHPHHXfojjvukMPh0MaNG/X+++/rnnvu0WGHHaa33nrLneARCPUdbzidTk2bNk133323JOmll17Stddea9nJbX/wtq+D8ZukObCiX8PheKIx31cH8vZ4+JZbbtGDDz7ofj1s2DDdfffdGjx4cJ119uzZozlz5mjmzJnasGFDk+9jX/vXn/uF+vbBkrRp0yY99dRTeuyxx1RaWqpNmzbppJNO0pdffqljjz3W149uGV9/M/vj+KKqhvq9ufDk/Ju/+zZQNm3a5H5eOdWD1YJ9jDB06FDZ7XY5nU5t3LhR69evr3dUskWLFkmSjjnmGGVmZsrpdGrx4sX1JjRU1qm6Piv4el7O3zgnBAAIhsB9kwFolPfee0979uxRYmKizj777FrL5OXlaezYsdq1a5feffddnX/++Wrbtq2Sk5M1cuRIzZ8/X23atNFHH32kV155xac4MjMzNWTIEHcyw2GHHaavv/66SSYzVJo7d66GDRumbdu26eqrr1Zqaqo6deqkKVOmaNy4cTr55JMlSS1btqy3neuuu04vvPCCUlJSNH/+fPXs2dPjGC699FJJFXfsNHSHXklJid58801JFScnars7q6maO3eujj76aG3btk1nnHGGR31dNfO+tjueOnbs6K735ZdfNiq+c889V9ddd5379TvvvCOHw9GoNpuSyr4sLCyss0zlnIoNDbnamO29LjabTZMnT9b48ePd77366qshMQKJ5Hv/+mPf/M4771S7+HDddddp/vz5dV58kCqG6h83bpyysrJ07733hvxw597yZht+7rnn3NvhmWeeqYceeqjeu1PS09M1YcIE/fTTT2rfvr3fYw81hmFo2rRpkiruNq5t6qFw7mNPtsVJkybp999/1/3339+oaR8effRR97CtX3/9da13UW/btk3//ve/3a+feOKJkO/jyMhIde/eXTfddJM+/fRTFRcX69JLL602tYk/vyMbYrfbddddd6lfv37u9z7++ONGtdlUeNLXwfhN0twEq1/D/XjCk++rqrw9Hp47d261ZIYbbrhBCxcurDeZQar4bXTTTTfpjz/+0F133aWYmBjPPlATU1//Bnu/0LFjR82YMUPffvut+zuupKREp512mnu0g1Di629mfx1fhBtPzr+FSt+WlJS4n8fGxloYSQVf9wWNOY5LTk7WkUce6X5dNfngQDt37tTq1aslSaeccoq7Xn11pOqjOlg9EkzVc6DenpcL9HFyqJ8Tau6ys/O0enVoPbKz86zuNgAWIqEBaKIqh7s755xz6rwA8PHHH2v37t3q0qVLrZnDqampOvHEEyVJX3zxhdcxLFy4UKNGjXKfABg0aJC++uqreue13rBhgwzDkGEY7uxch8Oh2bNna8yYMerYsaOioqJkGIY2bNjgdUyeSEtL0+LFi7VgwQL961//0hVXXKFbb71Vixcv1ptvvqmdO3dKUr3TZdx000164okn1KJFC33xxRfVfgx5om/fvurTp4+kirv06jtYf+edd5SXlydJuuSSS7xaT2lpqZ599lmdfPLJ6tChg2JiYpSSkqJDDz1U1157rVauXOlVe95KS0vTW2+9pQULFuj222/3qK+rJsPUlRhT+f727dsbHePYsWPdz/fv36+1a9fWWm7x4sXubbehORYladq0ae7yVg0rXTlnZ30nZyuX1Te/Z2O394ZU3a737NlT5/yOUsWFt1tuuUW9e/dWQkKCUlJSdMQRR2j69Onu7SlYfO3fxu6bHQ6HbrrpJvfrMWPG6NFHH/X4jgrDMHTbbbdp6tSp9ZZrSn3dWN5uwytWrHA/P+ecc7xaV113DdX2/Weapl5//XWNHj1a7dq1U3R0tNLT0zV27FifvpebkoMPPtj9vDLpsapw7WNPt8V3331XhmHof//7n4YPH17tUfmd8tlnn7nfq0tSUpJefPFFd59NnjxZv/32W7Uyl112mfbu3StJOv300xsc+aiq77//Xtdee6369Omjli1bKioqSunp6Tr++OP15JNPuofatdLRRx+t3r17a/fu3e65ryX/fUd6o+rfauvWrXWWM01T3377raZOnarjjz9eBx10kGJjYxUTE6N27dpp9OjReuyxx9wnkpuKuvo60L9JvBGKfRuofg3W8YTUtPcVDX1fVfL2WMLhcOg///mP+/Upp5yiRx55xKs7YCMjI3XHHXfotttua7BsUz1uq6t/rdovHHnkkXr33XfdI2vs2bNHDz30ULUypmmqS5cu7mOKyouZDfn000/ddYYOHeq3mGvj629mfx1f+FNTOEfUEE/OvzXFvq1U9VxG1elrLrnkEvf7lY9g97Gv+4LGHsdVTTKoLzmhamLC8OHDNWzYMEkVicJ13QxTWlqqb7/91v165MiRdbYfDFXPgXp6Xi7Yx8l1nROqun+otHHjxhrbbdX9B/wnIyNBvXqF1iMjI8HqbgNgIaacAJqgjRs3asGCBZLqn26icii5+uYqbNGihSR5fVfCe++9p3/+858qLS2VVHEC7J133lFcXJxX7WzatEnjxo3T8uXLvarnDyNHjlS3bt3UqVMn93v5+fnKyspSZGRknQfDEydO1COPPKLk5GR98cUX9d7BVJ9LL71U119/vTZt2qQvv/xSJ5xwQq3lKqdASElJ0dixY/XZZ5951P4PP/yg8ePH1/hBWjmf6K+//qqZM2fqqquu0pNPPqmIiMDt8keOHFnjR1xdfd23b18ZhiHTNJWTk1PriBQ5OTmS/p6zrzFat25d7XVubm6j22wqKk+07tmzp85hFCv/7dU17LW/tvf6HBjX7t27a53n/YMPPtCFF16offv2VXs/Ly9PP/30k55++mnNnTvX7/HVxdf+bey++fXXX9fGjRslVdzRMHPmTJ+G3qzv309T6+vG8GUbrnoHbKCGi83NzdU///lPzZ8/v9r7O3bs0Hvvvaf33ntPN954Y5Ofl7wuVbfd2ua/Dsc+9nZbNE1TS5YsqXP5zp07PbpINWrUKF1zzTWaNWuWSktLddFFF+nbb79VRESEnnnmGfdxRVpamp555hmPPsu+fft02WWXuaepqGrHjh3asWOHvvzyS91///16++23dcwxx3jUbqBUXnyoPH6Q/PMd6a2q23p9I4ENHTpUy5Ytq3XZ9u3btX37dn3xxRe67777NHfu3IBfOPNGbX0dyN8k3grVvg1EvwbjeCIU9hUNfV9Jvh1LvPrqq+6/kd1u1xNPPOFzjA0NVd6Uj9vq6l8r9wsDBgzQBRdc4J5eaebMmZo2bZqio6MlVeyrL7vsMk2ePFlSxfSPVUfaqEvV6ZrqO0/jD435zeyv44tAsfIcUW08Pf8mNf2+bYp83Rc09jhuxIgR7n/XVZMWDlS5LC4uTv3799eePXv08MMPq6ioSD/88EOtU9Z899137pEwUlNT3TczWc2b83LBPk729JwQAAD1IaEBaIJmz54tl8ulPn36qH///nWWqxxK8ffff1deXp77R0BV3333naS6s/prM2fOHF1++eXuuTz/+c9/6uWXX/Z6uNGSkhKdfvrpWrlypVq3bq1//OMf6tKliwoKCvT1119bMufgzJkzVVxcrPPOO09t2rSpsfzWW2/Vgw8+qOTkZM2fP7/e/m/I+eefr4kTJ6qsrEyzZ8+uNaFh48aNWrhwoaSK6REqT7I05Pvvv9eoUaPcw8MlJibqtNNOU0ZGhgoLC7Vw4UL98MMPMk1T//3vf7Vz5069++67Pn8WX9TV1+np6Ro4cKC++eYbffnllzXufnI4HPrqq68kVZyMaqwDTyjUN+R5qOnQoYP69++vzMxMvf7667r99turLV+2bJk2b96s6OhonXTSSTXq+3N7r8+Bd0HWlhi1cOFCnXnmme67IFq2bKnTTz9dXbp0UW5urj7++GNlZ2fr9NNP12mnnRaQOA/ka/82dt88b9489/Pjjz9e3bp188fHcWuKfe0rX7fhNm3a6I8//pBUcSdV1ZFc/KG8vFxnnnmmFi1apLZt2+qUU05Rp06dtH//fn366af6+eefJUmPPPKI+vXrp3PPPdev6w+GyqmSkpKSlJGRUWN5uPWxt9tifXfHTZs2TdOnT9dFF13k8QhA999/vz777DOtXbtWy5cv17333qsLLrig2t3DTz/9dI0kv9rs3btXQ4YM0a+//iqpYp89evRoHXrooYqNjdW2bdv02Wefac2aNdq6datGjhyppUuXVptuIZh2796tn376SZKqDQ/f2O9IX1Qev0jV71quLWap4vvi6KOPVo8ePZScnCyHw6G1a9fqs88+065du7Rr1y6deOKJyszMVO/evf0SY2PU1deB+k3ia4yVMYVK3waqXwN9PBEq+4qGvq98PZZ477333M/HjBnjt5FeDtTUj9vq6l+r9wsTJkxwJyAUFBTo+++/r5bAdOmll2ratGlyOp165ZVXdN9999V7A0BOTo4++OADSRUXZs8880y/x1yVr7+Z/X184W9N8RyRp+ffmnLfduvWzX3x/osvvnAn+44fP75GglZqampQY/N1X9DY47ghQ4YoIiJC5eXl2rJli9asWVPrBfTKhIZBgwYpMjJSQ4YMkc1mk8vl0qJFi2pNaKiaIDFs2DCvRuYJtrrOywX7OLmuc0Kpqanubffmm2+WVHGz16RJk2q0EUrT84aK7Ox9Mowyq8PwimlaP0IgAAuZQBO0b98+U5K5b98+q0MJqA0bNtR4z+l0mh07djQlmU888US99Xft2mXGx8ebkswzzjijWn85nU7zrrvuMiWZksxly5bV2kanTp3cZRYtWmQ+8sgjpmEY7veuvvpq0+l0evyZ1q9f765b+bjooovMgoICj9torF9//dXdF5V97HK5zP/+979mRESEmZaWZu7YsaNGvdtvv92UZLZo0cL84YcfvF5v1b5cvXq1aZqmOW7cOFOSGRMTY+bm5taoM3XqVHed5cuXm6ZpmhdddJH7vaeffrpGnaKiIrNr167uMkOGDKn187z66qtmZGSku9zMmTO9/kwN+fXXX81ffvml2nue9PVnn31mSjJTUlLMb7/91v2+w+Ew//3vf5uSzMTExFrrmmbN7bY+119/vbtsTEyMWVxcXGu5RYsWVdtmG1L1bzd79uwGy3urcjuYOnVqrfuKSvPmzTMlmQkJCeaKFSvc7+fk5JiHHXaYKcm86aabatTz5/be0N/g4Ycfdpe12+3m3r17qy0vKChw7/ckmWPGjKnx78XpdJqTJ082JVXbR/na91X71zRr3x+bpm/925h9s9PpNFNSUtzL77//fp8+X12C2deebsP11atPY7bhqn8DSebdd99t5ufne9XGgWr7/rv66qvNoqKiauVcLpd53XXXuctkZGT4vM5A9vHKlSvN999/33Q4HNXedzqd5vPPP2/GxMSYksw77rij1vrNoY893U80dn96oMrvF0++i6paunSpabPZTElmZGSk2adPH3cfnHPOOR63849//MNd77zzzqv1+MXpdJoPPPCAu1y3bt1qbCue8KSPly9fbv7vf/8zS0pKaizbvHmzOXToUFOSOWDAgBrLff2OrOTpd92B+/Z27drVebxhmqY5ZcqUereV0tJS8+abb3a3N3LkyDrLesqTf/e+9nUgfpP4Kth9G8htuCkfT5hmcPYVtW23B/ZxY76vfN1/O51Os0WLFu7P9eCDD3pc1xuBPm6ra79QtY997V+r9wsul8tMTk5217/rrrtqlDn11FPdy+fNm1dve4888ki1Y4/G8PRYt7G/mQ/k6fGFv/bHlYJ5jqiyb6+77jqPyntz/q0+ge7bqucqOnXq5FEsjfmt7IkNGzZ4tC03Zl/Q2OO4Y445xt32c889V2P59u3bq/1WqXTEEUeYksxRo0bV2u6wYcPc9Rqz3TSk8nxiQ/uKqudAK3lyXi5Yx8mm2fA5IdM0Pd7G/cmb39BW8+e1ksq2jjjiNbNfv3kh9TjiiNf81g8AQg8jNABNzPz587Vp0ybFxMTo/PPPr7dsq1at9Nxzz+nCCy/Uu+++q6+++kr9+/dXbGyssrKytH79ekkV8ynXllV8oBkzZujzzz93v7799tt19913N+rzDBkyRLNnzw5qpv2zzz6r//73v+rbt69SU1MVFRWlzMxMbdmyRe3atdOnn35aY3SGDz74QPfcc48kqXv37po1a1ad7XuTcX/ppZfqnXfeUUlJid544w1dc8017mWmabrb6tOnj8d3K7388svu+ebat2+vjz76SElJSTXKnXfeedqzZ4+uu+46SdI999yjK664wj2fqD88++yzevrpp9WvXz8ddNBBcjgcDfa1JI0ePVpTp07V9OnTNWTIEA0YMEBt2rTRjz/+qI0bNyo2NlZvvPFGrXW98corr+jJJ590vx4/frxiYmIa1Wag/Pjjj9W2j7Vr10qqmM/z/fffd4/eMW/ePKWnp7vLnX766br22mv1xBNP6JhjjtGoUaMUHx+vBQsWKC8vT8cee6zuuuuuausK1PZem82bN+uBBx5wvx44cGCNuzJeeukl91CUXbt2rXV6G5vNpjvvvFPr1q3Ta6+95nUc9fXvZ599ptLSUkVHR/ulfxuzb96xY4d7rnvJf8OgVwpkX/u6DTf0t6lUtV5jt+F//etfeuaZZ9xzPd9xxx265557NHToUA0YMEBHHnmkjjzyyEbdbXnyySfr6aefrvG+YRh68MEH9e6772rz5s3Kzs7Wr7/+qkMOOaTBNoPZxxs2bNDYsWOVkpKivn37qk2bNsrLy9OqVavc29A555xT59zqodjHvuwngrk/bcjgwYN1ww036OGHH5bD4XCPUpGenq6ZM2d61MaCBQv00UcfSZLGjh2rV155pdZjOJvNpptvvlnbtm3TY489prVr1+rNN99s8NjVlz7evHmzzj77bCUkJKhv375q166dew7ozMxMlZeX6+CDD9b//ve/GuvzZR9el7feeqvG8NhlZWXavHmz5s+f7/4sbdu21TvvvFPv8UbV+a1rExUVpQceeEDZ2dn64IMPtHDhwjrvLKyLL//ufe1rf/8maYxA920wt+GmfDwRqH2FJ9ttaWmpPvnkk0Z/XzVm/71jxw7l5eW5Xx9497y/+Pu4zdP9wpNPPumettHX/rV6v2AYhvr06aOlS5dKknv6laquuOIK96gLL7zwgk4//fQ623vxxRfdzy+77DKvYvFlfywF7zdzfWr77qvLiSee6NHxrD/PEdXVt2+99Zb7rn+pZt9W8ub8m79507eVn8tqVfu7tLTUfZxf37bcmH1BY4/jRowY4d4OFi1aVGNKkaojLVSdjmHYsGHKysrSN998o7Kysmrn0EpKSqptWyNGjGiw3zx14Pb8559/Smp4X1H1HKg35+X8eZxcH0/OCQEA4BGrMyqA2oTzCA1nnXWWKck899xzPW7n559/Ni+77DKze/fuZkxMjBkZGWm2b9/eHDdunLlgwYJ661bNqK36mDRpktefxzRrZt/Pnz/fp3Ya4/PPPzdPO+00s2PHjmZ0dLSZmJhoHnnkkeadd95Z592hs2fPrrUfanvUpbYRGsrLy8127dqZksx+/fpVKz9//nx3+UcffdT9fkMjNAwcOLDe5VVVveNAkvnhhx/WW95bn3/+uXn88cebHTt2NGNiYjzq66o+/fRTc8yYMWZqaqoZGRlpHnTQQebFF1/s7r+6VO3rq6++2nzwwQfdj/vuu8+8/vrrq92ZKsk8+OCD6717xeoRGqquv77H+vXra63/1ltvmUOHDjWTkpLM2NhY89BDDzVnzJhhlpaW1ijr7+39wGx8h8NhbtiwwXzqqafMNm3aVGvvyy+/rNFW1W36hRdeqLefNmzY4NOoAcHs30q+7Jt//vnnavGsXLnSo8/nqUD2ta997Es9f2zDq1evNnv16lVv3fT0dPP88883P/vss4a6tsb3X0N/uwkTJrjLvvLKKw2272tf+Vpv3bp15vXXX28OHjzYbN++vRkTE2NGR0ebHTt2NM8880zz448/bjDeUOtjq7bFA/k6QoNpmmZxcbHZoUOHauv96KOPPK5/+umnu+tlZ2c3WH7Lli3u8meddVaD5X3p461bt5rTp083jz/+eLNTp05mXFycGRUVZaanp5snnHCC+d///rfWO9+r8mUfbpp1HyfX9oiMjDQnTpxY613qvnrjjTfc7b/44ote1bWir/31m8QfdwQ3xNe+DZV+DfTxRKD2FcH8vmrM/tvb/t27d2+13yu1PWo79+Hv4zZP+3fp0qWN7t+qfWXVfuG0005z1z/jjDNqLC8vL3d/Z9rtdnPbtm21tvP999+72zn88MO9jqOxv0N8/c18IF9GEfDmUddvhUCeI2ps3/py/q02ge7bqg8rR2hoTH83Zl/g63HcF1984Y6pXbt2NZZfeeWVpiQzLi6uWlvvvvuuu95XX31Vrc7ChQvdy1q3bl3v+r3la/9WPQfqy3k5fxwnN/ackGkyQkNDGKGBERoAmCYJDWiSwjmhIdjq+kHVpUsXn+Kr+mM1NjbWLC8vD0DUngtmH9eW0GCapnnrrbe63//pp5/c759zzjmmJDMqKsrcvXu3+/36EhpKSkrMqKgo9/Kq9epyww03uMvfcsstfvik1VmxHXtzIsBut5tnn312g0NxWp3QUJ+msK84kLcnY2w2W7XEnUoHbtOeXAjq37+/3/u+qfTxsmXLqvXbmjVr/Na2lX3dVPr3QKWlpeZzzz1nDhw4sNpFgNoeRx99tPn777/X2VbV77+2bds2uO7HH3/cXf7hhx9u9Gehj2sKlz6uauHChdX62TCMOofyPlDVIdS7dOni8TpbtWplSjI7d+7sa9huTa2PfbnwMHjwYDMrK8vjdWzZssX85JNPzOeff9589NFHq13gvPrqq/16DNfU+reqQCQ0BLNvKzWVPg7k8YTV+4qm0Mfe9u+ff/7p9QUqjtsav18477zz3PWPO+64WstMmTLFXea+++6rtUzlRU/Jf8PLN5U+rk0gExqCdY6oqfZvqCc0VNVU+7iqwsLCavvRAxPwevbsaUo1p5bIyclxH09Pnz692rKq+4yzzz47oPE39T721zmhSp5u4/7U1Pu4qkAkNMTGzjLj4l4MqUds7Cy/9QOA0MOUEwDc7r33Xs2YMUP5+flav369hg8frkWLFvk8HHSPHj1kt9v9G2QIuuSSSzRjxgxJ0uzZs/Xoo48qLy9P8+bNkySdcsopSktL86itjRs3qqysTJLUoUMHj+pVHWK2csi6cDJs2DA9/PDDAR2KE3Wz2WwaNWqUpk6dWutwshs2bHBv0x07dlRKSkqDbR5++OHKzMz0e6xNwYHTxxQUFPitbfq6pqioKF1++eW6/PLLlZOTo2+//VbLly9XVlaWvv/+e+3cudNd9vvvv9fRRx+tr7/+usHhdCuHaa5PYmKi+7k//85NDX0cPPv379cll1wi0zTd75mmqUsuuUQ//fSTYmNj662/ceNG9xDq69ev93oo6N27d3sdcyhZtGhRteGIJcnpdGrv3r3KysrS888/r7feekvLli3TwIED9cknn9QoX9Vbb72lBx98UCtWrPBo/VWHt0f96NvAHk+wrwhs/1biuK3x9u/f735e2xSNUsUUkXfffbdcLpdmz56tW2+9tdryoqIivfnmm5JkybQEVqvtu68xOEf0N2/6dvHixX6d2iBcxMXFacCAAVq2bJmkij7v2bOnJGn79u36448/JKnG36Fly5Y65JBDtGrVKi1atEhTpkxxL6s6TQV/E880dE4I1snISJDdHtdwwSbE6bQrK8vqKABYhYQGAG4DBw7UF198odGjR2vfvn3asGGDO6mhS5cuXreXnJwcgChDT8+ePXXsscfq66+/1quvvqoHHnhAb7zxhkpKSiRVJDx4qupcuJ4mQVQtl5ub6/G6QkXVEwGmaWrXrl1atWqVHnnkEX3yySdauHChBg0apMWLF6tr167WBttMXX311erWrZv7dUREhJKSktSxY0f17dtXqampddatuk23bNnSo/V5uu2HogP7YM+ePX5rm76uX1pamk455RSdcsop7vcyMzP10EMPuec137dvny666KIG57uNiYlpcH1VLwC5XC4fow4t9HFg3Xjjje45wo899ljt379fP//8s/78809NmjRJjz76aL31G7u/KSwsbFT9UGS325WWlqbjjjtOxx13nI444gjddtttKi4u1jnnnKM//vijWmKNVHGscsUVV+iFF17wal2Vx42oG337t0AeT7Cv8L5/u3fvXi3ZrFJ9ySActzVe1d++dfVhp06ddMIJJ+izzz7TH3/8oaVLl2rIkCHu5W+//bby8/MlSWPHjvUosQR14xwRgm3EiBHVEhquuuoq9/NKtSWWDB8+XKtWrdK3336rkpISxcTEqLi4WN9//321tlGhMeeEAADwFAkNAKo5+uijNX/+fJ1wwgnKy8vTxo0bNWzYMC1atKjawaknbDZbgKIMPZdeeqm+/vpr5eTk6MMPP9SLL74oSUpPT9eYMWMsjq75MAxDbdq0UZs2bTRq1Chde+21evLJJ7V582adffbZ+uabbxQVFWV1mM3O+PHj/XrnTjhr27atWrRo4b7z8ccff9TIkSOtDSqM9e/fX2+99Zb69OmjO+64Q5K0YsUKZWZmqn///hZH1zzQx/7x6aef6vnnn5dUcTfanDlztH//fg0YMEDl5eV64oknNG7cOA0ePLjONsrLy93P27dvr+uvvz7QYTc7//nPf/TEE09o+/bt2rFjh1599VX93//9X7UyL7zwgvuCe2RkpC699FKdcsop6tWrl1q3bq3Y2Fj33auLFi3iO8AL9O3fAnk8wb6ion+Tk5O1b98+SdLKlSub9fYUilwul37++Wf36/pGdrryyiv12WefSarYj1RNaKiaIHX55ZcHINLwwjkiBNuIESN01113SZK++uor9/uVIy3ExsZqwIABNeoNGzZMM2fOVGlpqb777jsNHz5c3377rUpLSyVJ7dq1U0ZGRuA/QIjgnBAAIBhIaECTMmvWLM2aNUtOp9PqUMJa//793UkNe/fu1ebNm90jNXTv3t3q8ELS2WefrWuvvVaFhYWaPHmyfvvtN0nShRde6NWQi1XvCPH07qicnBz383DLin744Ye1ePFi/fLLL1qxYoUeeeSRGsOIVqp6h1Rtd1AdqKioyG9xhrPGbtPNjc1m07Bhw/T+++9LkhYsWKD//Oc/fmmbvvbdLbfcoscee8zdH1xs9z/62Hd5eXnVLrLcf//97uO1SZMm6c4775TL5XJPPREXV/uwolXvXo2NjfXbviecREREaMCAAe59+LJly2okNDzxxBPu53PnztVpp51WZ3uVF0vhGfr2b4E8nmBfUdG/Q4cO1Ycffiip4sLYTTfd5Nd1cNzWOFlZWe6RFaSKi5N1OeWUU9S2bVvt2LFDb7/9tp588kklJiZqzZo1Wrp0qSSpa9eu3I0NhKCBAwcqOjpapaWl2rFjh1avXq1evXq5R2gYOHBgrTe9DB061P28clTQqqM6sD9Ac5CdvVeGEVojlZlmsdUhBNXu3bs1Y8YMffDBB9qyZYvi4+PVt2/1TIruAAAZM0lEQVRfXXPNNTr99NOtDg8IOlJj0aRMmDBBv/32G/M+NgFHHXWUvvzyS/cF8C1btmj48OH6888/LY4sNCUkJOiss86SJHcyg+TddBNSxZ0llT+2Nm/e7NHJrZUrV7qfV84XGC4iIyP18MMPu1/fd999dc7bm5CQ4H7uyTy4mzZtanyAUOfOnd3b9KZNm6oNr1uXn376KdBhWWrs2LHu51988YXWrVvnl3bpa99FRESoR48e7tfN/UKYFehj3/3rX//Stm3bJFWcXJ0wYYJ72R133KEjjjhCkrRmzRrddtttdbbTqVMnd7LD+vXrq809Ds9VTRg58JijqKhIv/zyi6SKi2P1XXCXpFWrVvk/wGaKvq0pUMcT7CsqVD2J/Omnn7qn/PEXjtsa56mnnnI/T0pKqvUO7EoRERHu3+WFhYV68803JUkvvviiO9H90ksvrXeKEABNU0xMjAYOHOh+vXjxYm3dulVr1qyRVPt0E5LUunVr9erVy12n6v8lEhrQPGRkJKlXr+SQemRkJFndbUHz66+/6tBDD9UjjzyiNWvWKDIyUnl5eZo/f77Gjh2r6667zuoQgaAjoQFAnfr27asFCxa478LZunWrhg8frj/++MPiyELTpZdeWu31oEGDvB6iLjo6Wv369XO/fvvtt+st73K59M4777hfH3vssV6trzk4/vjj3UNs5+fna8aMGbWWa9Omjft5Q9t4WVlZtex8+C46Olp9+/Z1v37vvffqLb9p0yYtX748wFFZ69xzz1XHjh0lVfwb/ve//+1TOwcm5tDXjbNz5073c0/nsoZ36GPvzZs3T6+99pokKTExUbNnz652wSUyMlJz5sxRZGSkJOnJJ5/UkiVLam0rKirKfTea0+nU//73vwBH3zxVTXg8cK71qhckPRk1q+oxHOpH39YUqOMJ9hUVzj//fHXo0EFSRT/4+6Qyx22+++GHH/TKK6+4X//rX/9qcNrByy+/3P39+eKLL8rpdOqll16SJNntdl188cUBixdAYFVNPli0aFG1xIT6Rm+pXPbdd99pz549+uGHH2ptE/4REVExkDijNgNSaWmpTj31VO3atUuHHnqoe+Sp/Px83X333TIMQ0888YRmz55tdahAUJHQAKBeRxxxhBYuXKi0tDRJ0rZt2zR8+HD9/vvvFkcWeoYMGaKbb75ZEyZM0IQJEzRt2jSf2rnooovcz++9995674p6+umn3XcLpaena/To0T6tM9RNnTrV/fzpp5/W9u3ba5Tp0KGDWrVqJanirr36khpmzpypXbt2+T/QMHXBBRe4n99zzz0qLq57CLnJkyd7NCVIKDtwZJFPPvlEN9xwg8ef2zRNzZgxQ9OnT6+xjL6usHDhQjkcDq/KV72z9eijjw5EWM0KfRx4u3fv1lVXXeV+/fDDD9c6R/jhhx+uyZMnS6rYP1xyySUqLCystc2qFzynTJlS6/dlXZrr/sIb69at0/fff+9+XfVipFSR4FB5wWz16tX17oPnzJmjrKysgMTZHNG3NQXyeIJ9RUVix4MPPuh+/f7772vixIl+/Xwct3kvKytLZ5xxhsrKyiRJaWlpHk0H0rVrV40cOVJSxcXLRx55xD360ZgxY9S+ffvABQ0goKomHyxevNh9c0psbGy9vzkqExrKysr00EMPufcrHTt2VNeuXQMYcXhKTk6WJI9GJIJ/ZGfnavXqPSH1yM7OtbrbguLZZ5/VunXrFBcXp48//liHH364pIrRAG+//XZdc801kipGZPTmvAsQ6khoANCgPn36aNGiRe6Lvdu3b9fw4cOrTZ0AzzzwwAOaOXOmZs6cqeOPP96nNi688EJ169ZNUsWdOJUZmwd68803deONN7pf33777e47NMPNcccdp0GDBkmSiouLdd9999Va7owzznA/v/zyy2udeuLFF1/UrbfeGphAw9SFF16ogw46SJK0du1anXnmmcrLy6tWxuVyafr06Xr55ZfDYrjXM888UxMnTnS/fuyxx3T88cfXe+edw+HQu+++qyOOOEK33XZbrT9q6OsKkyZNUrdu3XTPPfdo7dq19ZZ9//333VMGSRUX2it/TKJu9HHg/d///Z97SoPRo0friiuuqLPsbbfd5r64vm7dujq/x0466SSddNJJkiqSWAcPHuyeP7w2DodDn332mU499VTNmzfP14/SLGzYsEHjxo1TeXm5pIqT5Oecc061MnFxcTrqqKMkVQxrftVVV6m0tLRGW3PmzNFVV13VbPfBgUDf1i5QxxPsKyr885//rPZ768EHH9Rxxx2nb775pt56xcXFevrppxtsn+M2z23atEm33XabjjnmGG3dulVSxVDzH3zwgUejtkjSlVde6X4+adIk9/PLLrvMv8ECCKqjjz5asbGxkioSgt966y1J0jHHHKPo6Og661UdvWHmzJnu55XJT/CvyhFsCwsLq42GgcBhyomm69VXX5UknXPOOe4R16qaOHGiDMPQtm3bGEEYYSXC6gAAhIZDDz1UixYt0qhRo7Rz507t3LlTI0aM0MKFC3XIIYdYHV5YiY2N1WuvvaaRI0eqqKhIixcvVo8ePXTaaacpIyNDhYWFWrhwYbU7BE8//XR39ma4mjp1qnuEimeffVYTJ050DxNbaeLEiXrllVdUVFSkpUuXKiMjQ2eeeabatm2rnJwcffHFF1q1apXatm2rf/zjH3r++eet+CjNTkJCgl544QWddNJJKi8v1yeffKIePXpo7Nix6ty5s3Jzc/Xxxx/r999/V0pKik4//fSwGFZtxowZiouL0/Tp02WaphYsWKD+/furR48eGjJkiNLT0xUfH6+cnBytXbtWixYtUn5+vrt+5ZCNVdHXf9u8ebPuuOMO3XHHHerWrZsGDBigjh07qkWLFiorK9OGDRu0ZMmSahfjW7ZsqRdeeMHCqEMLfRw4r7/+unvI/BYtWjTYZxEREXrppZfUr18/lZWVadasWRo3blyt8wa//vrrGj58uLKysrRu3ToNHTpUhx9+uIYMGaK2bdvKNE3l5ubq119/1Q8//OC+uHbhhRf6+2M2KW+99VaNi8Aul0t5eXlauXKlFixYUO3C70MPPVTryadbb71V48aNkyS98sorWrJkiU466SR16NDBfazx66+/ym63a9KkSbrnnnsC+8GaoKlTp7oTqRsyYsQITZgwQRJ9W5dAHE9I7CsqPfTQQ0pKSnL378KFC7Vw4UJ17NhRgwcPVocOHZSSkiKHw6E9e/Zo9erVWrZsmYqKitxtZGRkuO9MrYrjtr8duA8uKyvTvn37tGPH/7d39zFVln8cxz9HkQd59AETUUwzxDQfkzSZhMdILEvSnBuVaGEzpuuPnG4qWGmr31wiaQ+6Uue09TDNzNKmaYCWYk5kgohPhAIqtAUhmqPz+8Nx5wmQI3BzDvB+/eN1PNd9n+/9ZcKR+3Ouq0SZmZk6ffq03QoVffv21aZNmzR27FiHX2Pq1Knq3r27SktLjXDafffdpylTpjTfhbQydf3su5tZs2Y5/P0baCnu7u4aN26c9u3bJ+nfrZTutt2EdHuV0wcffFD5+fl2H3ZhuwlzPPXUU0YgcMqUKYqLi1Pfvn3VsWNHSVJwcLBiY2OdWSLQIv766y9lZmZKur1KVF1CQkI0aNAg5eTkaP/+/YqOjm7JEgGnIdAAwGGDBw/WgQMHNGHCBJWUlOjq1auKiorS/v379fDDDzu7vHbl0Ucf1YEDBzRjxgwVFBSovLzcbp/QGhaLRXPnztXatWvb9Sd2JCk6OlpjxozRr7/+qps3b2rlypW1PhnVv39/bd26VTNnztTNmzdVVFSk1NRUuzn9+vXT9u3bG9zHFvfmiSee0Jdffqn4+HiVl5ertLRUGzZssJsTGBior7/+Wj/99JOTqmxZFotFycnJioiI0JIlS4yQUn5+vvLz8+s9rkePHlq4cGG9e2XTaykiIkKnTp0yfjF17ty5BlcRiIiI0IYNGxQWFtYSJbZ69Ng8xcXFdv++16xZ49BS2EOGDFFycrKWLFkim82mOXPmKDs7W97e3nbz/P39dejQIb3++uvGPuJZWVnKysqq99zdunVTUFBQ4y+qFfj4448dmtelSxelpKTUe9P2ueee05tvvqnly5fLZrOpoKCg1vsRb29vffLJJwoODm43N93vlJaW5vBcHx8fY0xv62bW+wm+V9xW09/IyEgtW7ZMGRkZkm6vGLBt27a7HjtgwAAtWLBA8+bNqzc4wvu22xz9HhwUFKTZs2dr8eLF8vX1vafXcHd316xZs+y2annppZfq/dq0B472vcbEiRMJNMAlRUVFGYGGGnUFe/8rMjKy1s9KAg3mmD9/vrZs2aLTp0/r6tWrWr16td3zkZGRBBrQLK5du6Zjx44pMzPT+LOkpMR4fuPGjYqPj2/0+Q8fPqxNmzYpIyNDly5dknR7m+OIiAjFx8cbKwjXJzc31whpDhkypN55Q4YMUU5ODitoo11pv+/KATTKoEGDdPDgQUVFRam4uFjXrl3ThAkTtH//fg0dOtTZ5bUr4eHhysvL06ZNm7Rz505lZWWptLRUXl5eCg4OVlRUlF5++WWNGDHC2aW6jOTkZMXExEiSPv30Uy1atEj333+/3ZypU6cqOztbq1at0r59+1RUVCRPT0/1799fzz//vObNmyd/f38CDSaIjY1VeHi4UlJS9N133+n3339Xp06dFBISomeffVavvfaagoKC2vQva+titVpltVqVkZGhPXv26Oeff1ZhYaFKS0t169YtBQQEKCQkRKNHj1ZMTIxiYmIa/MVre+/1qlWrtHLlSqWlpSk9PV3Hjx/XmTNndOXKFVVWVsrDw0P+/v4KDQ3VqFGjNG3atAb/0wl79Ng8CQkJ+uOP23uHPvPMM/f0aedFixbpm2++UWZmpi5cuKCFCxfqww8/rDWvc+fOWr9+vRYtWqTNmzfr4MGDOnv2rMrKytShQwcFBARowIABGjVqlKKjozVx4kS5u7s32zW2FhaLRd7e3goMDNTQoUM1adIkzZw5UwEBAXc9LikpSVarVampqTp06JCuXr0qX19f9e7dW5MnT1ZCQoL69++vgwcPtsh1tCX0tn5mvJ/ge8W/Hn/8caWnpyszM1N79uxRWlqazp8/r7KyMlVWVsrX11ddu3ZVWFiYRo8erejoaIdXD2jv79vq4u3tLT8/PwUEBCg0NFQjRozQ2LFjZbVajU/zNkZCQoJdoIHtJoC24b8hBE9PT40ZM6bB4yIjI+1W5nzggQeMrYDQvHx9fXXkyBF98MEH2r17t/Ly8lReXm6smIPml5f3hyyW6w1PdCE2241GH1tSUqIxY8aooKCgGSv6V2VlpRYsWKDPPvus1nO5ubnKzc3Vhg0bNGfOHKWmptb6YEGN4uJiY9yrV696X6/muTvnA22dxXbnmmyAiygvL5e/v7/+/PNP+fm13b2RCgoK1LdvX2eX0abRY/PRY/PRY/PRY3PRX/PRY/PRY/PRY3PRX/PRY/PRY/O15x6np6dr/Pjxkm6vHJWenm7K67TnHrcE+ms+emw+emy+1tTj5rxXUnOu4cM/UseOXs1UYcuorq7SiRPzGtWHixcvql+/fg3Oa8wKDdXV1Zo8ebJ+/PFH4++8vLw0ePBgubm5KScnx25LtyeffFK7d++uM4S5bds2xcXFSZJu3bpVb8B4yZIleueddxQaGqq8vLx7qhdorTo4uwAAAAAAAAAAcKaNGzca41deecWJlQAAALMEBgZq0qRJWrp0qXbu3Nnk8y1btswuzJCQkKBLly4pMzNTv/zyi4qKirR06VLj+b179yopKanJrwu0N2w5AQAAAAAAAKDdKisr0xdffCFJ6tKli2bMmOHkigAAQHPp2rWrvvrqK40ePbpZV+a4fPmyVq9ebTx+8cUXtX79ers53t7eevvttyVJK1askCStXr1aiYmJtbaV8PHxMcbXr1+vdyWK69dvbxfi6+vb9IsAWgkCDQAAAAAAAADaraSkJOPmQEJCgry8Wtcy3AAA3Iu8vDJZLJ7OLuOe2Gw3Gn2sn5+fpk+f3ozV3JaamqobN27X1blzZ6WkpNQ7d9myZdq8ebMKCwtVVVWlNWvW6L333rObc2fAoaioqN5AQ1FRkSQpKCioiVcAtB4EGgAAAAAAAAC0G0ePHtXRo0dVWVmpAwcOaO/evZKkgIAAvfHGG06uDgAAcw0c6K+OHVtXeK+6ukonTji7Cnvbt283xjNmzFDXrl3rnevu7q7Zs2frrbfekiTt2LGjVqAhLCxMFotFNptNp06dUlhYWJ3nOnXqlCTpoYceauolAK1GB2cXAAAAAAAAAAAt5fvvv9f8+fO1ePFiI8xgsVj00UcfKTAw0MnVAQAAV5eXl6ezZ88ajydNmtTgMTExMcY4Pz9fZ86csXvex8dH4eHhkqQ9e/bUeY5Lly4pJydHkmS1Wu+5bqC1YoUGAAAAAAAAAO1Sz549NXz4cC1dulTjxo1zdjkAAJiuvW05YYasrCy7x2PHjm3wmJEjR8rd3V1///23cY7Q0FC7OXFxcTpy5Ig+//xzJSUlqU+fPnbP/+9//5PNZlOvXr0UFRXVxKsAWg8CDQAAAAAAAADajeXLl2v58uXOLgMAAKcYODCALSeaKDc31xi7u7vXCh7UpWbeuXPnap2jxty5c5WSkqLz58/r6aef1pYtWzR06FBVVVVpzZo1Wrt2rSRpxYoV6tSpUzNdDeD6CDQAAAAAAAAAAAAAgAMKCgqMce/evWWxWBw6LiQkxAg0XLx4sdbzHh4e+vbbbzVhwgSdPHlSw4YNk5+fnyorK1VdXS1Jmj9/vmbPnt30iwBaEQINcEk2m02SVF5e7uRKzFVRUdHmr9HZ6LH56LH56LH56LG56K/56LH56LH56LG56K/56LH56LH56LH56LG56K/56LH56LH5WlOPa+qsuWfSHKqrXWv7BkfU1Pzfr5uHh4c8PDxavJ476/D393f4OD8/P2NcUVFR55zBgwcrOztb7777rnbt2qXCwkL5+/tr5MiRSkxM1NSpUxtdN9BaEWiAS1m3bp3WrVtn7CHkyDI9AAAAAAAAAAAAbVVFRcU93Tivi7u7u3r27Kns7MXNVFXL8vHxqXXPKDk52SnbSFVWVhpjT09Ph4/z8vp3q487z/FfPXr00Pvvv6/333+/cQUCbQyBBriUxMREJSYm6p9//lFRUZF8fX0dXqoHAAAAAAAAAACgrbDZbKqoqFCvXr2afC5PT09duHDB+EBpa2Oz2WrdL3LG6gySdOvWLWPs5ub4rdY757bWrwPgDAQa4JI6dOig3r17O7sMAAAAAAAAAAAAp2nqygx38vT0vKcVBVC3zp07G+MbNxzfwuPOud7e3s1aE9CWdXB2AQAAAAAAAAAAAADQGvj4+Bjjqqoqh4+7fv16necAcHcEGgAAAAAAAAAAAADAAd27dzfGxcXFDh9XUlJijLt169asNQFtGYEGAAAAAAAAAAAAAHDAwIEDjXFZWZndygt3U1hYaIzDwsKavS6grSLQAAAAAAAAAAAAAAAOGDRokN3jEydONHjM5cuXde3atXrPAaB+BBoAAAAAAAAAAAAAwAHh4eHy8PAwHmdkZDR4THp6ujH29PRUeHi4KbUBbRGBBgAAAAAAAAAAAABwgI+Pj6xWq/F469atDR5z5xyr1Spvb29TagPaIgINAAAAAAAAAAAAAOCg+Ph4Y3zy5Ent2rWr3rnHjx/XDz/8UOexABpGoAEAAAAAAAAAAAAAHDR9+nQNGzbMePzqq6/q9OnTteYVFxfrhRdeUHV1tSRp+PDhmjZtWovVCbQFFpvNZnN2EQAAAAAAAAAAAADQ3BISErRly5Zaf3/z5k1j7Obmpo4dO9aac+PGjXrPe+zYMY0fP15VVVWSJD8/P82bN0/jx4+Xm5ubjh49qrVr1+rKlSuSJC8vL6WlpemRRx5p6iUB7QqBBgAAAAAAAAAAAABtUnx8vDZv3tyoYxu6jbpjxw7FxcUZoYb6eHl5aevWrYqNjW1UHUB7xpYTAAAAAAAAAAAAAHCPYmNj9dtvv8lqtcpisdR63mKxaOLEiTp+/DhhBqCRWKEBAAAAAAAAAAAAAJqgsLBQhw8f1uXLlyVJwcHBeuyxx9SnTx8nVwa0bgQaAAAAAAAAAAAAAACAy2HLCQAAAAAAAAAAAAAA4HIINAAAAAAAAAAAAAAAAJdDoAEAAAAAAAAAAAAAALgcAg0AAAAAAAAAAAAAAMDlEGgAAAAAAAAAAAAAAAAuh0ADAAAAAAAAAAAAAABwOQQaAAAAAAAAAAAAAACAyyHQAAAAAAAAAAAAAAAAXA6BBgAAAAAAAAAAAAAA4HIINAAAAAAAAAAAAAAAAJdDoAEAAAAAAAAAAAAAALgcAg0AAAAAAAAAAAAAAMDlEGgAAAAAAAAAAAAAAAAuh0ADAAAAAAAAAAAAAABwOQQaAAAAAAAAAAAAAACAyyHQAAAAAAAAAAAAAAAAXA6BBgAAAAAAAAAAAAAA4HIINAAAAAAAAAAAAAAAAJdDoAEAAAAAAAAAAAAAALgcAg0AAAAAAAAAAAAAAMDlEGgAAAAAAAAAAAAAAAAu5/8LpHb96t9TFgAAAABJRU5ErkJggg==", "text/html": [ "\n", "
\n", "
\n", " Figure\n", "
\n", " \n", "
\n", " " ], "text/plain": [ "Canvas(toolbar=Toolbar(toolitems=[('Home', 'Reset original view', 'home', 'home'), ('Back', 'Back to previous …" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "# Define the isotopes you want to plot\n", "\n", "# Create a full list of isotope names in the format 'Element-MassNumber'\n", "iso_full_name = [f\"{iso_name[i]}-{int(iso_a[i])}\" for i in range(n_iso)]\n", "\n", "# Initialize the figure\n", "ifig = 9\n", "plt.close(ifig)\n", "fig = plt.figure(ifig, figsize=(21, 10)) # Adjust figure size as needed\n", "\n", "# Initialize arrays for plotting template abundances\n", "x0 = []\n", "y0 = []\n", "ii = 0 # Counter for valid isotopes\n", "\n", "# Determine the global min and max for the logarithmic abundance ratio to set consistent binning\n", "log_ratios_all = []\n", "\n", "for isotope in pnuclei:\n", " try:\n", " i = iso_full_name.index(isotope)\n", " except ValueError:\n", " print(f\"Isotope {isotope} not found in the data.\")\n", " continue\n", "\n", " # Calculate the logarithm of the abundance ratio\n", " numerator = iso_abu[:, i]\n", " denominator = get_sol_abu(isotope)\n", " with np.errstate(divide='ignore', invalid='ignore'):\n", " ratio = np.where(denominator != 0, numerator / denominator, np.nan)\n", " yh = np.log10(ratio)\n", " yh = yh[np.isfinite(yh)] # Remove infinities and NaNs\n", "\n", " if len(yh) == 0:\n", " continue\n", " \n", " # Append to global list for calculating the common bin edges\n", " log_ratios_all.extend(yh)\n", "\n", "# Define consistent bins based on the global range of log-abundance ratios\n", "log_min = np.min(log_ratios_all) #1\n", "log_max = np.max(log_ratios_all) #1000\n", "\n", "common_bins = np.linspace(log_min, log_max, 50)\n", "\n", "\n", "norm = mpl.colors.LogNorm(vmin=1, vmax=1000)\n", "# Plot each isotope using the common bins\n", "spread = []\n", "for isotope in pnuclei:\n", " try:\n", " i = iso_full_name.index(isotope)\n", " except ValueError:\n", " print(f\"Isotope {isotope} not found in the data.\")\n", " continue\n", "\n", " numerator = iso_abu[:, i]\n", " denominator = get_sol_abu(isotope)\n", " with np.errstate(divide='ignore', invalid='ignore'):\n", " ratio = np.where(denominator != 0, numerator / denominator, np.nan)\n", " yh = np.log10(ratio)\n", " yh = yh[np.isfinite(yh)] # Remove infinities and NaNs\n", "\n", " spread.append( np.max(yh) - np.min(yh) )\n", "\n", " if len(yh) == 0:\n", " continue\n", " \n", " # Create a histogram using the common bins\n", " n, _ = np.histogram(yh, bins=common_bins)\n", " area = n / 0.5 # Adjust as needed\n", " \n", " nn = len(n)\n", " x = np.full(nn, ii) # Use ii to position isotopes along the x-axis\n", " y = 0.5 * (common_bins[:-1] + common_bins[1:])\n", "\n", " sorted_indices = np.argsort(area)[::-1]\n", " x_sorted = x[sorted_indices]\n", " y_sorted = y[sorted_indices]\n", " area_sorted = area[sorted_indices]\n", " n_sorted = n[sorted_indices]\n", " \n", " # Plot the scatter points\n", " plt.scatter(x_sorted, y_sorted, marker='o', s=area_sorted, c=n_sorted, alpha=0.8, edgecolors='none', cmap='jet', norm=norm,zorder=5)\n", "\n", " # Store the isotope index and template abundance for plotting\n", " x0.append(ii)\n", " y0.append(0) # Since log10(1) = 0\n", " ii += 1\n", "\n", "# Add colorbar to the plot\n", "cbar = plt.colorbar(pad=0.01)\n", "cbar.set_label('Number of MC runs out of 1000', fontsize=25)\n", "cbar.ax.tick_params(labelsize=25)\n", "\n", "# Adjust plot limits and labels\n", "plt.xlim(-1.3, ii)\n", "plt.ylim(-1.8, 3.2)\n", "#plt.xlabel('Isotope Index')\n", "plt.ylabel(r'$\\mathrm{OP}=\\log_{10}(X_i/X_\\odot)$', fontsize=35)\n", "plt.yticks(np.arange(-1.5,3.1,0.5), fontsize=25)\n", "plt.minorticks_on()\n", "plt.xticks([])\n", "\n", "ymin, ymax = -1.75, 3.05\n", "\n", "# Add isotope labels\n", "yshift = 0.1\n", "for idx, isotope in enumerate(pnuclei, 1):\n", " \n", " ele, A = isotope.split('-')\n", " iso = fr'$^{{{A}}}\\mathrm{{{ele}}}$'\n", " \n", " text_y = 3.08-yshift if idx % 2 == 1 else -1.85+yshift\n", " if idx%2==1: plt.axvline(idx-1, color='lightgrey', lw=0.5,zorder=1)\n", " plt.text(idx-1.28, text_y, iso, ha='center', fontsize=23)\n", " \n", "plt.axhline(0, color='grey', lw=6, zorder=2)\n", "\"\"\"\n", "if mixing_case.startswith(\"PPM\") and mixing_case != 'PPM': \n", " fronthalf = mixing_case[3:]\n", " mixing_case_title = fr'${{{fronthalf}}}\\times$' + '3D-insp.'\n", "else:\n", " mixing_case_title = mixing_case.replace('PPM', '3D-insp.')\n", "\n", "plt.title('Mixing Case '+ mixing_case_title)\n", "\"\"\"\n", "plt.tight_layout()\n", "\n", "#print(spread)\n", "print(f'The mean spread is {round(np.mean(spread),2)}')\n", "\n", "#plt.savefig('nuclearimpact_MLT.pdf', dpi=300, bbox_inches='tight')" ] }, { "cell_type": "code", "execution_count": 38, "metadata": { "scrolled": true }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "WARNING:\n", "This initial abundance file uses an element name that does\n", "not contain the mass number in the 3rd to 5th position.\n", "It is assumed that this is the proton and we will change\n", "the name to 'h 1' to be consistent with the notation used in\n", "iniab.dat files\n", "WARNING:\n", "This initial abundance file uses an element name that does\n", "not contain the mass number in the 3rd to 5th position.\n", "It is assumed that this is the proton and we will change\n", "the name to 'h 1' to be consistent with the notation used in\n", "iniab.dat files\n", "\n", "n_init = 83\n", "WARNING:\n", "This initial abundance file uses an element name that does\n", "not contain the mass number in the 3rd to 5th position.\n", "It is assumed that this is the proton and we will change\n", "the name to 'h 1' to be consistent with the notation used in\n", "iniab.dat files\n", "\n", "n_sol = 83\n", "X_sol = 0.706457139998516 , X_sol(Tc) = 1e-99 , X_sol(Pm) = 1e-99\n", "Zero variation case: /scratch/f/fherwig/jissa/multizone_MC_RUNS/multi-zone_RAWD_MC_sims_cedar/MLT_MC_results/MLT_MC_0_OC.0010001.surf.h5\n", "Number of Elements: 85 \n", "Number of Isotopes: 1638\n", "Reading all MC runs\n", "Reading in run 0\n", "Reading in run 100\n", "Reading in run 200\n", "Reading in run 300\n", "Reading in run 400\n", "Reading in run 500\n", "Reading in run 600\n", "Reading in run 700\n", "Reading in run 800\n", "Reading in run 900\n", "n_mc = 1000 must be equal to mc_runs = 1000 \n", "n_fac = 1986 must be equal to the number of varied reaction rates\n", "5 397 1 1000\n", "k1 = 398000 must be equal to 398000\n", "These should be equal\n", "5.76199D-01 0.576199\n", "7.04132D+00 0.170795\n", "['PO210', '(g,a)', '10.00']\n", "0 SE 68 (g,n) 10.0\n", "1985 PO 210 (g,a) 10.0\n" ] } ], "source": [ "mc_runs, el_name, z_el, n_el, el_abu_0, el_abu, el_abu_sol, n_fac, n_iso, iso_name, iso_a, iso_abu, iso_abu_0, mc_fac, name, mass, rtypes, varmax = get_everything_you_need(\"MLT\")" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "#### Plot the correlation to get a slope\n" ] }, { "cell_type": "code", "execution_count": 26, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "" ] }, "execution_count": 26, "metadata": {}, "output_type": "execute_result" }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "9022334253bb418a88fd1383d6dcffcd", "version_major": 2, "version_minor": 0 }, "image/png": "iVBORw0KGgoAAAANSUhEUgAAA+gAAAK8CAYAAAB8y5WxAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzdeVxUZd8G8GtAdmUQUQd3ckkRd0PMJRdQ3J9Kc8+VJ01za1GfXLMy6ym1TEszrdxKs1wjNc3UcBcTsTQDfVVQAQUFAZ057x/znJHZz+wDc30/Hz6vzJw5554Bep/r3Pf9+8kEQRBARERERERERC7l5eoBEBEREREREREDOhEREREREZFbYEAnIiIiIiIicgMM6ERERERERERugAGdiIiIiIiIyA0woBMRERERERG5AQZ0IiIiIiIiIjfAgE5ERERERETkBhjQiYiIiIiIiNwAAzoRERERERGRG2BAJyIiIiIiInIDDOhEREREREREboABnYiIiIiIiMgNMKATERERERERuQEGdCIiIiIiIiI3wIBORERERERE5AYY0ImIiIiIiIjcAAM6ERERERERkRtgQCciIiIiIiJyAwzoRERERERERG6AAZ2IiIiIiIjIDTCgExEREREREbkBBnQiIiIiIiIiN8CATkREREREROQGGNCJiIiIiIiI3AADOhEREREREZEbYEAnIiIiIiIicgMM6ERERERERERugAGdiIiIiIiIyA0woBMRERERERG5AQZ0IiIiIiIiIjfAgE5ERERERETkBhjQiYiIiIiIiNwAAzoRERERERGRG2BAJyIiIiIiInIDDOhEREREREREboABnYiIiIiIiMgNMKATERERERERuQEGdCIiIiIiIiI3wIBORERERERE5AYY0ImIiIiIiIjcAAM6ERERERERkRtgQCciIiIiIiJyAwzoRERERERERG6AAZ2IiIiIiIjIDTCgExEREREREbkBBnQiIiIiIiIiN8CATkREREREROQGGNCJiIiIiIiI3AADOhEREREREZEbYEAnIiIiIiIicgMM6ERERERERERugAGdiIiIiIiIyA0woBMRERERERG5AQZ0IiIiIiIiIjfAgE5ERERERETkBhjQiYiIiIiIiNwAAzoRERERERGRG2BAJyIiIiIiInIDDOhEREREREREboABnYiIiIiIiMgNMKATERERERERuQEGdCIiIiIiIiI3wIBORFSKHT16FAMGDEB4eDh8fX2hUCjQv39/JCUl2fU6165dw5QpU/DMM88gJCQEMpkMa9euNXhsUVERPvjgA0RFRSEoKAhVq1ZFjx498Pvvv5u8xr59+yCTySCTyZCVlSV5bLt27cJTTz2luVavXr1w9uxZya//9ddfNdeVyWTw9vZG1apVMWDAAFy4cAEA0KlTJ61jjH3NmzfP6HVmzZqF3r17o3r16pDJZBg5cqTRY7///nu0a9cOoaGhCAkJQXR0NL755huT7+PmzZuoVKkSZDIZtmzZIvn9Hzp0CH5+frhy5Yrk19jL8OHD8a9//cvp13WFTZs2oXnz5vD390e1atUwZcoU3L9/X9Jrjf2+vffee1rHrV271uixmZmZeufdt28f2rZti8DAQISFhWHkyJG4deuW1jHp6elGz7lp0ybrPxAiIjKonKsHQERE1vnkk08wZcoUREdH4/3330ft2rVx9epVfPrpp2jfvj2WLl2KiRMn2uVaf//9N9avX4/mzZujZ8+e2Lhxo9FjExISsH79esycORNdunRBTk4O3nvvPTzzzDM4cuQIoqOj9V5z//59JCQkoFq1arhx44bkcZ04cQL9+vVDfHw83nnnHeTm5mLHjh04f/48mjVrZtF7fPfdd9G5c2cUFxfj5MmTeOutt/DLL7/g3LlzWL58OfLy8jTH7tq1C2+//TbWrFmDhg0bah6vUaOG0fMvXrwYTZs2Rd++ffHll18aPe7LL7/EmDFj8Pzzz2PWrFmQyWT46quv8OKLLyIrKwtTp041+LoJEybA39/fovcsCAKmTJmChIQE1K5d26LX2sO8efPQsGFD7N+/H126dHH69Z1l/fr1GDZsGMaOHYvFixfj4sWLmD59OlJTU7Fnzx5J5+jfvz9effVVrcdq1apl8Fjd30sAqFSpktb3Bw8eRI8ePdCrVy9s27YNt27dwvTp09G1a1ecPHkSfn5+Wse/8sorGDJkiNZj9evXlzR2IiKygEBERKXO4cOHBS8vL6F3797Cw4cPtZ57+PCh0Lt3b8HLy0s4fPiwXa6nVCo1/z5x4oQAQFizZo3ecYWFhYK3t7cwbNgwrcdv3LghABAmTZpk8PwTJkwQWrRoIcyaNUsAINy+fVvSuN544w3By8tLyM/Pl/5mdBw4cEAAIGzevFnr8dWrVwsAhLffflvvNWvWrBEACCdOnJB8nZKfYVBQkDBixAiDx7Vr106oXbu21vEqlUpo2LCh0LRpU4Ov2bJli1C+fHnhq6++MvhejNm9e7cAQPjzzz8lvw976927txAXF2fVa1UqlVBQUGDnEdnXo0ePhPDwcKFbt25aj69fv14AIOzevdvsOQAIEyZMMHucJb+XTz31lBAZGan1348jR44IAITly5drHktLSxMACB988IHZcxIRke24xJ2IqBRauHAhZDIZVqxYgXLltBdDlStXDsuXL9dbAnv79m38+9//Rs2aNeHn54fKlSujXbt22Ldvn9nreXlJ+38XXl5e8PLyglwu13o8ODgYXl5eBmd4Dx06hJUrV+KLL76At7e3pOuIvL29oVKpcOnSJYteJ0VMTAwA2G3pt9TP0MfHB+XLl9c6XiaTITg42ODnl5OTgwkTJuCdd94xOqNqzIoVK/DUU0/hySef1Hq8qKgIr776KhQKBQIDA9GxY0ecOnUKderUMbk0X/Tpp5+iY8eOqFKlCoKCgtCkSRO8//77ePjwod6xw4cPx759+3D58mWz55XJZJg4cSI+++wzNGrUCH5+fvjqq68kvddOnTohKioKhw4dQkxMDAICAlC9enXMnj0bSqVS0jmscfToUWRkZGDUqFFajw8YMADly5fHDz/84LBrG3P9+nWcOHECw4cP1/rvx9NPP40GDRq4ZExERKTGgE5EVMoolUocOHAArVu3NrqkumbNmmjVqhX279+vCR/Dhw/Hjz/+iDlz5mDPnj344osvEBsbi+zsbLuNzcfHBy+//DK++uor/Pjjj8jLy0N6ejoSEhIgl8uRkJCgdfyDBw8wZswYTJkyBS1btrT4eiNHjoSvry8GDRqE27dv2+ttAFAv6weAypUr2/W85rzyyiu4cOEC3nnnHdy+fRtZWVn473//i1OnTuG1117TO37SpEmIiIiweDtDcXEx9u3bh86dO+s9N2rUKCxZsgSjRo3Ctm3b8Pzzz+PZZ5/F3bt3JZ378uXLGDJkCL755hvs3LkTY8aMwQcffICXXnpJ79hOnTpBEATs3r1b0rl//PFHrFixAnPmzMHPP/+MDh06SHodAGRmZmLQoEEYOnQotm3bhv79++Ptt9/G5MmTtY5TKpV49OiR2S+VSmX2mikpKQCApk2baj3u4+ODhg0bap43Z8OGDQgICICfnx9atWqFNWvWGD22d+/e8Pb2RmhoKJ577jm9axgbk/iYoTG999578PX1RWBgINq3b4/t27dLGjcREVmGe9CJiEqZrKwsFBQUICIiwuRxEREROH78OLKzs1GlShUcOXIEY8eO1QrJ/fr1s/v4Fi9eDLlcjueff14TYGrVqoX9+/ejXr16WseKs5fz58+36loHDx5EpUqVcPv2bcTGxmL//v16e22lUqlUePToER4+fIiTJ0/i1Vdfhbe3NwYOHGjV+az13HPPYevWrRgxYgRmzZoFAAgICMBXX32FAQMGaB27a9cufPfddzh9+rTkGXpRcnIyHjx4oHdjJDU1FRs3bsT06dOxcOFCAEBcXByqVq2KwYMHSzr3Rx99pPm3SqVChw4dUKlSJYwaNQoffvghKlasqHm+SpUqqF69Oo4cOYJXXnnF7Lnv37+Pc+fOaZ1DquzsbGzbtg19+/YFAHTr1g0PHjzAihUr8MYbb2hWINStW1fSyom5c+eaLAwoXhMAQkND9Z4LDQ1Fenq62esMGTIEvXr1Qs2aNXHr1i2sXr0ao0ePxj///IMFCxZojlMoFHjzzTcRExOD4OBgnDt3Du+99x5iYmJw5MgRTV0Gc2MqedPOz88PCQkJiIuLQ3h4OK5evYpPPvkE/fr1w6pVqzB27Fiz4yciIukY0ImIyihBEAColwUDQHR0NNauXYtKlSohNjYWrVq1go+Pj9bxukt9dZfPS/HOO+/gv//9L+bNm4cOHTogLy8Py5YtQ1xcHPbs2YMWLVoAAI4fP44lS5YgMTERAQEBFl9n8+bNmDBhAg4fPgw/Pz/ExsYiNjYWv/zyiyZ4xMbG4uHDhzh48KDZ8+kG8YiICGzZssXgLKMxjx490vre29tb8/lLlZiYiGHDhmHAgAF44YUXUK5cOWzfvh0jR45EcXGxZql0bm4uXnrpJUyfPh1RUVEWXQOAphhflSpVtB4XP6sXXnhB6/H+/ftj+PDhks595swZzJ07F0eOHEFOTo7WcxcvXkSbNm20HqtSpQquX78u6dxdunSxKpwDQIUKFTThXDRkyBCsWrUKv/32G4YNGwYA2LFjB4qKisyer1q1app/K5VKzd8c8Hi7h8jY74GU34/169drff/888+jT58+eO+99zBp0iTNKo/4+HjEx8drjuvYsSN69eqFJk2aYM6cOdi2bZuka5d8PDw8HCtXrtR6fsCAAWjTpg1mzJiBkSNHWvXfCSIiMoxL3ImISpmwsDAEBgYiLS3N5HHp6ekIDAzUhNVvv/0WI0aMwBdffIG2bdsiNDQUL774oqb90ldffQUfHx+tL0tduHABc+bMwfz58zF79mx06tQJffv2xa5duxASEoJp06Zpjh09ejSee+45tG7dGnfv3sXdu3dRWFgIAMjLy8O9e/dMXmvevHno3r07oqOj0axZM/zyyy+4du0aYmNjcefOHeTn5+PkyZPo1auXpLEvWrQIJ06cwOnTp3H16lX8888/FrUAS09P1/v8pNwYKEkQBIwePRodO3bEl19+ifj4eMTGxuLjjz/GkCFD8MorryA/Px8A8Oabb8LHxwcTJ07UfH5i266CggLcvXtXKzDqevDgAQDo7WsXZ0+rVq2q9Xi5cuUkrU64evUqOnTogOvXr2Pp0qU4dOgQTpw4gU8//VTruiX5+/sbfNyQ8PBwSccZovueAPWsMwCtWePIyEg0b97c7Jf4WkA9617yZ//WW28BeFw93dBWkpycHIOz2FIMGzYMjx49wsmTJ00eV6dOHbRv3x5Hjx7VPGbrmHx8fDBw4EBkZ2c7pP4DEZEn4y1PIqJSxtvbG507d0ZiYiKuXbtmcB/6tWvXcOrUKfTo0UNTeC0sLAxLlizBkiVLcPXqVWzfvh0zZszArVu3kJiYiD59+uDEiRM2je3s2bMQBAFPPfWU1uM+Pj5o1qyZVmA9f/48zp8/j82bN+udp27dumjWrBmSk5ONXuvy5cto3ry55vumTZviwIED6NKlC+Li4tC+fXv4+PgY3PdsyBNPPIHWrVtLOtaQatWq6X1+usXXzLl58yYyMjIMjvmpp57C119/jfT0dDRu3BgpKSlIT0/XComiESNGAADu3LmDkJAQg9cKCwsDAL0ZbjG83bx5E9WrV9c8/ujRI0n1Cn788Ufk5+dj69atWq3bTP0sc3JyUKdOHbPnBqTNOBtz8+ZNvcfEG1Qlbz5Ys8Rdd9ZdnF1v0qQJAODcuXOIjIzUPP/o0SP8+eefkrcN6BJvvkjZ2iAIgtZx4oqLc+fOoWfPnlrHnjt3TtKKDEuuT0RE0jGgExGVQjNnzsRPP/2El19+GT/88INW9XOlUonx48dDEATMnDnT4Otr1aqFiRMn4pdffsGRI0cAqAOKtfu3RWIoOXr0KJ555hnN40VFRTh9+rTWzYQDBw7ovX7t2rWaAnMlw6EhUVFR2Lt3LzIzMzUhNSoqCgcOHED79u1x6tQprFmzRq+ivKP4+vraFPABoGLFivD399ea7RQlJSXBy8tLM4O8ZMkSvaJtycnJmDp1KubNm4dnnnkG5cuXN3qtRo0aAYBe9fSOHTsCUK+4KLk/fcuWLXpL+A0RA3TJPtqCIGDVqlUGj3/06BH+7//+Ty8oOsK9e/ewfft2rWXuGzZsgJeXl+Z9A9YtcReDuK42bdogPDwca9eu1dpGsWXLFty/fx/PPfecNW8F33zzDXx8fNCqVSuTx6WlpeHIkSOIjY3VPFa9enVER0dj3bp1eO211zT//Th69Cj++usvTJkyxeQ5Hz58iG+//RZhYWF6dSWIiMg2DOhERKVQu3btsGTJEkyZMgXt27fHxIkTUatWLVy9ehWffvopjh07hiVLluDpp58GoN6v3LlzZwwZMgQNGzZEhQoVcOLECSQmJkoOCFu2bAEA/PPPPwCAkydPagJg//79AQDt27fHU089hXnz5qGgoAAdO3ZEbm4uPvnkE6SlpeGbb77RnK9Tp0561/j1118170+c4TXmo48+Qrdu3dC2bVu8/vrraNSoETIyMvDdd9+hoKAAVatWxcKFC9G9e3eblkXby8GDBzWV5pVKJa5cuaL5TJ955hlUrlwZfn5+ePnll/HRRx/hxRdfxMCBA+Ht7Y0ff/wRGzZswJgxYzTLj0uuHtDVuHFjg59vSTVq1MATTzyBo0ePYtKkSVqvHTx4MD788EN4e3ujS5cuOH/+PD788EPI5XK9GVNx5lssdhYXFwdfX18MHjwYb7zxBgoLC7FixQrcuXPH4Dj++OMPFBQUGKwmb2+VKlXC+PHjcfXqVTRo0AC7d+/GqlWrMH78eK0WdcbCtjW8vb3x/vvvY/jw4XjppZcwePBgXLp0CW+88Qbi4uK09owfPHgQXbt2xZw5czBnzhwAwAcffIDU1FR07doVNWrU0BSJ27NnD+bNm6f1dxIbG4uOHTuiadOmmiJx77//PmQymVYxOUC9pSMuLg4DBgzAyy+/jFu3bmHGjBmIiorSagk3bdo0PHz4EO3atYNCocD//d//4ZNPPkFycjLWrFljcWtEIiIywzXt14mIyB6SkpKE/v37C1WrVhXKlSsnVKlSRXjuueeE33//Xeu4wsJCYdy4cULTpk2F4OBgISAgQHjyySeFuXPnCvn5+ZKuBcDoV0l3794V3nzzTaFRo0ZCYGCgUKVKFaFTp07C7t27zV5j7ty5AgDh9u3bksZ09uxZoX///kLlypWFcuXKCTVq1BBGjRolnD9/Xvjrr7+EsLAwoWHDhkJmZqbRcxw4cEAAIGzevFnSNQVBENasWSMAEE6cOCH5Nc8884zRz+/AgQOa45RKpbBq1SqhdevWQkhIiBAcHCy0aNFCWLZsmVBcXGzyGpa+l9mzZwsVK1YUCgsLtR4vLCwUpk2bJlSpUkXw9/cXYmJihKSkJEEulwtTp07VOjYsLEyIiYnRemzHjh1Cs2bNBH9/f6F69erC66+/Lvz0009671UcQ1hYmN4YDAEgTJgwQdJ70/XMM88IjRs3Fn799VehdevWgp+fnxAeHi785z//ER4+fGjVOS2xYcMGoWnTpoKvr6+gUCiESZMmCffu3dM6Rvz5zZ07V/PY9u3bhfbt22t+xytUqCB06NBB2Lhxo941pkyZIkRGRgoVKlQQypUrJ1SrVk0YNmyY8Ndffxkc0549e4SYmBjB399fCA0NFV588UXh5s2bWsesXr1aiI6OFkJDQ4Vy5coJFStWFLp37y78/PPPtn8oRESkRyYIJirIEBERUZl148YNRERE4OuvvzbbTu73339Hu3btsH79egwZMgSAuiVb48aNsXPnTsnF+EpSKpWoV68ehgwZgnfeeceq9yBVp06dkJWVJbnvOBERkStwiTsREZGHqlatGqZMmYJ33nkHAwYM0Cxf37t3L5KSktCqVSsEBATg7NmzeO+991C/fn2tLREHDhxA27ZtrQrnALBu3Trcv38fr7/+ul3eDxERUWnHgE5EROTBZs2ahcDAQFy/fh01a9YEAAQHB2PPnj1YsmQJ7t27h7CwMPTo0QMLFy7Uass2YcIETJgwweprq1QqrF+/3mileSl0+4/rkslk3CdNRESlBpe4ExERUanVqVMnk/3ma9eurSlgR0RE5O4Y0ImIiKjU+uuvv3Dv3j2jz/v5+dm1KjsREZEjMaATERERERERuQEv84cQERERERERkaOxSJyHUalUuHHjBipUqACZTObq4RARERERkYsIgoB79+6hWrVqmk4e5FoM6B7mxo0bmiq9RERERERE//d//4caNWq4ehgEBnSPU6FCBQDqP8Lg4GAXj4aIiIiIiFwlLy8PNWvW1GQEcj0GdA8jLmsPDg5mQCciIiIiIm59dSPcaEBERERERETkBhjQiYiIiIiIiNwAAzoRERERERGRG+AedCIiIiIXUqlUKC4udvUwiKgM8vHxgbe3t6uHQRZgQCciIiJykeLiYqSlpUGlUrl6KERURoWEhEChULAQXCnBgE5ERETkAoIgICMjA97e3qhZsya8vLjzkIjsRxAEFBQU4NatWwCA8PBwF4+IpGBAJyIiInKBR48eoaCgANWqVUNgYKCrh0NEZVBAQAAA4NatW6hSpQqXu5cCvFVLRERE5AJKpRIA4Ovr6+KREFFZJt4AfPjwoYtHQlIwoBMRERG5EPeFEpEj8b8xpQsDOhERERHZRadOnTBlyhRXD4Pg/j+L7OxsVKlSBenp6ZKOLyoqQq1atXDq1CnHDozIxRjQiYiIiEiykSNHQiaT6X39/fff2Lp1KxYsWKA5tk6dOliyZInrBmvGwYMH0apVK/j7++OJJ57AZ599ZvL4s2fPYvDgwahZsyYCAgLQqFEjLF26VO+47777Ds2bN0dgYCBq166NDz74QOv5jIwMDBkyBE8++SS8vLwMBum1a9ca/JwLCwv1ju3UqZNF79taUsYNAN9//z0iIyPh5+eHyMhI/PDDD3rHLFy4EH369EGdOnUkXdvPzw+vvfYapk+fbsM7kObOnTsYPnw45HI55HI5hg8fjrt375p8zdatW9G9e3eEhYVBJpMhOTlZ75iVK1eiU6dOCA4OhkwmM3jOd955B08//TQCAwMREhJi8FqTJ09Gq1at4Ofnh+bNm1v8/si9MaATERERkUXi4+ORkZGh9RUREYHQ0FBUqFDB1cOTJC0tDT179kSHDh1w5swZ/Oc//8GkSZPw/fffG33NqVOnULlyZaxbtw7nz5/Hm2++iZkzZ2LZsmWaY3766ScMHToU48aNQ0pKCpYvX46PPvpI65iioiJUrlwZb775Jpo1a2b0esHBwXqfs7+/PwDgyJEj2Ldvn9bx+/btw5EjR6z9SMySMu6kpCQMHDgQw4cPx9mzZzF8+HC88MILOHbsmOaYBw8eYPXq1Rg7dqxF1x86dCgOHTqECxcuSH7Nr7/+KvkmgGjIkCFITk5GYmIiEhMTkZycjOHDh5t8TX5+Ptq1a4f33nvP6DEFBQWIj4/Hf/7zH6PHFBcXY8CAARg/frzRYwRBwOjRozFw4EDzb4ZKH4E8Sm5urgBAyM3NdfVQiIiIPNqDBw+E1NRU4cGDB64eikVGjBgh9OvXz+BzzzzzjDB58mTNvwFofUlx//59oUKFCsLmzZu1Ht++fbsQGBgo5OXl2TJ8jTfeeENo2LCh1mMvvfSSEBMTY9F5Xn75ZaFz586a7wcPHiz0799f65jFixcLNWrUEFQqld7rS35mJa1Zs0aQy+VGr3v16lWhf//+wvjx44WWLVsK48ePFwYOHChcu3bN4HlzcnKE4cOHCyEhIUJAQIAQHx8vXLx4UeucK1euFGrUqCEEBAQI//rXv4QPP/zQ6BiMjfuFF14Q4uPjtR7r3r27MGjQIM3333//vRAWFqZ1zPz584Xw8HAhKytL81ifPn2EDh06CEqlUvNYp06dhNmzZxv9XHQdOHBAqF27tuTjU1NTBQDC0aNHNY8lJSUJAIQ///zT7OvT0tIEAMKZM2dMjgmAcOfOHaPHmPv5C4IgzJ07V2jWrJnZMZn6bw2zgfvhDDoRERER2d3WrVtRo0YNvPXWW5rZX5FMJsPatWsNvi4oKAiDBg3CmjVrtB5fs2YN+vfvr5mhb9y4McqXL2/0q3HjxibHl5SUhG7dumk91r17d5w8edKiate5ubkIDQ3VfF9UVKSZ5RYFBATg2rVruHLliuTzAsD9+/dRu3Zt1KhRA71798aZM2c0z9WsWRObN2+GXC7H6dOnERISgk2bNqF69eoGzzVy5EicPHkS27dvR1JSEgRBQM+ePTXv9ciRIxg3bhwmT56M5ORkxMXF4Z133rFovIDxz/X333/XfP/bb7+hdevWWse8+eabqFOnjmZW/bPPPsNvv/2Gb775Bl5ejyNLdHQ0Dh06ZPG4LBm/XC5HmzZtNI/FxMRALpdrvQciR2EfdCIiIiJ3IAhAQYFrrh0YCFhQ6Xnnzp0oX7685vsePXpg8+bNWseEhobC29sbFSpUgEKh0HruySefhFwuN3r+sWPH4umnn8aNGzdQrVo1ZGVlYefOndi7d6/mmN27d5sM0j4+PibfQ2ZmJqpWrar1WNWqVfHo0SNkZWUhPDzc5OsBdZj77rvvsGvXLs1j3bt3x9SpUzFy5Eh07twZf//9t2YffkZGhuTl1g0bNsTatWvRpEkT5OXlYenSpWjXrh3Onj2L+vXr4/r163j11VdRsWJFtGzZEnfu3MGgQYPw4Ycf6oX0S5cuYfv27Thy5AiefvppAMD69etRs2ZN/PjjjxgwYAA++eQT9OjRA6+99hoAoEGDBvj999+xc+dOSeMVGftcMzMzNd+np6ejWrVqWsd4e3tj3bp1aN68OWbMmIFPPvkEK1euRO3atbWOq169uuTCctbIzMxElSpV9B6vUqWK1nsgchQGdCIiIiJ3UFAAlAi9TnX/PhAUJPnwzp07Y8WKFZrvgyx4LQD8+eefJp+Pjo5G48aN8fXXX2PGjBn45ptvUKtWLXTs2FFzjG5wM6XkzYRhw4ZpisHptp8SBMHg44acP38e/fr1w5w5cxAXF6d5PCEhAZcvX0bv3r3x8OFDBAcHY/LkyZg3bx68vb0ljzkmJgYxMTGa79u1a4eWLVvik08+wccff4z09HSMHTsWsbGx6NSpE1asWIF9+/YhPT1dL6BfuHAB5cqV05oVrlSpEp588knNfu6//voLzz77rNbroqOjLQ7ogOHPteRjDx480FtlAABPPPEE/vvf/+Kll17CwIEDMXToUL1jAgICUGDmRlbJn7dSqURRUZHWYx06dMBPP/0kefyG3gORozCgU5mhVAk4npaDW/cKUaWCP6IjQuHtxf+QEhER2VtQUBDq1avn0GuMHTsWy5Ytw4wZM7BmzRqMGjVKKyA1btzY5JLx2rVr4/z58wCgVVE7ODgYAKBQKPRmRG/duoVy5cqhUqVKJseWmpqKLl26ICEhAbNmzdJ6TiaTYdGiRXj33XeRmZmJypUr45dffgEAi4uVleTl5YWnnnoKly5dAqAO7LpiY2MNvla88WDocfEzNRRAjb3OFGOfa8lZ9bCwMNy5c8fg63/77Td4e3sjPT0djx49Qrly2nElJycHlStXNjmGkj/vY8eOYfr06fj11181jwUEBJgc/82bN/Uev337tt7KACJHYECnMiExJQPzd6QiI/dx65FwuT/m9olEfJT5JWpEREQuFxionsl21bUdwNfXF0ql0qrXDhs2DG+88QY+/vhjnD9/HiNGjNB63pIl7oZuJrRt2xY7duzQemzPnj1o3bq1yeXx58+fR5cuXTBixAiTe7S9vb01M9kbN25E27ZtDS6dlkoQBCQnJ6NJkyZ6z5UMn4ZERkbi0aNHOHbsmGaJe3Z2Ni5evIhGjRoBUC+pP378uNbrTp48afE427Zti71792Lq1Kmax/bs2aO5LgC0aNEC69at03vtt99+i61bt+LXX3/FwIEDsWDBAsyfP1/rmJSUFLRo0cLkGEr+vK9du4Zy5cpJvqHUtm1b5Obm4vjx44iOjgagDvm5ubla74HIURjQqdRLTMnA+HWnoXuPNzO3EOPXncaKYS0Z0omIyP3JZBYtMy8N6tSpg99++w2DBg2Cn58fwsLCAKjD4MKFC/WWVJdUsWJFPPfcc3j99dfRrVs31KhRQ+t5S5a4GzJu3DgsW7YM06ZNQ0JCApKSkrB69Wps3LhRc8wPP/yAmTNnapbknz9/Hp07d0a3bt0wbdo0zUyxt7e3ZlY3KysLW7ZsQadOnVBYWIg1a9Zg8+bNOHjwoNb1xVne+/fv4/bt20hOToavry8iIyMBAPPnz0dMTAzq16+PvLw8fPzxx0hOTsann35q8XutX78++vXrh4SEBHz++eeoUKECZsyYgerVq6Nfv34AgFdeeQUdO3bERx99hD59+mD//v346aef9GbVzY178uTJ6NixIxYtWoR+/fph27Zt2LdvHw4fPqw5R/fu3TFz5kzcuXMHFStWBKAO0uPHj8eiRYvQvn17rF27Fr169UKPHj20lvofOnQICxYssPgzkKpRo0aIj4/XfFYA8O9//xu9e/fGk08+qTlO93c4JycHV69exY0bNwCotwwA6hl5sQZDZmYmMjMz8ffffwMAzp07hwoVKqBWrVqaQoNXr17VnEupVGo+73r16mmW6f/999+4f/8+MjMz8eDBA80xkZGR8PX1ddhnQ07isvrx5BJlpZXCI6VK+P3vLGHr6WtCi7d+FmpP32nwq870nULMu/uER0r9tiZERESuVNbbrAmCuj1V06ZNBT8/P602awCENWvWmL3WL7/8IgAQvvvuOxtHbdivv/4qtGjRQvD19RXq1KkjrFixQuv5NWvWaI177ty5eq3jAGi18bp9+7YQExMjBAUFCYGBgULXrl21WnaJzJ1nypQpQq1atQRfX1+hcuXKQrdu3YTff/9d8nsz1mZNLpcLAQEBQvfu3Q22Watevbqmzdrbb78tKBQKi8YtCIKwefNm4cknnxR8fHyEhg0bCt9//73e+GJiYoTPPvtMEARBUKlUQteuXYXu3btrtaKbOnWqULduXeHevXuCIAjC77//LoSEhAgFBQWSPwdL26wJgiBkZ2cLQ4cOFSpUqCBUqFBBGDp0qF5LNN3fYfF3Rfdr7ty5mmOM/f6UPM+IESMMHnPgwAHNMYZaGAIQ0tLSDL4ftlkrXWSCYMXmEiq18vLyIJfLkZubq9mDVdoYWs5uzsaEGLSta3o/GRERkTMVFhYiLS0NERERBgtmkbrS+OTJk3Hjxg3ODLpAQkIC/vzzT4e0Ndu9ezdee+01pKSkaLVRM2XAgAFo0aIF/vOf/9h9PGWZqf/WlIVsUNZwiTuVKsaWs5tz6570ME9ERESuVVBQgLS0NCxcuBAvvfQSw7mT/Pe//0VcXByCgoLw008/4auvvsLy5csdcq2ePXvi0qVLuH79OmrWrGn2+KKiIjRr1kxrbztRWSTtdhWRG1CqBMzfkWpxOAeAKhU4M0FERFRavP/++2jevDmqVq2KmTNnuno4HuP48eOIi4tDkyZN8Nlnn+Hjjz/G2LFjHXa9yZMnSwrnAODn54dZs2aZrMBOVBZwBp1KjeNpORYtawcAGQCFXN1yjYiIiEqHefPmYd68ea4ehsf57rvvXD0EIo/HGXQqNSxdpi7WHJ3bJ5L90ImIiIiIyO1xBp1KDUuXqSvYB52IiIiIiEoRBnQqNaIjQhEu90dmbqHRfeihQb6Y3asRFPIAREeEcuaciIjcHhvqEJEj8b8xpQuXuFOp4e0lw9w+kQAeL1/XpRIEBPh6o23dSgznRETk1ry9vQEAxcXFLh4JEZVlBQUFAAAfHx8Xj4SkYB90D1MWeh0mpmRgxtZzuFvwUO85MZKvGNaSS9uJiMitCYKAq1ev4uHDh6hWrZrkXtBERFIIgoCCggLcunULISEhCA/X/9/GZSEblDVc4k6lTlykAvO2nzf4nAB1SJ+/IxVxkQrOohMRkduSyWQIDw9HWloarly54urhEFEZFRISAoVC4ephkEQM6FTqHE/LQWZekdHnBQAZuYU4npaDtnUrOW9gREREFvL19UX9+vW5zJ2IHMLHx0eznYZKBwZ0KnWktluztC0bERGRK3h5ecHf37JOJUREVDZxsxOVOlLbrVnalo2IiIiIiMiVGNCp1BHbrRnbXS4DEC73R3REqDOHRUREREREZBMGdCp1TLVbE7+f2yfSKQXilCoBSZezsS35OpIuZ0OpYlMEIiIiIiKyDvegU6kUHxWOFcNaYv6OVGTkPt5rrpD7Y26fSKe0WEtMydC7frgTr09ERERERGUL+6B7mLLW61CpEnA8LQe37hWiSgX1snZnzJwnpmRg/LrT0P3jYR92IiIiIiotylo2KAs4g06lmreXzKZWatYEfKVKwPwdqXrhHGAfdiIiIiIish4DOnksa5eoH0/L0XqNLvZhJyIiIiIia7BIHHkkcYm6btDOzC3E+HWnkZiSYfS17MNORERERESOwIBOHsfcEnVAvUTdWEV29mEnIiIiIiJHYEAnj2PJEnVD2IediIiIiIgcgQGdPI6tS9TdqQ87ERERERGVHQzo5HHssURd7MOukGsfo5D7s8UaERERERFZhVXcyePcyS+GlwwwssUcMqiDtrkl6vFR4YiLVLikDzsREREREZU9DOjkURJTMjBhw2mDBeJKkrpE3dY+7ERERERERCIucSePYap6u8hLBnw6pAWXqBMRERERkdMxoJPHMFe9HVAve68Y5OekERERERERET3GgE4ew9bq7URERERERI7EgE4ewx7V24mIiIiIiByFAZ08RnREKMLl/nq9y0UyAOESqrcTERERERE5AgM6eQxvLxnm9okEAL2QLn4vtXo7ERERERGRvTGgk0eJjwrHimEtoZBrL2NXyP2xYlhLVm8nIiIiIiKXYR908jjxUeGIi1TgeFoObt0rRJUK6mXtnDknIiIiIiJXYkAnj+TtJUPbupVcPQwiIiIiIiINLnEnIiIiIiIicgMM6ERERERERERugAGdiIiIiIiIyA0woLvY8uXLERERAX9/f7Rq1QqHDh0yefz69evRrFkzBAYGIjw8HKNGjUJ2draTRktERERERESOwoDuQt9++y2mTJmCN998E2fOnEGHDh3Qo0cPXL161eDxhw8fxosvvogxY8bg/Pnz2Lx5M06cOIGxY8c6eeRERERERERkbwzoLvTRRx9hzJgxGDt2LBo1aoQlS5agZs2aWLFihcHjjx49ijp16mDSpEmIiIhA+/bt8dJLL+HkyZNOHjkRERERERHZGwO6ixQXF+PUqVPo1q2b1uPdunXD77//bvA1Tz/9NK5du4bdu3dDEATcvHkTW7ZsQa9evYxep6ioCHl5eVpfRERERERE5H4Y0F0kKysLSqUSVatW1Xq8atWqyMzMNPiap59+GuvXr8fAgQPh6+sLhUKBkJAQfPLJJ0avs3DhQsjlcs1XzZo17fo+iIiIiIiIyD4Y0F1MJpNpfS8Igt5jotTUVEyaNAlz5szBqVOnkJiYiLS0NIwbN87o+WfOnInc3FzN1//93//ZdfxERERERERkH+VcPQBPFRYWBm9vb73Z8lu3bunNqosWLlyIdu3a4fXXXwcANG3aFEFBQejQoQPefvtthIeH673Gz88Pfn5+9n8DREREREREZFecQXcRX19ftGrVCnv37tV6fO/evXj66acNvqagoABeXto/Mm9vbwDqmXcqHZQqAUmXs7Et+TqSLmdDqeLPjoiIiIiIOIPuUtOmTcPw4cPRunVrtG3bFitXrsTVq1c1S9ZnzpyJ69ev4+uvvwYA9OnTBwkJCVixYgW6d++OjIwMTJkyBdHR0ahWrZor30qZolQJOJ6Wg1v3ClGlgj+iI0Lh7WV424GlElMyMH9HKjJyCzWPhcv9MbdPJOKj9FdAEBERERGR52BAd6GBAwciOzsbb731FjIyMhAVFYXdu3ejdu3aAICMjAytnugjR47EvXv3sGzZMrz66qsICQlBly5dsGjRIle9hTLHkQE6MSUD49edhu58eWZuIcavO40Vw1oypBMREREReTCZwLXRHiUvLw9yuRy5ubkIDg529XCs5ohZbmMBWjyrLQFaqRLQftF+reCvew2F3B+Hp3ex22w9EREREZEpZSUblCWcQSeXsiZoO2KWW6kSMH9Hql44BwAB6gA9f0cq4iIVVgXo42k5RsO5eI2M3EIcT8tB27qVLD4/ERERERGVfgzo5DLWBG1HLRN3dIC+dc/4ua05joiIiIiIyh5WcSeXEIO2bigWg3ZiSobea8zNcgPqWW5rqqI7OkBXqeBv1+OIiIiIiKjs4Qw6OZ3U5eQV/HyQlV+kWfruyFluRwfoO/nFZo8Jl6vfJxEREREReSYGdHI6qUF76OpjmsfC5f7oGaWQdP5b9wot3tseHRGKcLk/MnMLDd44EIu4WROglSoBC3almj1udq9GLBBHREREROTBGNDJ6axZJp6ZW4jVR9IlHZuela9XMd3c3nZvLxnm9onE+HWnIQO0QroYmef2iXRIgThRxSA/i89NRERERERlB/egk9NZs0xcDMxesseBWZcMQMVAHyzed8mive2i+KhwrBjWEgq59vgUcn+bWqyxQBwREREREUnBGXRyOnPLyU0R678Zm+U2dj6prdLiIhWo4O+DpMvZAAS0fSIMMXUr2bT0nAXiiIiIiIhICgZ0cjpTy8mlGN2uDn5KydSaJVfI/THoqVpYvO+i0deJe9uPXs6Gl5dMb3+6obZv35++blN/dcCx+9uJiIiIiKjskAmCYHlPKiq18vLyIJfLkZubi+DgYJeOxVAglmJ2r0YY3rYOTl25oxWyd/5xA5M3JZt9fUiAD+4+eKj5Plzuj77NwrHytzS9AC3Om9uyxB143FYOMDzzb+v5iYiIiIgs5U7ZgNQY0D2Mu/0Rlqy2HlbeD69+l4ybeUVmZ9UNFX1LupyNwauO2n2M4gz34eldbFrqbuiGhLnidUREREREjuJu2YAY0D2Ou/8RGptp1mVo5lmpEtB+0X6r9rZLsTEhxuL+6rosbf9GREREROQo7p4NPBGruJNbMVZJXZcYwOfvSIXyf5XjxL3tgPFK77awR5V1by8Z2tathH7Nq6OtjcXniIiIiIiobGFAJ7cTHxWOw9O7YHavRiaPE4u+HU/L0XqtoYAfEuBj87hYZZ2IiIiIiByJVdzJLXl7yRBWwU/Ssboz2/FR4YiLVGgtJVcJAoZ+ccyqsbDKOhEREREROQMDOrkN3f3ZYUHSArqhmW1xKXnJcyuC/ZCZV2TyXMb6q8/tE8nl6ERERERE5FAM6OQWDFU4VwT7IyTQB7kFD23uH743NROFj1QGnxNj9787RmD72Qy9/uqssk5ERERERM7AgE4uJ1Zu1w3hN/MeV2O3ZWbb2PlF8kAfvPdcE8RHheON+EYOr7LOSu5ERERERGQIAzq5lFIlYP6OVIPhWYA6iIcE+sCvnJfW8nSpM9umzi8K8PFGXKQCgP7SeHtjL3QiIiIiIjKGAZ1c6nhajlZY1SUAuFPwEOvHtoGXTGbxrLO58wPqSvBrj6RhZLsIh8xkizPm+1IzsfpIut7zmbmFGL/utFZPdyIiIiIi8jwM6ORSUnuLZ90vQr/m1R12/gW7LuCLw2l2n8k2NGOuS1wpMH9HKuIiFVzuTkRERETkodgHnVxKam9xa3uQW/I6cSY7MSXDqmvpEve+m5vBBwz3dCciIiIiIs/CgE4uFR0RinC5P4zNGcug3qNtSQ9ypUpA0uVsbEu+DpWgbq8mZU5a3Kc+f0cqlCpTu9aljcHc3ndDpM74ExERERFR2cMl7uRS3l4yzO0TifHrTtulB7mhJeUhgT6aZeTmAnPJmWxbisVJ2ftuiLUrBYiIiIiIqPTjDDq5XHxUOFYMawmFXDucKuT+FhVOM7akPLfgIQB1OzWpbJ3JtvT11qwUICIiIiKisoUz6OQW4qPCERepsLo/uJR2bQE+3pjQsy7e2f2n2fPZOpNtyeutWSlARERERERlDwM6uQ1bepBLadeWkVuIyGpyhMv9kZlbaDDMy6Ceubd1JlvcW2/sOiVJ7elORERERERlG5e4U5lgSbu2uX0iAUCvcJw9Z7LFvfWmrjO6XR1sTIjB4eldGM6JiIiIiIgBncoGS9q12WvPuzmmrvPZsJaY06cx2tatxGXtREREREQEgEvcqYwwt6RcBiA0yBeZuQ+QdDkbcZEKm/a8S2Xr3noiIiIiIvIcMkEQbGv4TKVKXl4e5HI5cnNzERwc7Orh6FGqBKvDrFjFHTDfTi2c+76JiIiIyMO5ezbwRAzoHsad/wgN9TC3NEgbOochYuS355J2IiIiIqLSxJ2zgadiQPcw7vpHKM5+6/4yWhOkxVn4zLxCLNh5Hjn5Dw0eJ1ZsPzy9C5ecExEREZHHcdds4MlYJI5czlwPcwCYvyMVSpW0e0liuzZFsL/RcC6eOyO3EMfTciweMxERERERkb0xoJPLSe1hbmmQltp6TepxrqBUCUi6nI1tydeRdDlb8k0KIiIiIiIqfVjFnVzOUUHaktZr7sgee/KJiIiIiKj04Aw6uZyjgrTYes3Y7nIZ1IE3OiLUovM6g7gnX3dlQWZuIcavO43ElAwXjYyIiIiIiByFAZ1czlFB2ttLhrl9IjXn0D0nAMztE+l2BeLsvSefiIiIiIhKBwZ0cjlHBun4qHCsGNYSCrn27LtC7u+2LdYctSefiIiIiIjcG/egk1sQg7TunuuKQT54u1+UTUE6PioccZEKHE/Lwa17hahSQT0b724z56KyUNyOiIiIiIgsx4BObiM+KhwqFTBrWwpy8osBADn5D7Fg1wV4eclsCuli67XSoLQXtyMiIiIiIutwiTu5jcSUDEzYcFoTzkWeVhitNBe3IyIiIiIi6zGgk1tgYbTHSmtxOyIiIiIisg0DOrkFFkbTVhqL2xERERERkW24B53cAguj6Sttxe2IiIiIiMg2DOjkFlgYzbDSVNyOiIiIiIhsw4BObkEsjJaZW2hwH7oM6uXdriqMplQJnMkmIiIiIiKHYkAntyAWRhu/7jRkgFZId3VhtMSUDL3+7OFyf8ztE8m94EREREREZDcsEkduw1RhtCmxDVD0SIWky9lOreSemJKB8etO6xWw87TWb0RERERE5HgyQRDKft8q0sjLy4NcLkdubi6Cg4NdPRyDSi4nT8/Kx8bjV5GZV6R53lmz10qVgPaL9hutLi8uuz88vQuXuxMRERFRqVMasoGn4Qw6uR2xMJpfOS8s2XdJK5wDzpu9Zus3IiIiIiJyJgZ0cktKlYD5O1INFowTH5u/I9Why93Z+o2IiIiIiJyJAZ3ckjvMXpfF1m9KlYCky9nYlnzd6fv5iYiIiIjINFZxJ5cy1r7MHWav3b31m6VYjZ6IiIiIyL0xoJPLmAqM7jB77c6t3ywlVqPXvdEg7udfMawlQzoRERERkYtxiTu5hLn2ZXfyixAu94ex6CuDOsw7evbaVOu30hJq3WE/PxERERERmccZdHI6c4FRBmDBrguY3SsSEza4fvY6PioccZEKg0vxSwNL9vO3rVvJeQMjIiIiIiItDOjkdFIDY8UgX6wY1lJvGbzCBfumxdZvUhnbW+8K7rCfn4iIiIiIzGNAJ6ezJDD2a17drrPXzgjO7laMzR328xMRERERkXkM6OR0lgZGS2evjXFGcHbHYmxlrRo9EREREVFZxSJx5HRiYHRmAThzRekSUzJsvoa7FmMTq9ED0PvMS1s1eiIiIiKisowBnZzO2YHRWcHZkmJszlYWqtETEREREZV1XOJOLiEGRmcUgHNWFXN3L8ZW2qvRExERERGVdQzo5DLOCozWBGdrismVhmJs9trPT0RERERE9seATi7ljMCYnpUv6TgxOFtbTI7F2IiIiIiIyBbcg05lmlIlYOPxq2aPE4vS2VJMjsXYiIiIiIjIFgzoVKYdT8tBZl6R2eMGPVULAGwuJsdibEREREREZC0ucacybW9qpqTj6oQFWl1MTne/elykgsXYiIiIiIjIYgzoVGYlpmTgyyPpko6tUsHfqmJy1u5XJyIiIiIi0sUl7lQmib3PpRD3n0utri4WnbNlvzoREREREZEuBnQqk8wtVy9JLNwWHREKRbD5kL7x+FUUP1JZtF9dqRKQdDkb25KvI+lytsl97ERERERE5Jm4xJ3KJKnL1ce0q6NZiu7tJcPg6FpYvO+iyddk5hXhm6R0yfvVcx8Ucxk8ERERERGZxRl0KpOkLlePjVRofV8nLFDS667kFEg6bm9qJpfBExERERGRJAzoVCZFR4QiXO6v149cJMPjveclSQ32tUOlBfkfk2/Y1LaNiIiIiIg8BwM6lUneXjLM7RMJAHohXfxe3HtektRgP7xtHbPHhQb5ICe/2OgYSy6DJyIiIiIiYkCnMis+KhwrhrWEQq49K66Q+2PFsJYG939LDfa+5bzMHvds8+qSxpmZ+4AF5IiIiIiICDJBEJgGPEheXh7kcjlyc3MRHBzs6uHYnVIl4HhaDm7dK0SVCo+XsOs+pjtzrktqf3NTx8kDfDF41VGzYw4N8tWaaWcBOSIiIiJyhrKeDUojBnQPU5b/CKWGaqkMhX1Dwd7YcUqVgPaL9iMzt9DgPnRjxCsYm+UnIiIiIrKHspwNSisGdA9TVv8IE1MyMH7dab0g7OqwK44LgMUhXSH3x8HXO+PUlTsWzf4TEREREUlRVrNBacaA7mHK4h+hOFNtrC+5GHYPT+/iknBraGZfXUDuodnX6h7H5e9EREREZC9lMRuUdiwS52LLly9HREQE/P390apVKxw6dMjk8UVFRXjzzTdRu3Zt+Pn5oW7duvjyyy+dNFr3dDwtx2g4B1xfLT0+KhyHp3fBxoQYLB3UHBsTYjC7d2NJr9UN8eyfTkRERERUdpVz9QA82bfffospU6Zg+fLlaNeuHT7//HP06NEDqampqFWrlsHXvPDCC7h58yZWr16NevXq4datW3j06JGTR+5ebt0zHs6tOc4cqXvTS/L2kqFt3Uqa75MuZ1t1bQHqFQHzd6QiLlLB5e5ERERERGUIA7oLffTRRxgzZgzGjh0LAFiyZAl+/vlnrFixAgsXLtQ7PjExEQcPHsQ///yD0FB1dfI6deo4c8hOY0kIrlLB3+DjurLuFWFb8nWb9nLbqxCd2G/d0gJygPaKgJKhn4iIiIiISjcGdBcpLi7GqVOnMGPGDK3Hu3Xrht9//93ga7Zv347WrVvj/fffxzfffIOgoCD07dsXCxYsQEBAgDOG7RSWhmApYddLBizYdUHS+UyNy1AhOnHZeclCdOZuMIj91sevOw0ZLCsgJ7LXigAiIiIiInIPDOgukpWVBaVSiapVq2o9XrVqVWRmZhp8zT///IPDhw/D398fP/zwA7KysvDyyy8jJyfH6D70oqIiFBUVab7Py8uz35twAEtCMPA4CPeMUmD1kXSj51XpnNDY+YxRqgTM35FqMEjrLjvfm5op6QZDfFQ4VgxrqXdspSBfZJfoi26M1JUD1rBmGX9puh4RERERkTtiQHcxmUw7hAiCoPeYSKVSQSaTYf369ZDL5QDUy+T79++PTz/91OAs+sKFCzF//nz7D9wBLAnB3l4ygzPtXjLtMK77vanzmSK1EN2y/X9jyb6Lkm8wxEeFIy5SoRVOW9WuiGc+OGB0RYBYlT46ItTkmK1l737ytlxP97NhcCciIiKisowB3UXCwsLg7e2tN1t+69YtvVl1UXh4OKpXr64J5wDQqFEjCIKAa9euoX79+nqvmTlzJqZNm6b5Pi8vDzVr1rTTu7AvS6qx5z4oNjjTLjYNHN2uDqqHBGgtazd1Pt293Lozupm5DyS9h89/uyz5BoNIt4AcAKPL32UlnndEULV0BYMjrzdu3WmEBPrgbgHbzBERERGRZ2CbNRfx9fVFq1atsHfvXq3H9+7di6efftrga9q1a4cbN27g/v37mscuXrwILy8v1KhRw+Br/Pz8EBwcrPXlrqTuqc7MfWB2pv2nlExcuystVOteNzElA+0X7cfgVUcxeVMyBq86ajLol1RQrDT6nCXt3sTl7wq59jJ2hdzf7iFZZG4FA6C+waA0tCTBQdcrGc4BtpkjIiIiorKNM+guNG3aNAwfPhytW7dG27ZtsXLlSly9ehXjxo0DoJ79vn79Or7++msAwJAhQ7BgwQKMGjUK8+fPR1ZWFl5//XWMHj26TBSJk7qnOie/WNJM+5ZT1yy+rrEZ3TsS9oRLlZn7AEmXs80u2za0/N2RS7wtWcFgj+rx5q5nbAxsM0dEREREZRUDugsNHDgQ2dnZeOutt5CRkYGoqCjs3r0btWvXBgBkZGTg6tWrmuPLly+PvXv34pVXXkHr1q1RqVIlvPDCC3j77bdd9Rbsylw1dnHvdWh5P0nnu1dovj98aJCPZi+3lBlde1iw6wJySgR+U8u2DS1/dxRn95O39jxsM0dEREREZRUDuou9/PLLePnllw0+t3btWr3HGjZsqLcsvqww1Xqs5N5reYCv3a75bPPqmllYa2Z0rZGjMxvvqP3dlpK6gsFe1eNtPQ/bzBERERFRWcM96OQySpWApMvZ2JZ8HUmXs6FUCZL2Xosz7cYWN8ugnhmXIjZSofm3qwKfI/Z3W0PK5xpux+rx5q5njiPbzBERERERuQJn0MklzLXyMrX3WspM+9v9orBg1wWLWpVJDXyhQT64k//Q6HnlgT7wksn0ZspNsXXZtj36iEtdwWCvfd+mrmeKo9vMERERERG5CmfQyenEQmy6y8lLVugW9173a14dbetW0guF5mbaezathrl9IgFAb4bWWNiUOoP8dr8og+cFHodMS8J5SdbM4huqOt9+0X6rKp07u3q8setVDFSvgJD6syMiIiIiKgtkgiC4bk0tOV1eXh7kcjlyc3Nd0nJNqRLQftF+o3u9xdnRw9O7SApg5maOzc3U6xJvHgCGZ5DFkJqYkoEZW8/ptQGz1caEGItm0I1Vndcdr6XsMSNv6/X2pmZa9LMjIiIiIsu4OhuQPi5xJ6eydysvc1XOpbYqEwNi0SMVpsQ2wMbjV5GZ93icCgPBMNeO4dyaZdvmqs7b0o7MmdXjjV3P2W3miIiIiIhcjQGdnErqEu4jf2fZLYyZC5uGZtkVwX6YGlsfdcKC9IKhqWBsDWuXbTu7b7krOPtGARERERGRK3EPOjmV1EJsyw78bfU+aksY2w9/M68IS/Zdgl85L7098PZux2bt/m5n9y0nIiIiIiLHYkAnp7KktVbJonGGGGrTZglzS8QBw63P7BV4QwJ8sH5sGxye3sWqPdXO7ltORERERESOxSXu5FSWtNYytY/a0uJvhli7RNzWwCu+i/eeb4J29cKsPo94s0NKKzlnF30jIiIiIiLLMaCT04mttXQDtiGGQrKxyuWZuYUYt+600b3juqxdIm4uGJtjqOCcNaT2LWc1dCIiIiKi0oEBnVxCrNC9eO9fWHbgstnjxZAsZVn64n2XNI+ZCqLpWfmSxqo7Yy4G43H/a8dmjiLYD4Oja0m6aWApYzc7xJsAAIzezBi/7rRDepu7ClcJEBEREVFpx4BOLuPtJUO7epUlBXQxJFtaoM1YEE1MydAK8oZY0/pMNDW2PmpVCkLO/SKEBvlCIQ9wWGA01o4MANov2u+QNmzuxh5bHoiIiIiIXI0BnVzKkn3UgOUF2gwFUXEWXgpDrc/MvV4GYM3v6fAv563VS92RgdFQO7Kky9llvg0bYHrLQ1lbJUBEREREZRuruJNLeXvJ0LdZuNG93AKAnlHq2WGlSrCqQFvJIApIn4WfEtvAYLCTUlzubsFDrXAOmK9KL4Ulles9oQ2btZX4iYiIiIjcEWfQyaUSUzKw8rc0k8esPpKO1UfSES73x+xekVYXaNuXmom2dStJDqR1wgINPm5toLV1Wbmly7g9oQ2btZX4iYiIiIjcEWfQySWUKgFHLmVhxvfnJAftzNxCTNhwGn2bqcOopbumVx9JR2JKBtKzCiQdn3WvyOBMtS2BVnc2XypxGbduGDU1K2+u57wM6oBvzR57d+EJqwSIiIiIyHNwBp2cztBMsBTiDPT2sxn4dEgLLNh1weJzzNh6DrkFD80e5yUDFuy6oPm+5Ey1rW3WAMsCo7ll3MZm5aW2YSvNBeI8YZUAEREREXkOzqCTUxmbCZZKnIGuGOSHw9O7YGLnuha9/m7BQ0mhWnfLcsmZajH42sKSwGjJMm5dYhs2hVz7egq5f5konuYJqwSIiIiIyHNwBp2cxtRMsKVu3Su0qE2brXRnqsXg+58fziEn3/yMvMia1m22LuM21oatNM+cizxhlQAREREReQ7OoJPTWNrD3BRxBtrcDKo96c5Ux0eFY3bvxpJfb21gtMcybrENW7/m1dG2bqUyFVjL+ioBIiIiIvIcnEEnp7FHoS7dGeiSM6jOUvJ9KIKlL1VXWNkH3dJe8a6kVAkumakvy6sEiIiIiMhzMKCT09haqMvYDLQ4gyql8FyQrzcKipU2LbMv+T6kFIwLCfTBp4NbIkbizLWhkGtsGTeg3SvelaHU0jZw9iauEiAiIiIiKq1kgiDYY0swlRJ5eXmQy+XIzc1FcHCwU6+tVAlov2i/1dXPzYW94kcqxCzcZ3JPeEigj6aKu6H9yvL/PW9qpvrw9C5aIVgsfGfsnJYsszYVcgHoPecl0y5o58xAXJL4Geh+btZ8BkRERETkHK7MBmQY96CT05Ssfm7JHO/EzvWwMSEGh6d3MRnyTl25Y7Zg292Ch5gS28DofuX3nmticHym9o/baw+0uV7nAHB4ehdsTIjB6HZ1AJiuNm8tpUpA0uVsgz3gjR1vqg0coL6xYO48RERERESejkvcyaksWY4uql+1vKSly1L3uNcJC8Th6V2M7lc2ND5z+8dt3QNtSa/z6IhQTPsu2eB5TPVFl8KaZeqWtIHjEnQiIiIiIuMY0MnpxDC79kgaFuy6YPZ4e1Qx1z3O1H5la8O2LXugLe117ohAbGyZujgrb2w1gK1t4IiIiIiISI0BnVzC20uGke0i8MXhNIuqk4sF1DJzHyAnvxih5f2gCFYfY2m1c8258gqRc78IoUG+UMgDNGHcmbO9jgi5lhxryQy+7o0Ke99AISIiIiLyVAzo5DIlW6TpVic3tOfb0PJrkbgMW+r5pJzLmUXNHBFys+4VYVvydUkrAKTO4B+9nA0vL5nWyoLS1AaOiIiIiMidsYq7h3HHSo1S9j0bW35dkgzq/eMqlYBZ21K0CsaVPJ8l53JWSDdX4b5kBXkAZqvhy2SAYEF1923J1zF5U7LZcYYE+ODuA/3PFYDdKtkTERERkXO4YzbwdAzoHsZd/wgN9f4WZ3zF8GquqJwM6jZqfuW8kJlXpHk8NMgXb/eLQs+m4ZLPBajDp25LNUeypF1bYkoGxv3vWCnMBeWky9kYvOqoxWMueV5Avw2cq9q+EREREZF57poNPBmXuJNbMLXn29zya5EA4E6Bfpu1O/nFmLDhNFZ4tYQ8wFdy9XhnVx43VuHeUAX5uEgFQgJ9cNfA+zXE3D5yc8vUpZz38PQuNlWyJyIiIiLydAzo5PYycx/Y9PqSIfKN+IYWvdbZlcelVpA/npYjOZyLTFV3N1UPwNLzspUaEREREZF1vFw9ACJzcvKLbT6HGCJz7heZPbYkV1QeF1cT9GteHW3rVjI4A23LjQNjrxVn8BVy7fccEuBj03mJiIiIiEgazqCT2wst72e/cwX5Sl7KHS6h8ripvfOOFBZk/Wdi6qaDoRl8lSBg6BfHbDovERERERGZx4BObk8RbL/gp5AHaJZymyKDdos3QwxVnw8N8vlfQbpqFo3LkqCfmJKBedtTLTo/IL3dmW49AKVKMHtTQ8rNDCIiIiIiMo0BndxedEQoFMF+WpXZdXnJgGD/csh98MhsL25vL5nBYmwiKZXHjbVqy8l/iJc3nMFL1+5iZs9ISe9PSps5c9eVytxNB0Ok7E9/8FCJvamZrNZORERERGQDtlnzMKWxlUJiSgZmbD1nsija8iEt4OUls6gXtzhrnZmn3pseGuQLhTzA7DJ1qa3alg9piZ5NTQdWY4Hb0JgtaRGny0sGLBtsfjzmxmrs58B+50RERESlT2nMBmUdi8SRWxMDrLFwHhLog8+GtUTPptWMFjlTyP0NBkdxKfezLapjTIcn8GzLGkaLspUkte3b7G0pUKqM3/9SqgTM35FqcEZafGz+jlTNOaRe1xCVAFQM8rXqtaK4SAX8yxn+T4ah8RIRERERkWW4xJ3clqkAKwrw8UZcpELzvdQ2ZbaQWq08O7/YZB91c4Fbt32ZrVXSbX29erWB8W0Gptq4ERERERGReQzo5LakzBgbCoS6Rc7szZJq5aZCsdTALB5na5V0S15vqGidpeMlIiIiIiLLMKCT25Ia9I78neW09maAumhdaJAPcvKN74kXlQzFuqFXaqs08RzREaGSW8SVJLV6u8hY0bpBT9W0aLxERERERGQZjw7ogiDg4MGDOHToENLT01FQUIDKlSujRYsWiI2NRc2a0gIJOYbUoLfswN/4/vQ1zO0T6fDl7YB6hv7tflF4ecMZk8eVbD1mKPTKA3xQ3s8b94uUBl+vG6ylVFM3dA5AevV2Y0XrMnMLsXjfJYQE+iC34KHZSvlERERERGQ5j6zi/uDBAyxevBjLly9HdnY2mjVrhurVqyMgIAA5OTlISUnBjRs30K1bN8yZMwcxMTGuHrLdlKZKjWLVcikzxmJgDQn00Soop9uuTEq/cak9yRfuTsXnv6UZHY9YmM6a1mimqqIbm+Hu2ywc289mSGrXZoi5KvEyAPL/BXRAWqV8IiIiInJfpSkbeAqPDOg1a9ZEmzZtMHLkSHTv3h0+Pj56x1y5cgUbNmzAZ599hlmzZiEhIcEFI7W/0vZHKIZbQNqMsa6SwRGA2X7jlvQkB4Ddf2Rg1rYU5OQXGzze2tZo5oK1sZsIUm8uGJJ0ORuDVx01e9zU2AbYdOKq1TcCiIiIiMg9lLZs4Ak8MqCnpKQgKipK0rHFxcW4cuUK6tev7+BROUdp/CM0FJotIYN6Zv2Omf7dACT3JC/JVCiWGnoBoFKQL2b1aiSpF7sjbEu+jsmbks0et3RQc/RuWs3hWwmIiIiIyLFKYzYo6zxyD7oYzh89eoR33nkHo0ePNrrf3NfXt8yE89JGDL5Fj1T4b/9m+P1yFj799bLF5xEAg+FcfE4GYN728wBkRnuSy6CefY+LVOgFUVNV4y2paJ6dXwyFPMBlLcqk7vmvUsHf4ZXyiYiIiIg8kUcGdFG5cuXwwQcfYMSIEa4eCukwNGseGuTrkGsJgMn+3uIx1vT4trSiuStblJmrEs8icEREREREjuXl6gG4WmxsLH799VdXD4NKEPed6y5pv1Nin7erWBqgxdArlStblIlV4oHHy/pFutXglSoBSZezsS35OpIuZ0Op8ridMkREREREdufRM+gA0KNHD8ycORMpKSlo1aoVgoKCtJ7v27evi0bmmZQqAfN3pBpdau5qlgbokq3RTI3fXWan46PCsWJYS73VC4oSReAsLaRHRERERETSeGSRuJK8vIwvIpDJZFAqDfeoLq3cvRCE1KJqoUE+yMk3vK/cUjIAVYP9AMhwM8/08u7D07tYVQwtMSUDM7ae02oBV/LcgHu1KDNW+M5Yyzh3fA9EREREZJq7ZwNP5PEz6CqVytVDoBKkLiGf3bsxFMH+uHWvEJdu3seyA39Lep3YL73k9wAwr29jAOoq7saOEZd3WyM+KhxxkQos238Ja46k4+6Dx0FdYUWvdkczVATO3OoGU4X0iIiIiIjIPI8P6ORepC4hVwT7awLkkr1/SXrN1Nj62HTi/4wu3QZgdnm3Lby9ZJgc2wATu9Q3GsDdefn48bQck63urC2kR0REREREagzoAPLz83Hw4EFcvXoVxcXahcgmTZrkolF5JksqiStVAj755RKW/GJ+9jxc7o+JXeqbDMfA45luR85gG2tRZmz5eGZuIcavO21y+bgzZt2lrm5wZSV6IiIiIqLSzOMD+pkzZ9CzZ08UFBQgPz8foaGhyMrKQmBgIKpUqcKA7mCGgqVYVM3UUvO9qZlG93QbMuipWprAam521xU9vqUUx5vx/TlU8PdBzBOVtMJ3YkoG5m0/r9UqThHsh3l9G9t11t2SPumO5A5bAIiIiIiIHMHjA/rUqVPRp08frFixAiEhITh69Ch8fHwwbNgwTJ482dXDK9NMLec2tdQcAMatO23RteqEBdpn0BJYEyDNLR8HgLsPHmLoF8e0lrwnpmQY/Cwy84owbt1pfGbHom3u0CfdnbcAEBERERHZyuOruIeEhODYsWN48sknERISgqSkJDRq1AjHjh3DiBEj8Oeff7p6iHblLpUapVQDN7TUHADaL9pvNszq2pgQ45RZcWsD5Lbk65i8KVnSNcTP6NMhLfGfH02vIggJ9MGpWXF2m2EWf26A4dUNjqzizgryRERERPblLtmAHjPeY8xD+Pj4QCZT/0/8qlWr4urVqwAAuVyu+TfZl5Tl3PN3pAJQL0fv17w6oiNCcTwtB4v3/mVxOA934KyuUiUg6XI2tiVfx9J9FzFu3Wm98Yl7yBNTMoyex5Jl4eJnNGtbitkl/ncLHuLo5WzJ5zZH7JOukGuPVyH3d2hAlvo7o1R59P1GIiIiIirlPH6Je4sWLXDy5Ek0aNAAnTt3xpw5c5CVlYVvvvkGTZo0cfXwyiRLq4EbmpW2hC3t0UyROi4pLcjMLR83dM6c/GKzxwFA0j9ZaFc/zOjzli7Jd0YhPV2sIE9EREREnsDjA/q7776Le/fuAQAWLFiAESNGYPz48ahXrx7WrFnj4tGVTZZUAze2rFkKLxmwbHALh8zqWjoucwHS20tmtDie7YwHZ2uX5Du7kB4ryBMRERGRJ/D4gN66dWvNvytXrozdu3e7cDSeQepy7rDyfnht81mrw+qywS3Rs6l2yLSlArj42szcB1iw64JV48rMfWD0OXH5uC2rBQwpZ+T92dLWzdncpYI8EREREZEjeXxAnz9/PoYNG4a6deu6eigeQ2o1cAiwKqhWDPTBwuea6IVLW9qR2brMXrRg1wUE+HobvZ64fPzo5WxM2HAadx8Y3mMuAyCTAVK2XC/95RIahlfQuqa5Pd3mluQ7mztUkCciIiIicjSPLxL3/fffo0GDBoiJicGyZctw+/ZtVw+pzBOXcwP6i69L9jrPyi+CJUICfDA1tj5OzoozGM7HrTutFc6Bx+3Idv9xw+h5xZlme8xq38kvNlswzttLhnb1w/De803UQVzneXEJvCX10HQLqEnd0330cramCF7S5WyXFWGT+jvjDjcTiIiIiIis5fFt1gDg/PnzWL9+PTZt2oRr164hNjYWw4YNw7/+9S8EBjqvf7YzuFMrBXP7n5MuZ2PwqqNmzzOxcz20qxdmdLl68SMVWi7Yi/tFj4yeQwZ12zJDS+Ktaetmijjbe3h6F7OBUj3rn4rMPO3PqEeUAl8eSbfouuvHtoGXTIZb9wpx6eZ9LDvwt9nXhAT4aM3iu7rnOPugExEREdmPO2UDUmNA13HkyBFs2LABmzdvRmFhIfLy8lw9JLtytz9CU3vCpYbj5UNaoGfTagafS0zJwMytf+BOgfFwXtJnOvuupd4ksIaU3uzGluUPjq6NxfsuWnQ93bBtDXfoOW5LHQEiIiIieszdsgFxibueoKAgBAQEwNfXFw8f2hZmyDbeXjLM7hVp9rgFuy4YXHotLk2XGs4B/aXgjqwKnplXaHL5uDh+3WX5N/OKsGTfRYQE+pioz67P1nAOuEfPcbGCfL/m1dG2biWGcyIiIiIqMzy+SBwApKWlYcOGDVi/fj0uXryIjh07Yt68eRgwYICrh1amSVmuXDHI1+x5DLUvM1UEzZJzObIq+IKd55GTb3j5uJQibvZvxyYNe44TERERETmGx8+gt23bFvXq1cPmzZsxatQoXLlyBfv378fYsWMhl8tdPbwyy1jhNbHFl1hEbW9qpqTzHfn7ttZMtLkiaKaUnDUXq4c7Yo62ZDgHtN+7lCJudwoeYmpsfYTL7XsTISTAR9Jx7DlORERERGRfHj+D3rlzZ3zxxRdo3Lixq4fiMaS2+OrSsCp+TDZeXb2kZQcua/4tFlGzVslZc7F6+Ph1px0+Y13yvb8R31DSa+qEBeHg650Rs3CfXuC3xMTOdVG/agVUqeAPlSBg6BfHzL6GPceJiIiIiOzL42fQ3333XU04f/nll5GVleXiEZV9Ult8fZOUjpz8YovPn5lbaHGFc0AdjsMN9NKOjwrHimEt1b3ZHUx87zn3pbWYq1LBH6eu3LEpnANAu3qVNXu6Y56oZHLVgLHPiYiIiIiIbOPxAb2kdevWlbmq7e5I6tLoKzkFVp1fnIm2pnaYsV7a8VHhODy9CzYmxGDpoOaYGtvAYI9ye8nJLza51LxkSLZlqbmhsM2e40REREREruHxS9xLYsc555C6NLp2qPU96AUAlv44/90xwmTrMLF6uOhJRXm9Inf28umvl40+pxuSrV1qbipsi6sGdN+fQqeQHdudERERERHZDwM6OZ1YeC0zt9Dgnm4Z1EFweNs6+OJwmtHj7G372Qy8Ed9IcsiMjwpHXKRCE1IPXczCltPXHDxK7ZAMqD9Pa3qc655HV1ykAhX8fJD0TxYAmWb5u7eXTFIFfiIiIiIisoxM4LSxR8nLy4NcLkdubi6Cg4NdNo7df9zAyxvO6D0uRuMVw1oiPipcU+3dWb+kGxNirGodplQJaPfefmTmOa6yeUigDz4d3BIxBnp/L913EYv3XZJ0nomd66JdvcomZ7xNBXAABn8muj87IiIiInJv7pIN6DHuQf+f27dv4/Dhwzhy5Ahu377t6uGUaYkpGViw64LB5xRyf62ApynQFuyciuHW7uc+npbj0HAOAHcLHsLLS2YwVE/sUh9Bvt6SzlO/agW0NRDyReZa4M3Yes5oBX5AXYVeqeJ9PyIiIiIiS3l8QM/Pz8fo0aNRrVo1dOzYER06dEC1atUwZswYFBRYV6SMjDMW/kSze+kvkY6PCseRGV0wNba+pGvYsgva0H5upUpA0uVsrT7rupzVE9zYdby9ZPh3x7qSzmFqz7q5FngC1DcKjBGr0B9Py5E0FiIiIiIieszjA/q0adNw8OBBbN++HXfv3sXdu3exbds2HDx4EK+++qqrh1emmAp/gDpYL9hlePbV20uGybEN8NmwlgjXaXemOxGskPtj+ZCWJluFGbq2odZhiSkZaL9oPwavOorJm5IxeNVRtF+0H4kpGVrH2doTvLyftHIQpq4zsUs9hARKq/xujLkWeFI564YFEREREVFZ4vFF4r7//nts2bIFnTp10jzWs2dPBAQE4IUXXsCKFStcN7gyRmr/8+NpOYiOCDVYIVy3MFuVCv5oVbsiTl25o3esl5d6r7QMMLmH3Vg1c2P738Wl3iWX4psrfGeKDMD7zzfFgl2pZgvnmQrX3l4yvPdcE4xbd9rg6wHz7dHsFayl3rBgJXgiIiIiosc8PqAXFBSgatWqeo9XqVKFS9ztTGr425uaiWnfJRutEK7b7gyAwcJuxlqFecmAkpP0hqqZm1vqLYN6r3VcpALe/9sXPrdPpMEbAmLc/HfHCGw/m2H0fRm7oWBJ7/H4qHB8ZqY9mim2rgSQciNBxErwRERERETaPL6Ke9euXVGpUiV8/fXX8PdXh5MHDx5gxIgRyMnJwb59+1w8QvtyZaXGpMvZGLzqqFWvtaVCuO4srbEZd2vGqlv13VzoNDdjbOvrjb1nqTPTSpWA9ov2m5zJDwn0wZ2Ch0ZvJEj5GRlbnWDoHJxlJyIiInIMVnF3Px4f0FNSUhAfH4/CwkI0a9YMMpkMycnJ8Pf3x88//4zGjRu7eoh25co/QnPhD9Cf3S5JnJ09PL2LwwPatuTrmLwp2exxSwc1R7/m1bUesyZQlnxNWJAfIAOy7hdpvd5ZM85ieAaMB3AAVo9F/D0wtt2h5M95b2omZ9mJiIiIHIQB3f14fEAH1DPm69atw59//glBEBAZGYmhQ4ciICDA1UOzO1f/EZoKf1J/Ea3tVW4Ja2fQrSEleFsy42wPUsZk7cy21M92amx9LNl3if3WiYiIiBzE1dmA9DGgu9jy5cvxwQcfICMjA40bN8aSJUvQoUMHs687cuQInnnmGURFRSE5OVny9dzhj9BY+OsZpcDqI+lmX29o1trepCz1tsdsvpTgHRepkDzjbM+VBY5aWi51dUJIgA/uPjDc0k0GoGqwHz58obneSgMiIiIiksYdsgFp8/gicQBw8eJF/Prrr7h16xZUKpXWc3PmzHHYdb/99ltMmTIFy5cvR7t27fD555+jR48eSE1NRa1atYy+Ljc3Fy+++CK6du2KmzdvOmx8jmKoErtYtV1KQLe1kJkUUoq+SSnaZoq5QnQA8OYPKQjyLSe5+r2ls/mmQrihYnz2IPXnZyycA+r3nJlXhKFfHNM85sql79wnT0RERET24PEz6KtWrcL48eMRFhYGhUIBmezx/6iWyWQ4fVq/ZZW9tGnTBi1bttRq5daoUSP861//wsKFC42+btCgQahfvz68vb3x448/lroZdI29e4HJk4EBA4A5c6CUedlt1tpegcmR+76lLvUO8vVGfrHS7HGWriyw5r3Z43OVsjpBHuiDuwXGA7ohrlr6zmr0REREVFq5VTYgAAzoqF27Nl5++WVMnz7dqdctLi5GYGAgNm/ejGeffVbz+OTJk5GcnIyDBw8afN2aNWuwfPlyJCUl4e233y7dAb1HDyAx8fH3Xl449sVmDPrLD4BtFcLtGZhcvdRbqvVj2sDLSyZpnNbsabfn52quEN2U2AZYvO+iRecUX++sQoKA82sDEBEREdmTW2UDAsAl7rhz5w4GDBjg9OtmZWVBqVTq9WCvWrUqMjMzDb7m0qVLmDFjBg4dOoRy5aT96IqKilBUVKT5Pi8vz/pB29uSJUDDho+/V6nQZvTzSAOQ1OApjI+firsB6v9QSO3jbSwwZeYWYty60xjdrg7iIhUWhWxXL/U2R5xxfnXzWWTmmQ/PlvZ4B0x/ruPXnbY4iBrrUS/+nOMiFdh04qrJiv+G2LLc31LWfI5ERERERKZ4uXoArjZgwADs2bPHZdcvuaQeAARB0HsMAJRKJYYMGYL58+ejQYMGks+/cOFCyOVyzVfNmjVtHrPdPPkkIAhAVhbQq5fWU20vnkDyx0OQvqg3fvU+g8NvdJbUvsvcnu4vj6Rj8KqjeOqdfdj9R4Z93oeVoiNCES73hy3RTdwff7fgoVY4Bx6H58QU7fd5PC1H0p72o/9kA5D2uc7fkQqlsf54RsRHhePw9C7YmBCDpYOaY2NCDA5P74L4qHBNDQDxPVrq1j3j789epH6Ox9NyHD4WIiIiIiobPH4GvV69epg9ezaOHj2KJk2awMfHR+v5SZMmOeS6YWFh8Pb21pstv3Xrlt6sOgDcu3cPJ0+exJkzZzBx4kQAgEqlgiAIKFeuHPbs2YMuXbrovW7mzJmYNm2a5vu8vDz3CukAUKkSsHOn+t+HDgFduwIPH+8/rvPubODd2UBoqHrfesuWBk9jLjCVlJNfjJc3nMZL1yIws2ekzW/BUuKyeamV60W6BeuqBvuh8JHK4H5tY7O4UsPrhPWn8d7zTSAP8HVYkTpTqxOMzbJL4YxCglI/R2fcLCAiIiKissHjA/rKlStRvnx5HDx4UG/ft0wmc1hA9/X1RatWrbB3716tPeh79+5Fv3799I4PDg7GuXPntB5bvnw59u/fjy1btiAiIsLgdfz8/ODn52ffwTtShw5AcTGgVAJvvw3Mm/f4uZwcoFUr9b+HDAE+/xwoX17ztDVB6PPf0tCsRgh6Nq1m48ClM7SXWyZTLyYwRzxkTLs6iI1UQCUIWpXMDR2vG54tqaI+/n/bAqRwRBDVrfgfFuSHVzefxc0804UEoyNC7T4WXWFB0v6upB5HREREROTxAT0tLc1l1542bRqGDx+O1q1bo23btli5ciWuXr2KcePGAVDPfl+/fh1ff/01vLy8EBUVpfX6KlWqwN/fX+/xMsHbG5g7V/1144a60vvvvz9+fsMG9RcArF0LjBhh9azprG0p6P6/ZdWOZmwvtyUbrWUAdqdk4j+9IrHzjxuSXlMyPItL66Xu7/4h+bqka4SVtyyISi2+pzvLPq+vY9vfSSb1Etx+TkREREQSefwedKmCg4Pxzz//2PWcAwcOxJIlS/DWW2+hefPm+O2337B7927Url0bAJCRkYGrV6/a9ZqlUrVqwJEj6inmHTv0nx85EpDJEBMfgzbFty3OQzn5D52yT1jKXm4pSs6KS70pUfK4kvu7pVwrJ/8hQoN8zX6ur36XrLff3ZjElAy0X7Qfg1cdxeRNyRi86ijaL9ov6fXi0neFXPu9K+T+Tq2annW/yPxBFhxHREREROTxbdakqlChAs6ePYsnnnjC1UOxSZlppVBcDEyfrq4Eb8A3LXphQZexKC7nY/B5XZb2ELeGI/qe925azere8YkpGZjx/TncfWC+33iXhpVx4M/bAIzfTJDaWsxerckc1f5OKqk/z40JMQ6vKE9ERERkjTKTDcoQzqCT21KqBCRdzsa25OtIupytXSXc1xdYvFg9q37pEhCpPSM8/MwuXPzwWaQv6o1uF5PMXsudioqNlLjnu0oFf5PVzs0t+Y6PCsenQwwX3NO1/8/b+HfHCFQNNv45Sanobs+K8OLS937Nq6Nt3UpOb2Vmrgq/DOpWd87YD09EREREZQMDOrkli5ZA16sHnD+vDuvffKP39Mof3kH6ot7Y9tVUhOfd1nveWSFK6k2Ap+uGWRT8bFnyHVO3EsLl5sclA7D9bAY+eL6pyePMtRYrS63JbLk5QkRERERkCAM6uZzuTPnuP9RLoHWDnLG+3lqGDVMH9fv3gRdf1HqqWeYlJK0YhfRFvfHab1/DW6WEDM4LUVJnXGOeqGQy+AkAekSpK5uLM82meoqbInU/uhicj6Vnmz0WML5aoKy1JnOX/fBEREREVDZ4fBV3qWQyzoI5gqGWY14yw/ucjfX1NigoCPjqK/XX2bMojO0G/6xbmqcnJn2HiUnfqb/pvh+AfpCy9x5nMQxLqUBurAe42I7tyyPp+PJIOsLl/pjbJxLx/6tCb81e5/iocIxpV0diP3Zp79/YagFritq5O91WcK7YD09EREREZQNn0CViLT37E4uF6c6Um9p+bNUS6GbN4H/7JpSPlPhn7iL957t0USff7t2BrCzN2KytMm6KJTOuJWfFx/xvX7ruZyNpVYEEXRpVlXRcGxv3XZfVfduu3g9PRERERGWDxwb0wkLzS2gvXbqk+fdPP/2E6tUdW+Xbk5gqFiaFNUugvb298MS8N9RT0Dk5QN++2gfs2QNUrgzIZDg5aRYy7j7QetpeYdiS5ejeXjJER4Rid0qmwXMZK6xmssCeqROZ4SWzbd81920TERERERnnsQG9efPmOHbsmNHnP/roIzRv3lzzffv27eHn5+eEkXkGc8XCzLF5CXTFisC2beqwfvgw4K99vlkHvkT6+31wdslANMlQ36ixtMq4yFBYtmTG1dLCatbM/mflS+zpnV9k875r7tsmIiIiIjLMY/egx8bGomPHjpg2bRreeust+Pio+2X//fffGDlyJP766y988cUXLh5l2WVtETCxr7c9lkBr9pgH1UGVlGuIriXHT0NeQe8tn2mOkRflY8fXUwEAOxt2wIz4V5CRqw7NUvZ7G9pjX3LfuBSWFFYz1mNcnP03FoAt3Rtu675r7tsmIiIiItInEzx4c/X+/fsxevRoVKhQAWvWrMGhQ4fw5ptvonv37vjss89Qtaq0fbmlSV5eHuRyOXJzcxEcHOyycSRdzsbgVUcteo0Y3ewxy2ooOFet4Itb94ohAKh8PwefbnsP0ddSDb7+zNz/osW8VzXfGyootzc102BYtvR9SP2s1o9pg9e2nDU62y7e3Dg8vYteEFaqBLRftB+ZuYUGV7ubeq2r2LuIHxEREZGncZdsQI95dEAHgHv37mHYsGHYuXMnAgMD8fnnn2PIkCGuHpbDuMsfoblACKiruZdcSW7pzLMxxmaZjel0+QTWbplv+MknnsChxWvwxvmHWsFYEeyPwkdK3C14aPBllgReqeH5vwOaYegXxrdtiDYmxBic/Rc/F8BwhXl3Wn5uj5UJZQVvVBAREZG13CUb0GMeH9BXrlyJ1157DVFRUTh16hSGDh2KpUuXokKFCq4emkO40x+huUD46ZAWqBjkZ9fgIYZda/a/+ygf4o2DXyHhxI8Gn1/XvAcWdE1AUTlfyedcP6YNvLxkZt+jlPBc9EiFyZuSzV5z6aDm6NfccMHD0hB8jd1gcccbCY5WGn5eRERE5L7cKRuQmscG9OvXr2P06NE4ceIEPvroI4wcORJnz57FiBEjkJOTg9WrVyMuLs7Vw7Q7d/sjdHbAsGZpvSFbuyvQYtJIyFJSDD7/0r/+g5+ffNrseUICfHD3weNZdlPv3dxndeTvLJtm0EXuPCOrVAlo9fZekysTQoN8MatXIyjkAW41dnvjjQoiIiKylbtlA/LggF6xYkW0adMGX3zxBWrUqKF5/OHDh5g/fz7ef/99jBkzBitWrHDhKO3PHf8InRkItyVflzTLbM7SQc1RpYI/Bq86ir6pB/Hxjg8MHneual289NybuBFcRdJ5zYUrY59VYkoG5m0/j8w849XYS0t4NfX7sHTfRSzed8nMGR4rq7PJ5laCuGPNACIiInI/7pgNPJ3HBvQVK1Zg/PjxRp8/efIkRo4ciRQjM6Sllaf/EdprBn1jQgxu3SvUCvv+DwuxYM9nGJCyz+Brlsf0x4cdhkPp5W3y3JaGK0v31IvcMbyaWiUQF6lAqwV7tVYcmFNWZ5Ol/h6bWy1BREREns3Ts4E78tg+6KbCOQC0bt0ap0+fdtJoyFmiI0IRLveHtXOKMqgDY3REqF5rskIff7zeawrqTN+J7qOXIaO8djB6+egWXP6gH9IX9cbT6clGr6Hb19wUpUrA/B2pFodz4HHrNVP90Z1JvNGgOyssjnPZ/r8tCueA9b3r3Z0lrfeIiIiIqPTw2IAuha+v9GJf5P7EpdM9ohQQAL2QLvvf10sdIwy+Xjx+bp9IeHvJTIb9vyrXwdMTvkKLeYl4v+8kvec3fDsL6Yt645tNsxBakGvwesbClVIlIOlyNrYlX8faI2lWFbwD9MNryfMmXc52aqA1daNBfGzN72lWnduSGx6lhaV964mIiIiodCjn6gEQOYOhpdMyGVByg4eixJLvFrUq6h2v0FkS7u0lw9w+kRi/7jRkMFxdfeHzTRE3uxuS0uYg58ZNtF3wOkL37tYc1+FKMk5/MhQA8G6nUVgV/SwEmfq+maFwZeh92EIMr8v2/41NJ666rBr48bQck+9JAIwWhpPq1r1Cty6AZwnx5pC51nvREaHOHhoRERER2cBj96B7qrK8z8RUATVTe7THtKuD2EiFXliTGuYsrUSvVAkYN2EZlq5+HYEP9Yu65fkGYuqY97Fy2cta17N2r7m1HLF/29hnKrV4X0iAD3IfPLTqM5ga28ClNyHsrTT1rSciIiL3VJazQWnFgO5hysofoW7Qu5NfjAW79EPy7F6Reo+XZK9q15bOzIrhSiaoMO7oFrzx29eGD+zfH1i9GsryFazu324Le1YDN3UjQx7gK6no2dTY+ljyvyruUv/DJQMgD/RBboF+sLdXmHXVzDz7oBMREZEtyko2KEs8NqBXq1YN/fr1Q9++fdG1a1eP2W9eFv4IpS7z1l12boorql3rvo/K9+/gs93/Rau0swaPn9F9IjY1665em+9ktn4+5np2fzqkJRbsSjW7ZPvw9C7Ym5qJGVvPSVryLv4OhAT6mOydbstNCFeH5LKybJ+IiIicryxkg7LGY4vEbdiwAYGBgZg0aRLCwsIwYMAAfPPNN8jJKTuFpMoiY5W+DbHkzpMrql3HR4Xj8PQu2JgQg6WDmuPjqT3Q/O8z6o3xP/2kd/x7Py9D+vt9cHjFKNTLuurUsdry+UgpALdgVypm92oEwHDxPuBxcT5A+n50hdwfU2PrmzzeliJy5irPO6NCvreXDG3rVkK/5tXRtm4lhnMiIiKiUsxjA3qnTp3w4Ycf4tKlS0hKSkLLli3x6aefIjw8HJ06dcLixYtx+fJlVw+TSrClpZg5rqp2bSxcJdZohrbv7kO9137E59HPab2mRt5t7Fv9MtIX9cbCnz6Gn4F97PaWda/I6uruUgrAZeQWomKQH1YMawmFXPtnoZD7a5agi78DxsgAVAryxeIXmmFjQgwOT++COmFBksZp6U0IKTce7NnezZVV9omIiIjIOVjFHUDjxo3RuHFjzJw5Ezdv3sT27duxfft2vPnmm3jiiSewaNEi9OrVy9XD9Hjmgp413LHatdZycO9yWNh5NBZ2Ho0adzOxauvbaHQ7XXPs4D/2YPAfewAA4/vNwE8N29t9PF4yYMGuC5rvLV2+bUnP7n7NqyMuUmF0ybaUsJ+dXwyFPECzJN9RLcmk3ng4npZj8/YJVy+jJyIiIiLn8NgZdGOqVq2KhIQE7NixA1lZWViwYAH8/PxcPSyC/ZehG1o67WqmZmWvhSjQY/Qy1Jm+ExP7vqH3/Ipt7yF9UW/sWjMJ1XNvGb2GOMssle5EraXLty0NyKaWbFsS9kWm+tUD6s8j3IqbNNaMxRrusIyeiIiIiJyDAd2EwMBAPPvss4iNjXX1UAj2X4Zecum0u5C6SmBno46oM30nnpz2PTY27ab1XONb/+DIZ6ORvqg3Zvy6Bt4qpeY5MaQu6BdlMrSaYuny7Tv5RTB1/8OSgGzNbLjYr168lu61AfM3aYofqbD60D+Ysy0Fqw/9g+JHKofNzJfk7GX0RERERORaXOJOpYY4E2qs0rdU3SKroE1EJQxvWwe+5dzrHpWls61FPn6Y2WMSZvaYhAa3r+Cr7+cjvMTs+bhj32Pcse8BAMNeWIDLzdtqlkV7eUHd6g2WFdQDtJdvR0eEGl2SnpiSgQkbzpg9v9RVDOZ+B4xtWYiPCseKYS31lokrJCwTX7g7FasOpWmtJHhn9wWMaV/HqrFYwpnL6ImIiIjI9Ty2zZqnKu2tFIy167KGo/bw2tL2KulytqR+4KZsHNsGbX/5Hhg3zvABnToBmzYBVasa3dvcM0qB1UfSzV5rTLs62J2SaXBvdFykwmzvdi8ZsGxwS/RsKv1nIP4OANo3FqT0NLf0Z7Nwdyo+/y3N6PNxkVWwL/WWVWORYlvydUzelGz2uKWDmqNf8+pWX4eIiIg8U2nPBmURA7qHKQt/hFL7oJtjrxBVkqGxhQb54O1+UejZtJrZ1ytVAtov2m/TKgExrClVAk79kY4ar05Atf36bdsAAAsXQvna6zh+5a5WaD2elmP1jQLxc50SWx+L910ye7w1PdadUTSt+JEKDWf/pLcHvyQvGbB0UAu8u/uCQ8Yi9YaNrX3qiYiIyDOVhWxQ1nhsQL916xaqVKli8phDhw6hQ4cOThqRc7jzH6Els5visXtTM/Fj8g3k5BdbdU1xGfLh6V1sLhRnbnb/pY4RmNkzUvJ5AMuXngPqsJb7oFgvwMbm/oPPvp6JcgX5eq8RypeHbN8+oE0bALbfKJABkAf44O4D8/3KrZ39tWWlghSrD/2jVb3emNm9GmFkuwiHjMXcz8Gev79ERETkedw5G3gq99qA60RRUVHYsmWLwecePHiASZMmoWvXrk4eledKTMlA+0X7MXjVUUzelIzBq46i/aL9RitUi5W+5/RpjBNvxmJqbH2rrltyD68tpPRo//y3NOz+w3zFbXG/tG4/8HC5P0ICfUwWdvOSAfv/vGmw6vcv8idQ/5VvsXDHOXzafazWc7L794GYGEAmA55/Ht738owWVpNCACSFc8D6Imqmqr3bw5WcAsnHOWos9ihwR0RERESlh8cG9DfeeAMvvvgiBg8ejJycx+Hs0KFDaNKkCX7++WccOHDAhSP0HLa2kfL2kmFybAOMaVfH6jHY2gpLavX12dtSJFXcjo8Kx+HpXbAxIQZLBzXHxoQYHJ7eBe8918Tk61QCsOpQmtGq3wKAzw9fwQfN/4U603ei9cRvcKR2U+0Dt24FQkIQ36QadvqehyLY+jaDgb7edm9vJlKqBCRdzsa25OtIupxt90rmtUMD7XqctYzdsHHHLgREREREZBuPXeIOABcuXMCLL76I69ev4+OPP8ahQ4ewfPlyTJw4Ee+++y4CAgJcPUS7c7dlLOISXmPh1pIlvLYUWLN1D6/UYl72uNbuP25g4sYzJvdGW6ND2hl8891sg8/dr6zAc31m4WLlOladW7dSvK37/91pD/qfC3o4pRuAo5f0ExERkedxt2xAHjyDDgCNGjXC0aNH0bFjRwwcOBBffvkl9u/fj8WLF5fJcO6OLGkjZY7YgsvSyGLLLK7IkmXats7WVwzys3s4B4BDES1QZ/pOHL2QAbzxhtZz5W9nYs+XE5G+qDcW7V4K/4fS3oMMQMVAH1TVmYU3NvsrZVbc2IqLDIkrLqTyLeeFhA4RJo9J6BDhtFZ9jl7ST0RERESu59F90B8+fIi5c+di69atGDhwIBITEzFv3jysWbMGtWrVcvXwPILUsCrlOHG/rqW9vfs2C7c47OjOZraqXRGhQT7IyTe/79raPdciWwO+OTcLlcCiReqvK1eAZ58FzpzRPD/w3F4MPLcXADCx7xvY2aij0XMJAO4UPMT6sW3gJZOZnP2VMitubq+/AGDm1nOIi1TYJcCKRf10+6B7ydThXErRPyIiIiIiqTx2Bj05ORktW7bEpk2b8PPPP2PDhg1ISUmBn58fmjRpgi+++MLVQ/QIYeWl7W82dJyh2VZxv6480EfyGLafzbBo/7KhgnbPfHAAz7c0X4nc2bP1Np+/dm3g9GkolSr8Z/AcvWOXbX8f6Yt646cvJ6LG3Uyj58y6X2Ry9ldqHQIpe/3vFDzEsv3m27tJNbNnJP5c0AOzezXCi21rY3avRvhzQQ+GcyIiIiKyO4+dQW/Tpg1GjBiBjz76COXLlwcAVKtWDbt378YXX3yB1157DVu3bsXu3btdPNIyTmouFrRnrdOzCrDx+FVk5unPtgLA3QJpFcSBx0vopewLN9ZKLTO3EKsOpSOqejBSrucZfK0M9qm4LS7lN9cCzdC+b3PHK4zcQPD2kqHjf8YholY0/B4WYc4vqzDkbKLm+Ua303H4c3Vl+M+jn8MHHV/EI+/H/3kxdVPB1Ky48L9xzd+RirhIheTVA2uOpGNil/p2WwbuW84LYzo8YZdzScU950RERESex2OLxP3000/o0aOH0eevXr2KMWPGYO/evU4cleO5WyEIqcXVRrerg93nMrUCuS4xusgDfSwK6IC0XtzmCtppjUUGlPzLsncBM2O90sUQ3qepAocuZWu1OgsJ8EGH+pWw449Mq4u26S5Dr5d1FWu2zEfN3JsGjx8xYD4utmhnssif1OJ+GxNiAEByIUBbi/G5kjOK4BERERG5WzYgDw7onsrd/ghtqbxuT1LCnDVjHdOuDmIjFQ6Z/TQU4kL+t7S/5A0K3TBu6BhLwp/uzO6d/GJMWH8KL/yxF4sSPzb8oo4dgW+/BRQKvaek3qRZOqg5ejethlYL9krqsS7lpos7MrZKw9bK90RERES63C0bkIcucb969apFReCuX7+O6tVL3//QLw2kLNfWnY22J1PLunVZWpxNBmB3Sib+08v2Ze2GxEeFIy5SobXsf8m+i3qfo+73YjCfGtsAdcICLV4+LVYTL2mFVyvM3xGAOs26oXxRAd5L/AS9/zz0+IDffgPC/xcq334bmDkT8FKXwJC6p75KBX94e8kwql0EFu+7KOl4c+y9jNzW81my3J/L3YmIiIjKHo8sEvfUU08hISEBx48fN3pMbm4uVq1ahaioKGzdutWJo/MsYuV1AHrt0cTvHbnGQwAw6Kmako61tDibJS3irCWG5d5Nq2HTiauSt/QDwNrf09C7aTW7tOyKjwrH4eldsDEhBu+MeBqVdv4ApVIFHDsG6N6NnTUL8PYGAgKApCSz7fFk0C6uN7FLPc0qACnHG2Oo2F/7RfutbtNmj/PZs+0gEREREZU+HhnQL1y4ALlcjvj4eFStWhW9evVCQkICXnnlFQwbNgwtW7ZElSpVsHbtWnzwwQd45ZVXXD3kMk2svK6QawdghdwfPaL0l0Tb2+J9lyQFKWv7rDu6LRogrbq5rjsFD3H0n2y7jcFgn+7oaCA3F1Aqgfff135BYSHw9NPw9vbCj3veR3DhfaM3aUoW1/P2kuG955oYHIOh4w2RWjUesK03u6HzmWLPtoNEREREVPp49B70wsJC7N69G4cOHUJ6ejoePHiAsLAwtGjRAt27d0dUVJSrh2h37rzPxNDy4MV7/8KyA5cln0MG9R7rOwUPLapibkmRNEPF2UxxRrEyqfu4dU3sXA+vdX/S/gMy5dYtYOhQYN8+g0/P6vYy1jXvAchkJvfGW1tIzVyxP3Hbw+HpXbA3NVNSb/ZWb+81Wpiw5PnMrVSwpGBeaS2AR0RERO7DnbOBp/LogO6JStsf4ZFLWRi6+pikY0uGbAB6wUoR7IfCRyqbg5ShYGjL+US27F+2ttjexM518Vr3hha/zhhL3oNSJeDP9T+i8YvPGXy+uKoC3j//DO9mTe1yPZHUz6p/yxrYcvqa3uO6N3OW7ruIxfvM912XEqrFmwfGajJY+jtFREREZEppywaewCOLxFHpEVO3EkIktk1T6MxsliygVqWCP1SCgKFfGA/7Jff3mgpSJYuz7UvNxOoj6UbP1zNKfZy54GhrWy2pvdF1tX0izIKjTbPkPTw+1heYvhPeKiVmn/gWI3/doDnG92Ym0LyZ+puRI4FPPwUCA7XOY6hgnTlSl4cbCueAdrG2Lg2rYo2Rn7811xVrMoxfd9poKzxzy/eJiIiIqPTyyD3oohMnTmDo0KGIiIhAQEAAAgMDERERgaFDh+LkyZOuHh7B9H5j0Zh2dbAxIQaHp3fRCoK6e6Kz7hdJuqbUINW2biXM7tMYnw1riXCd/fNiflp9JN1ssTB77F82VWzPmJBAH8TYaZm0Je/B0LFKL2/MbzMEEdN34tc9x4HWrbUvsHYtEBSkLum/caNNY7W02J8h4s2cb5LSJbV8s+S6pmoysMUaERERUdnmsUvcf/zxR7zwwgvo2rUrunfvjqpVq0IQBNy6dQt79uzBL7/8gu+++w79+vVz9VDtqrQuY0lMycC87eeRmfc4ZCuC/TCvb2PJgcWR+3vFpdZ7UzPxpYEZVWN73M3thwYAeUA5TOxcH2HlfaGQB5icjZe6/B4APrNT2LNkTzcAycd6e8mArVuB5583fOHISGD7dqBuXavGa+lqA0NebFsbXyddMXtcSKAPTs2Ks7jlmj1bwBERERHpKq3ZoCzz2IAeFRWFYcOGYcaMGQafX7RoEb7++mucP3/eySNzrNL8R2iPHtP23t9bckxh5f3w6nfJWjcRzJ3fmr3j4XJ/zO4ViYpBvgY/i5JjSs/Kx4ZjV3DzXrHm9VJubFjyWVty4wOAdTdJCguBqVOBzz4z/IKpU4FFiwAf4+3XSrKm2J8hs3s1woJdF8weNzW2ASbH1rfhSkRERET2V5qzQVnlsQHd398ff/zxBxo0aGDw+b/++gvNmjVDYWHZamfk6X+ExoKZ1CruuueSOltdUsnwaW31dV2m9qtbemPD0v3wUt/D0kHNAUDysf2aVzf85J9/Ar16Af/8o/+cXA6cOAHUNx+Grf35AY9vthx8vTOe+eCAydl4a2bPiYiIiJzB07OBO/LYPeh169bFjz/+aPT5bdu24YknnnDegMgp7LW/19ieaylK7nG3x35owPR+dYP9yY3Y/UcGxlm4H17qe6hSwd+iY41q2BC4fBkQBODLL7Wfy80FGjQAOnRQP3fvntHTxEeF4/D0LtiYEIOlg5pjdq9GksYmmtsnEr7lvMzu/X/vuSYM50REREQkicdWcX/rrbcwaNAgHDx4EN26dUPVqlUhk8mQmZmJvXv3Ys+ePdi0aZOrh0kOULIKuzXL5ZUqAfN3pFq9NLpk+LS2+rqukpXF4yIVVgXC3X/cwMSNZyw+v7n3IM42R0eEAoBFx5o1apT669494N//Bi5dAs6cAQ4fVn9NmgT0768+pmNHdZG5EkpWgVeqBHxxOE3Sz+LfHSM0N3PEmz62VOEnIiIiIgI8eIk7ACQlJWHp0qVISkpCZmYmAEChUKBt27aYPHky2rZt6+IR2h+XsdjO2p7jxva422s/tMiaIneJKeqZc2vPb27rwKdDWmr2zKdn5WPxvktG24jZXKn8xg3gm2/UM+gXLz5+/Ikn1O3aRowAatUy+FLxfZj7OYQb+DmyqBsRERGVNswG7sejA7on4h+h7azZN24ufNqyH1qXyf3bBkipJF/Si21ro0dUuF4AVVfaT0VmnvYsct9m4dh+NkPr/CGB6mJuJfvb233GWRCApCR1i7ZNmx4vd5fJgK5d1bPqzz4LBARovWzpvktYvO+i/vl0WHMjhIiIiMidMBu4H49d4k5lmyNnM63ZN1412A+Do2uh6JEKSZez9cYjLrs/ejkbEzacltxb2x7jO56WY9GNga+TruDrpCtGArX2/b6C4kf4/Lc0vXPkFjyEAKB/yxoI9PNG7dBADG9bB77l7FgWQyYDnn5a/bVkibpl25dfAgcOAPv2qb/kcmDQIGD0aOCppwCZDHXCAiWdvmQtASIiIiIie+AMuhEXLlxAr1698I+hStGlWFm7S2YoiO9NzdSbjQ4J8MGodhGY2KWezUFdqRLw1Dv7kJNfbPbYiZ3rwsfbGxuPX9WbWTY2Wyx1mbUhoUE+mN27MRTB0m9KWFtJvuSqAABWj1nktD3baWnAV1+pZ9avlOhhHhkJjBqFk+17ov+P+jcVdDlrBp1L54mIiMhRylo2KAsY0I04e/YsWrZsCaVS6eqh2FVZ+iM0tCw8JNBHa9m0rpBAH7z3XBO9EGhpCNr9RwZe3mB6z7a6X3kjTNhwRi+4OmPJu9TAa+2eeuDxvnpBEIz2f7fkXIAd9qBLpVIBv/4KrFkDfP898OABAEDw9sbh+tFY16gz9td9Cg+9tXurG6sl4AiWtrwjIiIiskRZygZlhccG9GnTppl8/vbt29iwYQMDupuyZZYZAD4rEQKtDUELd6caXL4NqEPcp0NaYsEu4yHbXNATbxpk5hXi9JUcfHP0qvQ3COmBV9yDbmsleXtwZvjVkpsLfPedOqwnJWkezg4Ixo+NO2Nzk1j8WSXCqTcRjP2OO/1GBhEREZVZZSUblCUeG9C9vb3RvHlzo7+I9+/fx+nTpxnQ3ZClRc0MEatw703NtCkE7f7jBmZtS0FO/uNZe8X/9ps/VApYduBvs2ORslTalmXo5gKvUiVg2f5LWLzvksXndxSXFmD7809g7VoUfrkW/rdvah4+V7Uu9kT3QPPp49G1XaRDh2Dud9xlNzKIiIioTCkL2aCs8dgicfXr18fUqVMxbNgwg88nJyejVatWTh4VSWFpUTNDMnILcfRyttF+5lL7ivdsWg3do8I1y+PTswqw8fhVi8KulGJj1hSmA9TvIyO3EMfTcgwGXnNL6cv7eeN+kfNvUhn7TAxtRQBg3z3aDRsC770H/7ffhjLxZ9z9dCUq7vsJTW5eRpMdy4CfVwL9+qmrwHfrBnh7W38tI8z9jpv7uRIRERFR6eSxAb1Vq1Y4deqU0YAuk8ngoYsL3I5uKMvMfWCX8yb9k2VRCDK2T93bS4a2dSshMSUDS/ZdtHiZuJTwHR0RinC5v9XL0A0FXnPbBKZ0rY+Nx69ICui6Pc1tZegzMVZzAHBQu7Zy5YCePXGxUQzuXr2Bhgd2os6O7yBLTgY2b1Z/VasGvPiiOqw3aGDb9f5HqRJw5O8sSceykjwRERFR2eKxAf3DDz9EUZHxolbNmjWDSqVy4ojIEEOhLDTI105nlzbLeuteodl96kqVYHQ23tTVFfLHs8CmeHvJMLdPJMavO21VGNYNvObGKwPwzdEryJZQqR5WjMcYY5+JsZsJhgoCZuYWYvy60zbv0db/mTdF+AvR+O+bKrQ7tBNYvx64cQN47z3119NPq4P6Cy8AVi4Rs7Q4oLmbO6wAT0RERFS62LHpcOmiUChQu3ZtVw+DTBBDmW5YuSMxNBojgzpcS10anJ5VYHAcYhBMTMmweNm9GJHm9omUHJjio8Lx744RkFmQr8T3qht4pSyhlhrORT2jqko6rn/L6pBB//aIsc/E0psf4nHzd6RCqbLu1oGx373M3EIMO1mMxIQZwPXrwJYtQK9egJcX8PvvQEICEB4OjBihrhBvwU0+Y9c0xNjPVfd87Rftx+BVRzF5UzIGrzqK9ov2IzElQ/KYiIiIiMi5PDagk3szFcpMRS4x1gX5Gt4XXDIExjxRCeFyf6Pz6DKoC75tPH7V5Djm70i1eNm9Qu5v8QxvYkoGVv6WBksypwCgb7NwvZsAjlga/UTlCpKO69CgMlYMawmFXHv219hnYk3NgZLbEyxV/EiF//yQYvZnrvTxBZ5/Hti5E7h2DVi0SL1/vaAA+PproHNnoF494K23tPutG2DJTQgpN3dM3WAQbyoRERERkfvx+IBesWJFhIaG6n1VqlQJ1atXxzPPPIM1a9a4epgeR2ooCw3S7lGtkPvjs2Et8ce87pgaWx8hAfrPiyFQXDYOGJ/NHRxdC5l55vep50icbZ7YuS42JsTg8PQuFoVza5bQi1b+lqYXyKQWndP9fA2xdEVClQr+iI8Kx+HpXbAxIQZLBzU3+ZnYcjPB0tcmpmQgZuE+kz9Pg+E/PBx44w0gNVXdpu3f/1Yvc09LA+bOBSIigNhY9bL4B9o3c5QqAWuPpEm+CWHu5o6Um1u2rC4gIiIiIsfx2D3oojlz5uCdd95Bjx49EB0dDUEQcOLECSQmJmLChAlIS0vD+PHj8ejRIyQkJLh6uB5DarCa3bsxFMH+BvfYTo5tgIld6pvcgxsfFY4Vw1rq7ftV/G9/edEjaUuUQ8v7mSziJu6tnhr3pFV7gG2tXK9bjT46IhQhgT4G93CLKgb64O1+UZiw4YzZGwMlVySY+wzEZdlicT1zrK1gb+lrzRXN02Xwd1QmA2Ji1F+LFwM//KDurf7LL4+/goOBQYOAUaOQGFQL83dekPyzndi5rtnfIVaAJyIiIiq9PD6gHz58GG+//TbGjRun9fjnn3+OPXv24Pvvv0fTpk3x8ccfM6A7kdRgpQg2PXMrJQTGR4UjLlJhMMgnXc6WPA5jRdys2W+uy5ZZZGsDmQCge1Q4VgyTGS1cplsx3RGfQXREKEICfHD3gfGbCbrEmwGtaldE0uVss0XSrFmhYPZ3NDAQGDpU/ZWeDnz1FbB2rfrfK1cCK1eibqWa6NukK7Y27oLb5c0XC2xXr7LZz0/q7worwBMRERG5H48P6D///DMWLVqk93jXrl3x6quvAgB69uyJGTNmOHtoHs1cWzFLKqBLYSzIWzIOby+Zydl4WyqK2zKLLCoZyI6n5ZicPQfUFdKPp+Vo3cDIzH2AnPxihJb3gyLY8hUJ1nwG3l4yjGpXR3JveXE0fZuF45kPDhitvF+SJSsUrPrdq1NHvdR99mzg4EGovlyD4m+/Q/3s/8PMX9fi9YNf4+ATrfBdkzjsr/cUHnprby2w5JpSf1fs8TtFRERERPbl8QE9NDQUO3bswNSpU7Ue37FjB0JD1f9jOD8/HxUqSCuARfZhqq2YPWakHTUOU7PxtrC1DzqgHcgsnWWVuhwdcMxnMLFLfaz5Pd3sTQVAHWT7NgvHyt/S9D4rYy3YLJ1Ntvp3z8sL6NwZx2o1RUJYH/T68xAGnNuH1tcvoOvlE+h6+QSyA4KxLbITNjeNxYUqT1j8++7sm1tEREREZD8eH9Bnz56N8ePH48CBA4iOjoZMJsPx48exe/dufPbZZwCAvXv34plnnnHxSD2PI2ZjnTEOS8KsVLb2QQ8J9NEKZI6eZbX3Z+DtJcN7zzUxuEdc/DxGt6uDuEgFWtWuiGc+OGC0SJoM+nvypb7PSkG+eOfZKJt/927dK8R9v0B826w7vm3WHU9kX0P/lH14LmU/FPdzMPrUdow+tR0pVevi56fi0Xz6eHSVeE13ublFRERERJaTCYLg8aV8jxw5gmXLluGvv/6CIAho2LAhXnnlFTz99NOuHprd5eXlQS6XIzc3F8HBwa4ejiRKlWD3GWlrrqdUCTj6T/b/9qULaPtEGGLqVnJq0ElMyTC6H9yUqbENMDm2vuZ7pUpA+0X7zc6yHp7exa2CnKH3r7tsPelyNgavOmr2XBsTYjQ3Ecx9HoC6ov3RmbHwLSe9+YWx3yVjY/RWKdEh7Qz6n9uHuL+Pwk/5SP2Ery/Qty8wahTQrRtQzvy9VSmfFREREXm20pgNyjoGdA/DP0LTTIUaAG4ReIofqfBNUjqu5BSgZsUArD6cjpt5xoNlSKAPTs2K0wvaYtVywPAsq6V92q1hzc0Xc6/Zlnwdkzclm7320kHN0a95dc339v48TP0uxUUqzN4gaeBThJ+qXIfXmjXAmTP6B23bpg7tJjj75hYRERGVLswG7ocBHYBSqcSPP/6ICxcuQCaTITIyEn379oW3t7erh2Z3pfGP0Fkhw1ibLVNLyp0ZZgHDoU9sl2ZsnJ+ZGJujZlml/MzMBVhrf+bWzKBLGZOl4dzY7xKg/n0BIP2GwNmz6nZtS5fqX6xNG2DLFqBGDcnjcze8kUBEROQapTEblHUeH9D//vtv9OzZE9evX8eTTz4JQRBw8eJF1KxZE7t27ULdunVdPUS7Km1/hM5apisucbam17jucnBHhQ1zNxB0+5pLDbv2Gq94nr2pmfgx+QZy8ov1xiL+zKx9L1J+5rYu37f18zD3uyRe/7/9m+GXP2+a/ay03L8PjB8PrFtn+OKzZ6urxZeim4tcik9EROQ6pS0beAKPD+g9e/aEIAhYv369pmp7dnY2hg0bBi8vL+zatcvFI7Sv0vRHKGUW0l7/A17qrKspGxNikPug2O5hQ9z7PmH9aaO9wGUAqgb74cMXmiPrfpEmWO5NzXRK+DG3N77kz0xc3m3JzRBDP3NTQdqVy/et+V0KDfLBs82rIzZSYfKGQMn3XOf/LqHp2IGQ3bqlf6CXF7B/P+DmxS2d+TdORERE+kpTNvAUHh/Qg4KCcPToUTRp0kTr8bNnz6Jdu3a4f/++i0bmGKXlj1DqLKS9iphJ3bdsyuh2dbDmSLpdw4alReFKLtt2Vvgxdh1DKgX5YskLzTF8zXGLr1PyZy7lxoMlM7P2XPVgze+SlJ+J0ffTuxHif/0emDTJ8Mnj49Uz7pXs21nAVs7+GyciIiJ9pSUbeBKPb7Pm5+eHe/fu6T1+//59+Pr6umBEBADH03JMhlIBQEZuIY6n5dilnZe17cRK+jH5hkWtvcyxJPiKxH7eSpWAGVvP2XU8hihVAubvSJU8xuz8Yoxbf8qqa4k/82X7/8aSfRfN9jiX2o/d3kusrfldMvczMfa7kJlbiPHrz2DFsP6IF14BcnKAESOAnTtLvDgRCAtT//ujj4ApUwCZ6wOvs//GiYiIiEoD6f2CyqjevXvj3//+N44dOwZBECAIAo4ePYpx48ahr5kKyeQ4YtC013HmREeEIlxuXUiXQb1EueQ+Yl0lw4YUlgZfkRgOl+2/pLWH29bxGGMuZBmSX6y06ZprjqQZvfEAqEOuUqX+TuzH3q95dbQ10BJPDL6670EM+4kpGRaNTakSoFIJCAnwseh14vgN/UxM/S7ovefQUGDHDkAQgN9+A3x0xjFtmnr5e6VKwOnTFo/Rnpz9N05ERERUGnh8QP/4449Rt25dtG3bFv7+/vD390e7du1Qr149LDVUMZmcQuospD1mvgF1kOvbzPLZUjHuPVuiXZcpUsOGNcHXSwa0ql0RSpWANUfS7ToepUpA0uVsbEu+jqTL2ZoA7IrwZGwfPmDZjQeLgq8EiSkZaL9oP4auPmZyjOYc+TtL65qWzDRr6dABKC4GHj0C5s/Xfi4nB2jVSj2TPngwYGAVkaM5+2+ciIiIqDTw+CXuISEh2LZtGy5duoQ///wTgiAgMjIS9erVc/XQPJo4o22uEnd0RKhdrpeYkoGVv6VZ/LrQIF+882wU5AG+WC0hFJsKGyX3QV+6aXntA5UAnEjLgZeXTHJAlBJ+TC0Bd3Z4Ku/njftF5mfgpdw4sOcSa2u2Ixiz7MDf+P70Nc0S+32pmZJeZ/Q9e3sDc+aov27cAAYMAH7//fHzmzapvwB1K7eRI217AxI5+2+ciIiIqDTw+Bl0Uf369dGnTx/07duX4dwNeHvJMLdPJIDHs9Qi8fu5fSLtUjzK2uXkADCrVyPER4Vrwoax0cigDrXGwoY4+zp41VFM3pSMZQf+tmI0wIQNp7FXYqALCfQxG37MLQG/k19s8n1byt/H9H+SpIRzQNqNB3stsbbl98cY8fNduDtV0o0fQOJMc7VqwJEj6iXwJfepi0aNUs+q16sH/PWXZYO2kDP/xomIiIhKC4+cQZ82bZrkYz/66CMHjoRMiY8Kx4phLfVmbxV2bhNmzXLyx2MJAPA4bIxfd1rTy1tkLmzYc/b17oOH+FJioBv1dITJ8GNuCbgMwIJdqZjdqxEmbDhjzXD1FD5U2fR6S2Zd7bXE2pbfH2PEz1zqqg4vGXAnv8iyi/TqpQ7qxcXA9OnAkiWPn7t8GWjYUP3vl19WF5fz87Ps/BI462+ciIiIqLTwyIB+5oy0MCFzg0rHnk5qJW5bWLOP2lAQtCZsOGL2VQb1JKiprdMhgT6Y2MX0ShGpS8Azcgsxql0dbD51DfcKH1k3aDsQfyNm92ok6ffFXkusHbkPX+rvhUoAJmw4gxVeMstDra8vsHix+uvvv4F+/YDU1MfPL1+u/gKAH34A/vUvy85vhjP+xomIiIhKC48M6AcOHHD1EDSWL1+ODz74ABkZGWjcuDGWLFmCDh06GDx269atWLFiBZKTk1FUVITGjRtj3rx56N69u5NH7VxiJW5HsXQftakZcUvDhqNmXwUzye6955qYDUBSg+eCXRc0/5bJzF/bURRyf/RtFo4Fuy4YbZmm2+9cnP23dNVDSVJ/f0KDfLUq/Qf5eSNf4pJ9qWxunVevHnD+vPrf69cDw4ZpP//ss+r/27o1sHUrULOm9YMtwdF/40RERESlhUcGdHfx7bffYsqUKVi+fDnatWuHzz//HD169EBqaipq1aqld/xvv/2GuLg4vPvuuwgJCcGaNWvQp08fHDt2DC1atHDBO3AM3RDl6Nk0czOpuswtv7UkbEgNwRM710X9qhWQnpWPLw+nIdfKmWpL+ntb1c/byeFc/FyqVPDHnfxiTNhgpFf4utP4d8cIbD+boRfeDT1uyRJrqTPxB1/vjFNX7mh+r1UqAUNXH7PujRtg977hQ4eqv/LzgQkTgK++evzcyZOA+N+o//xHXSW+HP/fCREREZGtZILgqvkuatOmDVq2bIkVK1ZoHmvUqBH+9a9/YeHChZLO0bhxYwwcOBBz5syRdHxeXh7kcjlyc3MRHBxs1bgdyVTFcHvsRzUW/sV94IDhmdQpsQ1QJyzQ7jcMki5nY/Cqo2aP25gQowld/9/encc3Uad/AP+k9wENlAopoBSQq5QboQiLWk4BwZNLETyq7Mouoq6AyA8QL1REXLxADg8uFVhQES2CskARBYrUoiBSUGxFCrTQQlva+f0xJjRpkjkyk5k0n/fr1Zc1M5l8M5kJfb7H8+z4+RTufFt5YDepb0tMSLtadtsrKgX0mrNFdsdFVSEuU+zjY8MxrEMjrN9/AqeL1Zcgc2U/L/a2Kp2NYD8Tr43ujLqxEao7haSunzfu6lzt+vXl/Hozf2RHDJNZ9k+x/fuBgQOBfA+JCLdsAW64QfOX9XenHRERUbAwe2wQjDjkYZCysjLs2bMHU6ZMcXq8f//+2Fm1BJIXlZWVOHfuHOLjPa+RLS0tRWnp5eRRRUVF6hrsB56SpdlHQN0FOUqP7y34NyJZlZp10KnN6ika8bdbuvMoujapi9Tm9WQFN94S30mpFMS14Am1I50Cqu7N4jVJiOd6XtQuFaia7G775DTVQZ+a68eX8+uNrqXvOnQA8vLEqRKvvw5MmOC8PS1N/G+/fsCKFUBCgs8vqXenHREREZGZsMyaQU6dOoWKigo0aNDA6fEGDRog39PolIu5c+eiuLgYw4cP97jPc889B6vV6vi5UqM1o1qTyhgOiOtrK7xlPvNCqlzYpuw8DExJxPbJaViZnor5IztiZXoqtk9O0zUIUFNqyttzvDlbUo47F3+DXnO2YFN2nqzn2ANPm1V50JdQOxLDOjZCjyodAvbjxceGKz6enbvzkl+kfh1/1anhvlBz/fhyfl1JlfLTlMUiTnsXBOD0aWDoUOftGRnAFVeI+82dq3rtg5z7loiIiKgmYYBuMNdM8YIgyMoev3LlSsycOROrV69G/fr1Pe43depUFBYWOn5+/fVXn9usB7kZw9UEUUqCf/v6cdfAUk+egjSbNcrjrAFfAjulwY1r4Dl9cBtZz/M0kjswJRG7pvZFfGyErOPUiXEO5t2dl9PnFZYYc0OLbOxqrh/7+V1+X3fUifbecREZ6v54htYNr1sXWL9eDMK3bweiXD73xx4DQkLE/b77TvZh9e60IyIiIjIjTnE3SEJCAkJDQ6uNlp88ebLaqLqr1atX47777sOHH36Ivn37et03MjISkTrUL9aa3OBoc06+4gRYSoJ/ozJJqyk1VfU5O37+Ewu2HpH1WvZwZtq6bKS1boCIMOl+uqqJ7yoqBby9/ahP5ckiwkLw7C0pbtdt29WJCcfzt7aTdV7kBvve6Do1XEJoiAU9WyTg+dvaeT0npRXio65r/JUuxdBtTXfPnsCFC0BlJfDss8D06Ze3nT0LXHON+Pvw4cCiRYCXtW6BcN8SERERaY0j6AaJiIhAly5dkJGR4fR4RkYGrr32Wo/PW7lyJcaNG4cVK1Zg8ODBejfTb+QGR4t35Cqe1io3+NeznrUcakZf7c+Z1K8VEq1Riqa8FxSXIfW5zYrPp5pp+e54mgVQJyYck/q2xJ4n+2FgSqKs82KzRit6D65t9tvUcAlyZ0bYZ4zf2zNJ8VKMTdl56DVnC0Yt2oWJq7IwatEuRcseZAkJAZ58Umzo778DrqUjP/gAsFrFKfCLF7udAh8o9y0RERGRlhigG+iRRx7B22+/jSVLluDgwYOYNGkSjh8/jvHjxwMQp6fffffdjv1XrlyJu+++G3PnzkVqairy8/ORn5+PwsJCo96CZuzJ0uQEmEqntcoN/o0cQfWV2nXpp4vLVa3lVTMtv6JSQOaRAqzPOoHMIwWoqBTcrtve82Q/TOzbQtGIrv36keJLh4K/OKa83+95yrs9ud1n2fmKRr8NWdOdmAhs2yYG4Rs3Vt9+//1iQN+sGfDjj46Hg+G+JSIiInLFKe4GGjFiBAoKCvDUU08hLy8PKSkp2LhxI5o0aQIAyMvLw/Hjxx37v/XWW7h06RIeeughPPTQQ47Hx44di2XLlvm7+ZqyB5jj/5re643Saa1qMqUHIk+ZxOWY9XEO+iXbFAWpSqblS2Xi9nWKctWM6J4+Y1/rnftTaIgFIRYLzl7wXJJO6RRvqTXdFqi7DhS58UYxUC8vB6ZMAV5++fK2o0eBNn/lN3jwQXR7eV5Q3LdEREREVbEOepAxe63Dpz7+AUt25Erup7TWs5o61YGqolLArl8K8NDyvV4DPFdVa61ryVP5PD3OvVRHQCDV016fdQITV2VJ7if3Xsg8UoBRi3ZJ7rf8/u4IsVj8d45++QUYNgzIzna7efzNT+DzVtfW+PuWiIjICGaPDYIRR9DJVPol22QF6EqntRpV59wIoSEW9Lz6csIxuT1weqzl9feorX1Uf9cvBcg8UgBAQI9mCUj9q+OharI7pfwd3Gs9xVvu5+vasaN7zfFmzYADB8TfV60CRo1y2vzmf58FABxo0BwP3joNv8fVr5H3LRERERHAAJ1M5kxxmeQ+ahN6qcmUHsjsnRJPrMvGaRnnVYu1vK5B7KVLlX7PxJ2Rk+/UEbNg6xGfg0ypkXlXWgTzWi/NkPv5us66sK9P98to9ciR4k9JCfDPfwJLljg2tfvjCHa+cS8AoHLyZIS0vk7fthAREREZgFPcg4yZp7FUVAroNWeL5Prp10d3wqD2Df3UqsBXdqkSqc9txuli99Pd7YHe9slpsoJIT8GnuyDWAvflwlwpXbLgiR7T6ZUeU2kwL+e1Ad+XZtjvL08BvzdKrxFNHTggrl0/ccL99owMQKLcJBEREbln5tggWDGLO5mGVN1ju7qx5q/rbiZizfF2sMD3LOaeSnQ9tzHHbXZwuYGgVqP33qbTA8orACg9pqcs6XmFFzH+/b2Yv/mwotdXky3fE7WZ/gHnmQ5+164d8NtvYm31N96ovr1fP7FcW58+wMmT/m8fERERkYYYoJNpsO6xfrQI9LwFn29tO6p4VBbQtga5VAePmiBTyTG9BfN28zYfQs/nv3QqZ+au/FxV7krRKal77nosT7Xn5TD03rNYgPHjxSzwZ84AN9/svH3LFqBBA3G/F14QA3oiIiKiAMM16GQarHt8mR4JyXxZgy8n+FRLqxrkenTwKDmm3Bkg+UWljjXdAKpNh4+PDcctHRuhb7LN8fn4ktzOlbvroLJSwJ2Lv5F8rmnuvTp1gHXrxN8zM8Up7iUll7dPniz+1K4NbN4MdOtmSDOJiIiIlGKATqYRLPXKpWi5htmV2kBPbvCpRJ3ocDx/WzvNEo/p0cGj5JhKR5enrD2AwpLyatf66eJyLN6Ri8U7cnXLoO56HVRUCj7fe4aVsOvRAyguFkfM58wBnnji8rZz54Du3cXfb78dWLwY4Po6IiIiMjFOcSfT8LZGVula6UDlaRq5PZN21anR/qTH1ObX7tQ2K7i9g8fT1aFmOr2SYyoJ/AUAZ90E56789bn7eu95yk3g1+s1JASYOlWcAp+XB1x/vfP2jz4CrFZxCvyiReJ+JiK11IGIiIiCAwN0MhUtk2IFGj2SnGlFy6nNFgC2ODHRn5bBiB4dPPZjemqdUOWYUsG8Glp87nIDP7X3nik7lWw2YOtWMQjftKn69gceEAP6Jk2AnBz/t8+FKTo4iIiIyBRYZi3IBEopBcOmyxoo80gBRi3aJbnfyvRUzdYjy+VLia6q7GXX6sSE42zJ5bJvWk7l1nqJwKbsPIz/q9SZO29WCV49lWTTgprPXc25UHLvSZVGVFOeTct7v+qxGkSFotviuQh56SX3O99/P/Dqq0B0tKrXUkuP0oBERERyBUpsEEwYoAcZ3oTmtT7rBCauypLcT6ua4Up5qsntjcXiPJPYNTB37PfXf7UKRrQK8tQEoJuy8zBzQw7yi7RdFqD0c/dH4Kd1p5LWNeQ9Hiv2opgF/vvv3T/5ww/FNes606ODg4iISAnGBubDKe5kKK67vMzsWew9TYH25qXb2jvKgy2/rzuiwkLd7ufrVG7X6wgAejSvh2EdG6FH83qqgxs1pdsGpiRix5Q0TOrbwu1z7C2pExOuaDq8ks/dX8sltMycr+VUecljFUcB+/eLvUerV1c/wB13iL1LHTsCubmyX1cpPUoDEhERUWBjgE6G4bpLZ3okOdOavSb39MFtZO3fsG6MI1AOCbF4HVVWG4zoeR35EoB2a1oP9/VMQnysc41xmzUKb97VGc/f2k7WsdV87v4K/LTqVNKyQ0HxsYYPFwP1khJxmntV+/cDTZuKwfrkyUB59dkfvtCjNCAREREFNgboZAhTJpYyWKBksQ8NsWBcz6aKOxP0CEb0vo7UBKBVOwwW78jF6eJyxMdG4N6eSViZnortk9MwMCXRMSMh0cuMBLWfu78CP606lbTsUFB9rOjoy9nds7OBq65y3v7CC0BEhBisZ2RItkMOs8+aISIiIv9jgE5+Z+Zs5UYLlCz2ajoTtA5G/HEdKQ1APXUYnCkuw9IduSi8UOZ0TuwzElamp+LenkmIj41wep7az91fgZ9WnUpadihocqy2bYFjx8Ta6m+9VX17//5ioH7DDcAff8h6PXcCYdYMERER+VeY0Q2g4KNkhMvf2crNYGBKIvol20yfxd7emeCaiMvmIamXPRjxlAnenhBLbjCi13XkmmBu+uA2eGjFPkcG+qrtBS4HoFIdBhaIHQb9km1On2VoiAU9mtdDj+b1MG1wsiaf+5niUoRYAE99E0rPtTdKrwN3tOxQ0LRzwmIRS7I98ABQWAjcdx+wZs3l7V99JZZ0A4BnnxWnwYfI7/e2d3D8/f29ktcXERERBQcG6OR3XHcpzR60mZ2SzgStgxG9psy7y/z9QO+m2LA/z2sAqkWHgdTnLic7/absPDy0Yp9kpn0tAz9fO5W07LzRuiPIwWoFPvpI/H3XLqBfP+D8+cvbn3hC/ImJAb78EkhNlXVYLTo4iIiIqOZggE5+x3WXNYuSzgQtgxGtryNPZcnyCy9i4bajeG10Z9SNjfAYgOrd8SSnBJm3UXy7EAuwYJT2yyV86VTSsvPGL6PSqanAuXPiFPgXXwSmTLm8raQE6NFD/P2WW4ClS8Xg3otAmTVDRERE+mMd9CBjhlqHrP1LSuuUu9sfAHrN2SI5UurtOrIfN7/wAmZ/ehCni8vc7ifnWFrXBK9Kbk1zPdvgD36rg67HqPQffwCjRwNbtrjf/uab4lR5C7/TiIjIPMwQG5AzjqCT34WGWDC0QyLe2nbU4z5cd1mzKRlt9RZoqR0pragUsGDLz1i64yjOXpAunSVnerpeU6uVrG0P9OUjWo4k+31UukEDcWo7IGZ579/fefv48eJP48bAZ58BKSn6tIOIiIgCGgN08rtN2XlY6CU4f6B3U667hPJRZqM4RqGLLuL0+VLEx0bAZo2W1V6p9+ht2vnf39+LN+7qrHjK/KbsPExZewBnS5TXtPYW2Oo1tVrJ2vaasHxEy/wLhuVy6NdPLNd26RIwfTrw/POXt/32G9Cunfj7vfcC//mPuG6diIiICAzQyc+k1shaAGzYn4fHB7ZxBDKBEqhqye/Tc1Vy1047qfZKvUe5I8fbJ6fJHindlJ2H8e/vVflupQNbPRJ+KRkVH9K+oT4J0kidsDDguefEn2PHxDXp+/Zd3r5kifgDAKtWASNGGNNOIiIiMg0G6ORXSjNdB0qgqiU5o8ZmeO+e2mmX56W9ct6jNTpC0bUiNVJqD/jVUBLYaj21WsmoOMt2mViTJsDevzqHPvoIuOMO5+0jR4o/KSnAhg1A06b+byMREREZTn7BViINKBkNtAdxrkGaPYjblJ2nRxMNJTVqDIijxhWeClz7iZxs4YDYZtf2yn2P+UXarqeW6hzyRoCywNY+tXpYx0bo0byeTwGxfW27pyNYIHZa2TsP7KP4NqtzYG+zRkl27lRUCsg8UoD1WSeQeaTA8Ousxrr9dnEKfEmJmDiuquxsoFkzMZncY48B5cqXYhAREVHg4gg6+ZXc0cCEWpF47MP9XoO4J9YdwIXyStjias60dy1qafuDkmDXtb1y3+Pp86Wyji/3mvIlMVqdmHDVz/WVmlFxNaP4SmerBOPSE81FRwNvvSX+5OQAgwcDubmXt8+dK/4AYmK5gQMNaSYRERH5D0fQya/kjgZCgGQAeLq4HJNWZ2HUol3oNWdLjRhRD5Qs3Epfv+r+cp8bHxuhaORYii+J0c6WlBs6a0PNqLiSUXyls1U2Zeeh15wtGLVoFyauqln3oGGSk4GjR8Xa6m+/XX37jTeKo+rXXQfk5/u/fUREROQXDNDJr+yjgQCqBV5VRwNPFcsbPbULtGnvnqYSB0oWbqWvX3V/uc+1WaNlXStyR22lOofkULO8wNdp4/bnl16qxEu3d8Dy+7tj/siOWJmeiu2T03zOR6B0WUUgLT0JyCn7Fgtw333iFPjCQmD4cOft27YBiYnifs88Iwb0REREVGNwijv5nZxM15lHChQd07UetJmn2nqbStwv2RYQWbilan5X5TrKraReeGiIRbOs6N6misuhZnmBr0kOvT1fqyUOSpZVdGsaL7smu9H3YI1IMBkXB6xeLf58+61Yvq2w8PL2J58Uf6KixBrs115rXFuJiIhIExZBEAJgSIG0UlRUBKvVisLCQsTFxRnaFm9rWCsqBfSas0VWAOhqZXqqoeuzvfGUvdweyrxxV2cAwN//KgXmbr2xr1nctVo7LJXFHRDb7C2LOyDvPWq53tlbaTg55o/siGEdG8l6HanP2tvnqOT5ruenS5O62HPsjKzztT7rBCauypJ8P/NHdkT92lEYtWiX5L5G34O+nntTEwRxXfq//+1++9ChwLJlQN26fm0WEREFJjPFBiRigB5kAukm9BTESZEbQGlJTgBp73TwFBjaR463T05DRk6+LqN/Wo8q6lkHXQmlAXzV/U+dK8XsTw/Kfi05waeSz9pdO329VkIsQNXZ3N7Oa+aRAtlB98lzF2UH8/6+B+18PfcB5c8/gdGjgc2b3W9/7TXg738Xp8MTERG5EUixQbDgFHcyLU9T4aX4e3223EBTyVRirWtp29updX31qu3MLxIzr8fHRsBmja7WXtcgul+yTZP3qCbQtydQs7fr7e1HJa8xJcsLfM3GL/f5C7YcxiubD1f7TF2XWnv7jOUsV7AvU9h99LTHNlVlZI6EQKmEoIkrrgAyMsTfv/wS6NvXeftDD4k/iYnA558D7dr5v41ERESkCAN0MjWnALDwAmZ/ehBnistMsz5bSdCrNEN71SDSV1KJwDytHZYzMi2nnXqtB9ai06Hq2nSpmRpyk9L5mo1f7vOX7siVNbvE22dc9f17MrRDIkJDLIryBxglUCohaK5PH3H6+6VLwIwZwLPPXt6Wlwe0by/+Pm6cOLIeE2NIM4mIiMg7ZnEn07MHgLd0boxnb0kBoE1Wb1dKMz4rzX5tZIZ2JaOKdlqV0tIr67fS8+/63Kqfdb9kG964q7NY4s+NRC/lzNzx9bOW+/yzF8pl7Qe4/4ztBqYk4oHeTT0+d+G2o9iUnSe7CoOSe1DrTOuBUglBN2FhYnZ3QQCOHQO6dnXevmwZEBsrTntfudKQJhIREZFnHEGngCInA7waakZ4lU6lNXL0UemoolbT4dWO3Muhdiqzt896++Q0x2yN08VliK8VCVuc8qn3vn7Wcp5vjQnH2RL5Abqdu2uholLAhv3eO0rsn5OW96AeMysCYZTfb666Ssz+DgDr1gG33uq8ffRo8Sc5GdiwAWje3P9tJCIiIicM0CngaL0+W20wqmbKuqcyX3JGH33JZK5kVFHLoFrP9cBqpjLrsQ7fHV8/aznPv+fappi3+ZDitrm7FpR+TnLvQW/XrF6fha/nvsa65RZxVP3iReCRR4A33ri8LScHuPpq8feHHwbmzAEiIgxpJhERUbDjFHcKSPZp78M6NkKP5vV8mtaudpq0mqm09tFHm8tUapvEFGpfp5vbRxU9nSULnBOBKZ0O74me64GVnn9fPms11H7Wcp8/Ie1qj1PyPXGtSW+n5nOSuge9XbN6fxa+nvsaLSoKeP11MVg/eBBo1sx5+yuvAJGR4hT4jRsNaSIREVEw4wg6BTVfRniVTqW1jyaWXqrES7d3ACzAqfOlkqPhWidCkxpV1DKo1nM9sNLzb0R274EpiUhr3QDvZebi2OkSNImPwZgeSYgIk9c3KvX8GTclY7yX5G6uPI0cq+ns8DZ6LnXNPty3he6fhR6VEGqc1q2BI0fE35cuBe6913n74MHif3v2BD78UMwGT0RERLpigE5BzZdgVEnQ622trbcARMvp5nLXDmsZVOu5HljpVGYtOx7kLjdw97m/vf2o7DXWUs8fmJKI10d3xoSVe6uVVqsqxAIsGOW5I0fJ5yS1blzONbt0R67kewd8z7SuZSWEGu+ee8Sfc+eABx4AVq26vG3HDqBhQ/H3p54Cpk0DQjgBj4iISA/8F5aCmq/BqJyptL5kMddyurm9vdsnp2Fleirmj+yIlemp2D45zSlwUzIdvip32bj1yPrt+n7kTmXWquNB7nIDX7PXy33+oPaJWDCqk9djLRjVCYPae+4QkPs5ZeTkS7ZJzjUrN/t8jc20bma1a4vZ3QUB+O47IN6l8+z//g8IDRWnwW/fbkwbiYiIajCOoFNQ02KE19tUWl9HwPVYwy01qqgmyZbUqKoemfft5E5llvqsAcAWF+n1s5a73MDXz13p8we1b4g3Qyw+ZUSX+pz6JdvQa84WyXXjjw9sLflaAFAnOhyFF8qZad3MunQBCgrEYP2VV8TkcnZlZcDf/ib+PmQI8M471YN5IiIiUowBOgU1rTI+ewp6fV33bFRNZyVBtdygVc/1wPbzb596/sn3v1d7jaqftSfnLl5CRk6+24BWSdDs6+eu5vlanGNvx8g8UuC1TfirTafPl8p6rXt6NsUrmw/5vaIBqWCxAJMmiT+nTgF33QV8/vnl7Z98AtT76zp+9VVgwgTxOURERKQYA3QyBSP/4NZzhNfXEXAjazrLCfiUjvTquR5YTk3tgSmJeKB3U7y17ajbYxSXVWD8+3vxppvEe0qCZl8/d7XP1+IcezqG3Db9eqZE1jU7Ie1qtLLVUnzf6VE7nRRISAA2bRJ//+orIC1NHGG3+9e/xJ/69cUgvmNHI1pJREQUsBigk+Hc/cFti4vEqG5XISkhVlHArjbQ12uE19cRcKNrOksFfEZkRndHydTz9Vm/Sx7P3fRzJUGzr5+7UTMntHitj/fnYfawFDy0QvqaVXrf+auOPcl0/fVAZSVw6RIwaxbw9NOXt508CXT6KzfCmDFi3fXYWEOaSUREFEiYJI4M5TERVlEp5m0+rKjmt6+1wrWqrV6V2oRrVclNhOYuSZve9KxzLpeSmtq7j55GfpH0FGx3ifeUBM2+fu5SzweAOjHhqKwU/PI529sUHxsuuV9BcRnqxkbIvmblBuf+rmNPCoSFAbNniyPpx48D3bo5b3/vPaBWLXHa+/vvG9NGIiKiAMERdDKMtz+4XUmNkJl1ZE2rEXCpkUajpv36e6TXXUCnx9RzoHqngpLlBnI/dwDIPFJQ7TP19ny7syXluHPxN36b3h0aYsEtHRthsYwSaSfPXcSwjo28Jk9csOUwlu7Idcro7u29mGW2Bkm48krgm2/E39evB26+2Xn7mDHiT+vWwMcfA1df7fcmEhERmRlH0MkwUn9wV+VthMzsI2tKSoF542mE39dyXr7QYoaAXJ5mSGTk5Mt6vpKp50D1TgWlJeOkPncAXmd8eHq+K398znZ9k22y9rOfO3fX7KbsPHR5OgPzNh+uVm7N23sxw2wNUmjYMHFU/eJFMXFcVT/+CLRoIY6qT5woZoUnIiIiBuhkHKV/SHuq+a11rXA9yKk/robRnRN61zm389YJsUTGiC5weeq5LS5Scl9PnQpKO1s8fe4AZHWq2J+//P7uqBPtfnq58NePPzqhpM6fVIeM/XM8W+K+Drq3a9aM6/JJpshI4D//EYP1n34SA/OqXn1V3MdiETPCExERBTFOcSfDqP1D2jWwD5SRNT2ymJth2q/edc7lZIq3WABPsanr1POZQ9tivJdSa4D3TgWlic1cP3elme9DQywIsViqjTa78sf07oycfFy8VOl2m1SHjNwlLZ6uWSMrGpCGWrYEDh0Sf3/nHWDcOOftN90k/jc1FfjoI6BRI782j4iIyGgM0MkwUn9we+Ia2AfzyJpZOif0rHMupxPCXuVJzjr/gSmJePOuzpiy9kC1kdy6MeF47tZ2kp0KvnS2qOlUkfv5ffHXdH89yhV6yvNgZ40Jx/Nezp2SJS2A+xJyRlY0qKkMrSk/dqz4c/488OCDwIoVl7ft2gU0biz+PmMGMH06EBrqn3YREREZiAE6GUZOIqyqPI2QBfPImpk6J/Sqcy43OL2vZxI2ZufLGsW3dyjsOlKAzF9OARDbntpMm+z93qjpVJH7+S3bmYulVab8a5VATs7od3R4KPp5WaOutJPI3XvWe7ZGsDFNTflatYDly8WfvXuBAQOAU6cub581S/wJDQW2bAF69/Zf24iIiPyMAToZytMf3K68jZAF88haMHROyA1O+ybb8MTgZEVTz3u2SEDPFglaNleSmk4Ve4mz08Xep7kLLheBkioG3kZS5Yx+S02xV9JJ5G0du56zNYKJWStfoHNn4M8/xYv51VeBhx++vK2iArjuOvH3QYOAd98F6jFjPxER1SxMEkeGc02kNalvS9jilGU81ypTeqDxV5I2I8mpCR5iAc4Ul2pay16vuvJqMt/bS5wpJTdRoKcM+fZkdXJHvzd7yagv53O0k7pmtfycg5HRySVlsWd3FwRxNH3QIOftGzcCCQnifvPnV++dIiIiClAWQeC/asGkqKgIVqsVhYWFiIuLM7o5HqldF2noekoDmWaqqk6k1j8DYmArtzNG6jrR+3za3w/gfsaHu/eReaQAoxbtUv2aK9NT3Y5uezq3VdtijY6Q9drxseH4dlo/j/ecp/dtV0diHTtpQ+615OmaMdS2bUCfPsClS9W3JSQAX3wBdOrk/3YREQWoQIkNggkD9CDDm9B//N1ZUNM7JzZ+n4cJK/dKZmvfPjnN6/uWCr7lBKxaBelKOgEqKgX0mrNFcVJFu/kjO2KYyyi8/Ziepq9bADSIi8SLt3fA+OV7UFxaIfk6UkGdu/ddJyYc91zbFBPSrjbsmq3p909V67NOYOKqLMn93F0zplFRAcyeLa5Nd2f0aOCtt8T17URE5BFjA/NhgB5keBP6R00f0TaCFqN+UsH3a6M7YfanB70GrHI6AeRSGhRKjUB74+68+Doq746coM5swXCw3a/+HkHX/fM+cQK4/XYx87s7y5aJ2eKJiKgaxgbmwyRxRBrzV/IlswU5evO1pJyc+uNPrs/2mohN67rySjPfe0qqGCKzDrwrPcrvyUkGp1fGfzV8vV8D8T70Z3JJv3R+NGoEZGaKv3/8MTB0qPP2ceOAceNwIakZdryyDLEpyQHxORERUXBigE6kITlB4KyPc9Av2ebTH4fBNuIH+F5STk79caks6XZ615X3xl0W8zPFpXhoxT4AyqoYaFl+T25QJzeg9Ufg6+v9Gqj3ob8qXxiSKf6mm8SEcaWlwOOPi5ng/xKd+wv63iyWaPswdRjiXnsFAzonafv6REREPmIWdyINyQkC7SOwatn/6HV9HfsfvfbM2zWNmuznVWkZVPujrrw3rlnMB7VvqKqKgZLM6t7IDeqkssUr3c9XvtyvgX4f6l35wvBM8ZGRwPz52HTgd9yQ/hZ+jm/stPmOXesxoEtTMQv8hg36tIGIiEgFjqATacjXadhS/DVCb0a+jvrJDarjYyNwprgs4OrKq6kP7u2cKmGTMWosdzTVn6Ouau/XmnIf6llTXknnh17LHeyfU158I/RNfxMAcPMPW/HKJ3Oddxw2TPxvt27AmjVA48YgIiIyCkfQiTTk6zRsKf4YoTczX0b95I7APz0sxfH/rtsBc9eVV1Mf3NM5lWPCDc2xMj0V2yenSa7TljOaWnap0q+jrmrv15p0H+pVU17vzko53H1O/217A5Imf4I2kz7CmrY3uDxhN3DlleKo+vTpYqZ4IiIiP+MIOpGG9E6+ZIY/eo2mdtRP7gj8wJREvBFSPRGbnFHiQOV6ThNiI/Hoh/vxR5H363hSv1ZO593TunG5Ae17mbl+HXVVe7/yPpSmd2elHN7O/4WIKDw65FE8OuRRLO0Ujhsm3g388cflHZ5+WvwBgK1bgeuv162dREREVTFAJ9KQ3smXzPBHrxmozQLuKQu6a/Ct59Rfs3I9pzOHKruOvSVMK71UKasNx06XyNpPq8BX7f3K+1CaPzPFeyL3/Ed17QLk54vJ5RYsAP71L+cdbvhrpH3AAOD994GEBI1bSkREdBmnuBNpTM/kS74mSiPx89k+OQ0r01Mxf2RHj1O09Zr6GyiUXMdSCdNyT8kLvJvEx8jaT8vAV839yvtQmr3zAzBuuYjiz8liAf75TzFQLygAhgxxfsLnnwNXXCHu9/LL4n5EREQaswgC/4UJJkVFRbBarSgsLERcXJzRzanR9CoTZQ+GAPcjfrqULqKgJXUdV1QK6DVni8ep6faRUkEQ8EdRqdfR1K//fQOue3Gr5Kjr9slpupRcU3K/8j70rOq5zD1VgpW7jyO/yJhSdJp8Ttu3A336AGVl1bfFxwNffAF06aJJe4mI/I2xgfkwQA8yvAlrhkCtv0w1T+aRAoxatEtyv0l9W+CVzYcBeA+UAinw5X1YnbtzYouLxKhuVyEpIdaQ5SKafU4VFcCzzwL/93/ut48cCSxcCNSu7WOLiYj8h7GB+TBADzK8CWsOvUboiZRYn3UCE1dlSe43f2RHRIaFyAqU5AZUZrgHzNAGs/BUIs8MnSuaf06//w6MGCGOrruzZAlwzz3qj09E5CeMDcyHAXqQ4U1IFNjMFhDKHUFfmZ6KHs3ryW6/1H6BOHptts9OS3KXOuixPMFwGzcCgwe739asGfDpp0Dr1v5tExGRTIwNzIdZ3ImIAoQ/g1K5waRUtm57G7s1jVcUoHrL1O9ppNaelM4fI7Vq1qwHWoeCEkpqw2tRIs9UBg0SE8aVlQGTJwOvvHJ52y+/AG3aiL///e9icrmo4M3uT0RE0jiCHmTYS0ZkXt6CPn9OH1YaTHpqm92DvZui01V1NQlQzTBSq9X5McPUb60oWeowrGMj/RtktCNHgKFDgZwc99vXrQNuvtmvTSIicoexgfmwzBoRkZ9VVArIPFKA9VknkHmkABWVAjZl56HXnC0YtWgXJq7KwqhFu9BrzhZsys5DRaWAWR/nuA2A7Y/N+jgHFZW+97dKlUzblJ1X7TkDUxLxQO+mHo/51rajGK/wmJ4oGanVg9Lz48/PzkisDe+ieXPghx/EkfXly6tvv+UWsVzbNdcAv/7q//YREZFpMUAnIvIjd4F4l6czvAawC7b87JegVG0wWVEpYMN++UG2nGN6cvKc5/OgZj8l1JwfozsU/IW14b0YPVoM1M+fB8aNc9723XfAVVeJwfq0acClS4Y0kYiIzIMBOhGRn3gafT1bUu52f3uYt3TnUVnH9zUoVRtMSj3PG6UBqpEjtWrOj5EdCv4UGmLBjJuSAaBakG7//xk3Jde8BHFKxMYCS5eKwfr+/UDDhs7bn30WCA8Xg/UtW4xpIxERGY4BOhGRH3gbffVGgOcA3pWvQanaYFKL4FLuMYwcqVVzfoJp6vfAlES8cVdn2KzO78VmjaoR6+w11b49cOIEUFkJvPZa9e19+oiBer9+wJ9/+r99RERkGGZxJyLyA19GmQGgTnQ4Ci+Uuw3w7YnRpIJST0no7I8f/uO8rLa4BpNaBJdyj2Efqf37+3thAZzOh94jtWqCbaks93I/u0AxMCUR/ZJtijLcqy0/VyPK1lkswD/+If6cOSNOgd+w4fL2zZuB+vXF3194AXjsMfE5RERUYzFAJyLyA19Hme/pmYRXNh9WHZR6yjw+tEMiNuzPk9V54CmYlFNqTekxvbGP1Lq+H5vOZcvUBNtGdigYxVuJPFdqy8/VyLJ1desC69eLv+/YAfTtC1yscl8+/rj4Y7WKgXvXrsa0k4iIdMUya0GGpRSIjJF5pACjFu1S/LyqZcMycvJVBzPeyqDJbQfguSSY/TWA6kGo4OZ3OceUYsQIqrf3CTi/l6rtyz1VjBXfHMcf50odzwn4gNJHasvPBUPZOofKSuC554Ann3S/ffhwYNEigP+eE5FKjA3MhwF6kOFNSGQMe/1uJaPMUkGf3OnD3uqGy+XrqCaAGjPiKWf01t0+FouYH8zOFheJmUPbBtz714LaevZqn1cj5OcDI0YA27a53/7228C993IKPBEpwtjAfBigBxnehETGkRplrhMT7pQQrmrQp3a0WO3Ivd2EG5qj59VXaLIuuEasGf6Lt/cid8ZCjRzxlUnudbkyPdVpurza59U4mzYBN97ofltSErBxI9CmjV+bRESBibGB+XANOhGRn0itnfaUXMuX9ba+rn1v0aC2okDH2/pjJWuTzc7Te1GSrV+AGKTP+jgH/ZJtAdtZoYbeFQMCvWydpIEDxekY5eXA1KnA3LmXt+XmAsnirBU88AAwfz4QFfhVAoiIggUDdKIAVJNGIoONVJZr16DP02hsfuFF/P39vZKjr75mWK8J5b/8SWm2/qq102tK54UcasvPBVPZOlnCw4GXXhJ/fvkFuPlm4MCBy9sXLhR/AOCjj4DbbjOkmUREJB/roBvs9ddfR9OmTREVFYUuXbrgf//7n9f9v/76a3Tp0gVRUVFo1qwZ3nzzTT+1lMxiU3Yees3ZglGLdmHiqiyMWrQLveZswabsPKObRjLZR1+HdWyEHs3reexc8TYaa39s1sc5qKj0PF4rVTfcEz3riddkakdua/yIL8TrOfNIAdZnnUClIMAWF6m4nr3U9RzU122zZsD334sj6ytXVt9+++3i+vTOnYFjx/zfPiIikoUBuoFWr16Nhx9+GNOmTcO+ffvwt7/9DTfeeCOOHz/udv+jR49i0KBB+Nvf/oZ9+/bhiSeewL/+9S+sWbPGzy0no9hHU11H6OyjqQzSjVc1CMk8UuA1eJYiNRpbdfTVE3uZLwCyg3R/lf/S8lzpRWkb1Y7c1vQRX9eOxTvf/gbnSys8lqsD3F9/3q7nmlq2TpWRI8VAvbhYTBxX1b594jp1iwWYMgW4dMmQJhIRkXtMEmeg7t27o3PnznjjjTccj7Vp0wY333wznnvuuWr7T548GRs2bMDBgwcdj40fPx779+9HZmamrNdkIojApUX2Yk6N15fWtZnXZ53AxFVZkvvNH9kRwzo2UtU2d3XQ/ZFdPRDqWKtpY0WlgGue2YzTxWWyXqNGZx3/i9Iyf0FbB11v2dliYrnffnO/PSNDrL1OREGFsYH5cA26QcrKyrBnzx5MmTLF6fH+/ftj586dbp+TmZmJ/v37Oz02YMAALF68GOXl5QgPD9etvWQ8JaOp7tay8g9affm6VtwdLdfbelv7/vjANn7tuNHjXMklt5NKbRtDQyx4elgK/rFir+w21eQRXyVJ8wBgUt8WmJDWQvJ8SOVyIDdSUoBffxVH1hcuBMaPd97er5/437Q0cYp8/fr+byMREXGKu1FOnTqFiooKNGjQwOnxBg0aID8/3+1z8vPz3e5/6dIlnDp1yu1zSktLUVRU5PRDgcmX7MWcGq8vLdaKu6P1eltPa9/lronXgl7nSg65+Rt8beOg9ol4sHdTyfYkWqNqfIk1JUnzLABWffur7GP787qtUSwW4MEHxUD9zBnglluct2/ZAjRoIO43Zw5QWWlMO4mIghQDdINZLM5/UAiCUO0xqf3dPW733HPPwWq1On6uvPJKH1tMRlE7mmpkQBQstFgr7k5NXG+r17mSoqSTSos2Th2UjNdHd0J8rPPMpnqxEbi3ZxJWpqdi++Q0vwbnRqz5V5L8Tq/PnryoUwdYu1YM1jMzgdhY5+1TpgChoUDt2sA33xjSRCKiYMMp7gZJSEhAaGhotdHykydPVhslt7PZbG73DwsLQ7167svzTJ06FY888ojj/4uKihikByj7aGp+4UWPiZVsbkZTfZ0aT9L0rM0sVTs90EZfjahjLdVJ5VqLXO5rZ+Tke71nBrVviAEpiaaYhm3UEhc1ye+CIaO9KaWmAufPiyPmc+YATzxxedv58+J2ALj1VmDJEsBqNaadREQ1HEfQDRIREYEuXbogIyPD6fGMjAxce+21bp/To0ePavt/8cUX6Nq1q8f155GRkYiLi3P6ocCkdjTViIAo2Ohdm3lgSiK2T07DyvRUzB/Z0ZDRV60YUcda6Yi43NdesiNXcnmI6zRsAH4fxfbXEhd3I/RqyvzV9Iz2UgyvbhASAkydKo6q5+cD11/vvH3tWnHk3WIBFi0S9yMiIs1wBN1AjzzyCMaMGYOuXbuiR48eWLhwIY4fP47xfyVumTp1Kk6cOIF3330XgJixfcGCBXjkkUeQnp6OzMxMLF68GCvd1TulGknNaKoRAVGwUTu7QQl7oBfo/HGuXCntpLK3UWrttOvIuxQjRrGVzh5Qy9t7m3FTMv7+/l5YAK/J4vT47KsKhCoWpkvm2aABsHWr+PsXXwADBjhvf+AB8eeqq4DPPgOSk/3fRiKiGoYBuoFGjBiBgoICPPXUU8jLy0NKSgo2btyIJk2aAADy8vKcaqI3bdoUGzduxKRJk/Daa6+hYcOGePXVV3HbbbcZ9RbIAEqzFxsREOnFrH9g22c3uAtCAnWtuF6MOFdKO6nsbRz/vvdM7FLLQ6per7mnijFv8+Fq++idud4fS1zkZLx317FYld73iekCXzeMrG4gS//+4mh5eTnw5JPACy9c3nb8ONC2rfj7/fcDr74KREcb004iogDHOuhBhrUOg5P9Dz/AfUBk+B9+MgTKH9j+aKNWHRVGdnhofa68vZeKSgG95myR7KRyrUU+++MfsHhHruRru6tD7+79eaJnLfT1WScwcVWW5H7u3oMc9nPrLfC2vzdA7DDYnJOPdVkncLq43LGf3M9ezTXrrQ67Beb4/lNyHk3V0ZebK2aBz8pyv/2DD4A77vBni4hIIcYG5sMRdKIgEOiJxkw/svQXf9Rm1iqwNbrDQ8tzJfVe1I7a9022yQrQXUfovQWE7uiZqFHvJS5KR+jtP08MTlYVaCu9ZqXqsAvQZoq/rwI2mWdSErBvn/j7Bx8AI0Y4bx8+XPxv+/bA+vXi/kRE5BWTxBEFiUBNNBZoZeL0rM2sVbIvfyUNk6LFuZL7XuydVDarcyBq81KLXE0deqmA0JvPsvM0Twqm5j0ooTYJpdLP3tPnnFd4EeO9XLNy6rCbobRbjUjmOXy4OAW+pESc5l7V998DTZuKieX+/W9xmjwREbnFAJ0oiOgZPOrFqLrZZqNVR0WgdXh4o/S9KO2kUlM5QU5A6Mm7mccwatEu9JqzRbNOErXVH+TyRxJKOZ0eU9YecHvN5hdekPUacvfTS41K5hkdfTm7e3a2mECuqpdeAiIixGD9iy+Mz1pPRGQyDNCJyNRqxMiSBrTqqKhJHR5y38u8jEOOP/yVdlJJjbz3S7Y5BRf5Rb5fh1rPZFAze0AuOWXUfBmhB+R1epwtKceCLT9Xe/x0cZms15C7n170nungym9Bcdu2wLFjYm31hQurbx8wAKGhIUDaDZi9eKvmHVRERIGIa9CJyNRq1MiSD7TqqKhJHR5y27hg689YsPVn1WvsPa2Xz8jJr5bYKz42XNGx3dGy/Jmd63tIqBUJCMCp4lJkHilQvf6/6vp+T4Z2SPTpPcj9nJfuOIquTeriVHGp4zOKrxUp67ly99OLP6sbGJJ/wmIB0tPFn8JCcQr8Rx85Nvc4fgDfLRgDAHih9934x9nb8fqYrqZfgkVEpAcG6ERkajWpTJwrJRmpteqoqEkdHkrb6EtSQdc69J4SwVXNTO4LPZKC2d/Dpuw8PPbhfs0CtIEpiXigd1O8te2o2+0Ltx1Fp6vqqg625H7OZy+U487F3zj+P9EahZHXXCnrubY48TWMrGzgKZmnNToc9/RMQr9km8+vYYqEm1YrKlZ/gF5ztqD+wf14b/V0xJWVODY/vu1dPL7tXVyYF4WKrV8itOe1+raHiMhkOMWdiExN7zW0RtmUnYdec7Zg1KJdmLgqS3Jqp1ZTYP09lVZPcqZXV6XVGnu5ieDcXa8WAJP6tsTdPZrIei2tZzLokSCwolLAhv3en+fLOe/WNB51opXPTMgrvIh5mw8jNiLU6372613pPakHe56ESX1bOt7z2QvlmLf5sM9t0SP/hNqp8vZlC/sbtkL7SR+g6eMb8Nz145z2iS6/iNBePcXR91tuAc6eld0uIqJAxgCdiExPzzW0RlATJGnVUVGTOjzs70VJ2KfFGnu5ieDqxkY4/b/9ep3YtwVulHnNajGTwR5Erdv7G55Yl615gkC98xqEhlhwT88kVc8FgOKyCreP2ztMZtyUjIycfFNUNgCAjJx8vLL5EM5ecJ6N4WtbtP6cfOnQcO14EiwheKv77Uia/Am6THgf25t0cH7Cf/8L1K0rButvvCEmoCMiqqE4xZ2IAoLcutlGTlGVQ2oUq+raYwBO76Vfsk2TevaeptIqPU4g82VkWu5zpw9uA5s12u216K+lG+7WG3uidlq93POx4+dTqu/HCWktsHRnLs6WaFeey36990u2odecLbLuSbXfJXK/l5R8P3hri7vX0zL/hK9T5b11PBXE1sFdI58BAGxMLkXy2Nucd/jHP8SfRo2ATZuAlBTJ9hIRBRIG6EQUMFzXAbsyJPmRQnJHsRZsOYxV3/7q9r1sn5zmcyeE3A4PM7MHM2r4MjIt97k2a7TH69UfScE8BVFS8osuIvNIgezrQu75WLD1Z6zZ+5uq+zE0xIIRXRt7XOeuRJ3ocLx2Z2ekNhOz+GceKZB1T+46UoCeLRIUv56S7yUlo9yeri1Pryd3Pb7U51lRKWDmhh986kSQ20HV6q5BwN0CcOkSMH068Pzzl3c6cQJo1078/Z57gAULgJgYGe+QiMjcOMWdiGoEPdbW6kHuKNa8zYc9vpeMnHxN6tkrLTlmNmpqjmuxxl6rdfx6Lt2Qu07endmf/KBo2rKSXABy7kd365rlrHOX6+yFcoRYLI7rXe49+dAK5d8jSr+X5Lbls+w8t2u+vb3evM2HUScm3OfrdsGWn5FfVOpxu5yp8oqX2oSFAc89J05tz80FOnd2ftLSpUBsrDgFfvVqr+03K9aDJyI7jqAT1UBmn+atNa2mhfqDLyO3ZnsvRlM6TV2rkWktR7/1msmgpvPCzjUTvdS0ZW/nw5XUNext9Fft+3Gn6rWjJEv8+Pf34t6/MqpLfU5qvpfktuXdzGN4N/OY00i8nNezU3vdbsrOw7zNh2S1Uer+VL3UpkkTYM8e8fc1a4Dbb3fePnKk+JOSAqxfDzRrJqu9RgqE2V9E5D8M0IlqmGD8h16LaaH+IjW1U4qZ3ovRlHZ2aLnGXst1/FJLN9RQ03nh6XqU0zHk6Xx4Op67a9jbuuZ5mw8reDfSck8VO34/U1yKEAsgd8ByyY5cLNmRK/m9Kvd7admOo0ioHYn6taPQpUldRd8PVTtPrNERkq93tqQck/q2xKpvjyu6bisqBez8+RQe/WC/jFaJ5NyfPndQ3XabOKp+8SIqJ05EyMKFl7dlZwPNm4u/P/KIOD0+XHk1AL15uu7zCi9i/Pt7MalvS0xIu9rwDtlg6/gnMhIDdKIaxBQ1bg2gZfIjvUmNvsoN2s3wXowmp7MjPjYc04e0hS1O+z8ozbyOX2nnRXxsBAqKyzxul9MxZD8f8zJ+woKtRyRfs+o1LKcEmJZW7j6OCWktkJGTj4dW7FP1GlLfq3Lv0dmfHnT8nmiNwtAOiVi47ais74OqnSePD2gl6/WSEmLc5rEA4Db3wKbsPExZe0BRgj4ly0h86aCyB42bc/KxrvFtOD15KJqf+hVLP5qJqwr/uLzjyy+LPwCwcSNw442qXk9rcpaizNt8CCt3H8PMoW0N+/dbbse/0UG80a9PpBUG6EQ1RCBN89aa3GBEi5JVWvA2+jrymqtkTSE1y3vRg9w/suRMNX/2lna6/lGrx+i3FpR2XuQXXsAkGaOj7oJO18+rR/MEWQF61WvYlyn5auQXlWLXLwWq1+kD0t+rau7R/MKLeGvbUfRpfQX2/Xq22nIDT+3IK7yI0146WKrKPVVS7br1FIAN7ZCoKjGfP0o1eqpQcCThSvQevxgWQcDw7zMwZ9Orzk8cNEj8b69ewAcfAInevx/0DPrkXvf5RaWGdbLL7fg3OogPxtmDVHMxQCeqIQJpmrfW/FWySkueRl8BYNW3xwPqvWhJ6R9ZgVgyzh+jPEo7LzKPFMg6rmvQ6e7zssVFok5MOApLymVfw0bMCJHK3i6Ht+9V+/eSktewn68vf/wTgDizoV2jOHx96JTkc+NrRcqaHj9v8yG0qF8Lg9qLn723KdZqgvNJfVvoft/JqVAgWCz4oEN/fNFjMOpeuoBHPpyLIT/+7/IO27cDDRsCAI4/8gT23Tke9a0xTvej3kGf0uve353scjv+KysFtzNR1AbxSgXr7EGquSyCIDBNZBApKiqC1WpFYWEh4uLijG4OaWh91glMXJUlud/8kR0xrGMj/Rukgi+Bi/0faMB9MBJI/0DXpPeihKc/suS870CZ2ujvUR4lo1q95myR7BjaPjnNKXjx9HkJbn63/z9Q/bPMPFKAUYt2qXuTKv3j+mZ4/atfNDlW1e/Vqtdi7qlin9bPK1n2sjI9FYUXyjD+r+8Ob0IswIJRnTAgJRG95mzRbPZC3ZhwfPdkP8c14ut96e75AHxqc/u8Q3hv9XRYS4urbbsYFoF/3fcibp1wBwDo/n2k5rpfmZ7qt052ue2rGxOOMx6WQNi/O6YPTsZDK9SdT2/s313erodEl+8uLQTKvzlyMDYwH46gE9UQgTbN25WvgUsgjqR6Yqb34q8/QnxdoqFkqrlRf1gZMcojd5280sz0cj4va0w4osJCkV8kfQ2rGW32Vd2YSM2OZf9edfc9FhsRiuKyClXHlRuch1iALk3qIiIsBJP6tpDsFKgUgH+s2IdJfYs1PeellyrxeXY+rDHheH/XMWw79KfTe3f9Tvd2L+qV0f/7xJbo8PBqQBBw/7fr8OTWJY5tUZfKsPCticBbE7GlZSpq3/gwiqJqOT1fbSUCd51ilYIAa3Q4Ci/IX98vNeruek67NKmLPcfOqPq+kzvC7yk4By7PMnlyfbYuS/DkLBPIK7yIBVsOY2LfloqO7Qmn05PeOIIeZNhLVnOpGQEzC19GTl3VpF5to9+LP/8IkTtS4+vokVF/WEmN8pjl/pR7fuR+Xsvv646QEIusa3hTdp6s0V+tzBvRES9s+lF1RYWqXh/dCSEhFslp13qy3xtPffwDluzIlfWcWpFhOF96Sd+GVVH1Ox2Ax2sN8Dx6rcf5jS8pxCsfv4Teufvcbp/ebzze6zRYrLNehev3kdx/yzytn5dj+uA2GNezqdv7yN1xXSsUKPm+8/fMFjXf73JnDwLAmz6M0u8+ehr5hRew4+dT+GjviWr7BPIMN8YG5sMAPcjwJqzZAnFqdKAELsFGy04TOfyxRMPf76kqrTog/NFpI+c19Pq85m8+pHlJNU/sU8I9fWcKENdTny0px9KduV6PZYuLBGBxmi3gb/NHdsSQ9g1xzTObZSeMM4IFQB0PU6LtV5k1JlxR1ngt9Ti2HytXTXO77WRsXdw9/Cn8WL8pgOpLG+T8W+ZpqrcS7oJsOevy7e0A5H3fyZk+riU53xeu30+VgoA73/5G1vHVTHVX0pkSqH+vMDYwH05xJ6pBzDQ1Wq5gTm5nVkZUBNB7iYbRVQ60KAXor9F/OcsF9Pq8JqS1wMrdv/oc6Nb5a9qwnCR1D/dtgaU7cnG2yjTjqt+ZmUcKJAP0/KJSn9qrhfq1o7D76GlTB+eAeL95mhJt/7yMCs4BILNJByRN/gShlRWYtH05JmR+4NhWv/gMNi39JwBgTUoazqbNx/osOAJFOf+WeZrqrYR9Wcxrozuhbmwk8osuYvYnP8g6rpLvu9AQi+pM/lXFx4bLqkhw6lwpKioFr7NsPCWllHPNKP1bQm6nhx3/XiGtMEAnqmHMXJvZnUCqYR4sjOg00TsTv9EdQb4GtGbLUtytaTxscZFeA9M6MeGOz0tJ6byZQ5PdjmorcU/PJLyy+bDX9fQZOfnV/tivEx2Oe3o2xYS0qx3ty8jJV9mK6upEhzt1BLhOP1YrPlY8189+muP7wQKIXlPeAaAiJBQv9b4bL/W+Gw2LTuKNdc+hQ/7l2R23ZW8BBrQDAPzrpsewrUs/WcfVogPF/p4nrNyn6vqxf989+kEWGteNQY/m9ZDarF61e7KiUsCG/Xk+t/epm9rimc+kl5PM/vQg3t5+1G2no8fvQIWdY1X/lqj6vZQQGwlYgFPnSx1r99WWYfT294rRS9coMDBAJ6qBzFqb2Z1AT25XExnRaaI0SZlSRncE+dIBYfTovzsZOfm4eKnS6z5nS8odwa0WpfPksJ/HCWkt0MpW2+NsIsD9GufCC+V4ZfMhtLLVwsCURFRUCvhv1u+K2uDNa3d2RojF4pTA642vjmDhtiOqE8kBwNPDUpCRk4/FMteeqxUbEYq+bRpg/X7tzolaD/dpIZak9MPshd/j6mPY2HkAgAGHduKtdc86bX/145eAj1/CoXpX4f7bpuN4Xf90lvnauWO/thds/Rl1YsLx/K3tnDr4T50r1WR6e73aUY7vdynuOh29fQcq5S2hY1W1o8Jw7qK6/AynzpVifdYJ2YkPzTrDkYzDAJ2IDBWINcxrOqM6TfRcomF0R5AvHRBGj/67UrLWdcraA27roUuN/FedCWSfvis1Rdb1PHqaTQSIZbrkdHjInTJeNyYMkWFh+KPI8whhvdgIXJMUj4iwEMdjm7Lz8MrmQz4FHg/2buool6a34rIKDO96JXbnntYkuZ7v1HdI9Uuuj805JxW/h89bXoukyZ8g8lIZpm1ZjLv3ferY1rLgOLYtTAcALO46DM9fPw7loeGXW2sBzJr56WxJOca/v1f2dHEl8osuwhYXhRtaX4GtP/7pvX49Lt+Daa0bYM+xM9jx8ylNOgpCLMCZ4jJZ32Fqg3OLRZwJYBcfG4Gnh6UgJMR9pyBrtZM7TBIXZJgIgswoEJPb1WRGVwTQYwqg0e/JTs0Iij8S6MmlZdIouedcboK9erEReOaWFMnvCiUJ+06euyjr3N/XMwnXNI2XnJpf9bPW4lz+K+1qPNK/lV+zbc8f2RGRYSGGZqzXQp3ocIy7tgmW7shFocpgzK5ZwW9YvGYWmp5xPx38nttnYGvza3x6jUAmdw169edFaJ5TwV4C0t95DmIiQlHiYZaM0cnlGBuYT4j0LkRE+rKPnNqszqOXNmsUg3MD2Ed7gerjU1pMN5fz+j2a18Owjo3Qo3n1dZFqj2nke7IbmJKI7ZPTsDI9FfNHdsTK9FRsn5zm9Ro3evS/Kjk1h+WqOvLvjdxlB08ObiPru0LJcge557Rvsg0DUxLxQO+mrpW4nNhHyzZl52HXLwU+n8vKv8ZY/Jmjo37tKMd71Zo/Q5OzF8rxypc/IzTE9z+Ff6nXGDc8sAhJkz/Bv2+cWG370o9mIXfOEHz0/r9R/1yBz68XaNQE5+LztE94KMCYJISegnNA/nchBQ9OcSciUwi05HY1XSBWBJBilvekNEeEmZaB6BEISh1TbpBss0bL2k9Jh4eSc78pOw8Ltx2VNX136toDjuDaNxZHW/0h8a/3qlXyMFeeyq/p6XSJtkHgh+374cP2/RBbWoJnP38Nww5+7djW9cRB7H59LABgXs/R+M+1I1AZEqrp6/tbVFiIZD4KkofJcMmOAToRmUYgJbcLBjWx0yQQ35PeCfSU0CMQlDqm1h0USo4n99wDkJ3EyluZMaW6//We5b6ntg1rY/PBPz0er0m9aBwruOBx+9AOiQgNsSDziO+j/+4Ul/k21dxMiiNjMHHovzFx6L+Rkv8z3ls9HXUvnnNsn7RjBSbtWIGykDCMHvUMvmvc1sDWKmdfq87gXDsJsZFGN4FMglPciYjIIz2mmxstEN+TWZaB2ANBqTNm314nJtzjvhZcHpH1RuvlCUqPJ+fcazn1X4mQv+bTy3lP0wcn475ezXFD6yuq7RNiAfq2ucJrcA4AG/bnoaJS0G2kr+ySdBfH7Z0b6/Laesq2XY1OE1ci6fGPMTvtfqdtEZWX8NHyycidMwSLP5oF64VzHo5iLhd9qDpAHpj/nyLyEyaJCzJMBEFEFLjMUEPXU1LHqhJdypm57qsmAaTWJYqUHs/buZebyE9rrokBPb2noR0SsWF/ntPj0eEh6JZUF71b1sfo7k3Qc86XstYKr0xPBQC/JaVzNW94B7zw+U8mySKvXt2SQsz75GVcf3SP2+0z+j6IdzoPgdekBlSj+CPRpzuMDcyHAXqQ4U1IRES+chcIxseG45aOjdA32aZb7V8tOygqKgXs+qUAmUcKAAjo0SwBqSpnVPgzi3pVK9NTqy0Lcj1HZ4pL8dCKfR6D2Qd7N8X1rRrIbv/8kR0xpH1Dr1UR9LQyPRWFF8okO4kCSerx77F81ZMIFapPF/8zpg7GDn8KOQ2aGdAy8id397M/MDYwHwboQYY3IRERaUFJsGyGkf+qtB6NlyrjpzULgAZxkZg7vCNOnS/1eE7llnK759omWLrzmKzXtgcRcmZSaC0q3IJnb26PxDrROFNchtmf5hiytEAvIZUVmLhjFSbuXOl2+9q2N2Ba/4dwIcI/SQHJf+pEh2PP9H4ss0YAGKAHHd6ERFTTmS0YJHOxB5auf/yomXbv7riA96n/JWWXUHhBfTI0e7K6Oi61nN11MMgd2Y+LCkORjFrgIRZgwajOGNRefI1N2Xl4Yl22LuWwpCRaozB9cBtYYyKQ/s53KCmXtybaNdmfEuEhQLmfcqLZik7hjf8+h055P7ndPmnwI1iXkuafxpDubu/cCC8N72jIazM2MB8G6EGGNyER1WRaj4xSzSI1omzPdr59cpqqTh1311+92AgM69gQ/f6a+r9gy2HM23xY7VuoFphXbTvg3MGgZG18fGy47HrV9/ZMcryfDVknMOmD/bKepzULxPf7U/55zNt8SHL/WpFhqBUZhvyiwBp173d4FxatfdrttiPxjXDfbf+H3Hj/r10m7cwb0RG3dDLmM2RsYD4M0IMMb0Iiqqn0GhmlmkPuiLIva0GlZnD4klBu2qDWWLw912OAae9g+PrfN2DPsTPY8fMpLNj6s6xj39czCUt25CoaXU60RmHkNVf61OHgK1tcJLY9noZ2Mz9HqYySX8vv646QEAvezczFZ9n5fmihdiIuleOJrYsxbu8nbrcv7XITnr3hXpSHhvu5ZeSrSX1bYmLfFoa8NmMD82GZNSIiCngVlYLHOtT2x2Z9nIOKSvZJBzO55cHs+1VUCsg8UoD1WSeQeaRA1vUjVcbPl1ryhRfKvY7+CgDyCi8i9bkvMWrRLtnBOQD0Tbbhjbs6Iz5WfnCXV3gR8zYf9lpOT2/5RaV4fevPsmc8nCouRY/m9bBgdGfUiQmsQLYsLBwz+41H0uRPcEP6WzjiMmp+z56PcfilW5A7ZwjSft5tUCtJjVXfHue/T+QQZnQDiIiIfCVVh9oeuOw+etqQLLlkDnKD4/q1o3RbLmGvJa8uoZy8IFTpmnB7PfrQEAsulFdi0uosxS0z0itfyh/Bt18DoSEWPH9rO7ezbgLB0fhG6JP+FgDg1uwv8fKn85y2L1nzFABgb8NW+PvNU/FH7QS/t5Hk479PVBVH0ImIdKJm9I3UUToySsHJHhx7CnMtEIPVM8Wl+Pv7e6t1+uQXXsTf39+LTdl5qtsQGmJx1IhXMuqcaI3S5Y93C4AZNyU7RqBtccpH+M+WlOPhvi1hi4vUuHXaqhMTjm5N4x3/PzAlEW/c1RmJVnnv2aypJtem9EHS5E+QPOlDrG17g9O2zr//hG9eH4fcOUMw6X/LEVIpL5meN7ERoT4fg6rjv09kxwCdiEgHm7Lz0GvOFoxatAsTV2Vh1KJd6DVni09/2JNnSkZG9cIOGfPzFhzb/3/64GTM/vSgrssl7IGhTWZgCIhBdGqzel47GJSyWIBXR3VymhHQrWk84mMjFB8rKSEGO6b0waS+LTVqnfbG9kjC7qOnne7RgSmJ2D45TVa7zX5Hl0RE45EhjyJp8icYPPYVFEQ7ryeeuHMlfnlxGI68MBTdjx8AAFWdKvf/rSlWpqdi/siOmGTQuumaSM9/nyiwMElckGEiCCL9MVmZ/0nVofY1O7cUZo8PLN4+L2t0hO6J5OwqKgXs+qUADy3fi7MXPGdQrxMTjj1PijWSta4/Hh8bgWdvSUG/ZJsjud2m7Dx8lv2HouNUPR+bsvMwZe2BatnmYyNCUVzmfQQ3JiIEJWXa1zKLiQhFXFS40xp++2feL9kmq1683iwQO0007dsTBNyzZwNmfLnI7eavmnbBwzc9irPR8v8mtMVFYseUPo7vUnf3EyljsQA/zb4REWH+HztlbGA+DNCDDG9CIn3pXcaJPPMUuOjdMcIOmcDkKdu63Czr80d2xLCOvpdFUpNZ3l1ApKRMmjueyrfJERsRioV3d0Vqs8tJ8eydD5lHCgAI6N60Hv790X7kF5VKHksqiNeK/R69rXNjfLT3N7+8pjcWAA/0boqF244C0H7Evs6FIrz8yctI++U7t9tn9UnH0i5DxWhRwvTBbTCuZ1PH5112qRLvZeZi2+FT2Hv8DM5dvKRp24OBFp1+ajA2MB8G6EGGNyGRvvxRxok88/dINjtkap4dh0/hzsXfSO6n1T2stkPAtYOhS5O6uO7FrSqTz2nD270m97tRa7a4SFy8VKm688FXA9vasOkH6XJuIRYg/W9NMXVQsl9GpLv9mo3lq6Yh3M2a9ILoONw9YjZ+aNDc6zHsnzeAau2NCg/BxXLtZ0LUZFp1+inF2MB8mMWdiEhDTFZmrIEpiU5Tdd3VodYSs8drQ6p2uL9sys7DzA05Xvexd7pUTTbmC7X5E+zl3KqacVMy/v7+XlhgzHppexI9d7NGjPjOm9S3Jbom1cWdb0t3uOhlTI8maJMYh6U7jnpdxlApAG9tO4qYiHBMSLva8T224+c/sWDrEVmvZbEAcofddl+Zghb/Xo+Qygr8c+dqTNqxwrGt3oUifLpsIgDgv8nX4YkBE1ASEV3tGHmFFzH+r1lLrhicK8c16GTHAJ2ISENmSFYW7NwFLnphh4zvzLJ+39NSharsXQZVs577SqrsmpIOAXvyOaPWAwsQ2zvr4xz0S7Y5nSMjvvNWfXscV9WL8fvr2tWNCcejH2Q5TeuX6jyZt/kQVu4+hplD22JgSqLs745uSXWxO/eM4jZWhoRifq/RmN9rNBqcO4XX1s9B1xMHHdtvzvkaN+d8DQB4dNAkrGnXR/FrmFmtyFBUCkCJn5ZVeJKoYacfBT5mcSci0pDcMk78h7hmYIeMb+xBsR7lzJSoqBQw6+McyVHnBnGRmucUkJNZXkmHgD0redUs23Vj/DceU3XWSFVS3416yCu8iNPnva9519OZkvJqa+7lDHDnF5U6rv/cUyWyXktNcO7qj9oJuP2uF5E0+RPce9v/Vds+d+M85M4Zgq0L09H09AmfX88MzpdWGB6cA2L1CC6DIjsG6EREGtL6j20yN3bIqOctKNaqnJlcUksV7OYO76jLqL6nsms2a5SqDgH7LJJhHRthYt+W+OaJfqpKp/nCdeS36nejL2IjldXgjo+N0KRjYFLflqgTHe7jUZSZueEHrNx9XHI/Pf412XJ1NyRN/gQtHluHJV2GOm1reiYPWxc9iNw5Q/DUF28g4pIx6/trkrp+vj/J3BigExGp4K3mtdZ/bJN5sUNGPSXr9/UmdxrxKR1HY11Hvlemp2L75DRNvi8iwkLw7C0pYhkvBc+zQExepoa7WSP278b4WPWB7ou3tUeigvrxNmu0x3tUrkRrFCakXY3XRndWeQTlBIgj6VXLwnnbVy/loeF4qu8DSJr8Ca57YCF+jm/stP3ufZ/i0NxbkDtnCPod9n8SwJoiI0c6kSAFD65BJyJSSM6aWX8nKyPjeFr3a2MddK/MtH4/oVakrP30XqqgZ/4ET9epvbya69po+zdV+t+Ulf2SWjM/MCURaa0bIPW5L3G6uMzrcaq+ni0u0rEuOyTEIitfgL0doSEW1WvzLbjcyZbavJ7P5ewC2bG6DdE3/U0AwM0/bMUrn8x12r5o7dMAgKzEFhh/8zTkxyX4vY2BasmOXHRrGs9/LwgAy6wFHZZSIPINa16TJ2bJRB4ozFKSUMzc/oPX+tw1qVyeu+s0Iyffa6ej3LJfrt+D3u4J+3cp4L5j4LXRnVE3NsLj/bQpOw9T1h5wWz7N0/dx1fbknirGvM2HvSZtc5escPbHP2Dxjlyv5yGYRJddxNMZr+O27C1ut7/aYwRe6TUalSHKliYEGyO/YxgbmA8D9CDDm5BIPda8JtKO/X6Syl6u5/2kJHN7Te98k+pgct1+prgUsz89qCiodw14fc3gX1EpYMGWw1i6I9ephJncY7h7/XqxERjWsSH6JdvcdrJpVc89xCKWVjPKpL4t0aJ+Lcz+VLuM/21O/oJ3PpiB+sXuE9aNHPUsdl3VXvbxhrRPxCff+ydRpFno3SHpDmMD82GAHmR4ExKpZ5YRP6KaQmoUVc+gWKrDzc6Ikm+BwlNQr2SmkRYzT3w5htLnyr1uvLEAeG10J7y76xh2/aJ/jgVXdWLCsefJfggNsaCiUsDLGT/hNZm11mURBIzZ9ylmZ7zpdvO2pE6YeNNjOBNjdbu9VmQYXrqjPfol29Dz+S+9zm6paeaP7IhhHRv59TUZG5gPk8QREclkpjWzRDWBkQkV5WZuf+n2DgzOPaiaLb5H83qOgE9Jdn53x9CiHXo9154Y0pc5HQ/3bYmQEItPwbkvr3+2pNyRfDE0xIL4GI0ziFsseK/zECRN/gTtJ65CxtXdnDb3zt2Hff+5E7lzhuD+3WsBl7HC2cPEXAOhIRbMHNrWr6X5jMaSnAQwSRwRkWyseU2kPaMSKsrO3F7sefSOeQeqU5KdP1BnGnlKuCfXVfHRmPVxjk9t8HX6a9XrX88SfEVRtZD+V031rr/9gOWrpiGy4pJj+5Nbl+DJrUtQGBmLu0Y8jQOJLWCzRju2D0xJxGujO2HCyn2GLgmw85azwFd1Y8JZkpMAMEAnIpLNXvNaas0s/4ElUkbP7OWe+Nrh5uv66ZoqWGYaVe1Yyi+8gNPFZThdXIbXvpKeKn66uEyzdd9qVb2uqwbEerAAaBAXid+Su6DVY/9FSGUFHsr8AI9uX+7Yx1pajI/fnQQAqMwdCSxaCNSuDQA4fPK8KYJzQN+Sdlx1THac4k5EJBNrXhPVHPYON093qwViwO2uw82+xto1yMovvIi/v78Xm7KDK7FVVcE008jesXRL58a472/N8Ej/VrKuqXiZZf304jpSa78X1Eq0RuHB3k1hged/G2cObYuZQ8V/PytDQvGfnqOQNPkTXPPQu9jdONnpOSGrVwFxcYDFggOz52He5sOq2xZIzl645Fh6QMGNAToRkQJGrpklIu2o7XBTusY62PjS8RHo5F5TtjhjOyfOlJQjIyff8f9V263U9MFtsH1yGqYOSpb8t3FgSiLevKsz6sSEO7b/WSsew+98AR1nfY7vXnuv2vHb/d8jyJ0zBF+/dT+aF/yqqo2BJNBnlpA2mMU9yDBTI5E2uPaUqGZQOlWd1RykGZmd3wykrimpEoNA9TJs8bHhuDu1CV758mfJ1/9772Z475vjOF96ye12TyUMN37/u+y13p6OIeffxopKAbt+KUDmkQIAAno0S0Bq1QR9ZWXA1KnAyy+7fe33O96I2X3SURqm39p5T+Jjw3G6uFx6R5VYZo0ABuhBhzchERGRMyUdbuuzTmDiqizJYxpRLslMgn2NvtQ1JdWJ8drozqgbG+H0fABeA3t70PzS7R1w5+JvJNvoLhjc+H0e/rFir9fn+aujZX3WCcx94zO8vWY2WhYcd7vPgzc/gc9bXatbG6pKtEZh+uA2eGjFPtlr0etEh+PsBXkBvS0uEjum9PF7Zz9jA/NhkjgiIiIKakqS1AXTGmtfGJWd3yykrilPmeBtEp0YM25Kxt/f31stm3jVKfTeKg9U5W469aD2iXgzxHuGeqk2aqV+7Sgcr5uI/ve/DgAYmvMVXv34Jad93vrvswCAAw2a48Fbp+H3uPq6tcf+nt8IseDRD/ejuLRC8jn39EzCK5sPywroZw5tGzT3B3nHEfQgw14yIiIi9aSmJ3ua+kvkjprlUlKzE7RYhlG1XQmxkYAFOHW+1K8dLZ7utajyi5j9xZu4I3uz2+ct6DEc83rdiYqQUE3aEWIBFozqjEHtL3dIlF2qROfZGbKWEWTk5Hvt8KgTE47nb21n2MwSxgbmwwA9yPAmJCIi8k2wr7Em43kL7GtSJ5Kne82u9cmjWPbhDNjOu89+PmrkM8hs0gF1YsLxnxGdEBJqwclzpTh1rhRnSsoQYgEsFgv+s8Xz2v7XR3fCoPYNPbbNtV3uvgfsn1d+4QWcOl+GsyVlsFhQff29ARgbmA8D9CDDm5CIiMh3wb7GmsytJnUiubvXbHGRuHipEoUl5eL7EwTclfUZnv7idbfHOJX6NyRsWANccYXs15BzP9eE7wHGBubDAD3I8CYkIiLSBqs5kJnVhODRzt29lpGT77YTIu7ieby48RUMOOxhmv8LLwCPPQZYqmeXV3M/B/r3AGMD82GAHmR4ExIREREFh0APHqW464SIjw3HLR0boW+yDd3yfkTogP5ASUn1J8fFAZs3A9dc48cWmw9jA/NhgB5keBMSERERUU0hqxOishKYMwd44gn3B7n9dmDxYjFoDzKMDcyHAXqQ4U1IREREREErPx8YMQLYts399oULgfvvrzYFvqZibGA+IUY3gIiIiIiIyC9sNuDrrwFBAD77rPr2Bx4AQkKApCTg4EG/N4+IAToREREREQWfgQPFQL2sTEwcV9WxY0BysjiS/uCDwEX3dcyJtMYAnYiIiIiIgld4OPDii2Kw/ssvQPv2ztsXLgSio8Vgfc0aY9pIQYMBOhEREREREQA0bQrs3y8G66tWVd9+++1ioN6pkzjKTqQxBuhERERERESuRowQA/WSEuC++5y3ZWWJ69QtFmDyZODSJSNaSDUQA3QiIiIiIiJPoqOBt98Wg/UDB4DGjZ23v/CCOE3eYgEyMoxpI9UYDNCJiIiIiIjkSEkBfv1VrK3+5pvVt/fvLwbqffoAJ0/6v30U8BigExERERERKWHP7i4IwJkzwK23Om/fsgVo0EDcb84cMaAnkoEBOhERERERkVp16ojZ3QUByMwEatVy3j5lChAaCtSuDXzzjSFNpMDBAJ2IiIiIiEgLqanAuXNARQXw/PPO286fF7dbLMDSpca0j0yPAToREREREZGWQkLE7O6CAOTnA9df77z93nsNaRaZHwN0IiIiIiIivTRoAGzdKgbrn38ONGkCLFtmdKvIpMKMbgAREREREVFQ6N8fyM01uhVkYhxBJyIiIiIiIjIBBuhEREREREREJsAA3SBnzpzBmDFjYLVaYbVaMWbMGJw9e9bj/uXl5Zg8eTLatWuH2NhYNGzYEHfffTd+//13/zWaiIiIiIiIdMMA3SCjR49GVlYWNm3ahE2bNiErKwtjxozxuH9JSQn27t2L6dOnY+/evVi7di0OHTqEoUOH+rHVREREREREpBeLIAiC0Y0INgcPHkRycjJ27dqF7t27AwB27dqFHj164Mcff0SrVq1kHefbb79Ft27dcOzYMVx11VWynlNUVASr1YrCwkLExcWpfg9ERERERBTYGBuYD0fQDZCZmQmr1eoIzgEgNTUVVqsVO3fulH2cwsJCWCwW1KlTR4dWEhERERERkT+xzJoB8vPzUb9+/WqP169fH/n5+bKOcfHiRUyZMgWjR4/22ttVWlqK0tJSx/8XFRUpbzARERERERHpjiPoGpo5cyYsFovXn++++w4AYLFYqj1fEAS3j7sqLy/HyJEjUVlZiddff93rvs8995wjEZ3VasWVV16p7s0RERERERGRrjiCrqEJEyZg5MiRXvdJSkrC999/jz/++KPatj///BMNGjTw+vzy8nIMHz4cR48exZYtWyTXikydOhWPPPKI4/+LiooYpBMREREREZkQA3QNJSQkICEhQXK/Hj16oLCwELt370a3bt0AAN988w0KCwtx7bXXenyePTg/fPgwtm7dinr16km+VmRkJCIjI+W/CSIiIiIiIjIEp7gboE2bNhg4cCDS09Oxa9cu7Nq1C+np6RgyZIhTBvfWrVtj3bp1AIBLly7h9ttvx3fffYfly5ejoqIC+fn5yM/PR1lZmVFvhYiIiIiIiDTCAN0gy5cvR7t27dC/f3/0798f7du3x3vvvee0z08//YTCwkIAwG+//YYNGzbgt99+Q8eOHZGYmOj4UZL5nYiIiIiIiMyJddCDDGsdEhERERERwNjAjDiCTkRERERERGQCDNCJiIiIiIiITIABOhEREREREZEJMEAnIiIiIiIiMgEG6EREREREREQmwACdiIiIiIiIyAQYoBMRERERERGZAAN0IiIiIiIiIhMIM7oB5F+CIAAAioqKDG4JEREREREZyR4T2GMEMh4D9CBz7tw5AMCVV15pcEuIiIiIiMgMzp07B6vVanQzCIBFYHdJUKmsrMTvv/+O2rVrw2KxGNqWoqIiXHnllfj1118RFxdnaFtqIp5fffH86ovnV388x/ri+dUXz6++eH71ZabzKwgCzp07h4YNGyIkhKufzYAj6EEmJCQEjRs3NroZTuLi4gz/cqrJeH71xfOrL55f/fEc64vnV188v/ri+dWXWc4vR87Nhd0kRERERERERCbAAJ2IiIiIiIjIBBigk2EiIyMxY8YMREZGGt2UGonnV188v/ri+dUfz7G+eH71xfOrL55fffH8kjdMEkdERERERERkAhxBJyIiIiIiIjIBBuhEREREREREJsAAnYiIiIiIiMgEGKATERERERERmQADdNLNM888g2uvvRYxMTGoU6eOrOcIgoCZM2eiYcOGiI6OxvXXX48ffvjBaZ/S0lL885//REJCAmJjYzF06FD89ttvOrwDcztz5gzGjBkDq9UKq9WKMWPG4OzZs16fY7FY3P68+OKLjn2uv/76attHjhyp87sxJzXneNy4cdXOX2pqqtM+vIZFSs9veXk5Jk+ejHbt2iE2NhYNGzbE3Xffjd9//91pv2C9hl9//XU0bdoUUVFR6NKlC/73v/953f/rr79Gly5dEBUVhWbNmuHNN9+sts+aNWuQnJyMyMhIJCcnY926dXo13/SUnN+1a9eiX79+uOKKKxAXF4cePXrg888/d9pn2bJlbr+PL168qPdbMSUl5/err75ye+5+/PFHp/14/V6m5Py6+3fMYrGgbdu2jn14/V62bds23HTTTWjYsCEsFgv++9//Sj6H37/klUCkk//7v/8TXn75ZeGRRx4RrFarrOc8//zzQu3atYU1a9YIBw4cEEaMGCEkJiYKRUVFjn3Gjx8vNGrUSMjIyBD27t0r3HDDDUKHDh2ES5cu6fROzGngwIFCSkqKsHPnTmHnzp1CSkqKMGTIEK/PycvLc/pZsmSJYLFYhCNHjjj2ue6664T09HSn/c6ePav32zElNed47NixwsCBA53OX0FBgdM+vIZFSs/v2bNnhb59+wqrV68WfvzxRyEzM1Po3r270KVLF6f9gvEaXrVqlRAeHi4sWrRIyMnJESZOnCjExsYKx44dc7v/L7/8IsTExAgTJ04UcnJyhEWLFgnh4eHCRx995Nhn586dQmhoqPDss88KBw8eFJ599lkhLCxM2LVrl7/elmkoPb8TJ04U5syZI+zevVs4dOiQMHXqVCE8PFzYu3evY5+lS5cKcXFx1b6Xg5HS87t161YBgPDTTz85nbuq36G8fi9Ten7Pnj3rdF5//fVXIT4+XpgxY4ZjH16/l23cuFGYNm2asGbNGgGAsG7dOq/78/uXpDBAJ90tXbpUVoBeWVkp2Gw24fnnn3c8dvHiRcFqtQpvvvmmIAjiPxrh4eHCqlWrHPucOHFCCAkJETZt2qR5280qJydHAOD0RZ2ZmSkAEH788UfZxxk2bJiQlpbm9Nh1110nTJw4UaumBiy153js2LHCsGHDPG7nNSzS6hrevXu3AMDpD81gvIa7desmjB8/3umx1q1bC1OmTHG7/+OPPy60bt3a6bEHH3xQSE1Ndfz/8OHDhYEDBzrtM2DAAGHkyJEatTpwKD2/7iQnJwuzZs1y/L/cfxuDgdLzaw/Qz5w54/GYvH4v8/X6XbdunWCxWITc3FzHY7x+3ZMToPP7l6RwijuZxtGjR5Gfn4/+/fs7HouMjMR1112HnTt3AgD27NmD8vJyp30aNmyIlJQUxz7BIDMzE1arFd27d3c8lpqaCqvVKvs8/PHHH/j0009x3333Vdu2fPlyJCQkoG3btnjsscdw7tw5zdoeKHw5x1999RXq16+Pli1bIj09HSdPnnRs4zUs0uIaBoDCwkJYLJZqy2iC6RouKyvDnj17nK4pAOjfv7/Hc5mZmVlt/wEDBuC7775DeXm5132C6ToF1J1fV5WVlTh37hzi4+OdHj9//jyaNGmCxo0bY8iQIdi3b59m7Q4UvpzfTp06ITExEX369MHWrVudtvH6FWlx/S5evBh9+/ZFkyZNnB7n9asOv39JSpjRDSCyy8/PBwA0aNDA6fEGDRrg2LFjjn0iIiJQt27davvYnx8M8vPzUb9+/WqP169fX/Z5eOedd1C7dm3ceuutTo/feeedaNq0KWw2G7KzszF16lTs378fGRkZmrQ9UKg9xzfeeCPuuOMONGnSBEePHsX06dORlpaGPXv2IDIyktfwX7S4hi9evIgpU6Zg9OjRiIuLczwebNfwqVOnUFFR4fa709O5zM/Pd7v/pUuXcOrUKSQmJnrcJ5iuU0Dd+XU1d+5cFBcXY/jw4Y7HWrdujWXLlqFdu3YoKirC/Pnz0bNnT+zfvx8tWrTQ9D2YmZrzm5iYiIULF6JLly4oLS3Fe++9hz59+uCrr75C7969AXi+xnn9iuSei7y8PHz22WdYsWKF0+O8ftXj9y9JYYBOisycOROzZs3yus+3336Lrl27qn4Ni8Xi9P+CIFR7zJWcfQKB3PMLVD9PgLLzsGTJEtx5552Iiopyejw9Pd3xe0pKClq0aIGuXbti79696Ny5s6xjm5ne53jEiBGO31NSUtC1a1c0adIEn376abXOECXHDRT+uobLy8sxcuRIVFZW4vXXX3faVtOvYU+Ufne629/1cTXfxzWV2nOxcuVKzJw5E+vXr3fqlEpNTXVKINmzZ0907twZ//nPf/Dqq69q1/AAoeT8tmrVCq1atXL8f48ePfDrr7/ipZdecgToSo9Z06k9F8uWLUOdOnVw8803Oz3O69c3/P4lbxigkyITJkyQzIaclJSk6tg2mw2A2LOYmJjoePzkyZOOXkSbzYaysjKcOXPGaQTy5MmTuPbaa1W9rpnIPb/ff/89y5L97gAAD+NJREFU/vjjj2rb/vzzz2o9ru7873//w08//YTVq1dL7tu5c2eEh4fj8OHDNSK48dc5tktMTESTJk1w+PBhALyGAd/Pb3l5OYYPH46jR49iy5YtTqPn7tS0a9hVQkICQkNDq42sVP3udGWz2dzuHxYWhnr16nndR8n1XxOoOb92q1evxn333YcPP/wQffv29bpvSEgIrrnmGsd3RbDw5fxWlZqaivfff9/x/7x+Rb6cX0EQsGTJEowZMwYRERFe9w3W61cNfv+SFK5BJ0USEhLQunVrrz+uI7Jy2aekVp2GWlZWhq+//toRuHTp0gXh4eFO++Tl5SE7O7tGBDdyz2+PHj1QWFiI3bt3O577zTffoLCwUNZ5WLx4Mbp06YIOHTpI7vvDDz+gvLzcqdMkkPnrHNsVFBTg119/dZw/XsO+nV97cH748GFs3rzZ8ceMNzXtGnYVERGBLl26VJvCn5GR4fFc9ujRo9r+X3zxBbp27Yrw8HCv+9SE61QJNecXEEfOx40bhxUrVmDw4MGSryMIArKysmrsdeqJ2vPrat++fU7njtevyJfz+/XXX+Pnn392m6vGVbBev2rw+5ck+TsrHQWPY8eOCfv27RNmzZol1KpVS9i3b5+wb98+4dy5c459WrVqJaxdu9bx/88//7xgtVqFtWvXCgcOHBBGjRrltsxa48aNhc2bNwt79+4V0tLSgrZEVfv27YXMzEwhMzNTaNeuXbUSVa7nVxAEobCwUIiJiRHeeOONasf8+eefhVmzZgnffvutcPToUeHTTz8VWrduLXTq1Cnozq8gKD/H586dEx599FFh586dwtGjR4WtW7cKPXr0EBo1asRr2A2l57e8vFwYOnSo0LhxYyErK8uptE9paakgCMF7DdvLKC1evFjIyckRHn74YSE2NtaRdXnKlCnCmDFjHPvby/xMmjRJyMnJERYvXlytzM+OHTuE0NBQ4fnnnxcOHjwoPP/880Fb5kfp+V2xYoUQFhYmvPbaax7L/c2cOVPYtGmTcOTIEWHfvn3CPffcI4SFhQnffPON39+f0ZSe33nz5gnr1q0TDh06JGRnZwtTpkwRAAhr1qxx7MPr9zKl59furrvuErp37+72mLx+Lzt37pzjb1wAwssvvyzs27fPUV2E37+kFAN00s3YsWMFANV+tm7d6tgHgLB06VLH/1dWVgozZswQbDabEBkZKfTu3Vs4cOCA03EvXLggTJgwQYiPjxeio6OFIUOGCMePH/fTuzKPgoIC4c477xRq164t1K5dW7jzzjurlZxxPb+CIAhvvfWWEB0d7bYu9PHjx4XevXsL8fHxQkREhNC8eXPhX//6V7U63sFC6TkuKSkR+vfvL1xxxRVCeHi4cNVVVwljx46tdn3yGhYpPb9Hjx51+51S9XslmK/h1157TWjSpIkQEREhdO7cWfj6668d28aOHStcd911Tvt/9dVXQqdOnYSIiAghKSnJbafdhx9+KLRq1UoIDw8XWrdu7RQABRsl5/e6665ze52OHTvWsc/DDz8sXHXVVUJERIRwxRVXCP379xd27tzpx3dkLkrO75w5c4TmzZsLUVFRQt26dYVevXoJn376abVj8vq9TOn3w9mzZ4Xo6Ghh4cKFbo/H6/cye9k/T/c7v39JKYsg/JWVgIiIiIiIiIgMwzXoRERERERERCbAAJ2IiIiIiIjIBBigExEREREREZkAA3QiIiIiIiIiE2CATkRERERERGQCDNCJiIiIiIiITIABOhEREREREZEJMEAnIiJycf311+Phhx82uhkeFRQUoH79+sjNzfX7a//4449ITU1FVFQUOnbs6PfXl3Ly5ElcccUVOHHihNFNISIiUowBOhERkR/k5eVh9OjRaNWqFUJCQjx2AKxZswbJycmIjIxEcnIy1q1bV22f5557DjfddBOSkpIAALm5ubBYLAgLC6sWmObl5SEsLAwWi6VaQL9mzRpcf/31sFqtqFWrFtq3b4+nnnoKp0+f9vg+ZsyYgdjYWPz000/48ssvFZ0DT5KSkvDKK69ocqz69etjzJgxmDFjhibHIyIi8icG6ERERH5QWlqKK664AtOmTUOHDh3c7pOZmYkRI0ZgzJgx2L9/P8aMGYPhw4fjm2++cexz4cIFLF68GPfff3+15zds2BDvvvuu02PvvPMOGjVqVG3fadOmYcSIEbjmmmvw2WefITs7G3PnzsX+/fvx3nvveXwfR44cQa9evdCkSRPUq1dP7tv3i7KyMgDAPffcg+XLl+PMmTMGt4iIiEgZBuhEREQSzpw5g7vvvht169ZFTEwMbrzxRhw+fNhpn0WLFuHKK69ETEwMbrnlFrz88suoU6eOY3tSUhLmz5+Pu+++G1ar1e3rvPLKK+jXrx+mTp2K1q1bY+rUqejTp4/T6PJnn32GsLAw9OjRo9rzx44di6VLlzo9tmzZMowdO9bpsd27d+PZZ5/F3Llz8eKLL+Laa69FUlIS+vXrhzVr1lTb385isWDPnj146qmnYLFYMHPmTADA5MmT0bJlS8TExKBZs2aYPn06ysvLnZ67YcMGdO3aFVFRUUhISMCtt94KQFxOcOzYMUyaNAkWiwUWi8XxnDVr1qBt27aIjIxEUlIS5s6d63TMpKQkPP300xg3bhysVivS09MBAO3atYPNZnM7+4CIiMjMGKATERFJGDduHL777jts2LABmZmZEAQBgwYNcgShO3bswPjx4zFx4kRkZWWhX79+eOaZZxS/TmZmJvr37+/02IABA7Bz507H/2/btg1du3Z1+/yhQ4fizJkz2L59OwBg+/btOH36NG666San/ZYvX45atWrhH//4h9vjVO1YqCovLw9t27bFo48+iry8PDz22GMAgNq1a2PZsmXIycnB/PnzsWjRIsybN8/xvE8//RS33norBg8ejH379uHLL790vIe1a9eicePGeOqpp5CXl4e8vDwAwJ49ezB8+HCMHDkSBw4cwMyZMzF9+nQsW7bMqU0vvvgiUlJSsGfPHkyfPt3xeLdu3fC///3P7fsgIiIyqzCjG0BERGRmhw8fxoYNG7Bjxw5ce+21AMQA98orr8R///tf3HHHHfjPf/6DG2+80RGwtmzZEjt37sQnn3yi6LXy8/PRoEEDp8caNGiA/Px8x//n5uaiYcOGbp8fHh6Ou+66C0uWLEGvXr2wZMkS3HXXXQgPD6/2npo1a1btcSk2mw1hYWGoVasWbDab4/Enn3zS8XtSUhIeffRRrF69Go8//jgA4JlnnsHIkSMxa9Ysx372af7x8fEIDQ1F7dq1nY758ssvo0+fPo6gu2XLlsjJycGLL76IcePGOfZLS0tznPeqGjVqhH379il6f0REREbjCDoREZEXBw8eRFhYGLp37+54rF69emjVqhUOHjwIAPjpp5/QrVs3p+e5/r9cVad4A4AgCE6PXbhwAVFRUR6ff9999+HDDz9Efn4+PvzwQ9x7773V9nE9pq8++ugj9OrVCzabDbVq1cL06dNx/Phxx/asrCz06dNH0TEPHjyInj17Oj3Ws2dPHD58GBUVFY7HPM0miI6ORklJiaLXJCIiMhoDdCIiIi8EQfD4uD3IdRfwenqeNzabzWm0HBDLhlUdVU9ISPCa/CwlJQWtW7fGqFGj0KZNG6SkpFTbp2XLljhy5Ei1deJq7Nq1CyNHjsSNN96ITz75BPv27cO0adMcCdsAMVhWSu45jY2Ndfv806dP44orrlD8ukREREZigE5ERORFcnIyLl265JRJvaCgAIcOHUKbNm0AAK1bt8bu3budnvfdd98pfq0ePXogIyPD6bEvvvjCMbUeADp16oScnByvx7n33nvx1VdfuR09B4DRo0fj/PnzeP31191uP3v2rOw279ixA02aNMG0adPQtWtXtGjRAseOHXPap3379l5LskVERDiNigPiebevpbfbuXMnWrZsidDQUMl2ZWdno1OnTrLfBxERkRkwQCciIvKiRYsWGDZsGNLT07F9+3bs378fd911Fxo1aoRhw4YBAP75z39i48aNePnll3H48GG89dZb+Oyzz6qNAGdlZSErKwvnz5/Hn3/+iaysLKdge+LEifjiiy8wZ84c/Pjjj5gzZw42b97sVDN9wIAB+OGHH7yOoqenp+PPP/90W4oNALp3747HH38cjz76KB5//HFkZmbi2LFj+PLLL3HHHXfgnXfekX1+rr76ahw/fhyrVq3CkSNH8Oqrr1bLnj5jxgysXLkSM2bMwMGDB3HgwAG88MILju1JSUnYtm0bTpw4gVOnTgEAHn30UXz55ZeYPXs2Dh06hHfeeQcLFixwu97cVUlJCfbs2VMt4R4REZHpCUREROTkuuuuEyZOnOj4/9OnTwtjxowRrFarEB0dLQwYMEA4dOiQ03MWLlwoNGrUSIiOjhZuvvlm4emnnxZsNpvTPgCq/TRp0sRpnw8//FBo1aqVEB4eLrRu3VpYs2ZNtfalpqYKb775puP/jx49KgAQ9u3b5/b97Nu3TwAgHD161Onx1atXC7179xZq164txMbGCu3btxeeeuop4cyZMx7PTYcOHYQZM2Y4Pfbvf/9bqFevnlCrVi1hxIgRwrx58wSr1eq0z5o1a4SOHTsKERERQkJCgnDrrbc6tmVmZgrt27cXIiMjhap/mnz00UdCcnKyEB4eLlx11VXCiy++6HTMJk2aCPPmzavWxhUrVgitWrXy+B6IiIjMyiIIKhbJERERkVfp6en48ccfdSn1tXHjRjz22GPIzs5GSAgnw7nq1q0bHn74YYwePdrophARESnCMmtEREQaeOmll9CvXz/Exsbis88+wzvvvONxjbevBg0ahMOHD+PEiRO48sordXmNQHXy5EncfvvtGDVqlNFNISIiUowj6ERERBoYPnw4vvrqK5w7dw7NmjXDP//5T4wfP97oZhEREVEAYYBOREREREREZAJcuEZERERERERkAgzQiYiIiIiIiEyAAToRERERERGRCTBAJyIiIiIiIjIBBuhEREREREREJsAAnYiIiIiIiMgEGKATERERERERmQADdCIiIiIiIiITYIBOREREREREZAIM0ImIiIiIiIhMgAE6ERERERERkQkwQCciIiIiIiIyAQboRERERERERCbAAJ2IiIiIiIjIBBigExEREREREZkAA3QiIiIiIiIiE2CATkRERERERGQCDNCJiIiIiIiITIABOhEREREREZEJMEAnIiIiIiIiMgEG6EREREREREQmwACdiIiIiIiIyAQYoBMRERERERGZAAN0IiIiIiIiIhNggE5ERERERERkAgzQiYiIiIiIiEyAAToRERERERGRCTBAJyIiIiIiIjIBBuhEREREREREJsAAnYiIiIiIiMgEGKATERERERERmQADdCIiIiIiIiITYIBOREREREREZAL/D30OUPN4MHAXAAAAAElFTkSuQmCC", "text/html": [ "\n", "
\n", "
\n", " Figure\n", "
\n", " \n", "
\n", " " ], "text/plain": [ "Canvas(toolbar=Toolbar(toolitems=[('Home', 'Reset original view', 'home', 'home'), ('Back', 'Back to previous …" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "ifig=12;plt.close(ifig);plt.figure(ifig, figsize=(10,7))\n", "\n", "\n", "isotope = 'Os-184'\n", "\n", "k = 1889\n", "\n", "try:\n", " i = iso_full_name.index(isotope)\n", "except ValueError:\n", " print(f\"Isotope {isotope} not found in the data.\")\n", "\n", "y = iso_abu[:, i] / iso_abu_0[i]\n", "x = mc_fac[:, k]\n", "\n", "r = stats.pearsonr(x, y)\n", "\n", "slope, intercept, r_value, p_value, std_err = stats.linregress(np.log10(x), np.log10(y))\n", "x_fit = np.log10(x)\n", "y_fit = slope * x_fit + intercept\n", "plt.scatter(np.log10(x),np.log10(y))\n", "plt.plot(x_fit, y_fit, color='red', label=f'Fit: y={slope:.4f}*log10(x) + {intercept:.4f}')\n", "\n", "plt.ylabel('log10(X / X_no-var)')\n", "plt.xlabel('log10(MC factor)')\n", "\n", "plt.title(f'{isotope} & {name[k]}-{mass[k]} {rtypes[k]} r_p={r[0]:.4f}')\n", "\n", "plt.legend()" ] }, { "cell_type": "code", "execution_count": 35, "metadata": {}, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "f73b2ab98d9748d39e1780d02ffdc23d", "version_major": 2, "version_minor": 0 }, "image/png": "iVBORw0KGgoAAAANSUhEUgAAA+gAAAJYCAYAAADxHswlAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOydd3zTdf7Hn0m69y5tGaVAKavgAhwIKKDiwFMcpxU5uUPFvYU79Tz1vN8hencO1FMBqeMUF4gDEUQEZAmUTaEthba00JXONG3y++PTzCZpkqZJCp/n49FH22++4/Md+X4+r897KfR6vR6JRCKRSCQSiUQikUgkPkXp6wZIJBKJRCKRSCQSiUQikQJdIpFIJBKJRCKRSCQSv0AKdIlEIpFIJBKJRCKRSPwAKdAlEolEIpFIJBKJRCLxA6RAl0gkEolEIpFIJBKJxA+QAl0ikUgkEolEIpFIJBI/QAp0iUQikUgkEolEIpFI/AAp0CUSiUQikUgkEolEIvEDpECXSCQSiUQikUgkEonED5ACXSKRSCQSiUQikUgkEj9ACnSJRCKRSCQSiUQikUj8ACnQJRKJRCKRSCQSiUQi8QOkQJdIJBKJRCKRSCQSicQPkAJdIpFIJBKJRCKRSCQSP0AKdIlEIpFIJBKJRCKRSPwAKdAlEolEIpH4JRqNhieeeILU1FRCQ0MZM2YMP/zwQ6fbHTx4kIceeogLLriAkJAQFAoFRUVFdtdfvnw5Z599NiEhIfTt25dnnnmG1tZWD56JRCKRSCTOIQW6RCKRSCQSv2TmzJm8/PLL3Hrrrfz73/9GpVIxdepUfvnlF4fbbdq0if/85z/U1dUxZMgQh+t+++23XHvttcTExPDqq69y7bXX8vzzz3Pfffd58lQkEolEInEKhV6v1/u6ERKJRCKRSCTmbNmyhTFjxjB//nweffRRAJqbmxk+fDhJSUls3LjR7rZVVVUEBgYSGRnJSy+9xGOPPUZhYSHp6ekd1h02bBiBgYFs27aNgIAAAP7yl7/w97//nX379pGVldUt5yeRSCQSiS0CfN0AiWN0Oh2lpaVERkaiUCh83RyJRCKRdBG9Xk9dXR2pqakoldKRzR7Lli1DpVIxe/Zs47KQkBBmzZrFvHnzOHbsGH369LG5bVxcnFPH2LdvH/v27eP11183inOAOXPm8MILL7Bs2TL+8pe/ON1m2WdLJBLJ6YUv+mwp0P2c0tJSuwMQiUQikfRcjh07Ru/evX3dDL9lx44dZGZmEhUVZbF89OjRAOzcubPL/eOOHTsAOPfccy2Wp6am0rt3b+PnziL7bIlEIjk98WafLQW6nxMZGQmIh8J6kCKRSCSSnodaraZPnz7G97vENmVlZaSkpHRYblhWWlrqkWOY79P6OJ0dQ6PRoNFojP8bogZlny2RSCSnB77os6VA93MMLnJRUVGys5dIJJLTCOkC7ZimpiaCg4M7LA8JCTF+7oljAHaPo1arHW7/4osv8uyzz3ZYLvtsiUQiOb3wZp8tg98kEolEIpH4HaGhoRbWaQPNzc3Gzz1xDMDucTo7xty5c6mtrTX+HDt2rMttkkgkEsmZjRToEolEIpFI/I6UlBSjC7o5hmWpqakeOYb5Pq2P09kxgoODjdZyaTWXSCQSiSeQAl0ikUgkEonfMWrUKA4dOtTBzXzz5s3Gzz1xDIBt27ZZLC8tLeX48eMeOYZEIpFIJK4gBbpEIpFIJBK/Y/r06bS1tfH2228bl2k0GhYtWsSYMWOM2dKLi4s5cOCAW8cYNmwYWVlZvP3227S1tRmXL1y4EIVCwfTp07t2EhKJRCKRuIhMEieRSCQSicTvGDNmDDfccANz586loqKCgQMHsmTJEoqKinj33XeN682YMYN169YZM6gD1NbW8uqrrwKwYcMGAF577TViYmKIiYnh3nvvNa47f/58rrnmGqZMmcLNN9/Mnj17eO211/jjH//IkCFDvHS2EolEIpEIFHrzHk3id6jVaqKjo6mpqSE6OtrXzZFIJBJJFzG812tra2XMcic0Nzfz1FNPkZubS3V1NdnZ2Tz33HNcdtllxnUmTJjQQaAXFRXRv39/m/vs168fRUVFFsu+/PJLnn32Wfbv309iYiIzZ87k6aefJjAw0KX2un1v9TqoWA/1RRCRDknjQKG0v1wikUgkXsEXfbYU6H6O4aEAkS32hRdekKV5JBKJpAcjBfrpi9v3tnwd5L8JOg0og2HQXZA83v5yiUQikXgFX/TZchq2B/Hiiy+iVCqZN28ecl5FIpFIJJLThPoiIcJjssXv+iLHyyUSiURy2iIFeg/EINSffPJJKdQlEolEIunpRKQLC3lNnvgdke54uUQikUhOW6RA7yHU1taydetWi2X/93//h1Kp5IknnpBCXSKRSCSSnkrSOOG+njZN/E4a53i5RCKRSE5b/EagNzc3o9FofN0Mv+bcc89Fr9d3qNf6z3/+E6VSyeOPPy6FukQikUjcRvbFPkKhFLHlA24Xvw2J4Owt7wnodSKG/sgS8Vuv83WLJBKJpEfgszf9Tz/9xEMPPcTo0aOJiIggPDycsLAwIiMjGT16NA8++CA//fSTr5rn15xzzjk2hfr8+fNRKpU8+uijUqhLJBKJpFNkX+wnWIjZtXBibc8XthXrRYK7kq/E74r1vm6RRCKR9Ai8msVdq9Xy1ltv8fLLL1NUVERcXBxnn302GRkZxMbGotfrqa6uprCwkN9++42qqir69evHI488wp133ulyuZPTAWcyB/7222+cc845HZY/8sgjzJ8/X2Z9l0gkEj/C11ncZV/cfdi9t52VSzPP1q6tBT0QFN2zM7cfWSLEeUy2iKFPmyY8ASQSiaQHcdqXWevXrx8tLS3cfvvt3HjjjZx99tkO19++fTuffvop77//PkFBQR3qlp4JuPJQ7Nixw+Y1feihh1iwYIEU6hKJROIH+Fqgy764+7B7bzsrl2YuZktWiGVpV0P1LojKEj+u1EG3NSEA3q2pLkvESSSS04DTXqC/9dZbzJw5k+DgYJe2a2lpYdGiRdx5553d1DL/xZ2HYufOnZx11lkdlg8ePJj9+/dLoS6RnMHk5uZy22232fzssssu47vvvvNyi848fC3QZV/cfdi9t51Zk+1Z0FtqQQEEumhNtyWOwbuCuTOvAYlEIukBnPZ10O+8806XBwQAQUFBckDgAqNGjUKv17Nz506L5QcPHkSpVDJ48GAZoy6RnKFkZ2ezdOlSli5dyuLFi43hMQqFgssvv9zHrbNEo9HwxBNPkJqaSmhoKGPGjOGHH35watv6+nqeeeYZLr/8cuLi4lAoFCxevNjmuvn5+dx888307t2bsLAwsrKy+Nvf/kZjY6MHz8Z/kH2xD+isXJp5tvbhfxE/adMgfjQERrleB91W/XRv11TvyQnuJBKJxIcE+LoBku5j5MiR6PV6fvjhB6ZMmWJcfujQIZRKJQMHDuTQoUPSoi6RnEFkZ2eTnZ3N8ePHufHGG9m+fTsXXXQR//nPf2x63viSmTNnsmzZMh588EEGDRrE4sWLmTp1KmvXruWiiy5yuO2pU6f429/+Rt++fRk5cqTdRGfHjh1j9OjRREdHc++99xIXF8emTZt45pln2L59O1999VU3nJnkjMPgYm7tcm7AIGbNLdp6HRx8VSSN05yC0DTn66DbmxDwx5rqXbW0S0u9RCI5zfBbgV5YWMju3bupr6+3WH7LLbf4qEU9l8mTJ6PX61m9ejWTJ082Lj98+DBKpZIBAwYYRbtEIjn92bNnD1OmTKGyspJ///vf3HfffX43UbdlyxY+/vhj5s+fz6OPPgrAjBkzGD58OI8//jgbN250uH1KSgplZWX06tWLbdu2cd5559lcb+nSpdTU1PDLL78wbNgwAGbPno1Op+P999+nurqa2NhYz55cD0L2xR7ClgDvjIr1cHITqIKgTQMJ5ztfB93RhIC9SQJfYcj2bnC9B9evU1e2dxaLiYC+Igyhofj0mhSQkx0SiV/glwL9H//4B88++yzZ2dmEhYUZlysUCjko6AKTJk1Cr9fz448/MmnSJOPyI0eOoFKp6N+/v1G0SySS05OioiImTZqEVqtl3bp1jB071tdNssmyZctQqVTMnj3buCwkJIRZs2Yxb948jh07Rp8+fexuHxwcTK9evTo9jlqtBiA5OdlieUpKCkqlkqCgIDfPoOcj++Iu0lWxU18E+hZIvkRYvQNjTNt3tm97EwKGZf4kxMxd72vyxP+uCOyubu8s5hMB1pn24fRIgOetyQ6JROIQvxToL7/8Mtu2bTNaMySe5dJLL0Wv17NmzRouvfRS4/LCwkJUKhV9+/alsLBQCnWJ5DRDp9Nxyy230NDQwM8//9ypS7tWq6W2ttapfcfFxXn0nbFjxw4yMzM7JGQZPXo0IJJhOhLozjJhwgT+7//+j1mzZvHss88SHx/Pxo0bWbhwIffffz/h4eFdPkZPRfbFXcQdsWMunLU1oAiy7ZLuzL4diXBfCzHr81TaOU9n6Cy+31OYTwQYMu0njeveSQFv463JDolE4hC/FOgRERFkZGT4uhmnPZdccgl6vZ61a9dyySWXGJcXFxejUqno06cPRUVFUqhLzmj0er3fJQsLCwtzyyU9NzeXTZs28d577zkVb75hwwYmTpzo1L4LCwtJT093uU32KCsrIyUlpcNyw7LS0lKPHOfyyy/nueee4+9//zvLly83Lv/zn//M888/75Fj9FRkX9xF3BE7FsI5CBLPh4AoaFVDfYFYJ2mcc/t2JMJ9LcTM26ZoP8/AGPdc7zuL7/cU5hMBQTHCgu5v8fxdxVuTHRKJxCF+KdAff/xxZs6cydy5c0lKSrL4LDU11Uet8gO6ySVt4sSJ6PV6fvrpJ4vB+LFjx1CpVKSlpVFcXCyFuuSMpLGxkYiICF83w4L6+nq3LLuvvfYaI0aM4A9/+INT648cOdLprOn23Ml1Oh0tLS1O7SM4ONg48dDU1GQz03hISIjxc0+Rnp7OxRdfzPXXX098fDwrV67k73//O7169eLee+/12HF6GrIv7iL2xI5eBxXroHSV+D9liinLubVwDoyB8L6w53lhaQ6MERnenRFSjkS4r4WYrfM0LzvnCu7E97uDxUSAjRh0b9DdoQnemuyQSCQO8UuBPmfOHAA+/fRTi+UKhYK2tjavtUOj0fD000+zdOlSqquryc7O5vnnn7dItGaLgwcP8uabb7J582Z+++03NBpN161Ln0RDGIiCqHpQBELkUEidAmlXQFLXS5hMmDABvV7PunXrmDBhgnF5SUkJKpWKlJQUjh8/LoW6RNIDOXXqFNu2bePFF190epvY2FiLfBXu8PPPPztthd+/fz9ZWVkAhIaGotFoOqzT3Nxs/NwTfPzxx8yePZtDhw7Ru3dvAK677jp0Oh1PPPEEv//974mPj/fIsXoa/tIX91jsiZ2K9UJw1x4UXXrlFpPItCWcS7+DuoMQEAnN5VC2Cka90HHf1uItvK99Ee5rIRbeV9R4L1lhmoTwd7w1EeCI7g5N8IdzlEgk/inQdTqdr5sAuF/iZ9OmTfznP/9h6NChDBkypEM98q7RXr9crwX1LvFzYD6oEqCtDtC1/7QBKgjrB3HnQkR/SL3MqVqk48ePR6/X8/PPPzN+vOklXVZWhkqlIjk52SjaJZLTnbCwsA4ZrH2NecIuZ9m/fz96vd6lUmotLS1UVVU5tW5iYqLNd0JWVhaLFi1yah/mLu0pKSmUlJR0WKesrAzwnAX3jTfe4KyzzjKKcwPXXHMNixcvZseOHV2epOip+Etf3GMxiJ2kcUJYFSwVYriuAFpqIDAS0EPjcSjMFdskXih+mwvn0u+MXb/xt0JpKbIB0EH+2ybxNmg2DJwtBL3hc337PfWkFdYdq66i/cf6b4ljfB2aIJFIvIJfCnSA2tpavvvuO0pLS0lLS+Pyyy/vkCyoO+lKiZ9rrrmGmpoaIiMjeemllzws0O3QdsrWQmgsED8o4fAiUOhAWwfKQIgcCFGDIbwfhCZDUwUoFEZ3u4svvhi9Xs/69eu5+OKLjXstLy8nICCAxMREo2iXSE5XFArFaZEorKGhAcCl2PWNGzd2OQa9V69ezJw50+ljGhg1ahRr165FrVZbvPs3b95s/NwTlJeX2yyjptVqAWhtbfXIcXoqvu6LeywVv8DJk0Kw6nVw2Ew4J4wVMcxN5aDXAEqoOyAso2BpwdTrRP8cFAW6VojKFJ5z0NGaGp5uJd7a3a8bisTy/CJxLPCsFdYdq259MQRGQ+I4U1uTHW8iwfehCRKJxCv4pUDfuHEjV199NYMHD6Zfv34UFxdz9913s2LFCi644AKvtKErJX7i4uK80kbX0EFrhdm/GqjdCbV5iKlrM3fF/f+AgGgITgaFinGxI9GX/cgv+QGMu9jU6Z48eZKAgAASEhI4ceKEFOoSiR9jEM+ff/55p2E6BjwRg+4u06dP56WXXuLtt982TpJqNBoWLVrEmDFjLN6/jY2NFBcXk5CQQEJCgkvHyczMZNWqVRw6dIjMzEzj8o8++gilUkl2drZnTqgH4g99cY/lyHsQqrMtnAOjRBx56Sqo2S1iy5MvEX/XtSeCM1ij9To4+SsEJ4ha6L2niZA2wzrm+4WO4s2WxRU8a4V1x6orhaZ7+Do0wZ/wp1KBEomH8UuB/sADD7Bw4UJuvPFG47JPP/2U+++/n23btnmlDd4q8eN77LgwttaKH4D6/XDsYy4KiEa/9no2FIRw0awPjKueOnWKgIAA/vCHP/DOO+/IGHWJxA/Jysrisssu480336S8vJwpU6aQnp7OJZdcYrfWtydi0N1lzJgx3HDDDcydO5eKigoGDhzIkiVLKCoq4t1337VYd8uWLUycOJFnnnmGv/71r8blr732GjU1NcaM7ytWrOD48eMA3HfffURHR/PYY4/x7bffMm7cOO69917i4+P5+uuv+fbbb/njH/94RidD84e+uMei00DMOXaEc0a7lXwilK8T1uea3eKzVrVtq3hEhlin6YTpGNYiN2WKKdFcRLpwl6/eCY2loDkJoWkmIawMhupdoFWD+oBoh7sCxxWxbRRVBcKTICAKIjPObKHZGbaEaHe7tfcE8evrUoESSTfilwL98OHDXH/99RbLrrvuOgtrdnfjrRI/1mg0GovESGq1uluO4xattVD6GReGBKL/cjAbTw3nwj9+Zvx40aJFLFq0iNsn9+K9v+eg7DPVI8nrJBKJZ1i2bBnPPvssX3zxBStXrqSlpYUrrriCb775xtdNs8n777/PU089ZZGo8+uvv7YIuXHESy+9xNGjR43/f/7553z++ecA5OTkEB0dzcUXX8zGjRv561//yhtvvEFlZSX9+/fnhRde4PHHH++W8+op+ENf3GMxF6ypUwCl7YRude1CNTBKiPD6go5Wca0aqraK+POqLWI7Q2w7dBRRBpFSvg5ObgJVkLC+J5xvKYRLvxP7qzvQ7v6OewLHFauutagadJcUVZ3hCyHaE8RvT43H7wmTHxKf45dPxIgRI3jzzTctlr311lsMGzbMa23wZokfc1588UWio6ONP0YrfWSmmGlWhWE5r6IEvO1aroWGg1wQ+jn6jyM5MN/y0yU/nEB13kvcfsMltH0cBd+eB/teFvFzEonEZ0RERDB//nwOHz6MRqPhySef5Ntvv6W6utrXTbNJSEgI8+fPp6ysjObmZrZs2cJll13WYT1DBQpz6zlAUVERer3e5o95vPzo0aP55ptvKCsro6WlhYMHDzJv3jwCAvxyDttr+ENf3GMZcAekTRMCNKk9pnzA7aZErQYBVLoCTv1qsqpHZFhZxSdDaC9QBEDMcJHJ3ZgUrhPqi0DfItznw9JEtnSF0iTio7JEHHhMNjS1J6orX2dKJOcshv2Zn5+jNhlElU7j/LmYo9eJdh5Z4l57exqeuGa2cHQdu+uYnqSnhkkYvvslX4nfFet93SKJH+KXo4+FCxdyzTXXsGDBAvr06UNxcTEKhYLly5d7rQ3eKvFjzdy5c3n44YeN/6vVaiHSL98MzTtEzJq+DVobobUJAsMgdhS01kHjCZHkrdclcOwLKP5CZIql2ewIAYCnhLIe2uoYnAr6DyD/BGQ+Yvr0/fXw/voGbrtoG4vu3IZqz98gKBECQyHhIogcIFzrYoZD5j2g9MvHUSI5bUlMTCQ0NNStrPCS0x9/6It7LEkXgaNkevasf9bWaL0OmsqgrUGUY4tIFzW4oXMrZ2cCxvB5+RpRzxuFZaI6A+5a/Gxt5wlR5a/W3e6yjHaXEHV0HXuC+PXHeHxnnoGeavmXeBW/VETDhg3jwIEDbN68mdLSUlJTUxkzZgyBgYFea4O3SvxYExwcbNNyL2aoJ4ofZ+h1KfS7CeoOixi01iaIGQZRQ2DXn6GhQLx025qFqAcITAJ9A7Q2gLYWUz0X5xjUSwj1wydgkJlQX/qL+Mm5sJbFd9WiUgK1uy03/u0RCB8IKZdA3Dkiw7x0+5FIuo1XX32Vv/71r8yYMcP2O0dyxuMPffFpiz0BZF6HWq+DHfNAfRBaW4BW0DaauubOBvr2BIy1e33NbrHP8P5Qu0e4vpv3v+4KYsN2bc3CTT9+tIiTHzTblGHeHVHVFYHTHSLasE9DyEBgFCiFt6VHhFd3CVFH19Efxa81/liz3ZnvSk+Y/JD4HL8R6Js3b2bMmDEAxhJmSqXSWJt269atAF7LHOutEj/dhqMXV+oUU5IWrdqUpCXxQji5AeqOQMkKKFsNugZcFeoD7Qj13A3i59YLYcldCKFupA0aDsLhg+3/B0L8+ZA0FlIvl7HsEomHef/997nlllt4+eWXfd0UiR/hb33xaYszAqhiPZxYJRK86bXtSeTqRV3z5PGdD/TtjQOsRUTCWKgvhPIfO8a5G9poLeQMtd2dsRQGRYsYem2NKPk26C7hDu8uXRE43WF9N+yz7pAonZcySYytnJk4cGbCoLuEqKPr6I/ityfgzORRT5j8kPgcvxHos2bNYs+ePQDceuutNtdRKBQUFBR4pT3OlvgpLi6msbGRrKwsr7TLIzh68RqWD5gJJ9bC4XegZhegh5BeovOuPyxc7PVAQBBoGyA4CrRai1JuBqF+pBwGmrz2+WCD+Pn9+bB0jrVQN6CFyp+hcjMc+Leo2x6cKF56qVdCdKa0sEskXcAgtCQSc/ytLz5tsJeJ25EreV0BoICgWNBUg75VuLobBLS7A31rEaGKEHHu9UcgOgtUIZbCwpaQc8lS2G6hjxnhvHB1RFcEjjMCylUru3GfI6C5XJxvZKZzEwe+dNeXQtHzODN5JCc/JE7gNwLdMCAAKCws9GFLBM6W+JkxYwbr1q1DrzdZmWtra3n11VcB2LBhAyDK/cTExBATE8O9997r3ZNxB4USUi4VP7aw1YGVr4O8v4F6r+iEg2JBEciA5BL0H+g6CPWPNomfm8+HXLtCXSM69jYNNNZDYyGUr4fQOAgfAG2NYrXYkXD2ApGtViKRSCRu4W998WmDIyFmz0U6YSwExYCmHFTt28SPgYBQkxXbHaxFRFu9KN+mb4WaPRA92FJY2BJyBUudtxQazktbK86rqy69XRE4HQRUXzF2MT83i3sVJMIEA2Psi3XDPltqIXKwcOVPvdy5++PLeGQpFF3DmYkbOekh8RB+I9DN+eijj/j973/fYfnHH3/MzTff7LV2uFvip7q6mqeeespi2YIFCwDo169fzxDonWHrxZ48Hkb+Vcz6t6rFICO8H5zaBvteZEByDfoPoKACBjxk2uzjTeLnprFCqAd0lpS+rQrqq8RsP3pACac2QOFSkeE2/ly48CMICPH8eUskEskZgr/0xacFjoSYPRfpwCgY/hfh0t5QDJoyIc4NItdWjLdBGDqy+Brqo9fsac8MHyGO1WuSsP7Gje4Yr24tShxZCq23GfmcCJ/zpGhxN5bcWkDpWmHv88L9PjBGXO+GYtO9Kv8Rij4UWfDtWbjtlbtzBhmP3HNwxttBTnpIPIRCb2769ROioqJs1v+Oi4ujqqrKBy3yHWq1mujoaGpray1i4XscbS0iEVz1LtDrobmCwhPNZNxV3GHVG8Yo+PC+UCHUdY1uHEwBCRdA9nOio5V1JiUSiR/RU97rsi92nQ731tw6XtluHVeFWNb/PrJElFwKjIITqyEkWbhIm69jS5AWLO18O1uUr+sYg37qV9u1ya3XNXzmSCDb28YZnBXeXTmGOTvmQlH75H5rHaTfJiY5DPtuLBWeecmXCBGdNq1r8fPWyJrYPQfD99QwyebpZ0Hit/iiz/YrC7ohIY1Op2PTpk0WbuNFRUWEh4f7qmmSrqIKgvOE27+hQ+pfX4T+RDqFR0vIGGOKdfx0s55PNzdyw8TefDg7hACdqwNBPZzaCL/cAqEJgAqCeoGmFFqqICAMUq6BPld2XrNVIpFIzjBkX+wBDDWmDe7dAZGgQNQet3Z/dsZF2pZlzt0Yb2trfmCUELi2LNz2LP8KpaXlGEzisitu2+ZWSoUD93JPuobrrX6bn5e2Bk5u6j4Lt7S49hykt4PEi/iVQDckpGlqauKWW24xLlcoFCQnJ/Of//zHV02TeBKrDql/kg79iTSKDmyl/4THjKt9uvY4n66F68+P4ON7WglQaIE2Jw+ih5YT4geAXZYf5y+AgrdEwrnMO2WWeIlEImlH9sUeIP8tOPkZNJeBth4SxoiKKVFZnnORdjfGu4PQyLAvEh2JEnsuv10RMubCu3wNFH0EYandV6c7dYq4di014jipUzqWuosdJWOKJV2PL5feEhIX8EsX9z/96U/897//9XUz/IKe4grpSYqKisjIyMD60bzugij+d4+eADRAK8IcYfjRun9AZQiE9obYs4SFXRkMqZMh815Q+tUclkQiOQ3oKe912Re7jvHeLjuHKH2hSHCqaxFx3rFnwYinu+7ubb3cUCLV2YG/K0LB0bpHlsDxL0UZtZrd0GsKjHpBfOauEDF3XW8saXcvv1SEx0VliR9b5+zqNXDnWkgkXcFRWIZ8Dv0aX/TZfinQDTQ2NlJZWWkh1Pr27evDFnmfnjKQ6w6OHj3KgAEDaGuztJr/buIg/vf0OQQGAOoD0FwhftC1/yhwtXZ7R5SiDvukNTIzvEQi8Sg97b0u+2LnMd7bL8YSpSsGTSUERkBQHPT5HaRc7nxuFHsDeovlQZBwvuMs491F+TrY/TeoOyi63OjBMNyFCQhbmAuVlmooXS5c/9GLjPaBMbZjzj0Vky7pGfREQesohr2rz29PvB49iDM+Bt3Anj17uO2228jLyzMuUygUBAUF0djoTtIwSU+kX79+tLa2UlxczIABA2htbQXgi7X5BK3NZ9q0a/j0tZcIbC4ScWrqI9CQLzrzlkqEWHcXHVRugJXDxaAqJAUCoyEyQ774JBLJGYHsi7tAaCq0NoCuWfwdPVT8Pvy28zWvzd29q3dBybfCnb1mt3Bn73WJcAMv/BACgoW1Pv0WGHyfd/qopHEiXl5b0x7/Xtv1MmHm7uUn1kLJCrG8tRlUWki0E3Puy3JlEu/jy/rxBlwVxY7CMrr6/Hblekhx75f4pUC/8847mTZtGps2bSIlJYWysjKefvppBgwY4OumSXxA37590Wq1FBcXM3DgQLRa4c7+1VfLCfpqOdOmTePTTz8lMEDVni33W1GWprmiPSlcOAQliDIp6v2gqRD1Xp2hPh/2vwzKQGGpUAaLbK6DZssEcxKJ5LRG9sVdYMAsoNxUcjQiQ5QgbWuGoCiReGzffDE4tteXmA/otWooXwVNFaJuuV4nBLEqFHRN0NIorPVFH4mYaWcG510dmCuUIpldQ5FonydqnJvTUCzc55PGiYmIthb7MecRfcX1KFkhLO0R0sPjtMYfJmRcFcWOYti7mlPBU4kZfTXZIemAXwr0vXv38vPPP6NSiYLYISEhPP/882RkZHDnnXf6uHUSX9G3b19aWlo4duwYAwcOpKWlBYCvvvqKoKAgrr76aj777DMCk8ZB6hVQXyAGDQFRwvKNDg69Bep90HgcAqKhtR7aGoWVw67FvVXUStU1iX+P/Q+OfQEJo+GSVbLeukQiOS2RfXEXSLoIDK6QulY49DqU/SDcwVtqRN+jrYY9z5usxh32YTagVx+AE9+DUgXaNkAP2gaR4PTUZmg6LtzoVYEdB+e2hDjAwVeFoFcFQmiaWNbZwNx6XwnnW9ZUT7zQrctlE3PREpIKiWau/IkXCrdgYz1znWU29q5GuUmron384dpYCNog4cVxZIl32+OqKHaUsb+rCeg8lZixuyc7/OHZ6SH4pUCPiYmhtraWuLg40tLS2LFjBwkJCdTX1/u6aRI/oE+fPmg0Go4dO0ZmZibNzc0ArFixgqCgIK666io+++wzgqxfMHodoOwo3PWtsOcFMVuvqQVaobU95s0mekADp9bDp7EQkiTqz8adB/FnQ+RA+dKRSCQ9HtkXdxHDYDT/bShfDSiF27syAIITxTr1R4TrOjqodxCbHtpLiNP6QtFnBSdDYDi0NYkM8acUEBAkhLb14NyWhQyg6ENoPCaEPTg3MLfeV9VvUPK1EEj1BWKQ32ui4+vh7ODcUXZ765jd8HSTtb0mT/TnXUFaFe3jD9fGVik8fYt329OZKHblee9qub2uCHxvlo/zh2enh+CXAv3OO+/k559/5tprr+WBBx5g3LhxqFQqZs+e7eumSfyIPn360NTUxPHjx8nMzKSpSVi4v/76a4KDg7nyyiv5/PPPCQpqT/Jm7wWo14EiwDIb7KqLoGpz543QN0NTsfip3gZHo0SseuKFMPBP0g1eIvEwGo2Gp59+mqVLl1JdXU12djbPP/88kydPdmr77du38+c//5mNGzei1+s5//zz+ec//8moUaMs1tu7dy9//etf2b59OydOnCAsLIyhQ4fy2GOPcfXVV3fDmfkfsi/uIhXrIX+hiKXWVkNYX5OI0KqF95YqTFjGq7eKvsN80GoxmA2C3tdAaApU7Wi3pNcIi3xoGvS/xTJRnDm2LGQAqmAIjheu8QERzg3Mrfd14kfRhoBIaC4X4WX2BLqjwbk9MWNPtFi3AzwnMvQ6Eetfd8hzsfWnE/7gXm54NpLGwc4/i3DEmBHCO6X0O+9YaDsTxd4Uo10R+F213ruCPzw7PQS/VA5z587l2muvBUSZl71797Jx40bmz5/v24ZJ/JLevXvT2NjIsWPHCAsLMy5fuXIlwcHBTJ061egObxPDi23A7eK3MgDSbxYDJwtU7T/20AvLe9MxUXpm00zYeBuUr2233kskkq4yc+ZMXn75ZW699Vb+/e9/o1KpmDp1Kr/88kun2/72229cdNFFFBQU8Mwzz/D000+Tn5/P+PHjOXjwoMW6R48epa6ujttvv51///vfPPXUUwBcc801vP32291ybv6GP/TFGo2GJ554gtTUVEJDQxkzZgw//PCDU9uWlJRw4403EhMTQ1RUFNOmTaOgoKDDegqFwubPP/7xD/cbrtcJy3jFL+0x41oRq40K4seI/kUZJOKlWxuEsIjJFoNXg4A2H8zqWiAwFi5YCqMXQvxYCO8ncqLoWoQ4N/Rh1oLEloUsIl24jQfFQlgfSP+9GJjrdcI6fWSJ+G3dd4X3FYlYS1aI34FRlq7ljrA4H7PzBJOYKflK/K5Y73hf1ueUOkVkvk6bJn53RWRUrIfKLe0TDqvFZEp3WhV7Gt60uHaG9b1qLBZ17Z19jrqC9djR+nvn6Hn3Jzo7D0/iT8+On+M3FvTNmzczZswYADZu3GhznY0bN3LBBRd4s1mSHkTv3r1paGigpKSEwYMH09DQAMC3335LcHAwl19+uTFevVMy7wV1PhR/DrRCQKyojd7aAEc/ElYQu+hFTHtTCRz/Gmr3QdRQCO8trB8BMhu8xL9obm4mJMT/cyls2bKFjz/+mPnz5/Poo48CMGPGDIYPH87jjz9ut+8w8NRTTxEaGsqmTZuIj48HICcnh8zMTObNm8dnn31mXHfq1KlMnTrVYvt7772Xc845h5dffvm0tSL7W188c+ZMli1bxoMPPsigQYNYvHgxU6dOZe3atVx00UV2t6uvr2fixInU1tYyb948AgMDeeWVVxg/fjw7d+403n8DkydPZsaMGRbLzjrrLPcbfnKjSOqmqQB9GyiChChPniT6gtp9In9Ja5NYHhTTcdBqazBrHq+e/6bI6N7ZQNeWhUyvs4wdz7xH7NvadRwsLVyK9h/D3/HngaZcTDCEpQqhbI/Osli3NZtqqpd+57iPtOf+7glrXH2RmHjoNUm0JW5091oVexquWly7M+7Y+l6FpIicCv5goZVitCPWz451Lgk5LjbiNwJ91qxZ7NmzB4Bbb73V5joKhcLm7LdEYk5aWhr19fWUlpaSlZVFXV0dAN999x3BwcFcdtllfPXVVwQHB9vfiTIAznsV+t1o+eKoWA8NR8WMrc5QZihAuMjrWwFDdng9oBNWE/UBqDvcvrwNFMEii2/mAzDkQfkykniVyZMn09DQwP/93//xl7/8hS1btjBjxgzeeustXzetU5YtW9bBxTokJIRZs2Yxb948jh07Rp8+fexuv379ei6//HILcZaSksL48eP5+uuvqa+vJyIiwu72KpWKPn36sHXrVs+ckB/iT31xVyZk3njjDfLz89myZQvnnXceAFdccQXDhw9nwYIF/P3vf7dYPzMzk5ycHM81vr49BjooVlialQEQOQhC4kXMdksVoBex6AP/BHGj2mPQ+wpBc2SJsFYPmm0Zm27AFZFky/21Yj2c+lUI8VO/mjK/d3BBLbA8Tn1RexhXe6x3UIyofV5fJNoL9pN1dZbFWquGqq2i+6zaItpoT1x1NWbXERHpoAoR7YnMFJnqZT9twta1dyTCu9PV2/peJYwVz7M/iGJvuo73FKyfnc4mBLuLHpCszm8EumFAAFBYWOjDlkhOF1JTU1Gr1ZSWljJkyBDUajUA33//PSEhIUyZMoXly5fbF+q2OqGkcZD9NJR8L5LrhPeGlMtArxfl2E5tFNZzXQuga88OrwClXmTypQ1oEq7we16EkpXQXCZmgPveAFkPiIGcRNJN5OXlERMTw7XXXsuf/vQnbrnlFgYOHOj09lqtltraWqfWjYuLQ6n0XKe3Y8cOMjMziTJkx25n9OjRAOzcudOhQNdoNISGhnZYHhYWRktLC3v27GHs2LEWnzU0NNDU1ERtbS3Lly/n22+/5aabbvLA2fgn/tQXd2VCZtmyZZx33nlGcQ6QlZXFpZdeyieffNJBoAM0NTWhUCg8400S0VeI86YKCIqEoESRzK1yi4hHD4wARSD0vla89xVKSEYMWA+bDVgH3SVcT63pqkA1t1hX54lEdoYEqoogk8DRqi0H0AljrayCGaZ2dGp97ySLtadrqruLt4WVv4oFV9rlSIR3Z9yxLYts7Cj/EMXdOYl0uuCq54yn6AHJ6vxOCbS1tXHJJZewatUqxxZOicRJUlNTqa2tpaysjCFDhhjFxapVqwgJCWHy5MmsWLHCuedNoYTkieLHGmUA7P5bexmdWqANQnpBU5ntuuutp+DkGtP/Vdug7giMfs0/OmfJaUdFRQUVFRU0NjaydetWsrKyXN7Hhg0bmDjRThIoKwoLC0lPT3f5GPYoKysjJSWlw3LDstLSUofbDx48mF9//ZW2tjZj6bCWlhY2bxYJIUtKSjps88gjjxi9C5RKJddddx2vvfZal86jJ+APfbG7EzI6nY68vDzuuOOODp+NHj2aVatWUVdXR2RkpHH54sWLeeONN9Dr9QwZMoS//OUv3HLLLe43PvECiAyF0lXi/16TRJm1lmpRL7ylVsSUh/ay3M6WmDF4bzkSSoZSbuYu644mew0W68otInSr7jCc2iQSx4WlQVCSSGrXWCYmmmNGivYERAiRbqusWleEWHfXVHcFbwsrZ8SCL0S8KyLG0b3vTldvW/dKimLn8cZz5egYjjxnnGmbu+3vAcnq/E6gq1Qqjh07hlarlQJd4lFSUlKoqamhrKyMoUOHUlNTA8APP/xASEgIl156qTGxnFskjYPhfxFZbBuLhTAPiBIx59oqaG0UlhN9ew3bDrTBkbeFBWHQn0R9WynUJR4kL09kO543b55b4hxg5MiRTifp6tWrl83lOp3OceJGM4KDg1EoRNBrU1OTze+nweJpqORgjzlz5nD33Xcza9YsHn/8cXQ6Hc8//zxlZWV2t3/wwQeZPn06paWlfPLJJ7S1tTnd9p6MP/TF7k7IVFVVodFoOt128ODBAFxwwQXceOON9O/fn9LSUl5//XVuvfVWamtrufvuux22UaPRoNFojP8bPLU6TOaWrxOZ2lsb25PG6USZtJObTO7lYFvMWAslvU7s33xQevA12PeiWKdkufDqGvKg/YYbLNaNx8Q2LWpoLhHbNR0XcfFRg4WVX4GpPa31tl3j7bXdFc5Ul2BnxIIvLH6uiBhH976n3NfuFIT+ijeeK0fHcOQ540zb3G1/D8gP4HcCHYTF4rbbbmPu3LmkpaUZB2cgrKESSVdISUmhurqaEydOMHToUKqrqwH48ccfCQkJ4ZJLLmHlypWuuzkqlKK8TK+Jli/x8L5igFNXCNW/QfFX0FLRnh3X2rLeJjLAV++AqCxoaxExfgPuEPvtyR3BmYyfdOq7d+8G6OCinZ6eTkVFBUqlksjISG688UYWLFhAQEDHLiI2NpZJkyZ1qR0///yz01b4/fv3GycTQkNDLcSQgebmZuPnjrjrrrs4duwY8+fPZ8mSJQCce+65PP7447zwwgs248+zsrKMx58xYwZTpkzh6quvZvPmzRZ90+mIr/tidydkDMud3XbDhg0W69xxxx2cc845zJs3j5kzZzp8rl588UWeffbZjh9U/AKR7bHLhrJdmmphdVYfEIPC3r+D2t2WwseWmClYaimUylYJS7P5oPREe7bxgHDx+8RqxwLdYLEuXwMtlaBQidAsZZBwcW/TmOqjq8IhIEy0XRVhX7QlXmiZeM7cuu4MZ6JLsF4nxEljKWhO2q5jD76x+LkiYhyJcE/cV2/0od0pCP0VbzxXjo7hyHPGmba52/4eMGnklwL9vvvuA+Crr76yWK5QKGhra/NFkySnIb169aKqqooTJ04wfPhwKisrAVizZg2hoaFMnDiRb775xr14RJtuVxOBO0SioAMLxGCtrb7jtnqteGnUHwa9EpRKOPkrhMSArg0SL4JzXgaVE9noJf6Bn3TqeXl5pKSkkJGR0eGzVatWcdFFF5Gfn8/FF19MVlaWTethS0sLVVVVTh0vMTHR6EpuTlZWFosWLXJqH+ZW0JSUFJtu6AYLuDOi8YUXXuDRRx9l7969REdHM2LECObNmweIRGGdMX36dO68804OHTpktMCervi6L3Z3Qsaw3N3JnKCgIO69917uuusutm/f7jBb/Ny5c3n44YeN/6vVauF2f+Q9iAw3WYIqt4iM7s0VEJok3NtrbWRgt+47DAKu4bhwQ1eGgirU0u3ckLgNhRDWKNr/74SkcZB+CxR+CC0nQXNKHF+hFO7xLVWgDARtnYgRPfWrZQy6Iki0zZAUTq/raF23ds9PvBBObnBdaHlCoPnJRKkFFeuFF4WqfVIk4XzbYsFVi58nzrWriQg9iTf6UE8KQk8/a13dn73tvWFJ7uwY9p4zZ9rmbvt7wGSgXwp0nU7WjJZ4j169enHq1CnKy8sZPnw4p06dAmDt2rWEhoYyfvx4vvvuO8+Vocq8R/yu2Q3Np6D0e6DZ9LleD6oAaNOKciF6HTQdhab2hE3qvdBUChcv8/3gQuIcfhLvlJeXx8iRIx2uM2jQIMaNG8fevXttfr5x48Yux6D36tWLmTNnOrUPc0aNGsXatWtRq9UWccmGGPJRo0Y5tZ/Y2FgL0bV69Wp69+7tlNu/wfLqbKK8noyv+2J3J2Ti4uIIDg42rufKtgYMse2dTUYFBwfbDgEw1D02ZEY3LwXVa7JILtpgIzu7NRXrRWy4oXRnaJoIn1IA5T+KfkJbAwP+AOp94jNVMMSfY3KFN8d6oJ55jxDSdQXCvbS5DFBASLKorV53SFj8De+uwCiRuK6uQHiEFX0ojheSCuHpoo1BceJ3XXsGeHNhVb3TJOJdEVqeEGjO7sObQr6+SJRtTb6k/frG2D6WqxY/T1wvV7O1dyfe6EM9KQhtXX9ncknYo6v30972nrAkd/ZMdHYMe2LZmbb1AEu4u/ilQDfQ2NhIZWUler0pXrdv374+bJHkdCY5OZmTJ09SXl7OiBEjOHnyJADr1q3zrFBXBoisvSBebAf+Dflvidg+nVbUxlWohAhv04KivWQbAAqRcK70G/jmbPEyOnuBtKb7O34Q79TW1sa+ffuYPHmyw/UOHjzI+vXree6552x+7okYdHeZPn06L730Em+//bax7JZGo2HRokWMGTPGImFYY2MjxcXFJCQkkJCQYHef//vf/9i6dSsvvfSSRcb5iooKkpKSLNbVarW8//77hIaGMnToUI+emz/jq77Y3QkZpVLJiBEj2LZtW4fPNm/eTEZGhkWCOFsYysglJia613jreuYWZbuucH5wXV8kXM8jMoSFOyIDUIgY8frDQhyf3ATRw4V3Vek3ws290k6ZMnsDdXvtKV8H9YXCFb5NI87BMAg+/JaIYQ9uL1uoUIkypHWHheW9Vd1RWNXscU9oeUKgObsPb3o8Ods3uGrx6y5B6ytvMG/0oZ4UhLauP7h/7bp6P+1t7wlLcmfPhLvHcHaCyFOWcD/zsPFLgb57925mzJhhTGgEwqUuKCiIxsZGB1tKJF0nOTnZmO16xIgRVFRUACahPm7cOL7//vtO412dQqEUYj3ubNvx6nWF4qVXd0AIdnQIka6B2r1Qny9eKlGZzmfvlXgfP5jlzc/Pp7m52a4F/YorrkClUhEXF8fMmTNtZsAGz8Sgu8uYMWO44YYbmDt3LhUVFQwcOJAlS5ZQVFTEu+++a7Huli1bmDhxIs888wx//etfARH7/re//Y0pU6YQHx/Pr7/+yqJFi7j88st54IEHLLa/8847UavVXHzxxaSlpXHixAk++OADDhw4wIIFCxzWSz9d8HVf7OyETHFxMY2NjRYeENOnT+fJJ59k27ZtnHvuuYCYfFqzZo1xXwAnT57sIMLr6ur417/+RUJCAuecc457jR9wh+l7bv79D+8L6OzXCrfGIEyajosEo7X7ILwPRA4GXVP7gHuXcKk/9Su01ggX+KYSz8RsJo0TVu+ij8RE8KlNpjJWqkBhLddUigmD8N7Q1BeC4kVce2BUR2EVM9y9OtWeEGgd9tG3fQKiyPJeeFLcdtW66C7dJWh95Q3WlevkrPByRkg6KzZtXf+uXDuL/VmFljgjJJ15HmxdJ+j82nnzmejOCSI/CUU04Jej+Lvuuotp06axadMmUlJSKCsr4+mnn2bAgAG+bprkDCIpKYny8nIqKirIzs6mvLwcgPXr1xMWFsZFF13EqlWrui7UHcWrg3hpnvgRdj4J6sOiZiQtImlPWxOUfgulXwvre9n3wnoRd65fzABK2vGDeCdDgrjs7Gybn3/77bcOY239hffff5+nnnqKpUuXUl1dTXZ2Nl9//TUXX3xxp9umpaWhUqmYP38+dXV19O/fn+eff56HH364Q0K8m266iXfffZeFCxdSWVlJZGQk55xzDv/3f//HNddc012n51f4ui92dkJmxowZrFu3zsLCP2fOHP773/9y5ZVX8uijjxIYGMjLL79McnIyjzzyiHG9119/nS+//JKrr76avn37UlZWxnvvvUdxcTFLly4lKKgL3kkFSy2tPEnj4OCrlm7h4LikkCHxWukqIXgDIkQRkJAkYSUv/EBYqtu0iKSjCuGmHhDRcRBunpCsuUIM9NUHhEh1JFoCYyAs1XIAHpEu3O1BHCv99xCbLdz2dRoI7S2s/Z6qU+0JIWu9D73OsuY8iHvRVTFkTndZFzujpwn/zujKdfKF8LJ3/d29dub709YIrxl9i/Pn48zzYOs6QefXzpvPRHdOBvhJKKIBhd68R/MTYmJiqKysRKVSERsbS3V1NS0tLWRkZHD8+HFfN8+rqNVqoqOjqa2t7VALVuJdTp48yciRIzvENV544YX88MMPnrGoO8IwgNv+MNTsBPSi0wrpLV7UkZkivlEZDGEpYlA1/C8i+7tE4oD09HRyc3N7hEA/Hegp73V/6Iubm5t56qmnyM3NNU7IPPfcc1x22WXGdSZMmNBBoAMcP36chx56iFWrVqHT6ZgwYQKvvPIKAwcONK7zww8/MH/+fHbv3k1lZSXh4eGMHj2aJ554gksuucTl9hrv7XfXExWqE+/jQXeJgV75OtjxhCjDGRwPQbGQMQsG3C4+Mx8Im2+T/6aIBW8qh5RJ7a7yg+DED6DOF/HpeoRbuTIAghIh634YfJ+lmCxfB4cWQnMpNJ+EgFAI7ycyJxuOZ4vydZC/UFjl27RCjGfe0zHZG/iVi2inHFkCJV+ZBuRp08S9MJ8ssRZDjq6TK8foqeh1ULFOTBgBpEwxuUr7K/5yDzzlQt1d52Nrv9D5sbzpGm7vPdnN+/ZFn+2XFvSYmBhqa2uJi4sjLS2NHTt2kJCQQH29jYzXEomXSExMpLS0lJMnTzJq1ChjDd4NGzYQFhbG+eefz+rVqwkLC+ueBhhmkAfdDfv+LjK6K1UQOxqqNokBnF4rlrc2QnM5HH7HMhGRP3eiEonEr/CHvjgkJIT58+czf/58u+v89NNPNpf37t2bTz/91OH+J0+e3GleBrfQaSDmHEtLjC238M5KChmXjxDv9JrdYjIWJaAQ1mttK2LCViFKoiWOFdZsa8wTkpWsEMvMM8HbG+ga3dw/NMW8x2R37E/8wFPIJexZ/szP48gScc3ctar5Qf4RI54QUgoloDSV+WsoMl0vf8Vf7kFXvh/Wk0aKoM7Px9X7be86dXbtvPm9785wQYt99xXXz+A5E+I4uW534JcC/c477+Tnn3/m2muv5YEHHmDcuHGoVCruvPNOXzdNIiExMZGSkhJOnTrFqFGjjFmGN23aRHh4ePcL9ahBED/GNMs38E9Qc76IQa87AtXbRby6vg2qtos4RWWwKaNvT7FuSCQSnyL74i6gDBax4Vo1qPeLZKCNZaAIhOBYk1t4ZyWFDMtbakXcefxoUTdYrxMu7vpihFAPFqXVguOhrRHy3washFN4X7Gf48uhtQ4UASL5W0iq5cDb1sA+MAbC0hzXYvdnkWYLZwb7XRV3fpB/xIi1C7O7YwJ/cAV2RXz60z1wF4t7FwSJ54vvpKPzcdW139F18ua181VJRfOJhvJ1luEvvW5z71y6gF8K9Llz5xr//tOf/sSUKVOor69n2LBhPmyVRGJJQkICx48f59SpU5x99tkcO3YMMAn1MWPG8OOPPxIeHu7ZA9t6ifZqd8Xcci9UbhTiHCxn/g0DqtYm4WIZmgopk2VSOQlFRUW+boLED5F9cRcYcAfUrYfKzVCyUriVh6RCSCIkXCREtvmg0d7g2Li8QIj9gCjT8uF/EWU6G4+JBG0oQH2w3Sq+C0q/M7MGIXKUaKuFONeqRSm1thYx2DcfeNsa2FsLVXBepPlZdmQjzlj+uiru/MmrwFpYuzvJ4g8WaVfEpz/dA3fQ68R3ue6Q8KTR1gpx3plbu6sTKfauk7evnaN76+gzay+DU5tEBQx3JhDri0S+p6Bo4bWkX+2BE3MNvxyVf/jhh1x77bVGC2S/fv183CKJxD4JCQkUFxdTWVnJ2WefTXFxMSDK+URERDB69GjWrFnjOaHuqLNpaxaWmeAEUQ9Xh6k8jjJUfK5rFhadukPiBVZ3GM79t38MmCQSid8g++IukHQRKE7CqV+gpQq0DaCsguAYiMrq+P5WKC3FIJiErGFd64Fpr4mWOUbK14kyZzV5QoBXboG6g2JAr0cMWpsqhKBqbRBJ3AxJ4Azb1xeJxHG6Zkv394zbTG2LSAd0kF/knEjzs+zIHXA0gdDTxZ05zkyyOFOr2x8s0v5gxfcWFevFd7m5HMrKIXpw5x4vCqV/TKSY4+xEnaN76+gz8/dMY4moOpF8qfuhKVo1VG1tf3dud/u03cUvBfo777zDnXfeyWWXXcZNN93EVVdd1f0JuCSSLhIfH8/Ro0eprKzknHPO4ejRo4Ao9xQREcF5553H2rVrPW9RNyd2BJT/IF4sgdEQN0q4u6uCQFMGeoUQ5LoWUbO2rRGOfgh9roVel3ZfuyQSSY9D9sVdoOBDCNFAa4sYMKqCheW6oVQIZYN7sTmOhKy1Raf0O5ER3TxRW+KFpnXVB8RPTLZZvHl7HHtzhUgo11LZnm093fLYLbWi3KfRRf+A+NyQjR5E+1E6J9LqC0SZuKB48bu+wPdiylEiOPBs+/zFg8BaWNuaZHFmMsUfJi38TXx2J/VFooJDr0niux83unOPF0PVCMP2/uDa7+xEnaN76+gzc/GuOSW8g7oSmhI/WrwbYkZAzSnXtvcAfinQ16xZQ3l5OcuWLePVV1/lj3/8I1OnTuWmm27i2muv9XXzJBKHxMfHU1RURFVVFeecc47RfXjr1q1ERERwzjnn8NNPP3VPHeXMe8RvQ030gAgoXWmqlRuZBSig6ZhIKAfCunL4PSnQJRKJBbIvdp/b7/sbf7hyAJdffA5B6MU7V6sGhd5US9yZGuUGi6b6gLCOV1UIi07lZtj+EFRuFYnnDCXPzGMoG4rEfoJixDaGOPa489orfUSZSqEVLDUdu3qXsPKDsNypD4h9GfYPzok0gzAtWw3qQ2IbZZC4Dr7GwtrWPomdNBEq1kJhrljHU0LaXzwIrO+ZrUkW8+fAny3T/iY+u5OIdFCFtFdvyITUKZYTPvUFtu+ZP0ykmOOs14Oje+voM3PxHpIKCWPFhCSIZ12vE387M1mmUIowpIYicd2VIe6etdv4pUAHSE5O5p577uGee+6hsLCQP/3pT1x//fW0tbX5umkSiVPExcVRWFhIVVUV5557LoWFhQBs376dyMhIzj77bNatW+dZoa4MgKwHTP+XrzObbQwRL5zIgWJw11YPKMRLq/4InFgLdQWihFtbk5g1lPHpEskZjeyL3ePLX8r48pcy4Bfjsv5JSnIm1pNz2WEyU4osB6fmNco1J4XgtrBoNgsLuioMEi8QnlDFy8S7OigW9HrLAW+HjMQ4ruhhPrhVtfcV9UXCRd7dOHND29UHxeeRg8RxDXH0vsDQzsJcUTYuaaK43m0aIc4bjgJ60W7wjLjxV3dsWwKup1im/U18difWolSvs0xgljC2Z9wzZ58tR/fW0Wfm1ym8rzBKla8R3kv1haZ3nrOTZeb70ycCnzl1mp7Cb0febW1trFq1iv/9738sX76crKwsXn75ZV83SyJxmbi4OAoKCqiurua8887jyJEjAPz2229ERkZy1lln8fPPP3ePRd3ebGPkQKjdI5LJKVTC1XH3c9BYBI3HRXZfBZD/FgyaDZn3SqEukZyByL7YcxRW6Hjufyd57n8ngZntP3DllVeSc/XZXJOxjzBVkBCLCeebWTSbRciSvlW8h7W1oKkSFTrQQfMJUIVaDnhdFTD2+gplEJT/KOqf23PNB9tWYoMwjc0WbvVtTcICGJnh0nXzKIZ2Nh0XExYVa8VkSEJ7JRT0ogxdzW7PCWl3Ra8j13h3P+uMM8ky3VOw/i4fWWI54RMQJWp2+/s96+5nyzoLe9HHIoFmcLzpuOD8ZJn5/tTe9/rxyxH3HXfcwfLly0lPT+emm27i2WeflclpJD2e2NhYDh8+THV1NaNHj+bw4cMA7Nixg8jISEaNGsXPP/9MZGSk5w5qa5CWNA7Ofgl2/lm478SOEoOnphJoqRaDQH17Xd26/bDrL3BsOYSmQFgfSLsMksbLpHISyWmO7Ivdp3bZOYRm3sIPxZnkvvsvPvriR7vrrly5kpUrV1osS47bTc6NG8mZPomR+loUp7YK4RUYLsRyaKoQ6soA4YIZd5btAa+zYs1eX2Fd/9yWaz7YthIbhKm2ViS2ihsNKVMAs/rC3o7HNrQz+RJhXYscDP1zLC3+Nbs9a4l0V5i4m83aVZd6W8+INy3T/hKj729tsYXR06ZExFmHpIoJL1e9CTx5nu68Y1w5vl4nBHfZKvF/6pTOx6D1RSL0JygONJXC88jZuu5+gl8K9AEDBvDrr78ycOBAXzdFIvE4sbGx5OfnU11dzZgxY8jPzwdg586dREVFMXLkSNavX+9ZoW6OQinizc8KMHXiwbHCuqHXIUznOsPKIpHcqV/EQFAVDtVbYbjyzHAtk0jOYGRf3AXCUggMi2fqlVcx9YrL+XDT7SKhW1QWpeWVfLSmgqU/1bLrcK3Nzcurmljw5icsePMTi+UThwWSM6mF6y+MJjowQAwy486CgX903rLt7LvbkOHdvP65PYtTRHpHa7t50jprt/fujMd2NPg3WrN3iwR5/XPshAWk2xfSroobRxn6HeFONmvrklyaGrNye3ba6usYeV8c39499PW16IyK9SKHhSrIdolEV/bjqfN0Z1/moTtatZi8sy49ab7unudFuI0h/0bvPMs68LZCdgx5OQIiIP33vqvr7iZ+KdD//Oc/+7oJEkm3Exsby6FDh6ipqWHMmDEcOnQIgF27dhEVFcWIESPYsGFD9wl16xjFqp1Q9JFIZtR8EmhDvA0R8Y16vXB9b6nxnxg6iUTSbci+uAuYW2dOboCmE8IzqWYPqRFRPHJjXx65r70EUNo0dOm38vNXr5G7eCG53+Wj0ept7nbtXi1r9xYz69+mZZHhxeTc9gk5twVz/vnno1AoTB92Nf7ZWfdsR9Z28+M5256uWPgcCQZHItzZsIAuCRIXtnEnm3XFeqjaAk3lIkFWcBK01QlxY++4voyRt55QaKn1zvHt3Q9/zRdgoL5IVOExlA8LjHHP8u3J83RnX4ZtAqPh1FYxrrRORGm+rrYGAtrHwo3HxVg1LNX+M23re264Tu5Y8X2AXwp0ieRMIiYmhoMHD1JTU8PYsWM5ePAgALt37yYqKorhw4ezYcMGoqI8nFjHejCSNB7izhYZQSu3idI8LdVihlOP6BS0NdCkEJl9Wyqhdr/IFi+TyUkkEomJAXdYDhLNyyRFZgFtFmXMlKc2MOF39zNhqIJ3Zr4ErWrQt1IZOoFPd8aS+8kKNuy1HQdZ16Bh4ZtvsvDNNy2Wjx49mpxrzuPmAfkkVv0GwXEQ3tu183DWqmzL2q4+LES7oapI5j3OC/6uWPgcCQZPJBfriiBxZRt3slkbnrWU9mctJEW4+jo6ri8Tw1lPKEQO9s7x7d0Pf0+S56n2efI83dmXuSeLAjE5o1Xbfz4DY8TzoUc838ZnepdtDxFnvud+7i0hR9QSiZ8QExPDgQMHqK2t5fzzz2f//v0A7Nmzh+joaIYNG8bGjRs9L9QNmL/QMm6HfjeKBEVVW4SLUO0+aG0SCYyKPgCFQmT7PbYM8t8WNdcHzILkCX41CymRSCReJ+kiS7dq8zJJBnf00u86ljELaB98tmhB30q85lfuuuIW7rpkqkh4VJePXtfG1oNqcjcoyf1FS3W9zmYTtmzZwpYtW7jfuOQoKtVkcqZdQM7N1zLxglGomkvsW49cTURmPVCv2Qkly0GnhRPt8aOD7xO/OxP8XbHweVpkWZ9reN8uCBIXtnEnm3VEuqjYYnjWEsbCqV8dH9eXieGsJxTiR3vn+Pbuh78nyfNU+5zZj7MWZnfalHihmLzT1gF6YUG3TnRpvv/hfzHFoIcmm55prVq8Qx15iNjDz70lpECXSPyM6Oho9u3bR21tLRdccAH79u0DYO/evURHRzNkyBA2bdpEdHR09zXC0PkDtDWIl1hTOShrIXq4iAEC8ULV1oif+sOg3g9nv+JXLzmJRCLxGXodoIPwdPF/yhRTjWJbZcwiM4SVSK8TViPaxMTooLtEaTCFEkVgLKMVvzD67H785+FwyLgDIjKo2/UqX/xURO7q4/ywtdxmc9ra9Cz5fANLPt9gsXx4Vn9yZt7JLbfcQp8+fcTCThORLRTJRdu0IsYz8x7xmWGgXrhUiPPITOHCXLPHeQt2V0S2p0WW9XUYNNv1rNneEn7Wx0m8UIQaODquL0uWWU8opF7unQl+e/fD38u3eap9hv0Y8kIULO0owh19/63Fu3m+CejcXfzkBiGylYEQGAtRQ0wx6PbaanhnhveF2JFQXywmN9UHnBfZ5u3W1oi8GX7qLeG3Ar22tpbvvvuO0tJSUlNTufzyy7tXkEgkfkZ0dDR79+6ltraWCy+8kL179wKwf/9+YmJivCPUzTux0DQ4/pUYaKlCRDxl8wnTuvpWUcPXz2YhJRKJ+8i+uItUrBceRoZBrsH9EmyL0KRxkHYlHP0QaIOAcIgdYXqn5r8pRHFAhMjoHtobIjKgroBIRQUzLuvNjIlhEHEVaKugtZHd23/igw2Qu76Fkirbse17DhTy5JNP8uSTT1osv2FCGjm/G8flw5oIsk5S1lQCmmpoqRKx59Yx59U74cQPos9QBgo3d2fpiqB1RsS4En/awdJWDANud62fs9Wm7oiBtXUcfxacvrJY+7sQ9xaORLgjC7P1dtU7heB2xl3cOu+AAojKcs0dfdBd4jtYvk54Hzkrss33owgSSfbMk835EX4p0Ddu3MjVV19NVlYWffv2pbi4mDlz5rBixQouuOACXzdPIvEq0dHR7NmzB7VazUUXXcTu3bsBk1AfPHgwv/76KzExMZ4/uHkn1v9WUT+9Zo+Y7azaCseXt9fi1Ysflf/NQkokEveQfbEHcJRt29qybhBo57xietcaYrfBNICsKxAx6oFRQpwbErQ1HIW6w+1ieCS0BYNSx4hhQ/nHuan848/9RUlNvZam+ipW/lpJ7tpKvvqlzG7zP/2phE9/+rj9v6+AmfTv35+ca8eRM1RNZlyVqDOsChbnZrDI1RcJb6ush6Bmr+V5OEN3CyhX4k+7Ky7Zz2NgvYI/CmU/Tx7mEQznWJgLTcdF2cGa3ZYi3NFzb/1eq9njvLt4xXrhlt5cDmXlogRjZ98pe+9RRxM8tu6j9X4CY4TQ90P8UqA/8MADLFy4kBtvvNG47NNPP+X+++9n27ZtPmyZROI7oqKiyMvL6yDUDx48SGxsLJmZmWzevLl7hDqIJHBZD5j+L18nMhNX/WbKxjnoXqjaIV765snjzoQOTyI5zZB9sQdwlG3bnmXd+l1rwJGYCYyCsL6AXojwgDDoMxsaii0Hru3v4dCIvkw/G6bfbvZ5xXqO/DSfD74vIPeH4+Qfr7N5SoWFhTz3SiHPGZcIgX/lJC05049wzYD9hAW1mSxdWQ+6ceG6GVfiT7vLyuvnMbBnLN6cOLHlKn5yQ/ePlQzn2FQi3hHla9q9cdJN6zh67q3fazHDO891YMA6aWacE3kHrI8X3leMQQ1ty7jNufKB/p4E0Ay/FOiHDx/m+uuvt1h23XXXMXv2bK+2Q6PR8PTTT7N06VKqq6vJzs7m+eefZ/LkyZ1uW1JSwkMPPcSqVavQ6XRMnDiRV155hYyMDC+0XHI6YxDqdXV1jBs3jl27dgFw6NAhYmNjGTRoEFu2bOk+oW4gaRxkPw2l7Yk7UqaIjJoHXrFMCpT1gLQUSCQ9EH/pi3s0jrJt27Osu5KYzegunyFqI9ceFC6jldsgdaqldUhvnkxOCclWg//6IgakBPH0gzfy9Mw8CIqHlkq04cP44ccfyf1Fz0crfrV7qitX/8rK1ZafJyd8Q87tf+K2225j5MiRrl07W3hqsteVgXp3WXl7kFjwO7pz0t+bEyddcRXvCnUFQpwHxkJgDUQMFiLX2bKD7uQ6MGCdNNOZvAPWx0PX+ZjS1n3MuM1yP84mx/MBfinQR4wYwZtvvsk995jcod566y2GDRvm1XbMnDmTZcuW8eCDDzJo0CAWL17M1KlTWbt2LRdddJHd7err65k4cSK1tbXMmzePwMBAXnnlFcaPH8/OnTuJj4/34llITlciIyPZuXMndXV1XHzxxezcuROA/Px8YmNjGTBgAFu3biU2NrZ7GqBQQvJE8WOg6MOOSYFAWgokkh6Iv/TFPRp7yZgi+ooEReU/iiRrLVVwYg0ceVd4IQXHQVh7STR7cZ/mnyWNE5aolhr79aQ7myi1YxULbNjL1Av6MfX2u/jQbP2SkhI++ugjcnNzjRPF1pSfUrNgwQIWLFhgsXzixInk5ORw/fXXu5bTwFOTvf6Qrdsf2uBr3BXa3Tnp782Jk664ineFVrUIidG1h8SY57lwhq7kOujsubf3TJjv/8gS+9fJsL36gHgPVu8SEwIR6e6XXws9q/Pz8jB+KdDffPNNrr76ahYsWECfPn0oLi5GoVCwfPlyr7Vhy5YtfPzxx8yfP59HH30UgBkzZjB8+HAef/xxNm7caHfbN954g/z8fLZs2cJ5550HwBVXXMHw4cNZsGABf//7371yDpIzg8jISHbs2EFdXR3jx49nx44dABw5coS4uLjuF+rmxAwXlnPrpEAR6SIhR/kaUaZNWwNtLSILsHmcpaylLpH4Df7QF582WA/6Bs6GhPPFpKYqGI6vgKKlUF8Ibc3Q1iRKWVonZtNphAAvXyNCicA0gE29XCRM0qrFMbQ1YiBrL/7SevDvolUsLS2NRx991DhGAtC1tfLzV6+R+/EX5C7fhEajtXk51q5dy9q1a5k1a5ZxWWRkJDk5OeTk5HD++eejUCg6buipyd7usIq7KjZ9FX/tTyFn7grt7pz092QJss7oiqt4VwiMEm7i+vaQmKZScU7eeA46e+6deSYcTaIYt282JaCzlyHeFraeLSnQBUOHDuXAgQNs3rzZmDl2zJgxBAYGeq0Ny5YtQ6VSWbjyhYSEMGvWLObNm8exY8dMpUhsbHveeecZxTlAVlYWl156KZ988okU6JJuITIykt9++436+nomTJjA9u3bAZNQ79+/P9u2bSMuLq77GmFIAmQruVH1Tij6SAj341+JBHPVv4GuTdRSr9wMA++U8ekSiZ/gD33xaYP1oK+hWCQoCk2FoGgo/0kI84BI0LdBSzWEJFsOPA2D0vI1YnsUYiAKHRMmaWvg1CbQtTgff+mBDOBKVQATrnuQCdc9yDtmy0+dOsWnn37K0qVL2bRpk81t6+rqWLhwIQsXLrRYPmbMGHJycrjppptI9IVbuLNirKeEcvlTO50R2rauf3c+B+5aWT3hyeGKq3hXiMgQHjzmITEV622fg7cndBw9E4a21BVAwljLRJkdth8ptu8sQ7w1fhJ64pcCHeD48eNUVVXR2tpKcXExxcXFANxyyy1eOf6OHTvIzMwkKirKYvno0aMB2Llzp02BrtPpyMvL44477ujw2ejRo1m1ahV1dXVERkZ2T8MlZzwRERFs27bNGGphSOZUWFhIfHw86enpbN++vXuEuqPkRoExEJYqXqgnVoO2DlrrhWDXtoiyG4YYSX8c1EgkZyC+7otPG+wN+rRqURGjTSNKVerbhEU9KEHUFjcfeBr+LswFFJA0EWrNMi+bC4sjS4Q4dzX+sptISEjg7rvv5u677zYu0+v1bN26ldzcXHJzc6murra57ebNm9m8eTP33XefcZlKpSTn+snk/FHDxEvaUKlU3dd4Z8WYu2LT2xPS/hRy5owYsnX9fR0e0J2eHM5OinXlWXImJMaANyZ0rOuTK+zUJ7dVbs0V67oz2Hq26urdPDH38UuB/o9//INnn32W7OxswsLCjMsVCoXXBgVlZWWkpKR0WG5YVlpaanO7qqoqNBpNp9sOHjzY5vYajQaNRmP8X61Wu9x2iQSEUN+6dSsNDQ1MnDiRrVu3AlBUVER8fDz9+vXjt99+616LukWD0ttfmrtFVbageGitEy9aAF0r1O7r6LYpkUh8gj/0xacNtgZ9eh2E9oL6IxA7DNoaxERmzAiRdNMw8DTPVmzYT/6bQpzbG4Aa37e7xCSA+oAY3CaN85sJUIVCwejRoxk9ejT/+c9/jMvVajVffPEFS5cu5ccff7S5bVubjiWffM+ST763WD5ixAhycnK45ZZb6N27t/uNMxcM6gPCXdZgkbMnZNwVm96+H35iIQScE9q2xLCv4/X94Rp25VmyDolRhXTMjG7IKO+oFJuBrk48WZyLjfrkFmXhSkyTk3UFYnvz43Z18sZW3hB9omv78AB+KdBffvlltm3b5tNENE1NTQQHB3dYHhISYvzc3naAW9sCvPjiizz77LMut1cisUd4eDhbtmyhoaGBSy65hC1btgBw9OhR4uPj6dOnDzt27Oj+5IWGl2Tpd1C1BVqbQVMuYtGVAYBevHgrN4tOIP33MPg+KdIlEh/hD31xj8d64GpeDqhiPTSWCWFetQUi+sPI5ywTb5avs2091OugrL1SBrqO8aPm79vKLUJkNhSJZX4i0O0RFRXF7bffzu23W9Yn3r17Nx988AG5ubmUlJTY3Hb37t088cQTPPHEExbLb7hhOjk5t3H55ZcTFBTUeSPMBUNLrXADtifGnHG7NeAP1mtfW5/Nccad3JYY7q6JDmeFpj9cw64+S51lRjdklHdUis1AV++HrfrkGbeZBLIhZMfQloq1EJomkt3ZOq4ncjuYn1OT98ehfinQIyIifF6OLDQ01MKSbaC5udn4ub3tALe2BZg7dy4PP/yw8X+1Wm031l0icYXw8HA2b95MQ0MDl156KZs3bwbg2LFjJCQkdL9Qt56VrC8QNdRPbgZ9M2jrxSBIr4PGo5D/lqizbkjuIYW6ROJV/KEv7vE4GrjWF4FeK+LONVVi0lKPc9ZbhVIIbp0G8ovEdgqlpfULQHMK9C0Qm23f+tVDGDF8GP946Ar+8achRlHU1Kxh5cqV5Obm8tVXX9nd9tNPl/Hpp8sslmVkZHDbbbdx6623MmjQIMsNzAVD9S4RxxqVZVuMOeN2a8AfLK++Sk7nChZCua9IqthQbLr+BUvF9yIwWjzXpd95ZpzgrND0h2vY1WfJ/Bz0Otj5Z5Hg1+DybsgonzRRCOLIwdA/p3smnszPRREkBPnOP4uJy8AoaCwVZSSTLxETBYa21Bd034SX+Tk1bPfMPl3ALwX6448/zsyZM5k7dy5JSUkWn6WmpnqlDSkpKTZnaMvKyhy2Iy4ujuDgYON6rmwLwvJuy/oukXiK8PBwfv31VxobG5k0aZIxYY9BqKelpbFz504SEhK6pwHmnULG7ZZxR0UfQuMx4W6lOSkywtcXiplcc3cnKdYlkm7HH/riHo+jgWtEX9BUihJrwbEQEt9uHXLCemu937JVJsFubv1qPC4G3U3lEN5HHNNXeNQNVoyTQpPHM336dKZPn26x6pE18/kgdxG5P5aTX1xlc3cFBQU8++yzHbwWr7zySnKuPptrBqgIq8kT/VHq5fYH/q6IE3+wvPYEbE16DDDzqIhIF67Zp7a2JznbYj/JmSv4ysPB+rthcC+3978nXLnNqVgvxHBTOTSXCwGcPEG8Q2p3C2t1/xzPTTzZOl/DuRis5XX5oj0pk0BVKbwta3YLK755W7prwsv6nLyMXwr0OXPmAPDpp59aLFcoFLS1tXmlDaNGjWLt2rWo1WqLRHEGq+OoUaNsbqdUKhkxYoQxMZc5mzdvJiMjQyaIk/gFYWFhbNy4kcbGRiZPnmwsHVhSUkJiYiKpqans2rWr+4Q6dJzBBSHSW6pBEQjBiSLTe20eRA0GpQgT8euZf4nkNMEf+uIej6OBqx4h/lC2exAFis+dsd7aGjzaqqcckdFuhW9pt8577cw74mk3WAfiacCw0Tx9x288PdMk8LRxF/DDDz+Qm5vLRx99ZPcwK1euZOXKlRbLevX6idtuu42cnByys7MtN3BFnPiD5bUnYC/u3CDqwvtC3HnOJTlzBU94OLgzEWX93TBMsNn7H5x35XamPfVFwlKdMkmI4PjRogqPvYzyjgS2M5MF9t4FFgkuR4jJgprdEDGoPS49SkzMGGLPzY8b3hfQWZaWdNeYo28PGwpPF/+nXgh85t6+3MQvBbpOp/N1E5g+fTovvfQSb7/9trHGp0ajYdGiRYwZM8bodl5cXExjYyNZWVkW2z755JNs27aNc889F4CDBw+yZs0ai3qhEok/EBYWxoYNG2hsbGTKlCls2LABEMkMExMTSUlJYdeuXSQmdnOSDIVSxJzHjhLuamXfQ+0e0DaAKgACzhPJlPb+E/LfhvDe7e7v46VFXSJxkW+//ZYrrrjC4Tr+0Bf3eAwD1boCES9ZX2Ba3lAM4f3EQPTUr6AKax8U9jWJBHvWW5vxo0Ud6ynX7hH/J08QA9uGYq+ctk3sCWxbAgK6VlrLhnUxUKFk6tSpTJ06lQ9fudMoEEoq2/hoZyq5X21i165dNnd34sQJ5s+fz/z58y2WT7zwLHJm3s3143OIVp6SVnFP4UzcecJYiMw0JTnzhPXUE1ZpdyairL8bhgk2e/+7MhnhdF3xEHEtIzPFO0cZYH8CwJHAdgaHnkXpYp8ttcKSHz/aFOro6Li28nW4O2FTsR4Ov23aV6T3v9NeF+jODAr8gTFjxnDDDTcwd+5cKioqGDhwIEuWLKGoqIh3333XuN6MGTNYt24der1pWnrOnDn897//5corr+TRRx8lMDCQl19+meTkZB555BFfnI5E0ilhYWH88ssvNDU1cdlll7F+/XpAhGYkJSWRnJzM7t27u1eom8epg3Bxj04Ug8xTm8RseVtje23fUDj2uXiBp0wWs71Kv5xzlEj8jquvvprnn3+eJ5980tdNOb0xvNOg4+AxIl0Ii4ZCEU/bWisGhYNmC5dec+uUdSZ3a0usXgdYxaAbJjurtoC2VgzA7YkYb5T/siewbQ26oWultTqzVJsJhDTyeHTGWB591lR/XafT8fPPPxtLwNnKKwSwdsMO1m6YzSyzZVFRUeTk5JCTk8PYsWNRKBT22ymxja17XbDUUtQFRInvSml7skSD1bMrz60nPBzccZO3/m4YJtjs/W/re2z9HU44H/IXQvHnoK2G3teKsZSt9tj7btl7LzhTq9zRu8TRZJutthi2d3RcT4YnWHsxla12bz9dwOuj2Z40KHj//fd56qmnWLp0KdXV1WRnZ/P1119z8cUXO9wuMjKSn376iYceeojnn38enU7HhAkTeOWVV7rfCimRdJHQ0FB+/vnnDkK9vLycpKQkkpKS2L17d4eYVI9iXgKkrVmIcFWocPPSqkUH0NYgPtecFDFSYLsGu0Qi6cCMGTOYN28eO3bsYNGiRRZl1Kyprq7mzTffZO7cuV5s4WmGrcGjoS55wVIx+RgUJ7IU1xXBwD9YllnLXyg+a9ParnBhr56yuVuwPVGr18HBV6HoI1AFinhTw/aexJ4IsHVtwPZg21Pu4RHpopxT+Y/immprLMSdUqlkwoQJTJgwgXfeece42alTp/jk9YfJ/XQlm/bajm1Xq9W88cYbvPHGGxbLx4wZQ05ODjfddJMcC3aGrec5vK+wqpasMOWkwSxZYkOR5YSYr3DHTd76u2GYYLP3v63vsfVEV/EyKFkOrfViHHX8S4geZrs99iYm7FmsHZ2jMxZ7R5NtjiZJHB3XkwkYzfelVUPjGZAkricNCkJCQmy6NJnz008/2Vzeu3fvDnF7EklPwlyoX3HFFaxbtw6AiooKkpOTSUxMZM+ePd0n1G25cG6ZIwS5QgH6NtArRYxQc4VwAZNIJE7x3nvvcdZZZ/HII49w8OBBvvzyS9LT0y3WOXjwIP/6179YunQpzc3NUqB3BVuDR8NAtHonlP8AlVtBGShc4c2pLxLiXFMtksrlv+lchQtnreIV600JOoPiTMf0tNCxN/C2N7DuzmznSePEdS/6EFTBcHKTEECdnHNCQgJz7prFnEu1RgGiH3gnW4vDyF26lNzcJVTX1NncdvPmzWzevJn77rvPuCwgIMBobZ8wYQIqlarr5+bMfXfVY8IbHhadoWj/Mf/bH8rWWeOOm7x1Ph5b17qzySnra1GdBzotRA0H9R4xqZEw1hS/7cw9tHd9HZ2jM/fEmfO1haPjuuoF4AjzUpY1u0FX6Xj9bsDrAl0OCiSSnkVoaCg//fQTzc3NXHHFFcZJqZMnT5KcnEx8fDx79+4lOTnZswe25cI5cLaIP2+rE27uOq1IIqIMEi5g/jCIkEh6CPfddx/Z2dnceOONnHvuuXz88cdMmjSJ1atX88orr/D9998TFBRETk4ODz30kK+b27NxNLAMiBTlohQBoG8V/5sTkS6svC1VEBAKLadE+E9ndc0dWbKM78oC4b7ZUiWEakslBER4t/xXZ4P97ojrViiFYAlLc13cWbVXkTSO0b2UjO7XxH9uOmW83upet/H5LxXk5uby448/2txVa2srixcvZvHixRbLR4wYQU5ODrfccgu9e/d27dycsWBWrIdDC6G5FNo0kH5LR68MV/fZ3dQXi+9J4rj2+1Xs+7J17oppR5Svgz3PC6+OwBgY/hfoNbHz7ayvRWw2NBZBfT6owiE4wTQhFdJehcNV13vD9XXXym0LV54tR8d11QvAEYbvQeWW9koYtr1luhOfBGzKQYFE0vMICQlh7dq1NDc3M3XqVNauXQtAZWUlvXr16j6hbkChFC7scWe3Z+zs3R4b9GO7e9tx2Ha/sEKpgrrPTVMiOY0YP34827dv53e/+x1XXHEFGRkZHD58mMTERJ5++mnmzJnTvZUczhQcDSxb60SMuE7bbkE3s8DqdcJbKCAC9Hpo1Yg6wTEjhOulI1HpyJJlGLQ2HQf1IdC1Cc+k4EThQm+wIDkq/eTuBKgtUWPr2pgLYcP/npxwdVfc2buXVtc7SnGSmTNnMnPmTIvVdu/ezQcffEBubq7Ncr6GdZ544gmeeOIJAK655hqys7ONPwMHDrRvbXfGgllfJMR5S7tXRtFHjj0I/MFSbet+2XINt5WvobvojomLslVQd1BM1DWXi/+dEejW1yLhfIgcKLwLVSHtYvMYBMeb1uusre54A7i6TXc/Wx32X9CxfbaeEeN9iAC8nzDVZxmV5KBAIumZhISEsGbNGpqbm7nqqquMlgGDUI+NjWXfvn306tXL8we3HhgpAqBkpXiJ1uwSlgAQM8R1Re3JTApEqSFpTZdIOlBVVcX7779PSUkJbW1t5Ofnk5mZydatW2VJUE/gjFePKsLSgq6KMH1WsR72vgDqg0ArKMNEvfTOkr6BYwFqGLQGxYv2RA+CtiboNcVkSbXOimyv1JOrdCZqDNfMkOAuMKprJTbt3QNP1yR3UvCPGDGCf/zjH/zjxb8b29WkSmHF5ipyP/iQFStWdNhm+fLlLF++3Ph/aGgow4YNY+TIkUbRPmLECOLj451rR0S66C81lSKsQRXoWBj52lIN9pOHmY8JPJnJ2xm6S1zqrX47g62JI0NeniNLoGanuNeaSpFkV1vTeUky6+8JdD6WcnWb7ni2zL/z2hrhZWnYv1bt/DOiB1CA4gyqgy4HBRJJzyYkJITVq1d3EOrV1dWkpKQQExPD/v37u0eoGzC8fAMihQVIXw/ooKUeFCoo/VbMGIemicGlIbGMFOuSMxzzUDJDicXFixezb98+HnvsMSZPnswXX3xBSkqKr5vas7EnRg0DyLoCKF0pYswBAsJFCI/BCqg+IKycgZFApCjF1mtKx7rotnAkQA2D4qbjYvCqUJrKK9nLmNyVUk/m1BeJrPWB0SK+s/Q7y3ey4ZrVHYKmclGbuTNvAUfYuweerknuquA3a1eoMpgbJ9zFjTctt1jl8OHD/PLLL9TV1ZGXl0deXh67d++mqamJbdu2sW3bNov109LSyM4eQfaAWLIzksg+awyDY8cSaKut6bdYJgZ0sWyd13E5DnuXeLZ8UZmgK6ROERNTLTUQlir+7yoR6SavwoAIiD9PVMbRtXQuUp2dUDO/zsZtmsV3N260/ZwZ3fFsmbdZEdReQz1G7L+uwLn3mPl9iEoCyrreLhfwukCXgwKJ5PTCINQ1Gg1XX301P/zwAwA1NTWkpKQQHR3N/v37u+c7HZEuXrrN5cLypAgEvVa8kJWB0NYi6qg3boFTWyA8Tbq+SyTA0KFDCQ4O5tZbb+Whhx5i6NChAEyZMoXhw4dz8803c+655/LZZ58xduxYH7e2B1NfIERwULz4XV8g3j1GF/MSIXz1bUIo6/TiXVWxCTRl0HxSfNbaKJJihaaa6qJ3Zp13JGiMg+ICMYAOiILIDNsi3pVST9B5uyLSxTFPbRXnVLlFrN+hXNII8W6v2S0mD9wVP4b9RY+AirVQmGu6Bq4KNmfc/j1RC7qdgQMHMnDgQItlbW1tHDlyxCjYDT+FhYWUlJRQUlLCt8a13yIo6C6GDBliYW3Pzs4mefB9nWcGN+DpyYzuwjr7duUW4WHXXdb07hCXSeNhuNLD+7RqZ32ByIbvzGRbZ8+pLQFv2CYwWnzPW2rs58zojmfLus2BMTDgdtPnnU2q6Ntd2uNGi98RFwI/e659TuB1gS4HBRLJ6UlwcDCrVq1Co9FwzTXXsGqVqE1aW1tLamoqkZGRHDhwgNTUVM8dNGmcSKBStkrEZ7bVi5h07SmRVEmvhfojonY6SpEduaEEWurEzHrqFNEZSmu65AzjmWee4e6777ZZ7mnSpEls2bKFadOmMWHCBF5//XVmzZplYy+STtGqoaEY6o6ISUNte4Z2o4t5nIj9VgSBth4C2oS3jzIA0LeXX4sRg9ewvpAyxTTY7kr8qzOD4s5KP9kTDp21K2mcGPi21AgR3lJrOeg3iKyWWlFiM97M+uYOhv1VrIWGo4BetM+6Xc5gfW5dcft30/qqUqnIzMwkMzOT6dOnG5er1Wr27NnTQbjX1dWxa9cudu3aZbGfpKQkM8EO2dlRDBkyhJCQEOfa74+YP7PqA+KnO+PmXRGXziax7Q7Bamufzj57nT2ntmK8tWpoLIWWPWISzpmcGQY8kezXmTrrdQViTGiISe/gxfO26Xsd6X2PEa8LdDkokEhOb4KDg/n+++/RaDRMmzaN77//HoC6ujrS0tI8K9QVSpE8xZBARa8TrqFlq0SJkaZj0NoEDYVAexZkbY2IwaraAse/gkF3Os5eK5Gchjz99NMOP8/IyODXX38lJyeH2bNns2PHDl577TUvte40IiAKwvsJId5SJf4HMxfzEpFhGZ3wAoofLeoWN5YK99DgeAiOFW7t5hYgcD/+tStCwRnh0Fm7FEohuBuKxKBdFWJ7AO0p12TD/gpzAT0kXyKs8u4INk+6/XvY+hoVFcUFF1zABRdcYFym1+s5evQou9Z9QN76j8k7XEVeQR35x+upqKhg9erVrF692ri+SqVi8ODBRuFusLqnpaWhUChsHda/MH9my9eJZ8yXcfPm+EMmfAOuPHudrWsthrVqUbZQFSTyaoQkick26++5Pdxxqe/Mbd5W8kCwf5wO77DiztvtYbwu0OWgQCI5MwgODua7776jpaWFa6+9lm+/FU53BqEeHh7OwYMHSUtL89xBzQW7IVlM1XZEko/A9ozICkAprOoNRXD4LVGOJNmJLKkSyRlEeHg4X3zxBc888wwvvPCCT/pijUbD008/zdKlS6muriY7O5vnn3+eyZMnd7ptSUkJDz30EKtWrUKn0zFx4kReeeUVMjIyOqz77rvv8tJLL1FYWEifPn24//77LepVu01khgir0WnE78j2Y1tbcZpKoXIbqEKFxTz2rPaKFA7ig+1ZiTobwDorFJwV8tbrRfTt3DrnaNDvaQuiYX8gzrtmt/uCzV23f0ft6kaRplAoSE9PJ72tN9P6DzIKjsa4y9nbdJaFpX3Xrl1UV1ezb98+9u3bx8cff2zcT2xsrIV7fHZ2NsOGDSM8PLzb2t5l/CFu3hx/yIRvwJVnr7N1ra9zXQHoW8REWPUukS/DmZwZBuxdJ/PkkZXtySNVdpJHOpM80NH96PBu7dt5uz2M1wX6Sy+9xFVXXUVWVpbddfxhUCCRSDxDUFAQ33zzDS0tLfzud7/jm2++AaChoYHevXsTFhbGoUOHPCvUwdQRlHwLxz8TVnO9TriTtjaDXgMohOvpjieh3+9FvJQhDlNa1CWnMc70xQaeffZZzjrrLC+0qiMzZ85k2bJlPPjggwwaNIjFixcbyzxedNFFdrerr69n4sSJ1NbWMm/ePAIDA3nllVcYP348O3fuFNmu23nrrbe46667uP7663n44YdZv349999/P42NjcYyV26TeKFwg67ZI8Rc4oViufUA0pnYZmvsuWrqdXD4bVOCJOsEmZ0JBVcGwtBR8A+cDYPuctx2d8VpV9xfPSHY3HX79zSuXgcrwRGWOJjzks/jvPPOM+1Sr6e0tNQo1g3C/cCBA1RXV7Nu3TrWrVtnXF+hUDBw4EAL0T5y5Ej69euHUukH/ae/xc37QyZ8T7iPW+PIfV4VYsqZ4Sz2rpN58sjmcuh1qXjnmeeUMKxnfX623nnOuMEb3PXrily+LF1FodfrXUni32WSkpKorKykX79+XHnllVx55ZVMnDiR4GDbKey//PJLrr32Wm820a9Qq9VER0dTW1tLVFSUr5sjkXSZlpYWrrvuOlauXGmxPDQ0lEOHDtG7d2/PHtDc7R0dhCRD/jtQfxBRQ0MPBEBAmHBFjRoKmXf7T6cuOe3wh/e6q32xL9iyZQtjxoxh/vz5PProowA0NzczfPhwkpKS2Lhxo91t//nPf/LEE0+wZcsWowg5cOAAw4cP5/HHH+fvf/87AE1NTfTp04exY8fy9ddfG7fPycnhyy+/5NixY8TGxjrd5g731tpyM+iuju8WW4NmcL4GufUxwtNFYqyYbChfI5JlhqWajg+WGY4TxooBL4gYdwUi/tI4EG7Pop42raObPYhSTSVfmQa/9tbzBM5czzMBV69DF4SZRqNh//79HWLby8vLba4fGRnJiBEjyB6YQPaAGLLPOo8RF+cQFR3j8mmeVjgzCdfdhgFvfH+6ep66Vjj0umlSM/Mesf7OP8OJVRCcKD4LCBPnEd5PeBlZv9vMz8/WeRuyzTtqV/t26rp6oqd+7dU+2+sW9PLycjZv3sy3337LypUreeONNwgNDWXixIlcddVVXHHFFfTta3IlOJPFuURyOhIUFMTXX39NS0sL06dPN9Z8NQyUg4ODOXz4sOeEunWcOkBTBeS/Lur+ohM/bY2gqYLmUt+6nkkkXsDVvtgXLFu2DJVKxezZs43LQkJCmDVrFvPmzePYsWP06dPH7rbnnWdpIczKyuLSSy/lk08+MQr0tWvXUllZyZw5cyy2v+eee/jggw9YuXIlOTk57p+EM26ttlzOwflkZNbHAJNlqE0jYkHNM5j3v0VYuRuKRU6Okq+g9pApo3r8aFMW9dITcHIjBMWKdfW6joNYb1oG/clN2Je4eh26YE0ODg5m1KhRjBo1ymJ5+Z4v2L36P+TlnyKvoJ5dxwPYd6iYuro6Nm7ciGn+7H3gPtLT0zu4yQ8cOBCVSuVym/wGVyY+rOuDV++0KnWmA5TdK9i98f3pam36kxtM77pTvwoPFRDvpuZyUXoxNAlCUoXnUNJEqN1tqrlu6/zMr3t4X0AHBUvFdc64zf51NlaAGA58bXudbsLrAl2hUDB27FjGjh3Ls88+S3l5OStXruTbb7/liSeeYM6cOQwdOtQ4o3/hhRf6h6uMRCLxKEFBQSxfvhytVsv1119vFOoajcYo1PPz8+0OwLtE6mVQvgrU+SIRk17fXuKoSQxofZ1MRiLpZlzpi6+66iouuOACr/fFO3bsIDMzs4PFYvRoUfpm586dNt8POp2OvLw87rjjjg6fjR49mlWrVlFXV0dkZCQ7duwA4Nxzz7VY75xzzkGpVLJjx46uCXRnxKutQTM4n4zM+hipUzAO9LU1QgRYZDB/W1iQBtwurN8tte111hHrQ3uyp1oIS4a2ZiHyT20Sg2XrwbUt1/HucKV19nr6C854Rrh7XfzgOiSHqkk+O5ZJl4w3ek5o+97CoUOHyPvhNfK2rSGvWE/egeMcP9lEUVERRUVFLF++3LiP0NBQhg8fbiHaR4wYYRGC4lE8/Vy6mvjNfP3GEvG9Sr5UXL/SVSIvjqN9dbX9vnhunA2pMYjnsu+F9455hQcQoTa9JokcEr2mCG+fw28LcW5+LrbOzzp5oPGeBUH1DiH6Qewz2ayyj+F61e7p5ovUEa8LdGuSk5O54447uOOOO2htbWX9+vV88803rFixgn/+85/ExMQwZcoUHnroIcaMGePr5kokEg8TGBhoFOo33HADX331FSCEet++fQkMDOTIkSOeFerJ4+HsBVDyPVRtE5mUlYGgDIX0W7p3gCmR+CH+2BeXlZWRkpLSYblhWWlpqc3tqqqq0Gg0nW47ePBgysrKUKlUJCUlWawXFBREfHy83WMY0Gg0aDQa4/9qtVr8UfAhpAwxxZw7ilG2N2h2NhmZvaznhsRKsaPsZzCPSBdJ6ZrKhQU9JEWEARnbNliEA8WMtG9xs2WddcVq5sq71t8SfznClnjT62DP82IiJDBGlAk19+5ylq5cB0/1bTae28DAQIYNG8awhJv5/bk1YnJH24eqgBHsru5P3jEFebt3s2vXLvbs2UNTUxNbt25l69atFrtOS0vrYG0fPHgwgYGBrrfTHE9nUrcQn7tE3gZH19V8fc0pEX5iuH7ooek4BMWL3/UFznnbuNJ+X3x/bCVcM8+obp4zo6UWtNXCy7G5XJRZjEgHdMJa3lgs3lfmJXJtnYuj8zO/B+U/iglLrdrkQWSeVNKwfdl+TnsLuiMCAgKYOHEiEydOZP78+RQVFbFy5Uq++eYb1q9fLwW6RHIaExgYyJdffolWq+XGG2/kyy+/BECr1dK3b19UKhUFBQWecbtVKEXW9uSJ9gcr5evg0Bug3g/aBkibCue80l6fWCLp2Xz77bdcccUVNj/zl764qanJZky8oU5zU1OT3e0Ap7ZtamoiKCjI5n5CQkLsHsPAiy++yLPPPtvxg8IlcLwWYs6CQX907EbpaNDsTDIyR+7L5oPNQwuhfK3wEjK4qyeNEyKxdFX7SSdD5a8mt9uEsdB41HWLmy2rmb2YT1dEh78l/nKErWugPiDyAwRECgFStsp1gd5Vge0pkerouTX8XfodVG0hTnmU8YnljL/gLrj/fgDa2to4cuRIh9j2wsJCSkpKKCkpMVZ/ATFpNnToUEvhPmI4yYpDzl8LT7t4m4tPrVoIvLqD9q+r+fohqZB4vimBY9VvIuyk7ogwGGjVltvqdeJ6WluXvf1dcPX5s35O9Do4bJUzw3BPSlaItEAp7Zby+NFi+/J1YjmYUgfZexd09n4wvwdtWlHe0tyDyPyaGo4RehZwt9OXyBN4faTpaFBgTXp6Ovfccw/33HNPN7dKIpH4C4GBgXzxxRdotVpuuukmvvjiC0B05v369UOlUnHkyBH69evnmQPae8nXFwlx3nBUDGiLPhSu8IYXufkMrkTSw7j66qt5/vnnefLJJztd11d9cWhoqIV12kBzc7Pxc3vbAU5tGxoaSktLi839NDc32z2Ggblz5/Lwww8b/1er1cLbp6kUNBXQWAaaEzDczKJta3DrzEDT3sDTuM/2jMMBUR2rUSSNEzGvRR91dFc3TFaCcHnXtZgETGBU5xnZbWEYBFfvEm1SH4CDr4r6yPoWSwFzusaV2/KMUB+wFBru0FWB7anr7czEUH2RKWGh1bFUKhWZmZlkZmYyffp046ZqtZo9e/Z0EO51dXXs3LmTnTt3WhwqKTaY7IwosgfGkj3qXLKHDmbIyLGE9J3U/fkSzMWn+oD4cXRd7Xm7gKjGEN4PguKgpUp8j82pWA9VW4S3i4V1GedFsycmZ1zdh/VzcmSJpddBYzE0lkJzhTiPNo14l0UMEhngFUoxcREULc6rJk/8b47h/A0VLQKjICLD9nUwvwfaGjj+Fajbc3CEpvpN2IzXBborgwKJRHLmEhgYyOeff05rays333wzn332GSCEenp6OgqFgsLCQs8JdWsi0oXlvE0jXvZtDVCUK+oSK4JFR2kYdEskPYwZM2Ywb948duzYwaJFiwgLC7O7bnV1NW+++SZz5871YguFO3pJSUmH5WVlZQCkpqba3C4uLo7g4GDjeo62TUlJoa2tjYqKCgs395aWFiorK+0ew0BwcLDtzPfaGggNFO+OlhrTYN3TLrYgrEt7nofGYyJuPDITwnpb7luhFJa6sFTHAsJTAsbKgkrdAWG9VwW1u9mbHb+742J9Fa5k08KsE9ejpUbci9Qpru+3qwLbm3HIbhwrKiqKCy64gAsuuMC4TKfTcfTo0Q6iPT8/n4pqDau3n2T19pPwv0MAqFQKsgb2I3voALIHtAv3i39PWtpFKMBzLt7Wsc0NRY7P1dGkRmSGyEau04jfkRmWn9cXifeJtXUZTO+AzkInnHl2Ovu+uPv8GbKzl/0gkvHqddBaB5pa8V5oPgmqUAiJF67/ieebzs/8OVIEifM8ssTkXXTodTH52NYoPgvvB6FW70AD5vdAr4PYbJMHUcoUvwmb8bpA7wmDAolE4j8EBASwbNmyDkJdr9eTnp4OQGFhofFvj5E0Tri1H/1QdEZtLUAL6AIhUCnc0Eq/k7Hpkh7Je++9x1lnncUjjzzCwYMH+fLLLzt8hw4ePMi//vUvli5dSnNzs9f74lGjRrF27VrUarVForjNmzcbP7eFUqlkxIgRbNu2rcNnmzdvJiMjg8jISIt9bNu2jalTpxrX27ZtGzqdzu4xOiWkFyirxKA0KMY0WO8Oa3HZKmGl1Le1u8XqxTGs9+2MWOrMHRWca68tC6rmlJjw7DDI7mvKKt8dcbHdMSniDLbEWNJ4MbHbFYHYVYHtzThkD8XKKyPS6Z8+jv79+zNt2jTjKo2F37N39QLyDp8i72ApeUXN7CrUUK1uZu/BIvYeLOIjAJYBTxIbG2vmIq8lOzuUYcOGER4e7ttzdWb7iHRQhojveGSmyboMpndAZ6ETzjw7nX1f3H3+Dr0OB15uH0vpIGqI+FEfgNiRwr0dTEnzAmMsPYAM10ZbIypLNJeJ90n8aDi1WcTtoxCJf4Pibb8DrTEPd/QzvC7Qe8KgQCKR+B/mQv2WW27h008/NX7Wv39/wMNCXaEUMeeRA+HIIqg/LAYMOg1oWiA4VsSbVayXVnRJj+S+++4jOzubG2+8kXPPPZePP/6YSZMmsXr1al555RW+//57goKCyMnJ4aGHHvJ6+6ZPn85LL73E22+/bayDrtFoWLRoEWPGjDEmjiwuLqaxsZGsrCyLbZ988km2bdtmzNB+8OBB1qxZY9wXwCWXXEJcXBwLFy60EOgLFy4kLCyMK6+80r3Gn70A6jeIv1On2LYEedJ6qUfErYKwRIX16bhvZwSEQ3fULlprQ9MgoT3m1pBd3hDrbsgqb/PcumgB9ycXek/E0HdVCHozjt+6tBg4f/+cmFgJS5/MedeEcJ5RuG1Cr9NQUqkjrySYvD17yTumJO/AUQ4UN1BdXc26detYt26dqYkKBQMHDiQ7M4WRg+LJHnUO2eNupl96f9cqV3T1una2fWf33ZnQCWeenc7yR4T3hUGzob5YTK7pdSZrtqN7W7MHdFqIGizi6FVhYpLB4HUQGCPczO0lk0saJ67NkSVCnLdUg6ZSTPwFhENwvAgtAmipFBZ0P3FXdwefZDvy90GBRCLxXwICAvjkk09obW3l1ltv5ZNPPjF+ZhDqBQUFxr+7hDIAsh6AphNQ+D6gAk05KMMg9mwxEC79VljJTqwW28jYdEkPYvz48Wzfvp3f/e53XHHFFWRkZHD48GESExN5+umnmTNnDgkJCT5p25gxY7jhhhuYO3cuFRUVDBw4kCVLllBUVMS7775rXG/GjBmsW7cOvd40Mp0zZw7//e9/ufLKK3n00UcJDAzk5ZdfJjk5mUceecS4XmhoKM899xz33HMPN9xwA5dddhnr168nNzeXF154gbi4OPcan3wxDLqq4/LEC0UseM0ekZndkOW9K6ROaXebrobgBEieAmlXdBx8uyMgusNaq1B2jHV3JJq7agH3g5JkXcLWBEVPSZQH7t8/ZyZWOrgrj0JRX0TvrHR663VMPas9O7hyOJq+d7C/KrGDm3x5eTn5+fnk5+cj/PO+AP5CZGQkI0aM6FACzrrso9ew/v7qdSYBG5IM0ZkicZyj0Aln3gG2vi/W99AwoVa+znkPm5jhcGKVEOfKQPG/dX1yBe3CP92+905EurCcaypFvL5CKSrwBASL3wljIO5sUwy6NT2kQo/P0hH786BAIpH4PwEBAfzvf//jgw8+ICcnh//973/GzzIyROzWkSNHjH93iZQpwlqurYGQBEAPtXvFTPWJVcKdTFMh/pex6ZIeRFVVFe+//z4lJSW0tbWRn59PZmYmW7duNbqB+5L333+fp556iqVLl1JdXU12djZff/01F198scPtIiMj+emnn3jooYd4/vnn0el0TJgwgVdeeYXExESLdefMmUNgYCALFixg+fLl9OnTh1deeYUHHnjA/YZX/AKRl3cc+J3cIMql6TTit6264q6SOA7SrjGJ/sx77Feb6GoGZk9Za10RzV21gPek0my28JWLvqdw9/65OrFiS8CaleEKThrHqL7KDmEr5eXl7P5+Abs2f0veMRV5+4vYd7SBuro6Nm7cyMaNGy3WT09PNwr2kSNHkp2dzYABA1CpVM5dD09R0R533lIDgdHQ+xoIjHX/GTdPNpkw1jLZZMFSUTIvKFrEvxvC+1y5t5ntSUbN31O23g+GKo/2vHeSxolyuEUfiZxA5p459t5p5u89a+8d8Mvvk0JvPuXsRaqqqnjzzTd57bXXOHHiBIBfDQr8BbVaTXR0NLW1tb6btZNIegBtbW3cdtttfPTRRx0+67JQN3+5h/eFsu+ExTxmBFTniZlcELFVKhVEjxSJR1KmiBe/H87OSnyHP7zXzUPJGhsbmTJlCg8//DD79u3jscce45xzzuGLL76wWUtcYh/jvf3ueqJG3ddx4HdkCZR8ZRp0pk2z79rtCOsBp3l29EF32R9wWtcnd7Rud+LKRIG/tNlXeOqZ8RXu3j9PWDqd3YdVG7Xpf+RQba8O1vbjx4/bPExoaCjDhw/vULvdrgeOJ85tx1woXCoqy7SoIXmCGHO4uz9H96l8Hez+W3uuCyB6MAx/WnzWXd9NR+1x9foZ99UMtQdFabXEC0RSzbRrO/0++aLP9roF3dagYPHixcZBweTJk+WgQCKRuIxKpeLDDz9k6dKlHYT6gAEDADh8+LDxb5ewnuU1lP3QqkUsemsdNJUIV3ctoN0A1Vvg+JeiUxl8nxTpEr9i6NChBAcHc+utt/LQQw8xdOhQAKZMmcLw4cO5+eabOffcc/nss88YO3asj1vbA7GXoKiDVdBGnKXhXeFoEGpuVW0stZ0d3RZ1BeJdFRQnftcV+EbsuuJunzROXIuy9kzL6EzWUVfwtGurt1xle7qLvrseDJ6IlXfW+8CqjYFJ4xjWW8mwYcP4/e9/b1ytqvIUu3/+gF07tpJ3pJq8/JPs2bOHpqYmtm7dytatWy12m5aWZmltHzGczJgKAk+uFt52gVEi8Zu9dnWGov23vgVqdoCuyX2rsCNreNI4kYxNWyMME9r2GuwZt5m2NdxbZ78Xna3n6Llx9tkwHKMwVySRi8gAzUmRULNstZhosP4+2WqXD/C6QJeDAolE0p2YC/Xbb7+dDz74wPjZwIEDAcjPzzf+7RYWHUdfKPlWiHEQSUoUSmjVQEsR7P4rHF8Bw+aKrKpSqEv8gGeeeYa77767g7s3wKRJk9iyZQvTpk1jwoQJvP7668yaNcsHrezB2BNS1jHoOh0cedu2gHAkLswH05qTpuzonQm4VjU0HIW6wyIOtFXtmfN1B2cH8gpl+6RokTjn/CLAjTAiT7uKe8v1vDvyFngTbyals8ZZF2wn2xjXupfxib8yfpIGpkTBoMdpS7iII0eOdLC2FxYWUlJSQklJCd9++61xH0GBSob2CSa7L2QPH0Z2ejDZgbtIdvX6mIfekSgyl3elfJr1RFC41eRh6hTxHdSqxaRCRLrt62Zt+Qbb17Wz748nJ2iaSoRRpakclEFikkFzEuJGWwpwvQ4OvgpFH4IqGELay2yGnuV+G9zE6wJdDgokEok3UKlU5ObmsmTJEmbOnElubq7xs0GDBgFdEOodOg6lqEHcdFzMLLc2ClcqvQ60Gjj5M+yoElnhzyTXTInf8vTTTzv8PCMjg19//ZWcnBxmz57Njh07eO2117zUutOAAXfYtrxYx6A3nbASEAVivfoiUX5I1wwxIzsOuu1lR+/MihUYJQbeQfEi03GgD0PnXBG4nWWWdsaCbdhH9AioWCusauC+5bs7ssPbum/dkbfgTMHT3gc27rkqeTyZmZlkZmYy/frrjPdPrU9kT3kUu/J2m4T7rt+ob2hmZ0ETOwuAnwylIDeQlPSChXv8yJEjGTJkCMHBwbbbYgifM4+rdnSendVKt7ZYo7P8fg6cLTwCO7Msd/a9sLZqJ18i4trtfX+64qlSXwStTaK+eqsGgiMgIlP8b12qDsRxij4S47ngeEAv4u0V+507ngfxukCXgwKJROJNVCoVS5cuZfHixfzhD39g6dKlxs8MQv3QoUPGv93C2LEVCIF+aguUfiNc35WBoFdCfSFsewCih4nBu7SmS/yc8PBwvvjiC5555hleeOEF2Re7QtJFtr/f1iJRWwdtTVC9C1TtNY4Ng+KWWquyQ+liH3odoIPw9v9t5bqwZ8WKyBDlh3QaIey1asclkrrTjdsVgetMZmnDOdrDsI+KtcKLAL3YvrPtOtufJ13PbZ2TP5WJ81fsPaeeThDY2T03u39RymAuGHQXF1x4t/FjXdlajq5/mbz8k+TlV5BXEkReYSP5BcepqKhg9erVrF692ri+SqUiKyurQ2x7WmoKipO/mM4r8UIxcePoPI210iOgsRj2LzBdI4OXiqMSiw3FIlbbMDFWsNQ5S7y9a2SwapevcVwSrSueKhHp4lzrDogQRF2jEN5B8RA7oqM3Sn2RSDwXFCdyC7W1Qtn30KRz7ngexGdZ3B0hBwUSicTTqFQq3n//fRYtWsSsWbNYsmSJ8bPMzExA5Mgw/O0StrLHbnsACpYI11O04kWv3gf1h0C9X1rTJT2GZ599lrPO8r6L32mJtUgM7ytcLqOyhNAu/V6UIYoZIdzfo4eIz8wH3RXrId/MLd4wuDbHnqgzFyzWyeWg4zvJODhuFmI+brSwOrkbV2rrWjgjcG0JrYKl7ec4QgzyO7OIG/ZRmAvoO7fcdUZ3ZIe3dd96egy6N7An4jztXt/ZPa8vsp3tvP15VPYaT//x0H/QKqaBcXKtobGJffv2kZeXx65du4wW9+rqavbu3cvevXst8urExkSSnR5CdkYk2QPjyZ5wB8Muvo3wTmOygbZG0NZDXb7jCSp7+TJKv3McP299jRIvtHSVry8Q9ylpongPRg6G/jmm7azfIXUF7k9QJY2D0FTxTg0IE96NVdvFu692t1gn8x7hpWJ4J4amieUBEeKn7gC0hjl3PA/ilwLdgBwUSCQST6NSqVi8eDHvvfces2bNYvHixcbPBg8eDHRBqBtQKIUAjxwgZq2rdooybMoA0OtBUyWtIJIexbXXXuvrJvRsDIPOuvYSRjW7sRCJUVnivVG9VcRJNpeLgWvq5R3fE85YVO2JOnPBcmQJ6DWiRJMNMWFxrMBoOLVVlHRqKBKfOYorbWsX9PHnigGyeckmw/5dEbi2hJbhHMvXCEscCseCw7APEOvV7DZdG3c8Bbojttp433aJ66c+ICZxBs021YfuaWXivIG3vAw6u+cR6eK+VW01lV2tWG+ZYBazfAoNRaBQEp48nvPOO4/zzjvPuCu9Xk9JSUmH2PYDBw5QXVPHup11rNt5EiiAf25FoZjDoEGDOljb+/Xrh1KpFDHkVVug7ggERoj3UGud/Wtl/f001CWvOyTeUSmTxLlab299jay9eRLGit+1u4UY7p9jub31ZIthfXcmqBRKSJkMlZtA22AqP6mpAnTCnR1E6Ehbc3sd+RRIuEhMnpR9J76DPsCrAn3o0KE8+eST3HzzzQQFBTm1zRVXXMGiRYuYP38++/bt6+YWSiSSMwWlUsmiRYt49913+eMf/8iiRYuMnxmE+oEDB4x/u36AAMh6EGLPgs1/BI1eWKFQihIfJ1ZB7X4ITYagGOF62l1ZgCUSM9zpizUaDR9++KHsi53Fug66rUFna4OlSKwvElaplEliefxo22LMGYuqM+LXICZObRWu9JVWYsLiWLvFOjEjbA/KDRiEUlC0ECmNx8T/4f1MlilzsdIVgWthEVcIi1ytExZxW9fGX2qNG9pW+p24H+oDQsQNuqtnlVazprMJkK6GUviLl4G9bOfmz5KTkwkKhYLevXvTu3dvpk6dalyu0WjY/8tS8ta+Q97hSvIK6thV2ELFqWoOHTrEoUOHWLZsmXH9yMhIRowYQfaIEWT3H0l2Uioj4oqJ0qpFWI29a2XX5X2EmECs2S3iuDu71tbnGxDlOJbdev3ATtbvjMx7RFLMkpXiHaapFtnuQ1KEO3vNHst3VmutqUpE6uVQtQ1qKl07pgfwqkCfOXMmDz/8MA888ADXXHMNkyZN4uyzz6Z///6EhQn3gYaGBgoLC9m2bRurV69mxYoVBAUF8dhjj3mzqRKJ5AxBqVTy3nvv8c477zB79mzeffdd42dZWVkA7N+/3/i3y9QXgSpCxD1pG8RLX6cVMep6vVgnJAnC+nRM2iKRdAOyL/YCR96DyHDbWdcdDVKV7XHothIYGXBGfDsjfpPGCZf1lhox6G6xISasBWNLreNBvbmg1yPebfUFIqbTXuk5d7G2iNfudk6c2bo2jkSTt8qpmbetvkjEC58uceedTYB0dYKkO8IN3MEg6qyznZvTxcmE4OBgRl1yB6OGD7I43/KKkx2s7fv27aOuro6NGzeyceNGi/2k905g5PDBZJ+7muyRJ8nOzmbAgAGoVCrbBza0u6VWePfEm4W7OMLV8+2wfkbn7zLz72h4XyHEDR4niRdC3+uEuzp6kfejfA3oWsSYrLVBTKQ0HBXvLPNJyIzbYLgSyvYDd9s/fjfgVYH++OOPc/fdd/Puu++yePFili5dikIhivgFBIimtLa2AsK1Y/jw4Tz77LPccccdXisML5FIzkyUSiXvvPMOb7/9dgehPmTIEMBNoR6RDiFxoqRHcBCggpYq8ZlOIzqW1lAxGCtbJQW6pNuRfbEXsBaj1oPOSBuDTmdFhqdcq63FhC3hbTiWrYzptjAX9FVboK1FJMpsqRIW9O6wbHqiTrojEdFBPOoAZfcK9oh0kZug/Edo0wqLrDu13/2FzqzGXXVR92UpN2s6+x57YjLBxvkmJyczefJkJk+ebFym1Wo5dOiQEOybviZv61ryjtRw/GQTRcdPUXT8FF99t8G4fmhoKMOHDyd7UCLZA2LJHnUu2eNziItPsN1uZ57HzrLDW3+fEi+0/D7r2+DEWhHGYn1cgzA3j4tvUQuBHhgt9l+901QFQRkM8WOEZ0rjcZFFvq1FtCEsVWxTf8TyO+cjFHq9wYTjfYqKiti4cSMHDhygslK4D8THx5OVlcX5559P//79fdU0v0GtVhMdHU1tba0cGEkkXkSn03HXXXfx3//+t8Nn+/btM4r2TtHroGIdlLZ3NvVHoeIHUfJD1yhmbMNSRUKo5PHQa0r3W2kkPsXf3uuyL/Ycxnv73fVEjbrPN1ZYV3CnXc5sY3zvfQcNx8R7LqJPu8VtvOfP3TrOddBdrok1R+d0ZAmUfGUSj5GDTTHE5sfy5D22VY85827/EKDu0Nn96er9k3SO2XNceXQru9UjyKtMNVrb9+zZQ1NTk81N09LSGDlypEVse2ZmJoGBgV1qBzV5ouxZ1VbL8m8KpSmXReNRaG2GkISO3wPDc2MeF1/Tnvwt7Wqxf0NJSaPLfJxI1quth/rDwsNRgcgknzBGeAoZvnOJ58OpX1HX1RM99Wuv9tk+TRKXnp5Oenq6L5sgkUgkNlEqlbz99tu8+eab3H333bz99tvGz4YOHQrA3r17jX/bRaGE5IniB8RMsOaEmL1t0wgrSVCkcHev3CKyiQbHwVnzodel3XV6EokR2Rd3A9Z10P3JwmeOO+1yxh3ZmAyruL2c0lFo7tuezE3p+evQnRZYa+s62D6WJ+PYFUohVsLSTg83d29YlTvDXyfJvIXZcxwfG8WE0Vcwwex5amtr48jhfPKWzyVvx6/kHQ8k73AlhWWNlJSUUFJSwjfffGNcPygoiJaWFgBSUlLIyckhJyeH7Oxsp9uBMkjEeFfvgMBIEdtetkokzdRpICgKyvOFlVtzUoTj1BeYPHoKc8X7JXq4KS4+MMayPGXMcGFBN/wfECreR60N7V6MCPGvrRXlcENTIXakWN8Qnx49HPjas/ejE/w6i7tEIpH4GqVSyVtvvcXChQuZM2cOb731lvGzYcOGAU4KdQOG0i/WsVKFS9uzhapEh/PrbMi6XyQ4UcpXtUTSo7BXB92bdJcgsSeG7ZVHCooTSZqC4kWizNLv3G+TvXPqziRhtrJZNxR1PJYnMombn5+2BhRBvk985gk6mwjyxgSWvyQCdAVPfoc7mQRRqVRkxpSTebaa6QNUoNBB5Fhq+z3MnoqYDvHt9fX1xm3LysqYP38+8+fPt9jnpZdeSk5ODtddd53J8mxd6vHQm9DWJHLzKFVCZIf2Es/+yU3Ciq7XCSt4m0aE4xhrqR8Xk356vSkuPmWKWQx6X+Gd2HRCHDN1ingv1ewUlvTa3dDaJLLZK4KhuRQCYzuK+9o97l3zLuB3o76amhq++uor9u7dS319PREREQwbNoxp06YRExPj6+ZJJJIzFKVSyZtvvskbb7zBvffey8KFC42fGYT6nj17jH/bxdZAJBko/rT9H53I8t5YAL89Cnl/FQPc1MtF6TaVc1m3JZKuIPviHoKjAXx3CRJ7YtheeaSmkvY49EphMavcInJuuNMme+fUnRZY63e2IRbc+liuThLYuncW5xckXGwDY2R5NU/g6QkUb1jhO/sOW7cn8UJTTW/r9jkzCWKjkkT0wCu4cJCSCy+80LiaTqfj6NGjLF68mBdffBGtVmtzdz/++CM//vgjf/jDH4zLoqOjjdb2MQkHUIQkgL4Zmk8Kod1aC6c2iWe/tR6ay6CtVYjuoCiRYNNwL5MvEQnfIrNMtdQN55uMcIE/8rbZ9VNC5EAISRNiPDgRwiNFjozYbGGhjxoiLPiG6xk7qj1JnHct6H7l27FmzRoGDhzIkiVLaG5uJi4ujubmZpYsWcKgQYNYu3atr5sokUjOcJRKJW+88QY6nY6777bM6jl8+HAUCgV79+51fce9JomOUddstrAVWmuEWD/yX/jtkS61XSJxBtkX9yAMA/iSr8TvivWmz8wFiSFpHYhBffk6EQtavs71REhJ40SMcNo08dtcHJsfz1Aeqf8fIOthyLhDZI0PjOrYJmexd04G8THgdpOXUndh71j2ros9bN07i/NrEeLcG+d0JuAJLwtH37fuwN7zbq89h17vWvsi0p2qJKFUKunfvz/P/vUZWo79gP7wYvQnfqKi/ASvvfYaY8aMsXuI2tpaXn/9dc4//3yUg/6A4rJfUFxbxAXPtPLGTxGcChxrevaHPAKRg0QCy4AIEa8emWFZLSK0t6mWunVbra9fXQGgE5b65lNi4hBdu0v8bmFJT51i+s4pA8TvjFtcu44ewK8s6Pfccw+LFi3i6quv7vDZ119/zd13382BA74pGC+RSCTmKBQK3njjDV5//XXuu+8+Xn/9deNnw4cPB2D37t3Gvztl8L2gUMCeF6DlpPXRhFW9Os9DrZdI7CP74h6AwXJWmCvcPJMvEQNMR5nj7Vm6wTPx2s6URypfJ+I8y9e0u6vWuJad3F/qXdvCVTdtWxZdX5+fhUW2r4jPtZU9uyfiCS8Lb1vhO3serNtjiJl2t32uXiOrd0nioLu45557uOeee0ynq9ezefNmcnNzyc3Npba21uauNh3UsOlgKfcsfKl9yRcEBgaSc/kAcsbGMf6cdFTDnrRsk3U7ra9tRF/L69eqhvy3RVK5VjUkjBbhN61NEBAmnnefpU63xK8E+rFjx5gyZYrNzyZNmsSxY8e83CKJRCJxjEKh4LXXXuPVV1/l/vvv57XXXjN+NmLECADy8vKMf9tFGQBZD4CuDXY/A231Zh/qQREoXLAkkm5G9sU9AGMMZokQUOVrhCXJfABvb7BtS2TYKqPmqhhzZnCfNE6UPSr6SITrnNokXEidFRH+Uu/aE67OtsSXr8/PXHBpa4VYCYruOTHbjvBEnLvHwxg6ua6dPQ/W7bFOiObqBI8nJpmstlUoFIwdO5axY8dajI9q81fy+Xt/I3dVIWt+szZKCLRaLYtWHGDRCoACYA0gxla3XXsht1w2mLSBZudofW0HzhbeLIbrV9+eFyNmBJS1J5VTBEJIYvskZ157Ikvf49Mya9ZcddVVpKSk8Le//Y2UlBTj8rKyMp555hlKSkpYuXKlD1voffytHI9EInGMXq/ngQce4NVXX+3w2a5duzrPcKprFeV1Sn+AplLQVoMiwBSDrgyA8p/gyLvQUisyvQ++TyaS60H4+3td9sXu47V7ayhVFD0CKtaKBEnWMZj2sFXSCrxX5sq6zFLaNOFSao6/Z9z2RFkwfzxH83tTskIsM5SrsnWfzjRcvWe2npP6os6ff3fb4ygG3Vvn5+z3wM57IG/te+T+dz65q4ooq2zufD9m3HTlaHIuUnLZ5EkENuzteG2N7W0Wbvxxo0VCupObQN8iEtMlni/i3FvVIhwnIgN1yEiiY2LPnDJr1ixevJg5c+aQnp5OZGQkUVFRqNVq6uvrmTZtGkuWLPF1EyUSicQhCoWC//znP/z73//moYce4t///rfxs5EjRwKwc+dO498dUAbAkIfEjy3K18KWu0QWYYVCJFxSKIX1XSLxALIv9gAFH0LKkO4TXQbLWe1uCE0zxWA6gy2rXMHSrrvuWtOVjOtdccP3hvD1hKuzP5beM783QTHCgu6P4QS+wm0L8wjh5VKYK6zcSg9l57eZdNZB+zr7brj6veuKx4ed90B2XxX/vGsI/3zyJjj2OTSV0KTRs2J7C7mbI1mx8YTdXf5v5Rb+txKY+2v7ki8YMOA5brvtNnJychiQYae9saNMWeVPbRLGkYajotJOaG/odZvz5+Uh/MqCbqChoYH8/Hxj5thBgwYRHh7u9XbU1NTw+OOP88UXX9DY2Mjo0aNZsGABZ599dqfbbtmyhcWLF7N582by8vJobW3FnUvt75YWiUTiGL1e30GoG3Ao1O2xYy4c+o+I31Qo22t49hIdzYA7oNdE31thJA7pKe91f+mLexLGe/vF+USFtEH6LcLDpbPvpKui0lMi1LCf0u/EZF9glEjI5AkLuj3rmjNtd8bK7upxPYk3juELTucYdF9geE4M5cDC+0FIasfs/N66ro6eW70Odv4ZTqwSEwottdD72u7zmrD3HjBvoyJQlF+r3ikSubVpIbK/WK6A/HIVH3yXT+7qUo6Utbh0+KuvvpqcnByuvvpqQkNDxcIjS6DkS5FRvnaPqH8ekog66jKiz7r7zLWgGwgPD2fUqFEWy3Q6Hbm5ucyYMcMrbdDpdFx55ZXs2rWLxx57jISEBN544w0mTJjA9u3bGTRokMPtv/nmG9555x2ys7PJyMjg0KFDXmm3RCLxLxQKBf/617945ZVXeOSRR3jllVeMnxneczt27OjwznOIMlAIdH0roBflQo59ClVbYPTbQqRLJF3EH/riHou2BnQ1ItbamRhrVy1XnrK+Go/bLAbAUVkinMYTsc/2rMzOtL0rydI8Yd3ujK7GivtqQqYz/NGq35MxPBeFuYACkiYKrxdDdn4wVVXwRqhDfZGoKx4ULeKvS78zHa9ivRhDNJVDc7kIm+lOrwmF0vJ7BOJ/i+9WXyj5HhqPgioU6o+IsrMoICqLQelZ/HXIAf568ypoawSgRR/CqvIJ5P5Yxv/+9z+7h1+xYgUrVqywWJaSHE/O+HBuG61mRO8WqD0g9qvwvobrMVNhWq3Woo5ed7Ns2TI2btzI4sWLeeaZZ7jnnnv46aefUKlUPPPMM51uf/fdYqZl27ZtTJ482Qstlkgk/oxCoeDll19Gp9PxyCOW5dLOOussFAoFO3bs6HxHKVMg9mxhNVeGACpQqIRYry+EzX+C/f8SsewSiYfxdl/cY9FUiYGkKrBjaSRbZc46K6fU2fbuYjzuSAiMFgLdUyW9uiKyXS1Z5qnjOktXy7rZK9dl7956u7yXxDMYnpP+OSIUpXZ3x2eyq/fWlfdBRLqIvT6xWgjxqi2m45nXQA9JhvjR3Z+k0Na5m3+3UELVVjFhoD4ozq2lSnj5pF4OGbeJGPK2Rmg5Bdo6gsLjuOqaa/n444/R69rQn/gJ/eHFFG//hP/7xz8cJuwtK69k/ifFZD9ag+LmJhQ3VqKYuoPb533UvdfBBn5lQf/b3/5m9zOtVuvFlgiBnpyczHXXXWdclpiYyI033khubi4ajYbg4GC72ycnJ3ujmRKJpIehUCh46aWXmD9/Po899hgLFiwwfmYIn/l/9u47vMmqfeD4NymddFEo0LIqs8gQQaZMRQR5GWoBRVmigBsXispSFBXHKyKICxBeHPSHgHuyBGQIyN6U1ULL6N7J8/vjkLRp0jZt0yRt78919Wr7zPM8TXNyP+ec++zatYsbb7zR9gFMHwZTY+DKTji59FrGdw0wQNoJ2P0sHHwLGtypEst5eJX7dYnKw53q4grLtz54+6oP5QUDRFut5baCysJaTcs6TVp+5RnMlqWVuSwtua7OhG6Pwlr5C/vbFtcrwB0Tzok8Rb0my9rjo6RZ4Wt2Uj18gtuoTP2m89k5B7pDh9fE/qymPCtYFhPTQ4O6feHqPvUAsW5fNRe6KSP+pa3gXRPQQciN0PTBvPub79400HszZewkpjz/vPnwhtwcNqyZz/KvvmX5mq3k5Nhu2Fj9V+Hj3suLWwXos2fPJioqiqCgIKt1BoPBqWXZvXs37du3R6+3fNF16tSJjz/+mKNHjxY/bZIQQhQif6D+/PPPM3fuXPM6U6D+zz//WOe8yP/B9br7AA1i/qcqN/MEngbIioPji9SUKx3ehtoOahUTlZ471cUV1g2vgC7BdoBo6wN541F564qbjsmRXbhtBQ6Oygztqu7SFaGbdmEPRgr72xb3IMWRD23KS1V+iFDUa7KsD8lK8n6g06vAOy1GBeJ6n7zzhd6sxnon7leJ7EJvVssL/t00Ixz/uOyvtfhNKu9F5kU15Vlgc/Xg4MTSvNeHf4RqLc9JhoBmat7y/K+Z1BgwZqugPXEv1O0HdfoUWF/4vfG4vIVb6mznlsdr8fmTUebeOgkHv+Prb6JZvnoT2/aeLvm1OYBbBeht2rRh5MiR/Oc//7Fal5mZyaeffuq0ssTFxdGzZ0+r5aYpZ2JjY8slQM/KyiIrK8v8e3JyssPPIYRwHzqdjrfeeos333yTF154gbfeesu8rkOHDgDs3LnT/LMFfTW4aZ6quPa9AjlXCmxgUOPMdj0DdW/PG1taVT4UiVJxp7q4wqrdHQpLJmTrA7mtD/ClDdZKwtZ5CyaSurpHPegrj+CvqgZthbWoFva3La5XgDPG3ZdVRXiI4Apl7fFR0veDws6XsDnv//zS33m5Mwr+3apHOOa1lr91PHEf+ISp1nBjdt7rI39ZTRnW868veO3VG1qO56/esOh7Y+v/pnYPQmsF89jovjz28AOgg+S4IwTd+HDJr7EM3CpAf+ihhzAabY+d8PT0tGvsty1Go5HsbPuy+3l7e6PT6cjIyLDZhd3HxweAjIyMUpWlOHPmzGHWrFnlcmwhhPvS6XS8+eabvPHGG0ydOpU333zTvO6mm24CYMeOHeaf83bUqyzRRgPsmwmGlIIHVhVP0hGI+xnavwN1bynnqxEVWXnVxeIaez+Q2xushd7s2CRTBT+0Ju4vv+CvqgZthbWoFvbaKK5XQHkMVXD0wxN3e4jgLg+H8v9tS1Omkgb4hb2WCvv7FFwOea81nZd1q7e999A/Ajy8VeK3a1nZMVzLh5H//KavE0tVOTzzJbi74VXLa8dYIEv9hLy5523dG/+Gqvfh+e/UtIL+Da3fk5pNgsYjgSocoE+aNKnQdfYmZ7Nl48aN9OljX1bjQ4cOERkZia+vr0VLtklmZiZAXkp+B5s6dSpPP/20+ffk5GQaNGhQLucSQrgfnU7HG2+8wZw5c3jppZeYM2eOeV3Hjh0BNY2j6We1kx5aTlbB+LFFakoXg3qvQrv2cFJLV9OGnPhMAnRRpPKqi8U19nbBtjdYK9jiDaUbn2zaLvmw+tCa+K/qAhvcWrWolcc4dXcL2lyttN3zy2PcvaMfnjgjeV9JuOPDodKUyVFDOgr7+xRcHt4P0Bfeqm1vOWr3UL1zYlaoQD09DvS6wl8fpgR3l3aoYP7ydtXqn//aTUG8+f3kTF4iR1s08kYGmn5Oi1HHCGoD8etUBv5aafZdkwO5VYBeXiIjI1m8eLFd25q6sIeFhREXF2e13rQsPDzccQXMx9vbu8jkc0KIqkGn0/H666/z2muvWQXqnTp1AgoE6jo9RD4JIe0h9SRkJ8KJxZC8L++gWi5kXIbD7+eNM2v+qOoqL4RwL/Z+8C4uyLX3Q79pO0Om+qAacG3KtdCbVXfXsgR/hT0kcLegzRFc0TJbHuPuHf3wxN2S9zni+hz9t045CRnn1QwQGefV7856aFDY38fWctPr7cRSFZwHt1UP9GJ/tv9e6PRqujm/emr/q/+qJHCBkbZfH7V7QEgn9dnGNE97wb+ZfwToveDiH2rO9JxE9TcqrBxpZ9SUc7V7qPPH/aqW5yRB/J9qPRokfW7XLXSkKvGprG7duowdO7ZE+7Rr145NmzZhNBotEsVt27YNPz8/mjdv7uBSCiGEtfyB+rRp03jttdfM60yB+rZt29TPBT+k6fSw5wU1x7FaAKlHYc/mvGVnouHWPyTTuxAVVXFBrr2BiGm7Gte6mJqmXIOSB38FAxeMcMxGYil3C9ocwR1bZkvD0Q9PHPkQwRGBsSOuz9F/69xkSDsNKcdB76l+d5bC/j72JrjLSVat2ilH7L8X+fc3TZ1mb4I7Dx/rv1nBVvmErXlj6Ys7f04SXPhFPZzUoaay9WsAHtUhYXvR11EOXBqg6/V6dDpdkdv4+PhQv359+vTpw3PPPUeTJk2cUraoqCiio6NZtWoVUVFRAFy6dImVK1cyaNAgi1buEydOADitbEKIqken0zF79mxeffVVpk+fzuzZs83rOnfuDMDff/9t/hlQreMxX8LVXaqrqmaAjDjQMvO2ubQZ/roHekZXjeRMwoo718XCDsUFuUUFIvkDnZxENabUEQGZvYmlKkLG9ZKqLN323fnhiSMCY0dcnyP/1poRMmLV9fg1UEPWPAtJNOlK+d8zqjdU47xTz6ihMcmHVJlNY8SLe3BS0r9BcdsXbJUv7m+S/3gXfoXko+AZADkpENASMi/AlX8gU7O9fzlyaYA+ffp01qxZw4EDBxgwYABNmzYF4NixY/z888+0adOGW265hePHj7N48WK+/PJLNm7cyA033FDuZYuKiqJLly6MGzeOgwcPUqtWLRYsWIDBYLBK4nbrrbcCEBMTY152+vRpli1bBqgMzID5A3WjRo0YNWpUuV+DEKLy0el0vPrqq7zyyivMmDGDV1991byuS5cuAGzdulX9rK8GEfdCZhwYc9QHCWMu5OYL0NEg9ifYPErNH2r60CyqDHeui4UdigtyTR9CU06qFrnUk3nLLQIdLwjtqj7gljUgKyqxVGXpyl6YytJtv7jXlT2t2OXV3d8RgbEjHg7Z+luX9prjN8HlnWBIV/sGtQD/xu6TzC5/OQsmUWsyRuXCuLJdXYNpjHj8prz7W9h1FPwbFHW99vzNqjdU3d/Pf6fey6o3LHxbnT7vfS47SQ3v0enBkAZo4B0G+pMQ0ADYX7r7VUouDdDDw8O5dOkShw8fpnHjxhbrjh8/Tu/evbn++uuZO3cux44do2vXrrz44ov88MMP5V42Dw8PfvzxR5577jnmzZtHRkYGHTt2ZMmSJbRo0aLY/U+dOsW0adMslpl+79WrlwToQogy0el0vPLKK7zyyivMnDnT4sFh165dAdiyZQtdOz+qFibuV13CLmyElL2WB9My4fxa1bpuqgBFleHOdbFwgPz/0wVbHQsGOp7B6sN2WRUMXML6qXK4Y2uso7lzy7Mj2dOKXV7d/d3lIYitv3Vpr7ngtGMhncp2vPJS2MOR4saIlzQXRsHtCgvcbQ2nMXUI05H3c34Few5d2qq6uGOAnKuqx2HmBQhsCVd3QsoZB9y4knFpgD537lweffRRqw8EAE2bNuXRRx9lzpw5jBs3jmbNmjFp0iQ+/PBDp5WvRo0afPrpp8XO+Zq/5dykd+/eaJrzu0QIIaqemTNnmr/yB+rdunUDrgXqXZ9UldKeqXAsFgyJKmmciZYDiQdg36twchnUaCMJ5KoId6+LhQ2laVWz9cG6vAKdohJLVXaVsdu+Lfa0YpdXd393eQhi629dkmsuGCjqvdX46oDmary16aGWOw2ZKOw9o7gx4iXNhVEw8VxhGeNtDafxDILQHnmZ3OsUOEf+fdLPqxw8dW+BzIvq+HV6q4Dd0191l8+6BDgxHwAuDtDPnTtHtWqFF6FatWqcPXvW/HtERITNqc+EEEJgEaTPnDnTvNwUqG/evJluTe5QXdCSD0P21WvJ4qqpSsmYCAnrIUEPZzzVeKyOH0iX90pO6uJyVF7dU0vTqmb1wbqhKl/1CLU+vJ/jAp2qEqRWZfbkNkg+rFpSr/5rO6lXablbwrn8SvLQq+AQE59Q1c06uLWaPaGkxyspR8+7XtQ6ezOsF5Z4zhRI17m1iHna/4X0M5AeC1kJ4FvP9v3Kv0/WJTBkw9W9UM1ffSZKPaH2Ra/eH4NuB94o/n46kEsD9FatWrFw4UJGjRpFnTqWjzcuXLjAwoULadWqlXnZyZMnqVu3rrOLKYQQFcqMGTOYMWOGeZy6yc03qwr/rzXzuPm6WPWkO/mw6tpuSANNB4YUwKAq0OMfqfWtX4Q6fSRQr6SkLi5H5dU9tTStagU/PGtGOJ4/s7pe/seF/YoKxsyv+0zVxTjw2pR97tjd39H/oyVp3c//f3zxD0g9pVpsL/2dl328qBwSZf1/dfS860WtszfDev77l3xYfeUPpIuapz0nGbKSVCBvyIJaXW3f//z7+ISr3BsZF1SruZajzlOrqzpvWgwkOXf8Obg4QH/77bfNCWmGDh1qTkxz/PhxVq9eTU5ODp9/ruaey8zMZMmSJQwYMMCVRRZCiApj+vTpTJ8+3Zz53aT7kCcA2LRxA907aKoL2eXt6suCEeLXw9/HIfJpaPG4fICvhKQuLkfl1T21NK1qBT88n1jqXl1n3Y27JedyN0UFY+bXvY0p+9yNo/9HS9K6n///2JCjAtfCZjqAkgfTxb2Gndl93t4M6/nv38UNKkDOH0gXTGJpK6A3TRXpGWz7f9bWQ5STy1RLfXAbuPinytsT3FZlqY87Anzv6DtSJJcG6L1792bLli3MmDGDVatWkZGRAajpXPr27cvMmTNp3769eVlsbKwriyuEEBXStGnTmDZtGrNnz7ZIXtmjp6oYN25YT482/WHXFLhqI0hPPw//Todz30HrqdKaXslIXVyOnDnG213KVlLuGgi7W3KuisRdXlv2cGVZ8/8f5ySqVuXCylGaYLq417Czr72k5yssl4VJwfeO6g3zAvqijm/rIYqpbBf/hLQzgE71MGo2CRqPBB4uxQWXnk5zk0xmRqOR+Ph4AGrXro1e7wZvzm4gOTmZoKAgkpKSCAx0w/kQhRAVzuuvv85LL71ktXzDqvfoqf8Q0k4BBht7eqjkKxEjocN7kkCulNz5fV3q4rKx+tuWV/DpiOO6S2B8cYP1tE3uEAifWArn16iA6Oq/qhU4MNK9HiK4K3d5bdnDXcpaXDlK+n+iGWHPS2p+7+A2qvt2vaGWszQ4+9odfT6rezIB0Fsfv+B5Q2+GhM3WDzjjN8Gp5aolvXYfSNoH9YaQHHqn0+tstwnQU1NTzUloGjRogL+/v4tL5B7c+YOcEKJimzNnDi+++KLV8g2f3EPPOv9C+lmVsIbcAltUUx9ab3wL6kprekm58/u61MVl47S/rbsGtaWRPxBO3Av1hjhmqreyyn+Ps5PUWGrPIPe63+4SXNrizmWriEp6Py9ugH2vqGBTQ82r3nq6e7xuHcXe946LG+DoQsiMVWPTa3ZSSeRMGeHz/z/beG9N9r3R6XW2y/9TduzYQZ8+fahRowatW7emdevW1KhRg1tuuYWdO3e6unhCCFFpTZ06FU3TmDNnjsXyXg99hW7wITbEd1RZZa3kQuJu2DFJVWaiwnPXujgxMZEJEyYQGhpK9erV6dOnD7t27bJ7/0OHDtG/f3/8/f0JCQlh1KhRJCQkWGwTExODTqez+fXVV185+pIcI393V2OW+r2iclUXY82o3r9OLFXfNaPl+to91Af3ekPUB3rPQPe736YuzOfXqO/xm1xdojyOLFtxfyt3O255nNPULbvJmLyx6UXJP6+6b528edXtKd+FP2HzfbDuP3DoPTAWfEjvJkzvHVf/VQ/Rkg/bvqepMSo4z76qGh7O/wgZ523/P4ferP7fDdnXWt8NznldFODS/onbtm2jd+/eeHl58eCDD9KyZUtAVahffvklPXv2ZP369XTq1MmVxRRCiErthRde4IUXXuDNN9/khRdeMC/v/cQ6ANZN86F3ZGaBvTSVcfb4J/Z9WBBuy13rYqPRyMCBA/n333957rnnqFWrFgsWLKB37978888/NGvWrMj9z507R8+ePQkKCuL1118nNTWVt99+m3379rF9+3a8vLwstr/33nu54447LJZ17drV4dflEBVpjG9xyntO68JaHosbn1swWdWxGPe73+42R3Z+jixbeeUDcEWeAWed0z9CTW2Xf151UK/lolrh4zfB7mch6ZD6/coOtU3kk44vY1mZ3itif4Yr2yHlMBw7BWei86ara/6oulZDFmRdBq8QdT2GHNv/zwmb4fz3eT0PMi9Ao2ecfmkuDdBfeukl6tWrx19//WU1ZcvMmTO5+eabeemll/jtt99cVEIhhKg6nn/+eZ5//nneeustnn/+efPyPq+q4PzPF6FPq/x7GODcKlhVH4Kuh1YvQN1bJFivYNy1Lo6OjmbLli2sXLmSqKgoAIYPH07z5s2ZMWMGK1asKHL/119/nbS0NP755x8aNmwIQKdOnbjttttYsmQJEyZMsNi+ffv23H///eVzMY5W3kGtM5X3nOmFBUQlCSDd9X6784MaR5atvB5EuOIBh73nLOsQAVuvWXseDqTGQNYV0FVTWeUNWXB1X/GBvSuY3jtSY65lYG8LZ1ddmzPdW42/BzUDTcRIiPkSPDyvZYTvZp0RHvIS9lULUL9nJ0LqGWdeFeDiLu7btm1j4sSJNudTrVOnDhMmTODvv/92QcmEEKLqmjJlCpqm8dZbb1ksv+V10N0Hfx7Q5S00ZkFWHMT/AesHwh+3qe5xLugSJkrHXevi6Oho6tSpw1133WVeFhoayvDhw1mzZg1ZWVlF7v9///d//Oc//zEH5wB9+/alefPmfPPNNzb3SUtLIzs72zEXUJ5K2t3ViZYvX17okIH+/fs7v0CFDQcoSQDprPtt6v58fDEcfh9OLC66G3T+bvjNJrnmwUFhXbYdWTZHBvv5y5uTCDqvkh23rN3i7b2Wsg4RsPWatWdojH8EeIeAlgu5aSrQrebrvkMpwPKe5qapfBEBzdXDhZgvYf1guLQNGg6Hxg9A80dU0G7r/9k/QgXuuSmQkwJeweDf0OZpy5NL39H1ej25uYWPazAYDJJBVgghXOS5555D0zTefvtti+W3vq6huw/+2F9gBy0b4v+ETVFw6L8SpFcQ7loX7969m/bt21udu1OnTqSnp3P06NFC9z1//jzx8fHcdNNNVus6derE7t27rZbPmjULf39/fHx86NixI7/++mvZL6IKatu2LcuWLWPZsmUsWbKEDh06ALguQC8sIKrdg6yGD/D8/7IIj/oN34j+dO7cuUQ9RbKysnj++ecJDw/H19fX5v4HDhxg2LBhNG7cGD8/P2rVqkXPnj357rvvrA9oCspOLYbD78LJz4sOiNzhQU1hgaQjy+bIYD9/eS9tVXNrl+S4JQ2cCwb0oTerbOMBLaB6hFpvq64sjzwT9jwcqN0DbnwbGtwFdW6F61+AGu3KL+dFYQ88SvIgJP/rI/wO8KgOKUdVWZMPwIXf4dz/wZH34couSD2p/m62jlm7B7R+GSJGwXWj1M+h3Rx3vXZyaRf3bt268eGHHzJy5EgaNWpkse7MmTMsWLCAm2++2UWlE0IIAfDMM8/wzDPP8O677/LMM3ljsfpeyy3321To2zrfDjlXYc8USD4OnebJdGxuzl3r4ri4OHr27Gm1PCwsDIDY2FjatGlT6L75ty24/5UrV8jKysLb2xu9Xk+/fv248847qVevHidPnuTdd99lwIABrF27loEDBxZaxqysLIuW/OTk5BJdY2XUtm1b2rZty7lz5xg+fDj//PMP3bt3Z968edx4443OL1Bh3dN1esY+/znR0b8yefJkmjVrxpIlS7jjjjtYt24d3bt3L/bQY8eOJTo6usj9T58+TUpKCmPGjCE8PJz09HT+7//+j8GDB7No0SLLoRamoMwrBFKOg1fNvIDIXcaWF+SMbuJlHQaRv7t48mEwZkLwDaq8nsElmzWgpNdrq1s5ejVftzFLfTddX37lMXzBnqEaOr0aqlb3lrxlFzeU31CKwrrd2ztWv+BQgIh7IaApJO5XXfOT94FOB8YcyIyD0ysgcQ/41rd9TJ1ezU5Tt0/eMhe8r7v0U9Prr79Oz549iYyM5M4776R58+YAHDlyhDVr1lCtWjWr7MJCCCFc4+mnn+bpp5/mvffe4+mnnzYvv81moG6Akx9B6lFo8xLUdq9uuCKPM+pio9Fod9dxb29vdDodGRkZeHt7W6338fEBICMjo9BjmNYVt7+3tzcNGzbkl19+sdhm1KhRXH/99TzzzDNFBuhz5sxh1qxZxV+UOyrHabD2799Pv379uHz5Mu+//z6PP/44Op2u+B3LQyHB3fbt2/nqq6+YO3cuzz77LACjR4+mdevWTJkyhS1bthR5WHv3v+OOO6ySDz722GN06NCBd9991zJANwVlGedB7wnZl1Ug4U5jywty53HwJvmDPdOUeaUtb8Hrrd6w6PHZtgJ6KD7IL03eg+L+p0v7oKM8czAU9sDD3gchtgJ5U0K7HY9D0h61DkCn3vsrwoMvlwboN954I9u2beOll15i7dq1pKenA+Dn50f//v2ZPXs2119/vSuLKIQQooCnnnqKp558nP++NIyn3lhtXm4K1H99AW5rA6BB/HrY+A/U7gPdvwIPLxtHFK7kjLp448aN9OnTp/gNUdnjIyMj8fX1tTnOPDNTJS309fUt9BimdaXdPyQkhHHjxvHGG29w7tw56tevb3O7qVOnWjysSk5OpkGDBoUe162UUzbpmJgY+vbtS05ODhs2bKBLly5lPmZ5iI6OxsPDwyJA9vHxYfz48bz44oucPXu2yL9lWfb38PCgQYMG7NixwzK4C73WUyXlJOQmq2my/Bu7T1I6W9w1gV5++YO9q/9CYKT6Kk15C14vxqL/jwp7gFHcQ43SBNPllSHeEYkcC3t4UNj9sffBT1GBfI12aix61hXIvqLGk+s9KsSDL5f3O7z++uv59ttvMRqN5rlJQ0NDZey5EEK4M301Js/5lsmTNzBvzlM8+X7emN5+b6jvPz8Pt7c1qEQ857+FX7pCh7elNd0NlXddHBkZyeLFi+3a1tQtPSwszNxVPT/TsvDw8GKPUdj+ISEhNlvX8zMFV1euXCk0QPf29i72OG7LUV2T833wNvo1ZOTIl0hLS2Pjxo3FdmnPyckhKSnJrtOEhIQ49LPh7t27ad68OYGBgRbLTdMJ7tmzp8gAvaT7p6WlkZGRQVJSEmvXruWnn35ixJA+tgMqN23Vs6m8s/A7Qv5gz8NHTTlW2vIWvN4TS4v+PyrqAYajH2qU9X+6HHvVFPrwoLD7Y++Dn6IC+YCmENRKDWnISYYaHcEvrEI8+HJ5gG6i1+upU6eOq4shhBCiJGr34Imp7/HEPcuY99H/eHJp3nzp/d9U31WgDiTugk33qOnYIp+UIN0NlVddXLduXcaOHVuifdq1a8emTZswGo0Wgdm2bdvw8/Mzd8W3pV69eoSGhrJz506rddu3b6ddu3bFnv/kyZOAelBR3jRNM/dccBpdHcjygLhd6oOtrg6kpQGq94TdXdLzffBe/mssW7du4/PPP7drvPnmzZvt7llx6tQpIiIi7CuTHeLi4grNUQAqx4Ej93/mmWdYtGgRoP7P7rrrLuZP7QOpv7vnPOaVSXm28hfX0lvYA4zyeKhR1uEG5TlHe8pJNXTDK0R9TzmZlzzQ1r2w98FPUX9bW+sqyOcOpwboZ86Ubh65/FOkCCGEcCP5kts8MS6ZJ/6zjvnfX+bxpZp5E1Og/tMU6H9DPOx9WS2QIN0lKkpdHBUVRXR0NKtWrTLPg37p0iVWrlzJoEGDLFquT5w4AUCTJk3My+6++26WLl1q0dX4jz/+4OjRozz11FPm7RISEqyC8PPnz/P555/Ttm1bm0GYo6Wnp+Pv71/u5ylatPmn1NRUqlevbt9u+Vrt5v/fetq0qM+4cePs2vWGG26wO2u6rWkAoXT5DYAy5Tgozf6TJ08mKiqK2NhYvvnmGwwGA9leYe4/frsyKM9Wfnfq4l/WspRnwr/cZEg7rZIf6j0hJ8kxc6sX9betCL07CuHUAD0iIqJUSUIMBkM5lEYIIYTDmD4IBDbhsRG/8Nh/zjL/hyQeX5Jj3mTAtWnVf5qSTn/D83D8E2j6kJqPVDK9O01FqYujoqLo0qUL48aN4+DBg9SqVYsFCxZgMBisErPdeuutgBr/bPLiiy+ycuVK+vTpw5NPPklqaipz586lTZs2FgHklClTOHHiBLfeeivh4eHExMSwaNEi0tLSeP/9951yrRXatVa7SzE72HnkKnNeHGb3rjVq1KBv375lOn1p8hsAZcpxUJr9IyMjzecePXo0/fr1Y9ADc9i29i10aaddH9yJ0nGnILCsZSnPhH+egSqhnldNNQY8Mw6ObSuf1vpKwKmfiD7//HPXZfEUQghRfkwfDGr3gPh+EPszj40/x2MPGFmwdC2PfpbXfVcF6jn88Nwh7kh5GuI3QI9oCdKdpKLUxR4eHvz4448899xzzJs3j4yMDDp27MiSJUto0aJFsfs3aNCADRs28PTTT/PCCy/g5eXFwIEDeeeddyxaPvv168dHH33Ehx9+yNWrVwkODqZnz568/PLLtG/fvjwv0czPz4/U1FSnnMsefn5+9m98Lag8tO4XNO1Hbuxxp927Zmdnc+XKFbu2DQ0NxcPDw2p5afIbmH4+f/681Tb25Dgo0f6aUb3Hxf56bcd+UKcXUVFRTJw4kaNJYbRo0duu8gtRrsp1KEBjlZjNmHVtijN92Vvry3PMvIs59dNQScefCSGEqGB0eqjTR30BaEYeqf4Cj9zyHgt/z+WRfJ+jB85V379/7jsGeoyBZhMqVQXrripSXVyjRg0+/fRTPv300yK3y99ynl+rVq2splAr6N577+Xee+8tbREdQqfT2d+l3N1ceziXFpwBzEGntw6iC7Nly5Yyj0EvTX4DUDkO1q1bR3JyskWit23btpnXO2T/+E2wfzYkHVHTe13eDjq9uQu8vUnyhCh3zhwKoBnVHPCJ/6oEbsmHVZf3wj4D2ArGSzVXekPQgLQzbh3U6zRN04rfTLhKcnIyQUFBJCUlWWUKFUKICuHiBvjnKUhUmd4/+h0ettHg9d0LNfjPnSPhpv9W6tZ0eV+vvKry3/bw4cO0bNmSSZMmsXDhQrv2uXr1Kv/8849d23bv3t08vtsRtm3bRpcuXSzmMc/KyqJ169bUrFmTv//+27xteno6Z86coVatWtSqVatE+8dv/4Dal5dA7rVeRNX8yLnuEbrct4BDhw4RHx/vBvkHhCiD0rRkm/aJ/Vk9tPIMVBn2m02yDLLzb3fl2nb6a9ulxsD5Ndda4f+FgALT55nKcHFDXiCfk6QCdK8g0HlBaFfwDC6y3K54X6+8n4CEEEK4h9o9oP3bsPs5SNzLpL65TOoLi/6ASZ/nbTbojavwxoesfWMvg8a+6rZPtoUQ1iIjI7n99tv56KOPuHjxIv369SMiIoJbbrkFLy8vm/s4Ygx6aXXu3Jlhw4YxdepU4uPjadq0KUuXLiUmJobPPvvMYtvt27fTp08fZsyYwcyZM0u0/8SZ35B84RQ9m+dSL8SDCxk1+N/mVzh87AzvvPOOBOei4ovfBEcXQmYsGLIgYqTKLWNaZytwN7XWp8ZAypHCu7qbWslTjkLGRQi7FVJPwqnlENwa9F4qOE87DUmHwScUfK4NLzEdJ3/yu/PfqWW1e8DFPyHmS/ALd7tx8PLJRwghRPnS6aHuLXD7Nqg/DLxqA9WYeCto/4NF4y03H/zCJnR1e7P2wwfU03MhRIUQHR3Ns88+y969e3nyyScZMGAAQ4cOdXWxCvXFF18wefJkli1bxhNPPEFOTg7ff/89PXv2dNj+I0Y9jD6gMQt/N/LwJ8m8u/oS9Rs1Y82aNTz99NPldWlClIxmVC3NJ5aq7yWpe1NjVHCefRXSz6qgN35TXnB9fo36Hr/Jet/iEtOZg+s2aohIwlbVPT3liPq5VlfVcp6bCdmJqgyZsWo/W+fwClYt5ol71cMED08VuBszVSt9aa6/HEgXdzdXlbvLCSEqIVNXs6QDasyZZgRUdvBP/oQJn1nvsnrxqwwZ82KlaU2X9/XKS/62lqZOncobb7zBlStXqFGjhquLI4QoqKgu5Pa2Jl/cALunqODcKwS8a0DjB9U6cxf0vVBvCDQZY/v8BVvZLbrAb1PBdPbVa13hPaH2LZC0Tx0T4OSnkHUVsq+AXwO48a288hc2Bj0nES5tBWO2Zdd3vbfF9UsXdyGEEJWbKVFMygk4/z1c3QOGDMi+wkO3ZPPQLfDZenjwk7xdho6bBuOm8e2337p1a5wQwlJoaCi+vr4lywovhHAeqy7kfVXStpJkVa/dQ3Vrj/lSBc++9fJawgu2jtsKyG0lpjMngMtUgXRuhuq+TjXQ61Rwnr/F3bee+l7NHyLutcxAX1jyO80INdqpsiQfVl/lMQd8KbhFgJ6VlcWuXbuIj4/n5ptvNifgEEIIUcnkryibjL1WUZ+EK7vg9NeQfYnxvTXG97YO1O+8U03f9O2q/2PonXe5ovRCCDt98MEHzJw5k9GjR1tMa1elVeJpoYQbK+p1l78LeeZFSNwHAc1LNge6Tq/GnJuCXdM5NKN6CJ+4X40XD7258PHqBf8PzOW6QbV2V/ODOrfA1X9VIrj8yeDy71OS/6v8n0cuboDUU2pcuiFLPRTQjC77/3T5u8K8efMICwuje/fu3HXXXezduxeAS5cuUatWLT7//PNijiCEEKJCMlWOTcbBTe9Dt/9BcDvAE4DxvdUY9c8estztzrvuRqfT8e233zq7xJWSXq/Hw8Oj2C8hSuKLL75g5MiRvPvuu64uivuwZ0yuEI5W1OvOND47OwkCWkDdfqp7d0nnQDfX52PUd50eEjbDpb8h+7L6bu5KvwtSjqmkbscWqeC4IP8IlQDu4h+ql52mqeDcwwfC+1uex9a5S6p2D5XR3ZANHl6q63v8BlW2kytKfrwycmkL+uLFi5k8eTL33HMP/fr144EHHjCvq1WrFrfccgtfffWVxXIhhBCVkE4P4bdBRiwceV91tzOkAfBAb3igt44lGzTGfZy3y113qVb06Oho7r77bhcUunKYPn06Op3OYpnBYCAmJobVq1fTokUL/vOf/7iodKKi2rFjh6uL4H7yZ5N2g260ooqwet2dzFtevSE0mwCp5TAveMHzxv2qxrlnxoEhHXSekHEWjn9qHVjX7qFa32NWgHdNtW1gpArOS/rwwB46vUoe5xeeV97zv8CVHZB02fHnK4ZLA/R33nmHIUOGsGLFCi5ftr74Dh06MG/ePBeUTAghhEv4R4BXDagWBMYc0HJVxaxlMbYXjO0FSzfC2EV5u0RFRQESqJeWadooW+Li4ujSpQvNmzd3XoGEqKyKy1gtRHko+LrLSc6bF9yUEK1g8rbyOC+oJG/VIyD5EGAEQy5c3a1a1/M/rDIHzPVU9/uLf0LWpdKXxZ7hJQXLm35WZYvPdX4ODZcG6MePH+eJJ54odH1ISIjNwF0IIUQlVbsHtH5ZPWlPO6OetKefg9TjqBSrMKan+vpiE4z5KG9XU6D+zTffMGzYMBcUvvIJCwtj0qRJvPrqq9x7772uLo4QFZup5S9/kCBEfiXJU2CaGi3uV/V7eD+obaOLd8HXXcrJkvfkKE3+hILnxQjHYsA7GKpVB81wbd7ymrbLYAqYL/6pPg+gUw8WoOQ9T8xJ57Is5zwvmOG96QR1Lv8IiP0R4lFd7J3MpQF6cHAwly4V/jTk4MGD1K1b14klEkII4VI6PdTto77yT7NyNvpakJ5ndA/1VTBQHz58OCCBuqNUr16dU6dOuboYQlR8hWWTFsKksECysG33z1atvBqq+3hrvfX2tl53Je3JUZJyFXZezQjo1QOC4F1websaZ46nyqB+cYNKJJew2bL7/akVgA5q91HZ20szNKSw4SUFr8uiN4ERLvwGKc6v/1yaJO6OO+7g448/JjEx0WrdgQMH+OSTTxg8eLDzCyaEEML1TJV7u9eg0yI17ynWycpG91DJ5JY96mOxfPjw4eh0Or755hsnFbjy2b9/P/PmzZMu7kII4Qz5A0ljlvq9qG1zEqFaAHj6Q9pZOLVcBbqasfD9avdQgWi9IfYnhCtJuQpjqtObXksMe+NbENpdTZuWclgFykc/zEtod/xjQA/X3a+mUTNNrVa9obrGE0uLv1YTq+El145xajlknFPd6AteV+1eUPd28G9U8mstI5e2oM+ePZvOnTvTunVrBg0ahE6nY+nSpXz++ef83//9H2FhYUyfPt2VRRRCCOFqOj3UvQXq9IbN98HZ/wMtx2qz+7tlcn83+N9muH9B3vIRI0YwYsQIvvzyS+655x7nlbuCuO6666ySxAEkJiaSlJSEn58fq1evdn7BhBCiqilJngL/CDVOO/OiCi7Rq9b04rqB22pRL64LuyPyJ9jqkh/YXJXZ1LKduF9dS1AbiF+nAujrRlp2Pcdo3Zpfu0fR5bfobt8QruyB01+p7uvZicCf4Fvf8rp0epWULv4Y8G/Jr7cMdJqmaU49YwHx8fG8+OKLrFq1ytySHhAQwN13380bb7xB7dq1XVk8l0tOTiYoKIikpCQCAwNdXRwhhHCtC+tg1zOQtN9mkJ5Hz4rz93LflP9ZrXF1oO5u7+tjx461CtB1Oh01atSgSZMm3HPPPYSEhLiodBWLu/1thRAVTGnHoCfug5wkNVd40j7VOm4r8Vthx7+4wbqrd0kCeHtc3AD7Xsnrkh/UAuoNVlOwmc5bq4v6PeM8pJ0Gv4Zq2rOQTnkZ3E8uUy3spqC+3hBVJlP5dV5qyjTPYMuy5h82d34NZF8FvY9KRht8A7R8xjqbvGYk+cTPBDUb6NT3dZcH6PklJCRgNBoJDQ1Fr3f5FO1uQSp7IYTIx/SB5NjHEPs9GFKL3j6oNV9eeYaRo8dZrfrf//7HyJEjy6mghZP39cpL/rZCVFGOCGDLomCA3XSCOr+9gfiJpXB+NXgGqWC/zm1Q7/bCp18rzfWeWApH50Fuuvq9mh80ewwCIiD2Wqt6WF9Ar6ZXSzkM/o0h7g/wrQMBzVV5wfoaUmPygvaLf6r5zP3CLa/RdO0pR1VrvL6aaj3X+0DN9tB6us1eB654X3dpF/eCQkNDXV0EIYQQ7syURK5OL9WavvMJSDmGehyfa7190n7u9ZjAvT914st9zRiZr0X9vvvu47777nNZoF6RaJpmsxu8EEII7E+iZm/m9fzb2xMI28yYbqM8prHk+buQgxrXnZMMl3aADrjwK1zdoQJ2W93IcxIhYSto2fYnjcvfJV9DBdABjdW6tGvlSotRAfV198PRheochjTwDgVDpjp341H5rrWhukfJh1UPgsR/wZClWt0LJoQzj6Nvc21YQC54+ELNTlDNt3TJ58qJWzVTHz58mFdffZVHHnmEefPmkZyc7OoiCSGEcEc6PYTdCh3nqw8NPuHYSiCn5MCV7dxbbwXausF8tcKy2/t9992HTqdj+fLl5V7siiY7O5uPP/6YFi1auLooQgjhvuxNombKvB6zDE4tUz/Hbyr8uKbA//wa9b2wbU3jypuMuRaMnrFdHtNY8vh1qgu5KTmbDtWN3LcO1O0L6FTrcv7985cl5kvIjC1Z0jjTNKoRo+C6Uern2j1s37vaPVQ3dX010FVTw9qyk9SDgZPL1PEajwL0Kplc8mEV9AdEQsRIlVSu4Hh507VnJ0FAC6h7K9S4UQXpep/SjasvJ05vQZ8/fz7z5s1jy5Yt1KpVy7z8u+++Y9iwYWRnZ5uXzZs3j7///ttiOyGEEMLMNF4s9mc4+y2knVJP9G3SIHYtI8JhhCGHb6JXMWLECPPaUaNGMWrUKL744gtGjRrlnPK7UHZ2NmvXruXEiRPUqFGD//znP4SHhwOQnp7O/Pnz+e9//8uFCxdo0qSJi0srhBBuzN4kavkzr4MKgotquS04PVjKybzlRbWoF1YeU0v7qeWq5dm/sUrMFvsrhPVTLdg5yeAVrIL2/PvnL0tWgmqpLknSuPzTqNpT1owL4OEDIR0g4yLor3V99/C+9lA+3/2pcYPaPzBSBe412lneI1BTuF3do663Tm9o9jBc2pzXvV4zqi9nDk0ohNMD9LVr19KkSROLoDs3N5cHH3wQDw8PFi9ezE033cQPP/zASy+9xGuvvcZ7773n7GIKIYSoCEytBrV7gG9dVXmnxkB2fOH7xK6FVXUZHjGC4blZrFy1xjx3OsDo0aMZPXp0pQ7UY2Nj6d27NydOnMCUisbX15e1a9fi5eXFyJEjOX/+PJ06deKDDz7grrvucnGJhRDCjRXsYl7Y1GW2unkXl6k9f/Cam1x0V3pTl/iUkyrhmmegCsJN5THVmaAStl34I28O9fB+eeO5qzdUAXr+MeiQVxbfelCrQCK20rJ17+I3qXnSM+MhIx58a0NGrHqg4V3Tcvv896d6w8KHBCRszktId+lvFcSjt+xen//+uJDTA/SDBw/y0EMPWSxbt24dCQkJvPjii4wZozIOtmrVin///Zcff/zRZQF6YmIiU6ZM4dtvvyU9PZ1OnTrxzjvv0L59+yL3MxqNfPHFF6xatYrdu3dz5coVrrvuOu655x6effZZfHx8itxfCCFECen00OJxVeGmnISDr0Pq8cK3z74MxxfAmf9j2NCTaJpGdHQ0w4YNM29iCtSXLFlirpsqi5deeolTp04xZcoUevTowalTp3jllVeYMGECly5dolWrVixfvpxevVz/QUUIIdyeranLbDF187YYg15EcFsweE09adminr/13ZgL/zwF539Q86IHtIQWj6j1prHvpuOE3qzGXuckqjHZOUkqGDd1kTepU0RZHJUIz9a9S41RDxfq9lVJ63zCVBnRQ9Zl8PCzfDBQ3Nh7UPcu4xx41VTfU0+q4xV2P13I6W34ly9fpkGDBhbL/vjjD3Q6HXfeeafF8ptvvpkzZ844s3hmRqORgQMHsmLFCh577DHeeust4uPj6d27N8eOHSty3/T0dMaNG0dCQgKTJk3iv//9L506dWLGjBkMGDAAN0qcL4QQlYepkm86DjouUE/4i5N9EVZHwOH3ibprqDlQz880DdnSpUvLp9wu8NtvvzFu3DjmzJnDHXfcwaOPPsqCBQs4deoUPXv25K+//pLgXFRJWVlZPP/884SHh+Pr60vnzp357bff7Np3/fr16HQ6m19///23xbapqanMmDGD/v37ExISgk6nY8mSJeVwRcKtmLp53zhHfdXpU3SQW3BsuX/jwrvSH/0QTq9QLc3pZyDlUN7Y8IJj2RM2q2nLApqrLu32jMEuWJbSBuemhwUnlqrvmtF6G/8I1b09J1mVMew28KsH3jXAr4F6uJB6Ul1X7R7Fj70Hday0M6plPu2M+t0R87uXA6e3oNepU4cLFy5YLNu0aRN+fn7ccMMNFsu9vLzw8vJyZvHMoqOj2bJlCytXriQqKgqA4cOH07x5c2bMmMGKFSsK3dfLy4vNmzfTrVs387KHHnqIiIgIZsyYwR9//EHfvn3L/RqEEKLKqnsrdFsG53+C099CxglUPz4bchJg12Q4OBe6fM7dd92JpmmsWrWKu+++27zZ2LFjGTt2LJ9//jnjxllP21aRXLx4kS5dulgsM/3+wAMPyFSnosoaO3Ys0dHRTJ48mWbNmrFkyRLuuOMO1q1bR/fu3e06xhNPPEHHjh0tljVt2tTi90uXLvHKK6/QsGFDbrjhBtavX++oSxAVTUmmLCuqK33ifvXdM1AFnzmpqoX8xFKVRM2QmTdW2yobekTZuqmXhK2M9/kzxJta+POXLfTmvHHlpgzy57+zbiUvLODWjJAepx5E+DUAdFAt0P6hCU7m9AD9pptuYunSpTz++OMEBARw4MABtm/fzpAhQ6hWzbI4hw8fpn79+s4uIqAC9Dp16liMuwsNDWX48OEsX76crKwsvL29be7r5eVlEZyb3HnnncyYMYNDhw5JgC6EEOVJp1ctE3X6QLvXVbe/M9EqsQ0G2/tknof1t0Pjh6DTAu666y40TePbb7+1qAseeOABHnjgAT777DMeeOAB51yPgxkMBqvhVqbfg4KCXFEkUYllZmZWiOF927dv56uvvmLu3Lk8++yzgBrq0rp1a6ZMmcKWLVvsOk6PHj3MjTuFCQsLIy4ujrp167Jz506rgF5UIfZO0QZFd6UPbg0XfoHcNPCsrgLaS1vBmK26h2tYBq6FHau853QvmPjO1Mpt6x5YdLfvlTdnu5Ztu1u6rYBbM8KRD1T+mewrkHMFvGqp8fy2zuMGnP6IfMaMGZw+fZpmzZpx6623cvPNN6PT6Zg6darVtt9++63NQNcZdu/eTfv27a1aETp16kR6ejpHjx4t8TFNPQckK70QQjiRvhrc9D50XwGRT4PO9sNVs5OfwKZhajwf6uGqqUU9v/Hjx6PT6fj888/Lq+TlKiYmhl27dpm/9u7dC8CxY8cslpu+hLDHbbfdRrdu3di0aRO9evXC19eXJ5980tXFskt0dDQeHh5MmDDBvMzHx4fx48ezdetWzp49a/exUlJSyM3NLXS9t7c3devWLVN5RTmzpyu2I9g7RVtRNCMEtYZaPaBmV2g9DeoNVMF5cFvVql6zE9QbohLBFdVSbO/UbqVlq5W7JPegqG7ptrrhx29SCWSzr6op23IzQTOohxdFXZvp73+y8F7T5cXpLeht2rThzz//5LXXXuPkyZN06dKFZ599lg4dOlhst379evz8/CwS9jhTXFwcPXv2tFoeFhYGqAy4bdq0KdEx33rrLQIDAxkwYECh22RlZZGVlWX+XeaCF0IIB8jfon5lF8T/SaFd3gHOr4boUGj9IkQ+Bfpq5kB9zZo1DB061Lzp+PHjGT9+PJ988gkPPvhgeV+Jw0ybNo1p06ZZLX/kkUcsftc0DZ1Oh8FQSM8DIfLZu3cvwcHBDB06lIceeoiRI0dade8uSk5ODklJSXZtGxIS4tDhGLt376Z58+YEBgZaLO/UqRMAe/bsscqjZMu4ceNITU3Fw8ODHj16MHfuXG666SaHlVM4SUlatsvCEeOg4zfBiU9VWT0D1PzekO+4PmrMuT3lt9XC7cjrLqxbub33oKTd0lNj1NRs3rUg/SzoPSG0mxoGUNS1mf7+Kal2XpjjOD1AB+jWrRs//PBDkdv07t2bffv2OeR8RqPRYn71onh7e6PT6cjIyLDZhd3URSsjI6NEZXj99df5/fffWbBgAcHBwYVuN2fOHGbNmlWiYwshhCiB65+HlMMqkU5RQXpuIux5AWK+hLr9IPx2qNOLIUOGoGkaa9euZciQIebNH3roIR566CEWLVpk0QLnjhYvXuzqIohKKD4+nvj4eNLT09mxYweRkZElPsbmzZvp06dP8RsCp06dIiIiosTnKExcXJy5ISa//I0zRfHy8uLuu+/mjjvuoFatWhw8eJC3336bHj16sGXLFm688UaHlVU4gUWg+i/E/lw+3b4dMQ7aVlBd2jHmVg8MGlpmgC/rtdvqWl+Se2BvxnwT/4i8edMNuUAuXN0LXjXUtGyFMd3ToNbA9/ady0FcEqA728aNG+1+sz906BCRkZH4+vpatGSbZGZmAmq+WHt9/fXXvPzyy4wfP56HH364yG2nTp3K008/bf49OTnZrqe1Qggh7BR2LYHcuZ/h4u+QfAKMhbXYGSFxt/o6PA/azoRWz4JOz+DBg9E0je+++47Bgweb95g4cSITJ05060C9sk0bV+WV95hRO5mGSbz44oulCs4BbrjhBruzphfWRbw0DTNAmRtnunXrZjE0c/DgwURFRdG2bVumTp3Kzz//bFeZhJvIH6jmJKvs3ylHHN+aXtKA0xZbrfClPW7BYFkzwvES9iQo6XuSI+5BYfJfT/bVa2PRk9Q877oiymu6p0n7HV+mYrg0QB8/fjzvvfeeVVciR4uMjLS7tcD0lNSUvKMg07Lw8HC7jvfbb78xevRoBg4cyEcffVTs9t7e3oUmnxNCCOEA+bu7m8aYHfsEYr8DQ1Fd2TJg30yo5q3mXL/2YWPQoEFomsb333/PoEGDzFubAvWPPvqIiRMnlu81iarNWV1xi2Hq+ThixAiL5REREcTHx6PX6wkICGD48OG88847VsmBAWrUqFHmRLqlaZgBHNo4Y9K0aVOGDBnCqlWrMBgMeHh4lPgYwkXyB3bJh9WXm82XbebIbOQFg+UTS0ve5b0070nl9aAx//WcWAqewRDa89q1nFFzvReWWR4g7hCVsgX99ddft7nclCnd39+fF198sdzOX7duXcaOHVuifdq1a8emTZswGo0W45u2bduGn58fzZs3L/YY27Zt48477+Smm27im2++sVkRCSGEcCHTnLR1esHh9+Hgu5B1rvDttQzY9RQceR8G7AUvf/Oq//znPzYD9UmTJjFp0iQWLlzIpEmTyvNqinXkyBEOHz5Mly5dqFOnDnv27GHDhg20adOGW265xaVlE2VQ3mNG7bR3717CwsJo3Lix1bpff/2V7t27c+zYMXr27ElkZKTNXoXZ2dlcuXLFrvOFhobaDHhL0zBj+vn8+fNW25S0caagBg0akJ2dTVpaWrk3SgkHyh/YXdwAaTFuN1+2WXm2QJdmjHxp3pMc/aCxqFbxgtdSWHnr9ALfG4Gie0A7mlMixmnTptGpUydatmyJpuWN98vJyeHkyZP4+fk5oxglEhUVRXR0NKtWrTJPlXHp0iVWrlzJoEGDLFq5T5w4AUCTJk3Myw4dOsTAgQOJiIjg+++/L9VTVyGEEE6i00Pkk2pammOfQOwaMKQXsrEGaacgOgB8m0CnDyH8NvOTflOg/uOPPzJw4EDzXg8//DAPP/ww77zzTvlfjw2fffYZTz31FC1btuTs2bO8+eabvPDCC3Tr1o05c+bw7LPPmqeWEhWMI5JMOcDevXu54YYbitymWbNm9OjRgwMHDthcv2XLljKPQS9Nwwyoxpl169aRnJxsEUhv27bNvL40Tp48iY+PD/7+/sVvLNyTm86X7RT2XrtmhPgNEPsrpJ2BrES4+i94+JRfUF+UolrFC16LrfdQU4Afd6j0ZSglpwTof/31F08//TRBQUHMmjXL/Kb3888/M2/ePGrXru2MYpRIVFQUXbp0Ydy4cRw8eJBatWqxYMECDAaDVRK3W2+9FVBT1oCaWuP222/n6tWrPPfcc1YJ8Zo0aULXrl2dch1CCCHsZNGa/l/YMw20woL0azJOwIb+auqa7t+Ah5d51R133IGmafz000/ccccd5uXPPPNMOV1A0ebMmcOGDRu48cYb2b59O927d+eff/6hTZs2HDx4kIEDB0qAXlG5QfBgMBg4ePAgt912W5HbHTlyhE2bNvHqq6/aXO+IMeilFRUVxdtvv83HH39s/l/Iyspi8eLFdO7c2SInUHp6OmfOnKFWrVrm6XMTEhIIDQ21OOa///7L2rVrGTBggEMzzgsnK88Wandn77XHb4L9syHpiBrb7VMbanVW2eOLDOqvtXLnJILOy3EPGotqFS94LQXfQ0NvVnOnx6yATOcPS3FKgN61a1e2bNnCxx9/TJcuXXjqqad48MEHzUk53JGHhwc//vgjzz33HPPmzSMjI4OOHTuyZMkSWrRoUeS+ly9fNs+V+cILL1itHzNmjAToQgjhrnR6iJwM6GDfq5B7tfh9zq+BTVHQa7XVmLkBAwbYDNSdLSEhwZxFukOHDmiaRuvWrQG4/vrr7e5WLNyQGwQPx44dIzMzs9AW9AEDBuDh4UFISAhjx47lgQcesLmdI8agl1bnzp0ZNmwYU6dOJT4+nqZNm7J06VJiYmL47LPPLLbdvn07ffr0YcaMGcycORNQY+99fX3p1q0btWvX5uDBg3z88cf4+fnxxhtvWJ1v/vz5JCYmmrPDf/fdd5w7p4bYPP744wQFBZXvBQvhKJpRZblPOQF6D/DwBXQQGGn9vlQwKL+0Vc3XrveC0K5qjLgjHjSWpGdRwffQC+vg2CI124shuGzlKAWnDYrW6XRMnDiRqKgoXn75ZTp27EhqqvPnlSuJGjVq8Omnn/Lpp58WuZ2p5dwkIiLCoiu/EEKICsbU5V2ng2MfQ/oZMKQVvU/sd/DHbdD6JajTu9BAfePGjfTq5fxAqk2bNrz22mvcc889LFu2jAYNGrB69WruvPNOvvvuO5vjhoWwlylBXNu2bW2u/+mnn+jevbszi1QqX3zxBdOmTWPZsmVcvXqVtm3b8v3339OzZ89i9x06dCj/+9//ePfdd0lOTiY0NJS77rqLGTNm2JwL/u233+b06dPm31etWsWqVasAuP/++yVAFxVH/CaV5d6QBjmp4OkPvvVsB8X5u56nn1c9z+rcqgJpz2Bo4qBZRsrSsyjuV8hOUA8TMi44pjwloNNcFEmaEtNMnDjRPH2FsJacnExQUBBJSUmSWEQIIZzN9KQ/5QSc/w7OrwWMRe+j84GglhB227Wufb0sgnVXva//+++/jBo1itOnT/P444/Tv39/Bg4ciL+/P+np6XzzzTfFdk8WRZM627aIiAiWL19eIQJ0IUQpnFgK51aDVyAkbIWA5tDyGdUiXTAT+4mlqtdZcFu4+CcYssEvXLVyN5vkHsMIdk+FU8tAryc5KYWgsYlOfV93Sgv6e++9x913303DhnmTwbdr167UyTaEEEIIp8jf7a3JWDj0Hux9ST35L4yWmTd3+tlV0OkjqHur04pcmBtuuME8T7VJTEwMJ06coHnz5hJQCiGEKB3/CJUMLicFQjoUHWjn73ruE+7Ybu2OEt4PrmyH7ESocR2w0amnd0qA/uyzz/L888/TtWtXxowZQ1RUlHwQEEIIUbHo9NDyKUAHB9+E7MuAoeh9Uo/DtknwnwMWCeRc5erVq3z77bccOHCAtLQ06tevT6dOnaROFkIIUXol6U5ua1tHzHfuSLV7QWu9KqMWirMDdKd0cQ8ICODo0aP873//Y/ny5Rw7doxBgwYxevRo+vfvL1ktiyDd5YQQws1oRjUn7vmf4epOuLwDDCnF7OQBYXdAj29ITs92yfv6hg0biIqK4sYbb0TTNDZs2MA999zDiRMn0DSN1atXu+WsKhWJ1NlCCFG5uOJ93SmRsU6nIywsjGeffZY9e/awdetWGjZsyIQJEwgPD+epp55yRjGEEEKIsjNNx9bhTej7BzR7BPS+xexkgLjv4JtA1U3eBR599FG++uorfv31V3777TfWrl1LQkICmzdv5s477+TRRx91SbmEEEIIkcclTddt27blrbfe4uzZsyxbtkymdhFCCFFx1bsdAluo+VuLlQP7ZpZ3iWw6e/Yst9xyi/n3vn37snPnTkAF7/bOPe1MiYmJTJgwgdDQUKpXr06fPn3YtWuXXftu376dRx55hA4dOuDp6Vns1K6fffYZLVu2xMfHh2bNmvHBBx844hKEEEIUZOqJdmKp+q4Vk3y1inFKgF5YL3qdTsdtt93G0qVLnVEMIYQQwvFq94L270KLyVCjPXiGuLpENrVr144FCxaYf58/fz6tWrUCwMPDo9gA1tmMRiMDBw5kxYoVPPbYY7z11lvEx8fTu3dvjh07Vuz+P/74I59++ik6na7YKeQWLVrEgw8+SKtWrfjggw/o2rUrTzzxBG+++aajLkcIIYSJaaq182vU9/hNri6RW3HZNGvCPjKeTQghKhDNCPEb4OgiOP89GK3nTk9Oh6CHcPr7+sGDBxkyZAiJiYlomkZwcDCrV6+mdevW7Nu3j8WLF/Puu+86rTzF+eabbxgxYgQrV64kKioKgISEBJo3b86AAQNYsWJFkftfvHiRwMBAfH19eeyxx/jwww9tNhhkZGTQoEEDunTpwvfff29efv/997N69WrOnj1LjRo17Cqz1NlCCGGH/FOtJe6FekMcN/+5g1XaMehCCCFElaDTQ50+0H0F9P4OWjwHvkW33jrL9ddfz6FDh1i/fj0bNmzg8OHDtG7dGoA2bdq4VXAOEB0dTZ06dbjrrrvMy0JDQxk+fDhr1qwhK6uIqe6AOnXq4OtbXG4AWLduHZcvX+aRRx6xWP7oo4+SlpbGDz/8ULoLEEIIYVv+qdb03ur38laButVLgC6EEEI4mjmR3Fsw9Bjc+B5UC3J1qahWrRqtWrWiVatWVKvmlJlWS2337t20b9/eaqaXTp06kZ6eztGjRx12HoCbbrrJYnmHDh3Q6/Xm9UIIIRykdg81V3q9Ieq7M+Y/r0Dd6iVAF0IIIcqTTg+RT0CTieAR4OrSVBhxcXGEhYVZLTcti42Nddh5PDw8rKaY8/LyombNmkWeJysri+TkZIsvIYQQxdDpoU4v1a29Ti/nzIOeGgPGLNWt3pilfndT7v34XAghhKgMdHqofwekxYB+P3DQ1SVyKqPRSHZ2tl3bent7o9PpyMjIwNvb22q9j48PoMaOO0JGRgZeXrYz8Pv4+BR5njlz5jBr1iyHlEMIIUQ5ckW3+lKSAF0IIYRwBlMXvsBDwMMuLYqzbdy4kT59+ti17aFDh4iMjMTX19fmOPPMzEwAu8aX28PX17fQhweZmZlFnmfq1Kk8/fTT5t+Tk5Np0KCBQ8olhBDCgUx1cGqMCs6d0a2+lCRAF0IIIZzB1KXP90aqWoAeGRnJ4sWL7drW1IU9LCyMuLg4q/WmZeHh4Q4pW1hYGAaDgfj4eItu7tnZ2Vy+fLnI83h7e9ts5RdCCOFmTHVwnV6uLkmxJEAXQgghRLmqW7cuY8eOLdE+7dq1Y9OmTRiNRotEcdu2bcPPz4/mzZs7pGzt2rUDYOfOndxxxx3m5Tt37sRoNJrXCyGEEM4gSeKEEEII4XaioqK4ePEiq1atMi+7dOkSK1euZNCgQRYt1ydOnODEiROlOs8tt9xCSEgICxcutFi+cOFC/Pz8GDhwYOkuQAghhCgFaUEXQgghhNuJioqiS5cujBs3joMHD1KrVi0WLFiAwWCwSsx26623AhATE2Nedvr0aZYtWwao1nCA2bNnA9CoUSNGjRoFqDHor776Ko8++ijDhg3j9ttvZ9OmTSxfvpzXXnuNkJCQ8r5UIYQQwkynaZrm6kKIwiUnJxMUFERSUhKBgYGuLo4QQogykvd1+129epXnnnuO1atXk5GRQceOHXn77bet5iyPiIgALAP09evXF5qYrlevXqxfv95i2SeffMI777zDqVOnaNCgAY899hhPPvkkOp3O7vLK31YIISoXV7yvS4Du5qSyF0KIykXe1ysv+dsKIUTl4or3deni7uZMz0+Sk5NdXBIhhBCOYHo/l+fjlY/U2UIIUbm4os6WAN3NXb58GUDmVRVCiErm8uXLBAUFuboYwoGkzhZCiMrJmXW2BOhuzpSc5syZM/JBzomSk5Np0KABZ8+elW6KTiL33DXkvjtfUlISDRs2lORjlZDU2c4n72GuIffd+eSeu4Yr6mwJ0N2cae7XoKAg+Wd0gcDAQLnvTib33DXkvjtf/rm9ReUgdbbryHuYa8h9dz65567hzDpbPh0IIYQQQgghhBBuQAJ0IYQQQgghhBDCDUiA7ua8vb2ZMWMG3t7eri5KlSL33fnknruG3Hfnk3teecnf1vnknruG3Hfnk3vuGq647zIPuhBCCCGEEEII4QakBV0IIYQQQgghhHADEqALIYQQQgghhBBuQAJ0IYQQQgghhBDCDUiA7mbi4uJ44YUX6NOnDwEBAeh0OtavX1+iY5w/f57hw4cTHBxMYGAgQ4YM4eTJk+VT4EoiMTGRCRMmEBoaSvXq1enTpw+7du2ya9+xY8ei0+msviIjI8u51BVDVlYWzz//POHh4fj6+tK5c2d+++03u/aV13Lplfa+z5w50+br2cfHxwmlrthSU1OZMWMG/fv3JyQkBJ1Ox5IlS+zevyzvQ8L5pL52Hamzy4/U2c4n9bXzuXt9Xc1hRxIOceTIEd58802aNWtGmzZt2Lp1a4n2T01NpU+fPiQlJfHiiy/i6enJe++9R69evdizZw81a9Ysp5JXXEajkYEDB/Lvv//y3HPPUatWLRYsWEDv3r35559/aNasWbHH8Pb25tNPP7VYFhQUVF5FrlDGjh1LdHQ0kydPplmzZixZsoQ77riDdevW0b1790L3k9dy2ZT2vpssXLgQf39/8+8eHh7lWdxK4dKlS7zyyis0bNiQG264oUTBmiPeh4RzSX3tGlJnly+ps51P6mvnc/v6WhNuJTk5Wbt8+bKmaZq2cuVKDdDWrVtn9/5vvvmmBmjbt283Lzt06JDm4eGhTZ061dHFrRS+/vprDdBWrlxpXhYfH68FBwdr9957b7H7jxkzRqtevXp5FrHC2rZtmwZoc+fONS/LyMjQmjRponXt2rXIfeW1XHplue8zZszQAC0hIaG8i1npZGZmanFxcZqmadqOHTs0QFu8eLFd+5b1fUg4n9TXriF1dvmROtv5pL52DXevr6WLu5sJCAggJCSk1PtHR0fTsWNHOnbsaF4WGRnJrbfeyjfffOOIIlY60dHR1KlTh7vuusu8LDQ0lOHDh7NmzRqysrLsOo7BYCA5Obm8ilkhRUdH4+HhwYQJE8zLfHx8GD9+PFu3buXs2bNF7iuv5dIpy3030TSN5ORkNJmJ027e3t7UrVu3VPs66n1IOI/U164hdXb5kTrb+aS+dg13r68lQK9EjEYje/fu5aabbrJa16lTJ06cOEFKSooLSubedu/eTfv27dHrLf8dOnXqRHp6OkePHi32GOnp6QQGBhIUFERISAiPPvooqamp5VXkCmP37t00b96cwMBAi+WdOnUCYM+ePTb3k9dy2ZT2vufXuHFjgoKCCAgI4P777+fixYvlUVRxjSPeh0TFIe9xpSd1dvmROtv5pL6ueJxRX0uAXolcuXKFrKwswsLCrNaZlsXGxjq7WG4vLi6uTPcsLCyMKVOmsHjxYr788ksGDx7MggUL6N+/P7m5ueVS5oqitPdWXstlU5bXdI0aNXjsscdYtGgR0dHRPPjgg3z99df06NFDWpvKUVnfh0TFIu9xpSd1dvmROtv5pL6ueJxRX0uSuHJkNBrJzs62a1tvb290Ol2ZzpeRkWE+VkGmjI6mbSqr0tzzjIyMMt2zOXPmWPx+zz330Lx5c1566SWio6O555577Cx95VPaeyuv5bIpy2v6ySeftPj97rvvplOnTtx3330sWLCAF154wbGFFUDZ/mai7KS+dg2ps92L1NnOJ/V1xeOM+lpa0MvRxo0b8fX1tevryJEjZT6fr68vgM2xD5mZmRbbVFaluee+vr4Ov2dPPfUUer2e33//vWwXVMGV9t7Ka7lsHP2aHjlyJHXr1q3yr+fyVB7vQ8J+Ul+7htTZ7kXqbOeT+rricUZ9LS3o5SgyMpLFixfbta2trhIlFRISgre3N3FxcVbrTMvCw8PLfB53Vpp7HhYW5vB75uvrS82aNbly5UqJ961MwsLCOH/+vNXy4u6tvJbLprT3vSgNGjSo8q/n8lQe70PCflJfu4bU2e5F6mznk/q64nFGfS0BejmqW7cuY8eOddr59Ho9bdq0YefOnVbrtm3bRuPGjQkICHBaeVyhNPe8Xbt2bNq0CaPRaJHwYdu2bfj5+dG8efMSlyMlJYVLly4RGhpa4n0rk3bt2rFu3TqSk5MtEqBs27bNvN4WeS2XTWnve2E0TSMmJoYbb7zRkcUU+ZTH+5Cwn9TXriF1tnuROtv5pL6ueJxRX0sX9wrszJkzHD582GJZVFQUO3bssHiTPHLkCH/++SfDhg1zdhErhKioKC5evMiqVavMyy5dusTKlSsZNGiQxTiTEydOcOLECfPvmZmZNjOTvvrqq2iaRv/+/cu38G4uKioKg8HAxx9/bF6WlZXF4sWL6dy5Mw0aNADktexoZbnvCQkJVsdbuHAhCQkJVf717ChxcXEcPnyYnJwc87KSvA+Jikfe4xxH6uzyI3W280l97d5cVV/rNJk0z+3Mnj0bgAMHDvDVV1/xwAMPcN111wHw8ssvm7fr3bs3GzZssJj3MCUlhRtvvJGUlBSeffZZPD09effddzEYDOzZs6fKPx22xWAw0L17d/bv389zzz1HrVq1WLBgAWfOnGHHjh20aNHCvG1ERAQAMTEx5u833ngj9957L5GRkQD88ssv/Pjjj/Tv358ffvjBahqGqmb48OF8++23PPXUUzRt2pSlS5eyfft2/vjjD3r27AnIa7k8lPa++/n5MWLECNq0aYOPjw9//fUXX331FTfccAObN2/Gz8/PVZdUIcyfP5/ExERiY2NZuHAhd911l7kl4/HHHycoKIixY8eydOlSTp06ZX5PKcn7kHAfUl87n9TZ5UvqbOeT+to13Lq+1oTbAQr9yq9Xr15WyzRN086ePatFRUVpgYGBmr+/v/af//xHO3bsmLOKXyFduXJFGz9+vFazZk3Nz89P69Wrl7Zjxw6r7Ro1aqQ1atTI/PvVq1e1+++/X2vatKnm5+eneXt7a61atdJef/11LTs724lX4L4yMjK0Z599Vqtbt67m7e2tdezYUfv5558ttpHXsuOV9r4/+OCD2vXXX68FBARonp6eWtOmTbXnn39eS05OdmbxK6xGjRoV+v596tQpTdM0bcyYMRa/m9j7PiTch9TXriF1dvmROtv5pL52DXeur6UFXQghhBBCCCGEcANVux+PEEIIIYQQQgjhJiRAF0IIIYQQQggh3IAE6EIIIYQQQgghhBuQAF0IIYQQQgghhHADEqALIYQQQgghhBBuQAJ0IYQQQgghhBDCDUiALoQQQgghhBBCuAEJ0IUQQgghhBBCCDcgAboQQgghhBBCCOEGJEAXQgghhBBCCCHcgAToQlQQ/v7+Fl96vZ533nkHgN69e+Pj42NeN2DAABeXVgghhKg6Fi5cSPv27fH09GTmzJkW6xISEhg4cCDVq1enRYsW/PHHHyVaL4SoWqq5ugBCCPukpqaaf46NjaVhw4bcdddd5mWffvop999/vyuKJoQQQlRpYWFhzJw5kxUrVlite/TRR6lbty4JCQn8/vvvDB8+nGPHjhESEmLXeiFE1SIt6KJKWbJkCTqdjpiYGFcXpUhvvfUWkZGRGI1Gm+tXrFhB165due6665xcMmvFldUZPvroIxo2bEhWVpbLylCY8njNOet17M73VQhR+VTkOnro0KEMHjyY4OBgi21TU1NZvXo1s2bNws/Pj8GDB9OmTRvWrFlj13pHmDlzJjqdzq7rcAV3rmsqah3uzvdUFE8CdCHcTHJyMm+++SbPP/88er3tf9Fly5YxevRoi2VPPfUUoaGh3Hbbbezdu9dqn3379hEVFUWjRo3w8fGhXr163HbbbXzwwQflWlZnGDt2LNnZ2SxatMhlZSgPW7ZsYebMmSQmJrrk/JX1vgohRGmVtN47duwY/v7+1K9f37ysTZs2HDhwwK71kBfQmb58fHxo3rw5jz32GBcvXnTKdZSnylrXuLIOr6z3tKqQAF0IN/P555+Tm5vLvffea3P93r17OXr0KMOGDTMve+uttzh16hRnzpzhtttuY8CAAaSkpJjXb9myhZtuuol///2Xhx56iPnz5/Pggw+i1+t5//33y62szuLj48OYMWN499130TTNpWUpaNSoUWRkZNCoUaMS77tlyxZmzZplVbmX5Zgl4c73VQghXKGk9V5qaiqBgYEWywIDA83D1opbn98rr7zCsmXLmD9/Pt26dWPhwoV07dqV9PT0cr+O8uTOdU1FrcPd+Z6K4kmALoSbWbx4MYMHD8bHx8fm+mXLljFo0CCLbnSdOnXC398fX19fpkyZQkBAAH///bd5/WuvvUZQUBA7duzg5Zdf5sEHH2TWrFn88ssvbNmypdzK6kzDhw/n9OnTrFu3ztVFASAtLQ0ADw8PfHx8bHYvLK3yOGZh3O2+CiGEK5W03vP39yc5OdliWXJyMv7+/natz2/AgAHcf//9PPjggyxZsoTJkydz6tSpUnWHd6f6G9yvrqkMdbi73VNhPwnQRZW3e/duBgwYQGBgIP7+/tx6660Wwa3J+vXruemmm/Dx8aFJkyYsWrSo0HFdpXXq1Cn27t1L3759ba43Go2sWLGCUaNGFXkcvV5v8cT0xIkTtGrVympsHEDt2rWtlp0/f54HHniAOnXq4O3tTatWrfj888/tLuuDDz5IrVq1+Prrr63W/fTTT+h0On744YcirwHyxs0dP36csWPHEhwcTFBQEOPGjbNqMejQoQMhISHFflCJjo5Gp9OxYcMGq3WLFi1Cp9Oxf/9+AE6fPs0jjzxCixYt8PX1pWbNmgwbNsxq3JipnAcPHmTkyJHUqFGD7t27A7bHmtlz3JkzZ/Lcc88BcN1115m7NsbExBQ6fs2e13JJ7mlJ7qsQQpSHilRH29KsWTNSU1M5f/68edn+/ftp1aqVXeuLcsstt5jLZfLXX3/RsWNHi/tQkutwVP1t8vXXX9O+fXt8fX1p2bIlv//+O5qm0apVK1577TXzdhWlDi/JMV1dh0v9XXFJFndRpR04cIAePXoQGBjIlClT8PT0ZNGiRfTu3ZsNGzbQuXNnQL1p9u/fn7CwMGbNmoXBYOCVV14hNDTUoeUxtWa3b9/e5vo//viDnJwci2nUEhMT2bFjBz179kSn0/Hhhx9y5coVc9kBGjVqxNatW9m/fz+tW7cusgwXL16kS5cu6HQ6HnvsMUJDQ/npp58YP348ycnJTJ48udiyDhs2jI0bNzJr1ixGjBhhXq5pGlOnTqVnz54MHDjQvpuCegp83XXXMWfOHHbt2sWnn35K7dq1efPNNy22a9++PZs3by7yWAMHDsTf359vvvmGXr16Waz7+uuvadWqlfke7dixgy1btnDPPfdQv359YmJiWLhwIb179+bgwYP4+flZXXezZs14/fXXi+xSZs9x77rrLo4ePcqXX37Je++9R61atQAKfc3Z+1ou6T21974KIYSjVaQ6Ojc3l9zcXAwGA7m5uWRmZuLp6Ym/vz9DhgxhxowZfPDBB/zxxx/s3buXIUOGABS7vignTpwAoGbNmoDKNdOvXz9CQ0OZOXMmubm5zJgxgzp16th9HY6sv19++WVee+01xo4dy/jx43n//fcZPXo0n3zyCefOneOxxx6z2L4i1OH2HtNd6nCpvysoTYgqZPHixRqgnTp1StM0TRs6dKjm5eWlnThxwrxNbGysFhAQoPXs2dO8bNCgQZqfn592/vx587Jjx45p1apV0xz5b/Tyyy9rgJaSkmJz/ahRo7THH3/cYll8fLzWoUMHzd/fX6tRo4bWp08f7Z9//rHY5tdff9U8PDw0Dw8PrWvXrtqUKVO0X375RcvOzrY6x/jx47WwsDDt0qVLFsvvueceLSgoSEtPT7errG+//bbm4eFhcY5ly5ZpgLZly5bib4amaTNmzNAA7YEHHrBYfuedd2o1a9a02n7ChAmar69vsce99957tdq1a2u5ubnmZXFxcZper9deeeUV8zLTtea3detWDdC++OILq3Lee++9VtsXfM2V5Lhz58612rewY9r7Wi7pPdU0+++rEEKURUWuo03vrfm/Fi9erGmaqqcHDBig+fr6as2aNdN+++03i32LW2+6L7///ruWkJCgnT17Vvvqq6+0mjVrar6+vtq5c+c0TVP3y8fHRzt9+rR534MHD2oeHh4W98EZ9ffGjRs1QHv++efNy6KjozVAa926tcVyk4pQh9t7TE1zjzpc6u+KSbq4iyrLYDDw66+/MnToUBo3bmxeHhYWxsiRI/nrr79ITk7GYDDw+++/M3ToUMLDw83bNW3a1KIl2xEuX75MtWrVbI49A/jiiy+YN2+exbLQ0FB27txJSkoKV65c4c8//7R6Kn7bbbexdetWBg8ezL///stbb73F7bffTr169Vi7dq15O03T+L//+z8GDRqEpmlcunTJ/HX77beTlJTErl277Cpr8+bNMRgM5q532dnZTJ8+naFDh9K1a9cS3ZdJkyZZ/N6jRw8uX75sNW6vRo0aZGRkFJswZ8SIEcTHx7N+/XrzsujoaIxGo0WLga+vr/nnnJwcLl++TNOmTQkODjbfh6LKWZiSHrc49r6WiyprYfcU7L+vQgjhKBWtjp45cyaapll8jR07FlD19I8//kh6ejpHjx616lpe3HqTvn37EhoaSoMGDbjnnnvw9/fn22+/pV69ehgMBn755ReGDh1Kw4YNzfu0bNmS22+/3e7rAMfU3++//z41atTg5ZdfNi+LiIgA4Pjx4zz11FNW+1SEOtzR9TeUbx0u9XfFJAG6qLISEhJIT0+nRYsWVutatmyJ0Wjk7NmzxMfHk5GRQdOmTa22s7Vs4cKFtG/fHk9PT2bOnGl1zoEDB1K9enVatGjBH3/84bDrKU7Hjh1ZtWoVV69eZfv27UydOpWUlBSioqI4ePCguXyJiYl8/PHHhIaGWnyNGzcOgPj4eLvOZ7o3R48eBdR9OXPmDK+//nqJy57/wwaoCgfg6tWrFsu1a13Sihtz2L9/f4KCgizG2H399de0a9eO5s2bm5dlZGQwffp0GjRogLe3N7Vq1SI0NJTExESSkpKsjmvvvPQlPW5x7H0tsUBQwAABAABJREFU52fvPQX776sQQjhKVauj7fHhhx/y22+/sW7dOg4ePMjJkyfNwXdCQgIZGRk0a9bMaj9b97AoZa2/TQHngAEDbD4EGDdunFW3e6gYdbij628o3zpc6u+KScagC+FgYWFhzJw5kxUrVlite/TRR6lbty4JCQn8/vvvDB8+nGPHjhESEgKocWS5ubmkpKQQEBBQLuXz8vKiY8eOdOzYkebNmzNu3DhWrlzJjBkzMBqNANx///2MGTPG5v5t27a1q6yNGzdGr9dz7NgxUlJSzOPQWrZsWeIye3h42FyuFRgjdvXqVfz8/CyecNvi7e3N0KFD+fbbb1mwYAEXL15k8+bNVh8+Hn/8cRYvXszkyZPp2rUrQUFB6HQ67rnnHvO9yq+485b2uOXB3nsK9t9XIYRwd+5eRxelU6dO3HTTTWU+TnnX3ydPniQlJcWqN19CQgKg7rMtFaEOd4f6Gxz/uUi4FwnQRZUVGhqKn58fR44csVp3+PBh9Ho9DRo0oHr16vj4+HD8+HGr7WwtGzp0KAA//vijxfLU1FRWr17NyZMn8fPzY/DgwbRp04Y1a9aYW6cjIyMBlWHVFAiXJ1NFHxcXB6h7EhAQgMFgKDZLbXFl9fb2pl69ehw7doy5c+eSkpJi1VrhaKdOnbL7A8SIESNYunQpf/zxB4cOHULTNIuucaC6zI0ZM4Z33nnHvCwzM9NqTtOSsve49j7xtve1XFolua9CCOEIUkeXTGhoKL6+vhw7dsxqXcF7WN71tykQNyVGM5kzZ47N5SYVoQ4vyTHdoQ6X+rtiki7uosry8PCgX79+rFmzxmKqi4sXL7JixQq6d+9OYGAgHh4e9O3bl9WrVxMbG2ve7vjx4/z00092n+/YsWP4+/tTv35987I2bdpw4MAB8++msV07d+4sw5VZW7dunc2WUdMHFFO3Kg8PD+6++27+7//+zzxNSX6mStfesjZt2pQtW7bw7rvv8vjjj1tce3nYtWsX3bp1s2vbvn37EhISwtdff83XX39Np06drLq3eXh4WN23Dz74AIPBUKZy2nvc6tWrAxT7YcLe13JpleS+CiGEI1SlOtoRPDw8uP3221m9ejVnzpwxLz906BC//PKLxbblXX8HBQUBWHyOWLFiBRs3bgRUQGtLRajDS3JMd6jDpf6umKQFXVRps2fP5rfffqN79+488sgjVKtWjUWLFpGVlcVbb71l3m7mzJn8+uuv3HzzzTz88MMYDAbmz59P69at2bNnj13nSk1NtXqDDQwM5PLly+bfGzduTOvWrfn999954IEHHHKNoLpkpaenc+eddxIZGUl2djZbtmzh66+/JiIiwtw6APDGG2+wbt06OnfuzEMPPcT111/PlStX2LVrF7///jtXrlyxu6xNmzblk08+ITg4mKlTp1qt1+l09OrVyyLRS2n9888/XLlyxa6paQA8PT256667+Oqrr0hLS+Ptt9+22uY///kPy5YtIygoiOuvv56tW7fy+++/m6e0KS17j9uhQwcAXnrpJe655x48PT0ZNGiQzWPa+1ouqZLeVyGEcJSqUkc7yqxZs/j555/p0aMHjzzyCLm5uXzwwQe0atWKvXv3mrdzRP0NhdfhLVu25LrrrmPevHn4+fmh1+t54403GD58ON988w0zZ87k6aefpk2bNuZ9KkodXpJjuroOl/q74pIAXVRprVq1YtOmTUydOpU5c+ZgNBrp3Lkzy5cvt5hzskOHDvz00088++yzTJs2jQYNGvDKK69w6NAhDh8+bNe5/P39rbJrJicnWyVQeeCBB5g+fToZGRkOGzP09ttvs3LlSn788Uc+/vhjsrOzadiwIY888ggvv/wywcHB5m3r1KnD9u3beeWVV1i1ahULFiygZs2atGrVymp+zeLK2qRJEwBeeOEFcwITk9TUVECNB3SElStX0rBhQ2655Ra79xkxYgSffvopOp2O4cOHW61///338fDw4H//+x+ZmZncfPPN/P7771YZcUvK3uN27NiRV199lY8++oiff/4Zo9FozqpbkL2v5ZIqzX0VQghHqCp1tKO0bduWX375haeffprp06dTv359Zs2aRVxcnEWADmWrv6HoOlyv17Nq1Soefvhh3nzzTfz8/HjmmWd49dVX8ff354svvqB3794WAXpFqcNLckxX1+FSf1dgzp3VTYjKZciQIVrTpk1trps4caI2Y8YM8+8pKSmap6eneb5STdO03r17a59//rnFfomJiVpISIj26aeflkuZHam4sr777rsaoF25csVq3Q8//KDpdDpt7969ZS5HZmamVrduXe2///1vmY8l8sh9FUJUZFW9ji5KWepvTZM63N3JPa3YZAy6EHbKyMiw+P3YsWP8+OOP9O7d22J5bm4umZmZGAwGi5/9/f0ZMmQIM2bMICMjg++//569e/dadT0KCgpiypQpzJ0716kZQUujuLLu37+f+vXr23z6vm7dOu655x6LJ+iltXjxYjw9Pe2eh1zYR+6rEKKikDq6ZMpSf4PU4e5O7mnFptM0G5mjhBBWwsLCGDt2LI0bN+b06dMsXLiQrKwsdu/ebTHv6MyZM5k1a5bFvosXL2bs2LEkJCQwZswY1q9fT/369VmwYEGx2dIrsk6dOlGrVi2rbLlCCCGEI0kd7VhSfwvhOhKgC2GncePGsW7dOi5cuIC3tzddu3bl9ddft5rnUyiaphEQEMAjjzxSpiRlQgghRHGkjnYcqb+FcC0J0IUQQgghhBBCCDcgY9CFEEIIIYQQQgg3IAG6EEIIIYQQQgjhBiRAF0IIIYQQQggh3IAE6EIIIYQQQgghhBuQAF0IIYQQQgghhHADEqALIYQQQgghhBBuQAJ0IYQQQgghhBDCDUiALoQQQgghhBBCuAEJ0IUQQgghhBBCCDcgAboQQgghhBBCCOEGJEAXQgghhBBCCCHcgAToQgghhBBCCCGEG5AAXQghhBBCCCGEcAMSoAshhBBCCCGEEG5AAnQhhBBCCCGEEMINSIAuhBBCCCGEEEK4gWquLoAomtFoJDY2loCAAHQ6nauLI4QQoow0TSMlJYXw8HD0enlOXplInS2EEJWLK+psCdDdXGxsLA0aNHB1MYQQQjjY2bNnqV+/vquLIRxI6mwhhKicnFlnS4Du5gICAgD1oggMDHRxaYQQQpRVcnIyDRo0ML+/i8pD6mwhhKhcXFFnS4Du5kxd5AIDA6WyF0KISkS6QFc+UmcLIUTl5Mw6Wwa/CSGEEEIIIYQQbqBKBuhZWVk8//zzhIeH4+vrS+fOnfntt9+K3W/VqlWMGDGCxo0b4+fnR4sWLXjmmWdITEy0uf3atWtp3749Pj4+NGzYkBkzZpCbm+vgqxFCCCFEaev2mTNnotPprL58fHycUGohhBDCUpXs4j527Fiio6OZPHkyzZo1Y8mSJdxxxx2sW7eO7t27F7rfhAkTCA8P5/7776dhw4bs27eP+fPn8+OPP7Jr1y58fX3N2/70008MHTqU3r1788EHH7Bv3z5mz55NfHw8CxcudMZlCiGEEFVGaet2k4ULF+Lv72/+3cPDozyLK4QQQtik0zRNc3UhnGn79u107tyZuXPn8uyzzwKQmZlJ69atqV27Nlu2bCl03/Xr19O7d2+LZV988QVjxozhk08+4cEHHzQvb9WqFZ6enuzcuZNq1dRzkJdffpnXX3+dgwcPEhkZaVd5k5OTCQoKIikpScazCSFEJSDv645Xlrp95syZzJo1i4SEBGrVqlWmcsjfVgghKhdXvK9XuS7u0dHReHh4MGHCBPMyHx8fxo8fz9atWzl79myh+xYMzgHuvPNOAA4dOmRedvDgQQ4ePMiECRPMwTnAI488gqZpREdHO+BKhBBCCAFlq9tNNE0jOTmZKtZuIYQQws1UuQB99+7dNG/e3OoJSKdOnQDYs2dPiY534cIFAIun7rt37wbgpptustg2PDyc+vXrm9c7lGaEixvgxFL1XTM6/hxCCCEEqnU6KyvL1cUwc0Td3rhxY4KCgggICOD+++/n4sWL5VFU+0m9LoQQVVK5j0HPzMxEp9Ph7e1d3qeyS1xcHGFhYVbLTctiY2NLdLw333wTDw8PoqKiLM6R/5gFz1PUObKysiw+9CQnJ9tXkPhNcOwjMGaB/tq9rtPLvn2FEEKIIqxfv541a9awefNmDh48SEZGBgB+fn60bNmSbt26mfOuuEJZ6vYaNWrw2GOP0bVrV7y9vdm0aRMffvgh27dvZ+fOnUV2aSx1nW0PqdeFEKJKcniA7u6VeEZGhs2HBaZsraby2mPFihV89tlnTJkyhWbNmlmcAyj0PEVV4HPmzGHWrFl2l8EsNUZV4sFtIXGv+l0qciGEEKWUk5PDokWLePfdd4mJiSEkJIT27dtz//33U6NGDTRN4+rVq5w6dYrly5czb948GjVqxDPPPMPEiRPx9PR0WlnLUrc/+eSTFr/ffffddOrUifvuu48FCxbwwgsvFLpvqetse0i9LoQQVZJDAvSKVIn7+vra7JaXmZlpXm+PTZs2MX78eG6//XZee+01q3MAhZ6nqHNMnTqVp59+2vx7cnIyDRo0KL5A/hHqCXviXvXdP8Ku6xBCCCFsadq0KdnZ2YwZM4bhw4fTvn37Irf/559/WLlyJa+//jpvv/02MTExzikojqvbTUaOHMkzzzzD77//XmSAXmidbeqenhqj6uPaPdQG8Zssl+mujTTUjJbrQm+GnERIPw9Zl8AnXOp1IYSoIhwSoFekSjwsLIzz589bLTd1Sw8PDy/2GP/++y+DBw+mdevWREdHWySCM53DdMyCwXVcXJx5TJwt3t7epRsOYKr8C34YEEIIIUrhxRdfZOzYsXbXSR06dKBDhw688sorLF68uJxLZ8kRdXtBDRo04MqVK0VuU2idnbAFLiyz7J4OhXdZN3VnN2RCTjL41IWsONB7gSEbQrtKvS6EEFWEQ5LEvfjii8TExPDGG28UG5yDqsTfeOMNYmJimDp1qiOKYLd27dpx9OhRq27m27ZtM68vyokTJ+jfvz+1a9fmxx9/tJgzNf85AHbu3GmxPDY2lnPnzhV7jlLR6VVF32SM+q6rcvn/hBBCONDEiRNL9cDYy8uLiRMnlkOJClfWur0gTdOIiYkhNDS0dAVKPZPXPd2YpR6e5++yblpm3v7aOq8gSDkClzZD0lEIaAJ+4eAZLPW6EEJUEQ55t69IlXhUVBQGg4GPP/7YvCwrK4vFixfTuXNnc4v3mTNnOHz4sMW+Fy5coF+/fuj1en755ZdCK+5WrVoRGRnJxx9/jMFgMC9fuHAhOp3OIqGcEEIIIcqmLHV7QkKC1fEWLlxIQkIC/fv3L12B/BtaDzsraiiaad3VfWDIAs8A0LJk2JoQQlRB5Z7F3d107tyZYcOGMXXqVOLj42natClLly4lJiaGzz77zLzd6NGj2bBhg8V8qP379+fkyZNMmTKFv/76i7/++su8rk6dOtx2223m3+fOncvgwYPp168f99xzD/v372f+/Pk8+OCDtGzZ0jkXK4QQQjjBqVOn2LdvH6mpqRbLR44c6ZTzl6Vub9SoESNGjKBNmzb4+Pjw119/8dVXX9GuXbvSNyKEdoOA6raHndlaZvr52MeQcQ4yEwA9BLaEphOke7sQQlQhOi1/LeUErq7EQSWNmTZtGsuXL+fq1au0bduWV199ldtvv928Te/eva0qcZ1OV+gxe/Xqxfr16y2WrV69mlmzZnHo0CFCQ0MZO3Ys06dPL1FSvOTkZIKCgkhKSipyqhchhBAVQ2V7X3/jjTeYNWsWbdu2xc/Pz7xcp9Px559/Oq0cpa3bH3roIbZs2cLZs2fJzMykUaNG3H333bz00ksEBASUqAxl/tseXwynFoNXCGRfgevGQdNxJT+OEEIIh3BFne3UAN1dKvGKpNgXRcHMr/mzwgohRAHLly9n1KhRNtfdfvvt/Pzzz04uUdVT2QL02rVrs27dOlq1auXqorhcqf+2pqzvxz+Fq7vBpyb41IPmD5fv1GryGUIIIYrkijrbqV3c3333XXbu3CmVuCOZMr/aygorhBAFtG3blmXLlgFgMBj44IMP+Oeff9DpdKUfb1tOsrKymD59OsuWLTO3iM6ePdtiOFFZ9z9w4AAzZ87kn3/+4cKFC/j5+XH99dfz3HPPMWjQoPK6tErF39+fxo0bu7oY7sdW8Au2A+L4TbB/tkoQZ8gCHdAgquiu7RbHbwgakHbGvmndTOQzhBBCuB2nBuhSiZeD/FlhE/eq36VyFUIUom3btrRt25Zz584xfPhw/vnnH7p37868efO48cYbXV08C2PHjiU6OprJkyfTrFkzlixZwh133MG6devo3r27Q/Y/ffo0KSkpjBkzhvDwcNLT0/m///s/Bg8ezKJFi5gwYUJ5X2aFN2XKFMaOHcvUqVOpXbu2xbrSTG9WaVgEv15wdQ9kXIDL28EzEDx81HZ1eqm6OycRqvmrIDo3XW1riykwj/0571i5ySpA9wqyb1o3E3s+Q0gruxBCOJVTu7h/9NFHrFu3TirxEii2W8XFDZYVcLNJEqALIYq0f/9++vXrx+XLl5k7dy6PP/54kTk2XGH79u107tyZuXPn8uyzzwJqjHHr1q2pXbs2W7ZsKbf9DQYDHTp0IDMz0yrjtyNUti7uer3tYE2n01nMZFIVWPxtE76F82tU8HvxDzWfuZYLmRehbl8133m9IWp61IsbYN8rkLQXclLB0x+C2kKb6dZ1uqneTzmqjlXnVri0FYzZUKc3ZCdB/aFqW9P5E/fmncvWsYr6DCGfM4QQVVil7+L+yCOPALBy5UqL5VWxEncYUzc2W1lhhRCigJiYGPr27UtOTg4bNmygS5curi6STdHR0Xh4eFi0YPv4+DB+/HhefPFFzp49a546y9H7e3h40KBBA3bs2OG4C6rEjEajq4vgnvJPq2bIAQ9v8G8JcRchcR8ENM+bPq12D2j9Mhx6B1KOQa0uKoC31aJtbvVuo4516W/ISVLLzq29NqVbQ7VtThKc/w68gvOW5WfPZwjpqSeEEE7l1ABdKvFyoNOrilIqSyFEMYxGIyNHjiQtLY2NGzcW26U9JyeHpKQku44dEhJSaEtqaezevZvmzZtbPa3u1KkTAHv27CkyQC/p/mlpaWRkZJCUlMTatWv56aefGDFihKMup9JLSkri559/JjY2lnr16tG/f/9K0TugTPIHvzmJkLBVBcyBzcEnDKo3BIyqC7lOD3X7qO/HPoLcFBXc5yTCiaWWXctNgX9OEgS1AL2vOkdGrOrqnnwcLv0DITeqbu+gvtvqL2nPZ4ii5m8XQgjhcE6fB10qcSFERaJpGunp6a4uhpmfn1+pu6MvX76crVu38vnnn9s13nzz5s306dPHrmOfOnWKiIiIUpXLlri4OMLCwqyWm5bFxsY6dP9nnnmGRYsWAarL9l133cX8+fNLVfaqZsuWLQwaNIgWLVrQqFEjzpw5w8MPP8x3331Ht27dXF0819Hp84L0lJMQ2lWNF89JVsF6yhE4FgPo8wLkgkG9qet6/jHkBVu9NSNsHQu5SYARDGlw9AOIGKnGpNfuoYLrtDNqv6LGlNta5w499WQcvBCiCnFqgC6VuBCioklPT8ff39/VxTBLTU2levXqpdp3/vz5tGnThnHj7JtX+YYbbuC3336za9u6devaXG40GsnOzrbrGN7e3uaHDxkZGXh7e1tt4+PjY15flJLuP3nyZKKiooiNjeWbb77BYDDYXe6q7sknn2ThwoUMHz7cvGzlypU88cQT7Ny504UlcwMFs6Q3m6SCTC3bdpfx/C3aJ5aq4LzgdgVbvTUj+IVBxjnAQy0zZKrvtlq+i8rcXtg6V/fUk2zzQogqxKkBulTiQgjhGpcuXWLnzp3MmTPH7n1q1KhB3759y3TejRs32t0Kf+jQISIjIwHw9fUlKyvLapvMzEzz+qKUdP/IyEjzuUePHk2/fv0YNGgQ27Ztc7sEeu7m+PHj3H333RbL7rrrrqqdAT/+Lwjob3v8tr1dxv0jVPb3i3+oMew5iXnd4cGyVbnGTZB8BHLTQKcDv3AI7wforVu+ixpT7q7jzd21XEIIUQ6cGqBLJS6EqGj8/PxITU11dTHM/Pz8SrXfoUOH0DStRFOpZWdnc+XKFbu2DQ0NxcPDw2p5ZGQkixcvtusY+bukh4WFcf78eatt4uLigOJn/ijr/lFRUUycOJGjR4/SokWLYstelbVp04aPPvqIRx991Lxs0aJFtGrVyoWlcrETn0NAddvBuL1dxmv3UFOzxaxQCeYStkKNdrZbu/GERvdB2kmVLb5Gh7xjFAxki3pA4K7jzUtbLukaL4SogJwaoEslLoSoaHQ6Xam7lLuTtLQ0gBK1Bm/ZsqXMY9Dr1q3L2LFj7T6nSbt27Vi3bh3JyckWeUq2bdtmXl+e+5u6wNubJK8q++ijjxg0aBDvvPMODRo04OzZswCsXbvWxSVzIUOmmqc8sLnKyF4tEAIa5wWIpi7jRQWQOj14BoNfPZWx/eKfcGq5Wle7h3Wrcs2O0GiYCtrTjsGxM8C1cfD5zxF6M2CE2F/VsbR8iepKMt7cmcFvacfBS9d4IUQF5NQAfeHChQwePNhciZ85cwadTle1K3EhhHACU/C8atUqbrvtNrv2ccQY9NKKiori7bff5uOPPzbPY56VlcXixYvp3LmzRQb29PR0zpw5Q61atahVq1aJ9o+Pj6d27doW587JyeGLL77A19eX66+/3qHXVRldf/31HD58mG3bthEbG0t4eDidO3fG09PT1UVznZwUuLJdJYIrau7w4gJIU8vxxT+vJXnTqe3zr8vfqmyrKzhYnwM9pF3bNi0m76FBSWaGcWbwW9oZa1JjwJgJnkFqarvYn4tPiict7EIIF3NqgN6qVSupxIUQwgUiIyO5/fbb+eijj7h48SL9+vUjIiKCW265BS8vL5v7OGIMeml17tyZYcOGMXXqVOLj42natClLly4lJiaGzz77zGLb7du306dPH2bMmMHMmTNLtP/EiRNJTk6mZ8+e1KtXjwsXLvC///2Pw4cP884777hVgkB35unpSffu3V1dDPcR0gG0U8WPmS4ugDS1FJ9aDuigdh9I2qf2azwq7xj5W5XNQbuXGrd+arlKIFfnFnUOU9Be1JjugoFr6M2QsNnyXBVhXLh/hMqaf2kH6IDL29V1FZcUTwghXKjcA/Rt27bRuXNnQHWXBDWFTf369QHYsWMHgGRxLy15+iuEsFN0dDSzZs3i22+/5YcffiA7O5sBAwbw448/urpoNn3xxRdMmzaNZcuWcfXqVdq2bcv3339Pz549Hbb/iBEj+Oyzz1i4cCGXL18mICCADh068OabbzJ48ODyurQKz1bdbkuVrdt968ClLZB1CXzrFZ0IrqgA0tRyDCqQTNqX11puq1XZ1tzrmbGq9f3in+BbP68sRY3pLhi4Xt0Dl/62DGTddbx6frV7QEgnyE5UwwSykypGUjwhRJWm0zRNK88TtG7dmv379wNw3XXX2S6ETsfJkyfLsxgVVnJyMkFBQSQlJdmeL/7iBuspXKRyEULYYerUqbzxxhtcuXKFGjVquLo4VUax7+sVgNTttpn/tt92J1A7BUYjNLwLOvwX9PnaRMwP109C3O+QfAhqtFUBZP2hqnXctD4nGar5Q26qGsvuHwEY1X6gsrXX7mX9cP7EUji/BoLaQPw6CGih5kZHg7hfIO0c+DWA8NvzurcX3NcUuHrVhOzLeb/XG5KvjDHu3UBQ1OekwtZJ44cQ4hpX1Nnl3oJuqsABXnvtNUaOHGm1zZdfflnexaj4Tq6AsJbWlYQjnv5KRSRElRQaGoqvr2+pM8OLqkvq9mIkHwSfHDU92sU/Vffw/POWH/lAZWc3ZIAxBzx8VXDu4aPqYVMLdsY51fpdvZFqiW82SR1j32w1vl1DjXVvrS88W3vSPrXvdfer5ftfgaQjqsU+oAXUG2Bd5xdsHQ9urVrQ87eWl3ZcuLMVlWCusHXS9V0I4UJOjcImTZpkc3n+rO6iEHE/qMoifpPlckd0MTNVROfX2D6HEKLS+eCDD5g5cyajR4/G29u7+B2EKITU7TZoBtA08PAEY27euG9QdWzMl5B6HNJOQ1a8yvoeGKkC8Pzju71qqgDeK0T9nhqT1329WgB4Bqju2/mPb1K7hzpevSGWx81OVC3yeEDqCTXuXTMWvW/zR62PpRlVC/SJpep7wWO4C9ODhCZjrHsKFLYuf+OH6b4LIYSTOCVJnGl8msFgYOvWreTvVX/q1KlKMYVRuQtqDblHrFvISzv1SH4yBkuIKueLL75g5MiRvPvuu64uiqigpG4vQrUAIBF0XuBX3/LheWqMCtz1vpBzSW3rU0sF6KYp0ZIPQ04SGLJUsJ90EKo3AP+GwLXp1zIvqhZ0v3DbD+dttXD7R4BXsGqVN6SBR3XVAp9/3Hth+xb8vWD3cNM2lUFFGF8vhKi0nBKg33fffQBkZmZadIPT6XTUqVOHefPmOaMYFVvSfgjwt64kHNHFTCoiIaocU4JOIUpL6vYieHiBdwjU6gbNJlg+PPePUF3Os5PAmKG28wnP69p+dCFknIesy+AbrtbpdCoY14A6PaD1yxB3bR7z8H4qy/rFDcUPVat9bd+D70DKUajVVT0IiP3Z9r75h8BVb6i6xaeeuTal28nK+3Df3sYPGSIohCgHTgnQT506BcBDDz3EJ5984oxTVj5hA/PGoDuaI1rhhRBCVClStxdB56GCV79GgB5OLlXJ3jz8ITcZqkeoceU+YWqKtYDGqu49uUxlXc9JVF/GLPCrd22KtL2q5Vunh7p91JdJwdZszai2Kxg46vRQp48q07GPIDdFfV3ON2c7WE9DZshU3fENmaq13yccQrtW3of79jZ+2DNWXYJ4IUQJOXUedKnAy6DxSCivzIEVJdGLEEIIt2Oq29PT07l8+bJFV/eGDRu6qliupwPSz+Yle0s9rTK5ZyepoDvwegi/w7oLuiFLtZ57haj62ZBVfBBccKha3K+QFmMZOJq6z6fGQPX6ULMzJB1QXe0NadYt4ZpRtaynHAXvUHU8jKD3UMerFqh6B8Rea8nXjHkPBqoKe4YISsI5IUQJOTVAN5FKXAghhKgc9u/fz6hRo9i7d695mU6nw8vLi/T0dBeWzIWq+UFAAxUIpxxTyd4MhyDXALkZKgBPPginlqvtTa2qtXuoqdBivlTj1H3rqW7onsFF93Dzb6i6qp//To0xx2gdOEJeoJiTpLrLewWpBwY68j0EaKha5GN/hgu/QPpF1Z1d08C7hiq7h59q9YdrDwIy1Vj2uF8hvL/qcp+wufK3GtszRFDy/AghSsipAfq+ffsYPXq0VOJCCCFEJTFx4kSGDBnC1q1bCQsLIy4ujunTp9OkSRNXF811mkyCui0g8V8V7BrSVYCrGcHDW3UrN2ZCymEVNENeC7dnIETcq1qoTV3f8we3trpMm8anc+27T5jqDp8/cMwfKJ7/Lu+cV/9VCeoCI9V2mhGOf6RazjPjoUYbFaDrqoFPTTV1XMS9eV3yjVmqm/6lHSpDfFoMXN2jpmWr7K3G9gwRlDw/QogScmqAPmnSJKnEhRBCiErkwIEDbNy4EQ8P1fXZx8eH2bNn07hxYyZOnOji0rlI45GQsRsS/lYJ49AgqJXq8m5K+Obpf21s+T7rFm69NzSdoJadXGbZCm2ry3TaGdUaXruHCgQ9g9R0aAUDR1Og6BWsypC4V829Ht4/L4A+sfRaIN8G4i5CVgLUaK/GnOdvydfp8wWf+1QrfHAbNdY+cX/VaDW2Z4ig5PkRQpSQUwN0qcTdgCQrEUII4UDBwcEkJSUREhJCvXr12L17N7Vq1SI1NdXVRXOt1BjQslUQfvEPyM1SU6UZsqBmJxX4Ju6z3cJd1Dhy07jw4Daqq7qpPs/fShvQ2DpwtAgUG6oAPe2MddBYvaHq9p52GnxrQ53boN4A258XTPvF/qwSzWUnqYA/uLVqQS+u1dgVn0mcfU7J8yOEKCGnBuhSibsBSVYihBDCgSZOnMjGjRsZOnQoTz75JD169MDDw0MevJsC3fPfqXHn3jXzsrHXaA8BEZYJ1vwbqnr56r/XWqH3qYzvtftAUr5W9svb1RzocRchqIVlgJ1yEnKT4PwPcOxj8GsA9W6H2r3sDxR1174AvGqo/Qvbx3TM/Ano/CPUGPQa7SyDYGMuHP1QXZeHLwS3A0MqXNoKxmznfSaJ3wTHrk1lZ+qu3+JxaawQQrgNpwbohVXiEyZMcGYxyMrKYvr06SxbtoyrV6/Stm1bZs+ezW233VbkfkeOHOGjjz5i27Zt7Nq1i6ysLE6dOkVERITVthEREZw+fdpq+cSJE/noo48cdSklJ8lKhBBCONDUqVPNPz/00EP069eP1NRUWrVq5cJSuYH8gW41H9B5WrZwQ14LeVqM6tLedAIc/xSSj1zL+J4IrFPJ4kyt7J6BULcvXN0L3nXV+HDIC9L3v6LWGdLAozpc3QGt9fbX9alnVBf5Wt0hfh2cWgHoi25pthX8F/z9yAdw+F3ITVXTtfk3UYG6IQOqXwcpB+DUsrxrKW7cfWkD6tSYa/PMX4XsKxCzQj1MkM9CxZNemEI4hVMDdHepxMeOHUt0dDSTJ0+mWbNmLFmyhDvuuIN169bRvXv3QvfbunUr8+bN4/rrr6dly5bs2bOnyPO0a9eOZ555xmJZ8+bNHXEJpSfJSoQQQpSjRo0auboILnfrrbfy8bRB3BgcBKHd4eKf1zK7NwefOqqlO+WoShQXfEPeHOf+EZB6Qs2B7h2ixooHtIDrRqrgKPmwal03zYJzdTdknFXzkoMKnLITVXBv8FCJ3bIT1flABfM5yYUnoIO8zwnx61Q3d7S8RHa2glh7g7bE/WDMUVO2pcaoshkyVLCccV4F7QC5adbnyt/7T+elktAVHA9vb5n8I1TLefYV1avBw9tyajlHBqCVLaCVXphCOEW5B+jbtm2jc+fOAGzZssXmNlu2bKFbt27lXRQAtm/fzldffcXcuXN59tlnARg9ejStW7dmypQphZYRYPDgwSQmJhIQEMDbb79dbIBer1497r//fkcWv+QKVg6hN6vlkqxECCFEKdlTtwNOq9vdzc6dO2k/ZCcAntVWs2iCH2P6X4fekA7oCpneLELVzR6eag70jDioFqzGc2vA8Y9VQK8DqlVXP+dczZuX3FSvewWrYB8DaLnq99zkvPnY006r4NbDz3b3btPnglPLAc0ykZ0piL24QY2RB/Ctcy1jezHd1INbw4Vf1dh7vYcqm95X9Q7QVYP0M1A9QpWx4PRz+Xv/XfxTTUPnF174+cyBZKZ6IBHSSSXCq93j2lR296qWcw9v9XDD1Fjh6AC0sgW00gtTCKco9wB9/Pjx7N+/H4D77rvP5jY6nY6TJ0+Wd1EAiI6OtupW7+Pjw/jx43nxxRc5e/YsDRo0sLlvSEhIic+XnZ1NTk4O1atXL3WZy6SwykHeUIUQQpSSu9Xt7iwnV+OBBWk8sEDdr8f6+/LqQ20Jrl5Nta4HtVTj1bnWQq7zzAuYPatD/Ba4tD0vMZyGao33rgno8+YlNz10b/WS6iafegr8r4OmD6qg3Jil5mNPOghGA3DJdvduU3d1UJ8f8ieyA/W5Yv9sSDlyLRt9oJp+rc6tRQdtzR9V3wuOQU/YCpmx6qFDWoxKfIfOstU+f+8/Q5bKjF9UkGgKJAtO/2Y6XovHrcfIa0bbCfjK8nnJ3oC2orS0Sy9MIZyi3AN0UwUOcOrUqfI+XbF2795N8+bNCQwMtFjeqVMnAPbs2VNogF5Sf/75J35+fhgMBho1asRTTz3Fk08+6ZBj2620TzsrSmUhhKhSSptDxJbXXnuNl19+mVatWlnUVWXdtiow3QODwUCDBg349ddf8fHxcXGp3EdSUhIntn/DI49P5u/DaRbr5v+cwfyftwHQ5YZzLFj8LTf6X2vhNmQCOvBrqFq+Q3vD+dWQdUl1D8+8CP7N1Dbp59UB/RpAxMi8elrnAWjgF6bq8sS9KkhNPnxtHapl2Tfcsnt3QbamBzMFsakn1LGq+aqWcENO8UGbvhpEFvgMpBlVoJxyUrXyJ+5TAXL+xHimJHSmsuQkqsRyRZ2vsOnfTMfLP2be9Hkn9me48Iua+z1/Ar6ysDegrSgt7TJlnBBO4bQx6AaDgVtuuYVff/0Vb29vZ53WSlxcHGFhYVbLTctiY2Mdcp62bdvSvXt3WrRoweXLl1myZAmTJ08mNjaWN998s9D9srKyyMrKMv+enJxctoKU9mlnRakshBBVSmlziBR07tw5Xn/9dbt6N5Vk26rGw8ODc+fOYTAYXF0Ut3PjdZ5sndcesq5w9dJ5pn2VyYe/ZFps8/e/p2nfvj0AntV0LJo2iDE9A9EHRaoW8POrIeWE6hLuFQJ6LxUYX94BxnQ1Fj24nRpTHr9JBUypJ1U3ca+akHIQkvZCVpKa8s2rFoT2gvRzKnFd/u7dBdlK/HZxg8oin5umvjyrQ1AbqD/Eckx4fpoR4jeojPWaBr51VRd//4hrU73FqOC8WqAKpHNTVXCe/zNLwYC6YOt3wfNpRtVdXqeHakF507/ZulbT552Uo5B+EWq0Ud3wQzqVPQC1N6CtKF3HZco4IZzCaQG6h4cHZ8+eJScnx6UBekZGhs3zm578Z2RkOOQ8a9eutfh93LhxDBgwgHfffZfHH3+c+vXr29xvzpw5zJo1yyFlANSY86t7VHKW4NZ5Y9CLU1EqCyFEmWVmZlaI1s+y5BAp6Nlnn6VLly4YDAYuXbrksG2romeeeYb777+fqVOnUq9ePXQ6nXldeHi4C0vmQppRtfTmZoFOT426zZn/aifmP3MAY/IRlq5LZ+KiJHJyNfMuObkaD8xYywPXfn9sWBteHZJEsGc11Qqcm6Jazz18AIMKjJP2q2nZ0FQQ6humWtmTjqhA3pitur97BV5LLGdQgX6dXpaJ4uztNWfKIh9+h2rFDmgO1z+TN42bLaYu8UlH1OcKdCpIN+aqa6nmB+lnoXoj9cAgtGvhwT4UHyTGb7o2Xj9LPdBoUMTDA9M1GbPUw4HMiyo4D2iuxqzr9GXrUWhvQCtdx4UQ+Ti1z/IzzzzDqFGj2L59O+fPnyc2Ntb85Sy+vr4WLdQmmZmZ5vXlQafT8dRTT5Gbm8v69esL3W7q1KkkJSWZv86ePVu2EydsVslbsi+r7wmb7dvPXFn8q8ZhJR9WT841Y9nKI4Rwqdtuu41u3bqxadMmevXqha+vr/OH3pRSUTlEtm7davf75caNG4mOjua///2vQ7etqh5//HHWrFlDly5daNCgAfXr16d+/foOGy5WIe19Bc6uUWOlPXxVF/QO70GbaeivG8W4e+4ge/tzaBf+ZNc/O+nSpYvVIeav3EeN+8+gG5FM15fS2X3GRyU3q3sr6D1Viy+aasX2DITEXarF/fI21Voe0AT86oFnAOSkqM8BOUmQekR9HghonNfd29SKfH6N+h6/yfZ1+UeooDo3BUI6wPXPQZ0+at3FDXBiqfVnBVNmec+Aa5nb01UCvLQYSD2uHhwYc9SDAy1bBdNNxuSVrSBTkjpb5zKdz9TAYMxWDyJMCfjiN1lvb/q8k52kMubX7QfNJuUF8/beG3vKVpjaPdQ5wwdBrS6qF4R85hKiynLqNGuPP/44AGvWrLFYrtPpnNY9LiwsjPPnz1stj4uLA8r3ab/pw8qVK1cK3cbb29uxPQxK2xJuqphif1bd2ZIPWyZYEUJUSHv37iU4OJihQ4fy0EMPMXLkSJo2bWr3/jk5OSQlJdm1bUhICHq9454DOyKHiMFg4PHHH+fBBx+kTZs2Dtu2KjMaJYiwEv8n6C+p+cpzklXQqa8GdfuooPPYQri0BS5u4MaIe9m6ZTPo9FzdtYBps9/hw28tk+v9fSyX9s/EwjOT8fT0ZNHMKMb09kNfzQeSD6i6OidVBe46DYyoKcwCr4fQLiogvrhBTS3m39hyPDbY/1mhsC7bRWVNN2WWz7ioxqtrRvWgQF9NJXxLO63KnX1FtaDnJKoAt7DW6uKG4BVsjTZlsC9se1vXZDpnwcRx2fkSx9lqWS+ubIW1xhdMzCfDC4Wo0pwaoLtDJd6uXTvWrVtHcnKyxYe8bdu2mdeXF1M229DQ0HI7h5XSdpsyVRapJ+HSX4CmxrSlnpTKQogKKj4+nvj4eNLT09mxYweRkZElPsbmzZvp06ePXdueOnWKiIiIEp+jMI7IIfLRRx9x+vRpfv/9d4duKyA9PZ3Lly+jaXndths2bOjCErlQ0PWQvFElKQtobln3psaoeb+zrkLmBTj8vlre4nFq1GvF/Kc6Mv/hehizM1m6LYCJb2wgJyevESMnJ4cHXvoyryv8kPq8epdGsKcOdDrVIu1ZHXzCVHfx5o+q3nOXd6p6/Nwa1e3dtz5cd58KlG19VigsmLTVZbuorOm1e0Drl/PGoF/ZCVd3gac/5GZAjRsgrJ9q6c5NVl3ni5qyrbiHCQUD7tSTRW9fVDf0+E1wZbt6uJB5UbWwFzUlW3FlKy6Al+GFQgicHKCbuLISj4qK4u233+bjjz82j2HMyspi8eLFdO7c2dz6cubMGdLT00v1AfbKlSsEBQXh4eFhXpaTk8Mbb7yBl5eX3R9uHaKsGTdzktV8qikn1BPunDImrRNCuMzevXsBePHFF0v13gZwww038Ntvv9m1bd26dW0uNxqNZGdn23UMb29v85jmsuYQuXz5MtOnT2fatGnFPigtybZV3b59+xg9erT59QWqZ5yXlxfp6ekuLJkLJR0Ev9pQ5zYIvx0w5rUK+zdUWc8zL6gW5dwkNa93jXaqjr66B2K+RO/lzbh+oYx75Fc4+y2713/JI58k8vcxyx6H89ecY/61joldmutYMCGEG5sGqFbzc2tVsJd2RnWD9w2HK3vU+O9zayCgqcqsbuuzQkmSxRaXNb1On7yu8BfWqTHpOYngHwwtn1U9C0DdI2O2KvPVf69ljI+xfEBQWMND/gcK1Ruq+5wao8qh8yrd+G7TmPuwvuraanayvFcFg+niGkWKCsBNeQvSY9U4eN96hZe1Ms+0U5mvTQg7OTVAd4dKvHPnzgwbNoypU6cSHx9P06ZNWbp0KTExMXz22Wfm7UaPHs2GDRssHiIkJSXxwQcfAKoVCWD+/PkEBwcTHBzMY489BqgEcbNnzyYqKorrrruOK1eusGLFCvbv38/rr79e6IfWErPnTaysGTerBarELV4hqvtZtcDi9xFCWHKTDxz79u0DYMSIERbLIyIiiI+PR6/XExAQwPDhw3nnnXeoVs26iqhRowZ9+/YtUzk2btxo94PKQ4cOmR8mlDWHyMsvv0xISIh5uJWjtq3qJk2axJAhQ9i6dSthYWHExcUxffp0mjRp4uqiuZZXDah3u/p5/2zVquwVDK1eVGPJD7+vgnPvuuDhmReseQarKdI8g1RQuP91uLqbG+slsXWWDrxqc9VQl2nfhfLh8j8sTvn30RzaP3sRuIhnNVj0kB9jvD5B3/whNXY8M15lhA9oqn5OvDZloK3PCiVpza3VFc5EQ9IhNeY+8yp4+tkOMOv0UkF87K95yzSjdfCdk6xar1OOqGRvV/eoe1O9ITSbAKlnCulmn6W6outQ91DvZTvxnD3vy/4RoPdRZcmfOM68rkAwXvBBR+jNamiB6ffqDQsP4OM3qTnhPbxU1/9aXQvJiH9tSrgr29XDA71P3n2tDGQWISGcG6C7SyX+xRdfMG3aNIt5dL///nt69uxZ5H5Xr15l2rRpFsveeecdABo1amQO0Nu0acP111/P8uXLSUhIwMvLi3bt2vHNN98wbNgwx12IvW9iZQkOAhqrp7jGLPU9oLGjSi9E1eEmHzj27t1LWFgYjRtb/x//+uuvdO/enWPHjtGzZ08iIyN5+OGHrbbLzs4uMo9GfqGhoRY9iUwiIyNZvHixXcfI36W9LDlEjh07xscff8x///tfi67wmZmZ5OTkEBMTQ2BgICEhISXaVsCBAwfYuHGj+W/t4+PD7Nmzady4MRMnTnRx6VwkrD+kbYZTK1RStKQjKklaxkWI+x3avaa2i/lSBef5W0v9I1RAeGmHCjLT41RLezV/lZwtJ5UaobWY//Y05n/xK8YLG1i6dBkTp39h2RU+Fx5YmM4DC78EvuSxB+7k1aiOBBs2qu7aei81u0thSjJE7thCOL9WtX5rRtV9vdmEwrOwo1dd4I1Z6rvpAUH+ADf5MKQcVg8ILv4BMStU0ju9t0qo1mSM5XHzP1A4/51aFtpDld+UeC4/e96Xi+qFWNjY9fwPOi5usDxHswmq7LaOlxqjkuTVuSWvzIWNv085ql5LYX2t8wlUdNLNXwjnBujuUon7+Pgwd+5c5s6dW+g2tjKtR0REWLSoF6ZDhw5W06yVC3vfxMoSHJS1i7wQwm0+cOzdu5cbbrihyG2aNWtGjx49OHDggM31W7ZsKfMY9Lp16zJ27Fi7jpFfWXKInD9/HqPRyBNPPMETTzxhtf66667jySef5L///W+JthUQHBxMUlISISEh1KtXj927d1OrVi1SU1NdXTTXOf8dcEG15BpyQMuC/2fvzOOjqq/+/55JJvtGSAIJEMOObAZFcCMsIpUlaltrq7VWharVx1qt2rogtbX191Rba+uC1qqIj3ahLgRccEFAUAKWVQxbCCELCdn3yWRmfn+cuZk7M3fWTEKA+3m98koy986937t8l3PO53wOiWJwgxheY+901vOOz6abBh+fDQPOg9ZjEJMBbeWO8mR2iIwXAbaJD3UbhMbM2dx0k5GbLmkHm5kdXx/j9j/v5ssDrmkkz7z8Ns+8LH9fMDGD539zDblj7vB+DeoyrckTxEngTbytYa8osSeOFeMxMs73GOdtTFQbuFUb4GCJbLdaICJaSstVr4cjr8tx1O1QOxRMKXKvfTkXAhmXfbEQ3bcpCu7q9ZLHOUqdCvXuCMQh4l4STkvjoD8imECRXnJOh46+NdD1STzMCHQQ64lx0FOKvA4dOvrFgsNqtbJv3z4uu+wyn/vt37+fTZs28dvf/lZzezhy0ENFoBoiIFonpaWlpKWlkZaWxsSJE3n77bc9jvnwww/T3NzM008/3c3mCmZfHXDrrbeyceNGrrrqKu666y5mzJhBRETEmRs9B+hqA5MBbFaHcR4JditEpYtQWtUGMVJcjFGVIz06Tf5uKZZ65hkzIXqgGMoDJomhxyanoaOa56eMt/PF38dAyyHq24wsfb2GZ98+5NK8L/dWM+U7TwJPMmnSJFasWEFubq7oPahp1LUOGnV5AVQUOCjjKke/sq+1Ta6vab9QtH1F5rtzrcvBXCPK7VpjojpAYGkQ+nf1elF9xy73S2mH+/7x2WKgu9Pg1Qj3uKwVDPE4R7anEa8YqoEERLpLwjWI8yZ6sLwrzYecx+iP+drBBIr0wJAOHX1roOuTeJgR6CDWD4wDHTrOaPSDBcfBgwfp6OjwGkGfP38+ERERpKamcuONN3LzzTdr7heOHPRQEaiGCEBhYSGzZ89m2bJl/PrXvyYtLY2rrrrK45hKFFy9LZh9dcADDzzQ/fdPfvIT5s2bR0tLCxMmTDiJrTrJiB0s0e62UjFIYzKkBrgBqYxSvhpSp8CoJWJ8uzvSu9pd9V+G5MOomzwNeRBDRz3PR8TIcQ1GBrSU8MzFOTzznxnY7LBixQpuvfVWLBZLd1P37NnDueeey9ChQ1m0aBH5l+Qwe9A2Ytt2i1jZwOnQWS8K8QplvKVExrH9fxWavjFS6OcxWZB5mSjHe0P1JlFqN5qgowbihgE2Zx66AnWAwG4TtsGR1wG7gwa+xzXgoBVQGOTjGYV7XNYKhoz4kes57DY45MVQDSQgoi6Ba2kW1fvy1dCwU1T51cfrT/AnjuceXdcDQzrOcPSpga5P4mFGoNHtfmAc6NBxRqMfMFEUgbjJkydrbn///fe55JJL+rJJISFUDREdvYc33niDq666iri4OEA0Wc54xGZB10GJKhsipayZrRO6uiT62XEcOirl90SjRFYtjWJsASTGOGqaG8To7WoSenlTkdQaTznH1dDJmAHYXIXXFEPHAaMBbrrpJm666SYAduzYwe233w5I+ktZWRnLly9n+XKIizYy95xo8s+xsHDql2QOHSECd2pHf/UmybFvPeyI+g+E7O/CyJtc74W7AdZcLPcicRS0fgy126RSTM61QvvXigC71wlv2NPzgEO4x2WtYIj7OQ6v6Fm6U3cJ3BIRz7PboOUwRA10MC6CPF5fwVegqJ9otOjQ0Z/Qpwa6Pon3AMVvQObZodGX+oFxoEOHjpOL733vewFpaPR3BKIhAjBr1qyArldLbyQc+55JeOmll7j11lv51re+xfe//30WLVrkV1H/tEfcWdDlqDhgt0kUPCoF7IC5SgxvjJJn3lzsiK4ClhYx1I1xknOdOE6i8Se2iEHffgLogpajohIfP9RJmbY0QMsRERprLXHkuxu95v1OmTKFL774ApAShes//YSCf/2NNR+up6yqmdWF7awuBP7WyPlnHyV/0TksumQ4udPyMGTMgOKVYGuX3HRzizgOtEqxVm9wVbEfku8syWYzg8EkTIOSN8RwNXhvc78OOARDUe8po1E5Tnu5OHI6ayWC3l8Zki73Jlv6hKJn4K9OvQ4dZyD61EDXJ/EeoHIttGyQv/WBS4cOHTp09BN8+umnVFVVsWrVKv7617+yZMkSFixYwPe///0zNx2g5QDYy8HcAAY7RCZDxmyhiptrwdIOtjahhnc1SZ3yqGRReq8tFGp7W4kY5nFDJV+7qxHM1WIQxxggegDU74HarQ419HIxmBNGiOFW/iG0HQ2o0ktsUyELsjaz4EctPHfTbHbu3c+aLccpKGxl2+Eutn1Tx7ZvXuWRJ3ClwsdHEWuIkOh59EDtUqwV61xV7FOnipJ5xQdQ/q7ck+g0cUhUrnOqu2u1ub8GHAIVQQuXg0H5XnOxvD+mJHnu/clhoYa7+J+a5p92gZ6GqUOHG/rUQNcn8R4geSJ07dc9izp06NCho99h0KBB3HHHHdxxxx0cOXKEn/zkJ3z3u9/FarX6//LpCFMSNGyVqLLBJHnhTd+A3SJ1yE0pEDNIjJT2Chgw2RERLZOIaNNeob8bTFC/HYiQzyNiwNohOe2dDXD8Y/l8wDkiFNbuEF4zmiB2WICVXhwR7qZD0NWIIWkCU8akM2X8SJb+6DiVXSNZu/Ega3Ya+GjLflcqfGwUc8+JI//COBbmDSfTWylWg/q3qqRa7GCJnEdEC5UfQoumuhvI6RfDic3e/w+3mJoWTTtjhrbRHg4HQ391VAQC93z0yCTvped06DhD0acGOuiTeMho3AuJCbpnUYcOHWFHSUnJyW6CjlMcVquVdevW8c9//pPVq1czbtw4/vSnP53sZp08NO6TSHdUKkTEgrkeLPvkb6tZSpKZj4sxV7td6qaPvk3ovpYmKP2PRNoNBhGMI0L+joiW4zbtl+9amkXlvbMWjDGOeuoj5P/4oUKFr/pUzmlp8BRiA2eE294px2vYJdHwIVdAVBKZNjNLrhzHkntvoz1pGuvXr6egoIA1a9ZQVlbG6i87Wf1lAzx1iPMn7yZ/5tksmjuN3GmzMAzKg8x5wgqwNEhufuY8Oa97qbmEHMnZrysU1fioFKFDBwJ3A7l+J9R86f1/CK9xqyWCBqHnVgdTluxUgpaCf+KI0J0Np+t90nHGo88NdH0SDxGZC5056Dp06NChQ0c/wc0338zq1avJycnh+9//Po8++qiuMZMxB5o/E0p6Z60Y5PZOUUWPiBdD1NIGKcMhIkFo3QkjAKMYrNih6Wsx1g0REDkAolMgPQ+s7RKNj8mQPO7IeLB2wsDzofkbaDsmxm3mt2R7yZtS+qzmCzm2Zk1vwB4h5zKliEEZEQujb3EpVRZrMLJgwQIWzL+c55Z9n52FG1mz+SgF6zazbed+tu0uYdvuEh756/sMTf8Di+ZMIf+yacw+73JiE9LEGFOvY9wjwcfXSy4+cgu6//YHFwN5F1R+JDn7KZOkFn3D3sAj896MPl/GoFZueU9K3J6uwmmKgn9ElLyz6Rf2bF17ut4nHWc8+tRA1yfxHmDEdZCkkdvlDmUC0cpL0r2KOnTo0KEjzBg5ciRffvklo0aNOtlN6T+Y/Ai050tOdcMeqd3dXi70dGuL7GOIcLDjusQQVxsaI5fAWddJJN3aJvtGxEuOOYgBbq52lD67SL4fmQh2B5fcDmAQYzsuy7eRqES4244JJd9mBitQ9xUMWQgjf+x5fdWbMBx6gSkpZqYsimJp/rlUHupk7fYW1hQ28NEeG2Un2ln+zy0s/+cW4mIimDvzAvKvvpGFC8eQmZmpfd+UXPwMRzm31tLA7rfaQLY0SV57ezV0VEHiWBg0SyLoDbvBECVRXEWkzH195M3o82UMesstDzW3uifGPfTfyHJLiSj4D7pUrsuU0rN29fQ+6dDRT9GnBro+ifcBlAmkvVwWBPHZ/bs2pg4dOnToOKXx0EMPnewm9D8okWHF+GgpFqPJGC3RdKxgGiDGRWyW5OGqDY22Mpj6NGR/RyjoraUSNa/aIEZ0RDwkjhYDp7NRctMNBpVxu0ucAyCq8A27hAKvGIlqAy4+GyY9DM0lktPeVAQDHJFnbwaP2jCq+hRajpIZe4IlF3ex5BIj7VFjWL+3k4Iva1mzvY2yEx2s/nAzqz/cDMD5559Pfn4+ixYtIjc3F4PBoE1/DtSoVRvITUVyr1Imi3Nk4DSpy65Q6S0NEsW1dWpHXb0Zfb6MQa2c8J4IwvVU7b0/Rpa7n2+FMElih/Q8bVN9n/w5XnToOIXQpwa6Pon3AHabs5SKr4FHmUCiUkUwxl9tzP7qZdWhQ4cOHTpOZXQbSR0QGSPGs6VR6O12m6iym1Ig8zKhfmvW0J4tP4dXQHMRGI1g6QRblxjQ6RdIjnpkrBy3sxHqdwmDrrZQWHR2u9Rhj3OUt1LmfbUBN/o2GHWTtOPgcolCRzgMei0BNrUh3dUhlOXIRGEIGKOJzZzOgmFxLJj8Ls8tjmJXKRQcmULBlzVs27at++eRRx5xVYUfvI3YUOjP7irhrSVyDYljIOtyUctXth9eIca5t6irN+M4WKO5J0JuPVV774+R5epNcEKht5shrYf0dnC9T/4cLzp0nELo8xx0HSHixBY4vtK/NzTY2pj90cuqQ4cOHTp0nMoofgPsRyVfXKl/nuYwbOt3gzFKqOuD50h0tzvSXqJtkCXkgCkZmg7IfB09EOxmqN0GESZhzJlSHCXYMiR/vPEbWQe0lUF7JXS1OeqjG70bcFqGoaYAmyqPOG06nPhcDHbsYtgPmOxQst+JIWoguUm15F7xPZb+5SYqKytZu3Yta9as4aOPPnJVhY+JYO4FI8mfYmPhnEIyB2wKPnDgz7j1Z2h7+35f1mDXMu7dWQ8GXPQBXO5RuOqthxMtJaLDMGhOeOjt4Hqf/DledOg4haAb6KcKWkoD84YGWxuzP3pZdejQoUOHjlMZlWshqk1yoWu3izHVkSJGdlezRLsj4yF1mkR3wWkgV2+C4pWuhlfGDBh6BbQcBnOd0OStFogyCVOuYZ+IztEFXa1gSpWSbc37HSJzjgh+Z6PUHwdntN0Y7UkN1qJ8J08SOvvhV8S5kH6hRKlTzxXKfVerOAcwCGU/YYQECGxmR6BASrBlZmayZMkSlixZQnt7u1MVfvV/KKs4werPDrD6M0QVfsy75H8rj0U3/pbcKecKFd4f/EWu/Rna3r7v77i9zUhUO0o6G+WdMiVrB1f60pkQKHrbadAfnRI6dIQI3UA/VZCQDS0BDDzBUqr0AU2HDh06dPQQjY2NfPDBB1RUVJCVlcXll19OcnLyyW7WyUPyROgqAmMsYJD/6/8LNdvB1grYxUhvq3B+x26D/X/1rAuu5LKbBogxbEqW3OrEcYBVGHO2DqENGyOFZm63Cr276Wuph95ZL98xpUgZs8hEsNRLpD1uqG9qsLJOqF4v5d2sbbKvuVrakzBCftqOOqPsarV2H0ZibGysqMIvWMBzzz7DrvWvUPDP5RR8to9tB9vZdqCVbQfeF1V4hQqfn8/s2bOJjY0N7dn0Vg3x3mYkqgMq5QXyWfoM7eBKf6yT3ttOg/7olNChI0T0uYGuT+IhIv0iSIwP/8BzsgY0Pfddhw4dOk4LbNmyhfz8fMaNG0d2djalpaXcfvvtFBQUcNFFF/VZO8xmM4888ggrV66kvr6eyZMn89hjj3HZZZf5/W55eTl3330369atw2azMXv2bJ566ilGjBgRWmMa90JiAmTMEvXw1iPQXgG2NsAm+9g6oOoTZ23y6g1w6AXZL2oA2GwS7VbmyYRsEXpTcqtHLZHvVbwHjQeETm/rkmN3NkFUsxjz0SkQmyHRepBcdlOyRPYxOEq/RUHCSDHiKz5wnZOVdcGR14WdZ20HQ6RE8KMzXdcN7nN6EEaiwRhB7qVLyJ04mqU7fkll+RHW7opkzXYzH+1sVlHhlxMXF8fcuXPJz89n4cKF3lXh+xKBMBK18vlPbA5sLaQOqJhSJILe0+BKX67FettpcDKdEr15H/X18hmJPjXQ+8skfkqitwaekzWg6bnvOnTo0HFa4K677uL555/nmmuu6f7s3//+Nz/72c/Yvn17n7XjxhtvZNWqVfz85z9n9OjRvPrqqyxYsID169dzySWXeP1eS0sLs2fPprGxkQcffBCTycRTTz3FzJkz2blzJwMHDgy+MZkLIfNsMcAG5Ipx29kAXWZHBN2B5kNQ9DSk5sK+PzqMeBu0H5ffdYVCUzdGw6hbRMzNfaHeUgLJY6DRoZJtShZl+NRposauTnWr3gQHS8QQNyB1wluKReyt+YjktZe9C7GDYeyd0kbFOEiZKLnmnbVgMEFktCMX2mEs+KLoB4OMGZBzLZm8wZLsaJZ8L4v2YTezfl+XUOHXrKGsrIzVq1ezevVqQFThleh6typ8b8PdcIrP9s9I1Mzn/9L3Wqj7PMWQdoEjfSDHMwc9FOhrsfCgN++j/ozOSBjsdru9r052/vnnc99993lM4v/7v//bp5P4qYSmpiaSk5NpbGwkSamDfjp40w6vgPJ3nZ7mIVdq11rVoUOHjtMMmuP6KYwBAwZQU1NDRERE92dWq5W0tDTq6+v7pA2FhYVMnz6dJ554gnvvvReAjo4OJk6cSEZGBlu2bPH63T/84Q/88pe/pLCwkPPPPx+AoqIiJk6cyP3338/vf//7gNvh9dlWbYCDz0NNoVDBsQERQjGPHQqmWKG7W+rFwLZaHOXXYsSI7myEIVcIddx97q/aAAeeh6Z9ItQWNwSSxsOYn3o39io+cKq8G6MlT71umyO3vUOMzSl/kP33PiaGf2QyJJ0tVHd7l1DjJy6FwbPdrtNNHT4UY8LHOsdut7Nr1y4KCgooKChg27ZtLl/1SYUP5/rJ41pvAYy+j+2+9okaKA4PX2uhcN1TLfT1Wux0WL9qoTfvo75ePuk4GXN2n0bQDx06xHe/+12Xz77zne9wyy239GUzTk1Ufw4nTjhLnhx68dT2pum57zp06NBxWmDSpEksX76cO+64o/uzF154gQkTJvRZG1atWkVERITLeiImJobFixfz4IMPcuzYMYYNG+b1u+eff363cQ4wbtw4Lr30Uv71r38FZaB7hRLhHDxP8ocrPxFFa2McdByHji6ITJF97AZIGC5/t1dBRxUkjhXhV7WhZrdKJLx+D8Skw+CfgbVVIqzqHHAFauMocx5kzXNGYO022HkY2kohJk1y4JWa4s37JWe9o0pqik973ntaXE+FZ21dcOBZaNgrEfsxdzhF9BztN7SUkJuZQ+7DD7F06VIfqvAaVHjjgfBFIz2utVQMJ18sAmXtU79LUhWMsdp16r2dp36Xa9pDTw3c7rWYoz1NReIQ6C3D+XSNBvfmmlZfL5+R6FMDvT9M4qcsDr8MsTbpnPE5gU+APfVW9pa3Uxfz0KFDh47TAsuXLyc/P58//vGPDBs2jGPHjgF004/7Ajt27GDMmDEe0Y1p0yTveufOnZoGus1mY/fu3dx8880e26ZNm8a6detobm4mMTGxZw1Up5MlDpcoetNBsDaA3QjYwORQPx94vkTNm76RcmUNe8QwNiW5zv2H/y6Uc5tFyqkljoJxd3lvg1btcyUSZ7dBzrWuAnUJOWKwKTxLO2AweE+Ls9tc66NHZwojYMcDsj1znlPwzhv2/xX2/T8RvCtfLcc8+27t9gNkzCDTeIAls00syb+b9sT/Y/1nG7xT4ScPZ9F5MeR/awa5g6sx9KRyjTfDyZcRqqx1Kj6Q9AVrq9zXxHFSr11rLaQ+j6XJNe1BfexQoG5PbaE879aS4I8b6Fqxv1YO6ulatzfXtOE49unKXDiN0acGuvskXlpaisFg6NNJ/JRFe4V4yBu/FvEXW4d4UiO8eFwV9NRb2Vvezv6oMKpDhw4dOoLG+PHjKSoqYuvWrd0CsNOnT8dkMvVZGyorKzWFwpTPKioqPLYB1NXVYTab/X537Nixmt83m82Yzebu/5uamuSP6s+husq13KkiCHbkDSmxljLZqbLecVyU0WPSIXMuDDhHDCVFEC7rcjmu2iDsbBTjPHEMNB+QqLMv+DKODEbJOR+Q62YIOPLgOxsgLkui7t5QtUHy1zvrRUQueRKUrZba7QbEAFTmfm84/olcc2S8/D7+idNA12o/uKxRYkff5qkKv+Y9Cj77hm07i9i2+wjbdsOyV75haFoUiy6tJv9HA5k959LgVeG9GU5a7VSi6sq+SWPEyFb2SRoXWFm4piIR+fN17GCML+V5tJS4tseb4ezN0At0rdhfo8E9Xev25po2HMc+XZkLpzH61EDvD5P4KYu2Y9C1X3LDQCbxJB8eVwU99Vb2V2+nDh06dOjoNzCZTD6F2Hob7e3tREdHe3weExPTvd3b94CQvgvw+OOP8+ijj3puOPwyGKuh9ajkc8cMgdJVULtNypR1VEnU2xgt9cmNJqc6+pE3wW6XnGYtETDFOKr7LzTuEePcaBJKuBrBipgphoCaoh2fDRMfDkyMrHKdtCUyURwTrUeFvm1ysA8sDf7XEFGOqj5Ws+v/oG3c+VijGE58Tm70J+R+G5Z+N5fKpN+xdmsNa/75Vz76fB9lNZ0s/+cWlv8zPzRVeG+Gk1Y73Q2ktAsCN1TV56na4BD583FsCH6dFqjh7O1cgTglMmb0PBrcW5Hg02Gt6+venA7Xd4ahz8uslZWVUVdXR1dXF6WlpZSWlgJw3XXX9XVTTi3EDYUos+SHxQ8HY4Rvj6sCj0E3Wwb4QAe3/urt1KFDhw4d/QZHjhxhz549tLS0uHzeV3N7bGysSyRbQUdHR/d2b98DQvouwAMPPMA999zT/X9TU5NQ6W1miB4AXV+DpRU690Fti7DfjNGOmuUxUv4s/WLACDWfg7ke2o/B0X9IjXE1Bd198Z1+sczfDXsheYIY6IdXOLd7UNo1VOAVqI9vaYATX0iOvCEK0i+Usl6BQE2HNyWDrV3y6A2I6J23NYRy/pghEDdM2ATRqTBysXNbs0PFXK1KD97XKC3F0F4mQmztZWRmNrLkJ7ewZE407cVvsf5AAgXrvmBNYSNlx+uCV4X3ZhBpGaHFK10NpIgEuRYl1z794sDubyDHDsX4CtRw9mboBeKUAKejIVTjsLciwafDWtfXvTkdru8MQ58a6P/v//0/Hn30USZPnkxcXFz35waDQTfQ/SF2CBirHLSvevnfXwez2+Qn3rFf1jyZNA8FMbjpueI6dOjQocMH+sPcnpmZSXl5ucfnlZWVAGRlZWl+LzU1lejo6O79gvkuSORdK/pOZxN01UJXq9CSQeZvU4IY4QajqJ9bmkRxPSEHqtZDZx1ED3SKtCnzs7fFt5Jz7q70Dd5FzNRzvpaqe3ul1EUfNAeqPnVQ8h1OhZzrhAqv5djPmudKhx91s6NO+zrZnjnPuYZwN24V8duudohMEGM+8zLIyNPOnXfP6dZao1iaoLUUmg8Lw8DiSD9IyCE2No4Fk9pZcM50nht1K7uOp7iowis/y5Yt864K7+2ZaEXW3Q0ka4uzvFrNl5JaEIihGcixQzG+AqVReztX+sVSMk7tcDjyf+GP2vZWJLgna93+kt/ti8Xgzbmlo9+iTw30P/3pT2zfvl0XhQsFI26Els8hLlvy1bK+5b+DVW9yU3s3Sk5bMIObniuuQ4cOHTp8oD/M7bm5uaxfv56mpiYXobitW7d2b9eC0Whk0qRJmqVet27dyogRI0ITiDMgxnhEjJQwszSL8QlC244aKDnkio6Mo/a3h0ibAl+Gid0mBnbTfojJAPNR+T9zXuB1uZsPCO1+8FzorBFjvGG3/La1Q2erGO77/yLf0zLSM2bCRKOnoTJotvtZPY1bRfw2OgXqHc+ibLXUgwdJ7xtwjnbuvLc1SmQSxJ8FUani+Ih0vBduxpghYwa5g43k5uYGpwo/oZXMQNdT7gZsZGL4DM2+DKR4O9eJzZ4Oh4RsSXEoL4CoFPm/p+itSHBP1rq+Itd9abwHwmIIZ4k+Hb2KPjXQExISGDFiRF+e8vSBwSj5XDazqL8ajP47udaEHp8ti4LyAqGsxYdhwNShQ4cOHWcs+sPcfvXVV/Pkk0/y4osvdtdBN5vNvPLKK0yfPr1bwb20tJS2tjbGjRvn8t1f/epXbN++nalTpwKwf/9+Pv300+5jBQ1TEkTboS1ByqERIertxigxggfPg+MfO3a2yS9NkTYHfBkm1Zsk+t12TKL1pniJZGfN805pV9C9TpgElVWiGJ84GtIctHZLgzgNWg5JCTRzDRR5MdKDMXLc1yfguL49wvSLyYDGvXL+qBT5LNhUvYQcMJig9RhgFweGUkLMRzszMzNZsmQJS5Ysob29nfXr13tXhR+XyqILi8i/JJvcMWehQYQXuBuwweSg+0NfBlK8ncvbelOd8mCn5wjVGdGbhrIv55k347032tNb6Q86Tgr61EC///77ufHGG3nggQfIyMhw2eaLQhZumM1mHnnkEVauXEl9fT2TJ0/mscce47LLLvP5vf3797N8+XK2bt3Kf//7X8xmM0eOHCEnJ0dz/9WrV/PrX/+affv2kZGRwU033cTSpUuJjAzhtreUancydSePzxavvSLmoikIY6N7BjGA99lEhw4dOnTo8I/+MLdPnz6d733vezzwwANUV1czatQoVqxYQUlJCX//+9+797vhhhvYsGEDdrvTWrj99tv529/+xsKFC7n33nsxmUz86U9/YtCgQfziF78IrUHGaMi8RAThFBE3DJAwGrIWyD4Ko+1gCaAyfLQW0L4Mk5YScQgkjRWjNnGs/K9FaXeHYvhbGiF5LKROc4rPGoyyxgCJnJtr5O+uBjHafdGy/Rkg7g6HrHlyD5TyY+YTYtClTJK2JYyVEm8AdbvEyLV3aqfqKeeu/FBSArta5Bi1myXA4b6/D8TGxjpV4Z97jl2fvkTB649TsKWKbQfa2FZUx7aiOlGFH/q1NhUePI24yCT/zpNTCd4E/KKS5doadku6wclCb6qY+3KeeTPee6M97s4T97KH7qwcHf0afWqg33777QD8+9//dvncYDBgtVr7rB033ngjq1at4uc//zmjR4/m1VdfZcGCBaxfv96nCu0XX3zBX/7yF8aPH8/ZZ5/Nzp07ve77/vvvc9VVVzFr1iz++te/smfPHh577DGqq6t5/vnng290Qja0+Km32dnooNUlexeEKV4p29NnOHPSBgXfHB06dOjQoQP6z9z+2muvsXTpUhfn+5o1a8jLy/P5vcTERD777DPuvvtuHnvsMWw2G7NmzeKpp54iPT09tMYMPF+MsOQJYiAao2SRbK6RSHSbF6e7N/iKkibkOKj0RpnfDQYRoAtkMa5l+LtHxcfeKX8X/UWM85hMzxx5d/gzQLydV8mZVQx1S6NcS1ymMwJdtd6ZI69179S0/fZqOX5Xi6QV2MwhRxENBgO5qcXk5ney9DvZVFY3sPboFNbsjvKkwsfGMPeis8lfcCkLf/BzMt2NuMQRp1f6oDcHUrjp6KEatr2pYu7LeebNeO8LVfXqTVDzhfQVa6eIPZ7qjqAzCGEz0N9//33mz5/vcx+bzRau04WMwsJC/vGPf/DEE090U9duuOEGJk6cyP3338+WLVu8fveKK66goaGBxMREnnzySZ8G+r333svkyZNZt25dd8Q8KSmJ3//+99x1110u9LqAkH4RJMb7rrdZXuDYV2V8u3vPg8nf6S/CFzp06NCh46TgVJnbQcqiPfHEEzzxxBNe9/nss880Px86dKiHg6FHqN0GbVZo3C/553SJOFz9V/D172HoFb7n4mDm34wZjjz0D0WjJn6o/xKs7scf8SPvx1cb6d5y5N3hzwDx5nBwL/WmtK/5sFOR3domZei83Ts1bb+jCjqqhcHQWReYwK432G0SBba2gTGCzNQIlpx7Dkt+87grFX71fyirOMHqT3aw+pMd8IsnOX/ycBbljSX/sunkTpuF4XQzlLSepzfD1Rfz0986M1TDtjdVzH05z7zdg75QVW8pkWoIgy6V85hS9DX8KYSwGej5+fk89thj/OpXvwrXIXsFq1atIiIigltuuaX7s5iYGBYvXsyDDz7IsWPHunPV3JGamhrQOfbt28e+fft49tlnXejst99+O7/73e9YtWoVDz/8cHAND6TepilFBrqG3VIaxdLgWnLFW/kPb+hNSpAOHTp06Oj3OFXm9n4HmxlMA4WqbW0Dm0WMxMgkmZv9UZyDmX8VTZo2h05NayngR6cm0OOrjakBk8Uwai31v37oiQGi5Zyo36lSZI+EITMhdaq24ddUJJF3u03o/gOniip8ZJJEroNxXKgNxupN0FEpon+djRCTLo6Cqg3EZsxwUuF/MZ1dG16j4L92Cj7Zzrb9LWzbfYRtu4+w7JkPGDr0796p8KcTvK1bfTE/IbCUjGDfq0DXvu7PP/1i0Q8INVDl7R70RT145V7V75IKBk1FTg0G3VDv9wibgX7DDTfw4IMPsmPHDl555RWXUivuqK+vZ/ny5TzwwAPhOn3A2LFjB2PGjHFReQWYNm0aADt37vRqoAdzDqBbbEZBVlYWQ4cO7d4eFqg7udoTaWkQaovNLUerJyIuuriEDh06dJxROFXm9n4HRfDMGAUJw6HxG/nc3iXOdH8U52Dn397aX0sFWqnN7guhGkRa9dvBU5F9wLme7VC+Z+2Q/PWks13z6QOBL8eFklM9ZCGc2CKOgpb9cNA1r92QOJzcsYPIHW1maf4EKhtgbVEGaz7Zzkdf1XpXhV+4kMzMzMDaGSj6IxPSJ/OzpHdK/3pb+3or96c8//qdztSKcAaqeirsF4iDTbk3SrpIc5FD70JjXx39DmEz0F9++WWmTJnCL37xC/bv388777zjIZ62f/9+/vznP7Ny5Uo6OjpOyiReWVmpOQAqn1VUVITlHOpjup/H1znMZjNms7n7/6amJt8n0+rkg5DIua2zZ8Z1X1BwdOjQoUNHv8WpMrf3O4y8GZod6uqmRCm5Fp0pjnR1PXBvcJ9/4/0olwc7X3uLrrlHDFuKwdYhEc6GPbLYD8TI82WA2G1QvUHqo7eWSvm2qGTJowdt50HiCImCt5eD1QJdTXIcdTuU7ynl2JLGBS9i58txkZAj+fCWJogaILm9KRql39RGpKWBzBNfsCSrkyWX5tGeeB7rv6qkYONh1nz6Xw9V+KnnjCV/1njyFy0gd85NGIwRvu+zP6gNOUOUGJymFNdrDqcRH2xk124Xh0rVp4GJmIVbsd5buT/l+TfsDT1QdbKU4xUo96qlBJr3y771u6QP9yeHjQ5NhFUk7s4772Ty5Mlcc801TJ06lX/84x/MnTuXjz/+mKeeeooPP/yQqKgorr/+eu6+++5wnjpgtLe3Ex0d7fF5TExM9/ZwnAPweh5fRvfjjz/Oo48+2rMGdCs3Vgi9LtScq76qrdkfPbw6dOjQoQM4Neb2foeMS2Dk5aHPbe7zL7bgRdcCOb57dM09Yph2gRikNduEoVdbKNfUEwOpehPsfUzy861tQhlPPU+E8yo+EEV3d2eDQnNXcuBPfOGpIh+Mk8JbBNJX7W43w5uaL7TPpTYi7TZn6TxLA7E1X7BgdCcLxsbx3P+uZNfxFAoKCigoKGDbtm1s37Wf7bv2s+zptxma9SCLrvhuz6jwakOu6lMoeRPislyvOZzpjNUb5Nl2Nsj9m/gwDJrtuo/63bM0gt1y8kTMvJb7czzX5PFQvia00sQnSzne176WJkd/36+nrvZzhF3FfebMmXz11Vd8+9vfZv78+YwYMYJDhw6Rnp7OI488wu23305aWlq4TxswYmNjXSLUCjo6Orq3h+McgNfz+DrHAw88wD333NP9f1NTU/CU++pNMnlFRIHVLPVMQxn0+qq2pp7rrkOHDh39Gv19bu+X6Mkc6v7dwytcDYnmYvlcbZCrDUjw7RBwj64lT4Lq9VD6FhjskDEbGvcItTx1mhhcKZMkZzgURp7aEd9UJIJ5pkQwRoC5Dmq3QoSjfnumRv12g1EMpLgh3qOGwTgpvEUg7Xiv3e3N8PZ1LvV3XJiNuzBUfkhu0jhyb8lj6cMPUfnlX3nvnRUUbGvjoy8OUVZxoudUeLVxZjU7ov5u1xzOdMaKdeJ4MSVCe5X8726ga0V2/YmY9VYgx1u5v27KuxUq1jjaTXClibXuq7v4YajXEcy7rt63qUiccXrqar9H2A30uro6XnvtNcrLy7FarRw8eJAxY8awbds2EhMTw326oJGZmUl5ebnH5wotPRw1W5WBs7Ky0sO4rqys7M5310J0dLRm5D0otJRIfVClBIky6PU1jSmY9uq57jp06NDRb9Hf5/bTHu6GRFeTp2Mbgnd2K8etXg+tR4XKbmmU/2OHCLU8cYTUbLc0CQ09FEae2hFvcQiDWZrld3SqtCH9ItnWWqpdv91f1DAYh4i3Y7WWSg35+GFC6a9c59TvCfVcWufsbJQ67cfXyRpt4sNkjshlcf6XLF5opt0yifXHp1LweQlr1qzxpMJPnUp+fj75+fnk5uZiMHixHAOJ+oc7ndGg+t1a6ilWrHU/QmU89BTeyv2pHWOhlibWYmOEeh1a4nWBQv2uVm0QpoyeutrvETYDXZ2D1tbWxrx583j11VfZt28f9913H5dddhlvv/12+AUwgkRubi7r16+nqanJRShu69at3dvDcQ6A7du3uxjjFRUVlJWVuSjI9wq8DXphpTGF8Vh6rrsOHTp09EucKnP7aQmXRXk2jLrFqaDeUuzp2Ibgnd2KgXLkdcAROa9eL+rnw693jcz1JN3NxRG/SxTYcRhrMRlw4ku5JqtZDEn3/HJ1W8ORduer/FVnI5z4XHKjzTUQMwjG/aznEVv1OSvXQdN+cQZ0VMn/ub/r3h6bkMOCOTNY8EMjzz33HLt27XKlwm/fzvbt21m2bBlDhw71rgqvLltXtQHaj8vnWSodhHDe18x5kgZhaYDIWNEXKH+352kZvRXI8edo6VE1AjzZGK0loV2H+5o7VPG6vkpd1dFjhM1AHz9+PNHR0fzwhz/k7rvvZvz48QDMmzePiRMn8oMf/ICpU6fyn//8hwsuuCBcpw0aV199NU8++SQvvvhidx10s9nMK6+8wvTp07sj3qWlpbS1tQVfrxyYMGEC48aN48UXX+TWW28lIkJEPp5//nkMBgNXX311+C5IC946YDgHuHAeSx8wdOjQoaNf4lSZ209L+FNQ1zIcgjUm1NHCg8uhcS/EDhXj3EV8tofpbi6GTgxkLXAeTzHGS94UCnaNRn65uq09Ncx8MQAzZkDsYKj9QujN7ZVw8AVInRLceb2dQ2l/UxHdoWbFiPNyfQaDgdzcXHJzc1m6dCmVlZW89957FBQU8NFHHwWmCl+9yVWdXF2GL5zpjArbQKFTN/mgU4eD8dDb6Mn6tLVUxA8zHNF3xbkWynW4r7k9xOs0Ul7A9zsYLHS9qD5F2Az0ZcuW8dOf/pT09HSPbXPnzqWwsJArr7ySWbNm8eyzz7J48eJwnTooTJ8+ne9973s88MADVFdXM2rUKFasWEFJSQl///vfu/e74YYb2LBhA3a7MwGpsbGRv/71rwBs3rwZgGeeeYaUlBRSUlL4n//5n+59n3jiCa644grmzZvHD37wA/bu3cszzzzDkiVLOPvss3v3IgOpmd7TAS4+W7zMoQhnBNpeHTp06NBxUnGqzO2nJXw5wn0ZDqEYE73tKPd1/O788iztaw23YeCLAWgwAgYxzu02MBigs8bBMCDwc/tjGWbNk3z7zga57qx5ATc/MzOTxYsXs3jxYtrb21m/fj0FBQW+qfC5kJvcgUFRuO+tVEJ3OnVrSXjWnCcrkNOT9anWOjnU63Bfv6dMlAi68r8lyJSXUPqUrhfVpwibgf7II4/43D5ixAi+/PJLrr/+em655RZ27NjBM888E67TB4XXXnuNpUuXsnLlSurr65k8eTJr1qwhLy/P5/fq6+tZunSpy2d//OMfATjrrLNcDPRFixbx1ltv8eijj3LnnXeSnp7Ogw8+6Pc+9SrCOcCpxTKUv3Xvmg4dOnScVjiV5vbTDr6c6t4Mh3CJ0oUbPaEShytv11spNXfBvdihEBkHXR2AVX43F0kb/J1bOeeR16UknCK25yFoNxMmGnu8HouNjWXBggUsWLDANxUeGJoRy6ILdpF/yTBmfy+Tnksi+0FY15ynYCDHAGAXrYWudkntCPUeuN/L9ItdRQqbg0x5CaVP6XpRfQqDXR0i7iMsW7aM3/3ud3R1dfX1qU85NDU1kZycTGNjo0vO/EnH4RWSV6R01CFXyiDhTsfTO68OHTp0uKDfjus9hD63h/nZ9pbTuz860321SWu9oab6e0PVBu01ifvnaRe45vMOnA7lq6GtDLpaIGogZH9HROP8nVs5dnuZUJrjzxKxPff1UB8828rWRN4rrKVgzVo++ugj2trauncLWRW+N9Af3sfeaMPhFVD8d+isB3MtxGVDzg8kou6rDF0o0HrXwfuaPJQ+5a0/nQE4GXN22CLoTz75JIsWLQooZ/vRRx9lypQp4Tr1mYHiNyDz7P4xkYK2t7uvvGv9YTDXoUOHjjMA+tzex9Ca38I9jwYSPevtedbbdWpda7jydpU1iXs0sqVYBOGiksUIjz8LJi4VA9vSIGVrG/YEdm7lnIPmSN1xLbE96D26sOq4mcZoFuffxuIlPwmcCq+owmPvu3VWf6BO90YbEnJE9NBcC1GpEGGCyo89y9BlzAz8Xnvrl8GmvITSp3rCiNDX7UEjbAb6H/7wB375y19y1llnsXDhQhYuXMjs2bO9lgy76qqrwnXqMwOVa6Flg/wdrjqKPYG3jtoXIh79YTDXoUOHjjMA+tzex+iL+S0QZ3pvtyOY44crb1dZk2jRpS1NULdNBNvqtkHWfIkoBlrv3OOce7TF9hR0P4NJYsgHm+PuDV6ebcBUeEUVfs655E9sYHZuCrGxcXLs3lpn9QfqdG+0IWMG5FznED80CZOCCNf0UAiuL3jbN9iUl1D6VE/SDPR1e9AIm4FeVVXF1q1bef/991m7di3PPfccsbGxzJ49m0WLFjF//nyys3sgJHamI3kidO135pWc7Bddq6P2lYhHfxjMdejQoeMMgD639zH6Yn4LJHrW2+0I5vihGgaBrkkyZsDAqdB2TEq+WTslqq42fJTASPFK34GRQM+pPIOqTyVSjyGwHHd/CODZuqvCHz9+nLVr17qqwr9WxnIgLsbE3PMGkr8gloU3jQmdCu8rgtofSu0G24ZAIsIGI4y909XBY+uCjuPCzIjNkrJ0wfQFX/sGE6UOpE+FM+qtr9uDRtgMdIPBwAUXXMAFF1zAo48+SlVVFWvXruX999/nl7/8Jbfffjvjx49n4cKFLFq0iIsuugijUac3BIzGvZCYEBiVvCedqiff9dbhlWM2F0NXk9T9TBgRemfvD4O5Dh06dJwB0Of2PkZfzG+BGJG93Y5wH99fWTNfMBjFWLKZxTA3miSiroa3CGAwVH01XOrPG7yLyQWLEAIlgwcP9lSF/+cLrPngI8qq21m9+TirN78CD73iSYU3GPweH/AdQfXX5r6gRwd73wKNCLu/g3YbGCNdz1O9CQxR4qyxmsV4V0oPuqM3xBR7eo2BQF+3B42wGejuGDRoEDfffDM333wzXV1dbNq0qbtu4x/+8AdSUlKYN28ed999N9OnT++tZpw+yFzozEG327RLnCmDWMUHUFsohnBEjGwL1Eum5FvZO8MXnVc6eXs5tB6V9sYODf3Yet10HTp06Dgp0Of2XkZfzG+BGK4ns+xaKOipMRGZJLnnUanQWSf/q+EtMBLqeT3qz/vIcQ/UQPW2XxAGbjcVfv7lPFe1kV3bNlLw+VEK1u/RpsIvWsSiRYuYM2cOsbE+dOF9BZb8vY99QY8OlqURakTYPV8cIO1CKF0lqRWR8VDzhUTdg6WmhztKHc7j6fnrQSNsBvr777/P/PnztU8SGcns2bOZPXs2TzzxBCUlJaxdu5b33nuPTZs26ZN4IBhxHSjKgVolzsA5iDUfgI4qGDxXvMBancrdKK/5Amyd0FYBEVEicBIuGorSyaNSofmQKKLazKEf+1Qst6FDhw4dpyD0ub2PcTLmt2Ciz+FaLIf7OntqTCSOkBxhm1l+J45w3e4tAtjT8wZiuGgZqFpaRN4M2VAMXIMRw+BZ5ObPIjcfloI2FX75cpYvX+5fFb4nEdT+SI/uyfW4P4/6nRJUs7ZDRKwEs7xdo69+o9UmdX+NzxZ7oaU0sL4bzqi3nr8eNMJmoOfn5/PYY4/xq1/9yu++OTk53HHHHdxxxx3hOv2ZhZZSMCVD+gzHYFUKGTaJnDcfgOh0aD8OJ7aIUaxFl1G/8G3lDqP8UjCfEIpN/S4x7puKpLRCTzxWSidvLxfqWGetRNB1iosOHTp09Gvoc/sZgHCIVJ1sqI0JQ5Ssew6vCNyJ4M9Q9ra9p0ZMIIaLloEKns/BmyEbJgNXkwofqCp8TyKoodzj3o669uR63J9Hw16IiIbogaL4HpkQ2vpYq03q/trZKAa6Kdmz72rdr5PBVtVyKBx5Q+yHcKWBnCIIm4F+ww038OCDD7Jjxw5eeeUV4uLivO5bX1/P8uXLeeCBB8J1+jML3YOVyoje/1eo3SqR8/YqockYIsTwPqFBl1EPEOYaEUVp2C2e47QLxcCvK4TmIjhYIt/x1yH8lX/QykHXoUOHDh39FvrcfgYgXCJVJxNqY0LNCgymjJw79Vht1HkzpPvCiAm0rK03QzYYAzdAwzZoVfhuKvw1vqnwWgjlHve2I6knEWH355EyESzNsi0iDnKuDewaA9E/UL8n5QXyWXdwr8S5r7f7FW42j7/3S8uhYOsUIcXq9WKjnCHBvbAZ6C+//DJTpkzhF7/4Bfv37+edd94hJyfHZZ/9+/fz5z//mZUrV9LR0aFP4qFC6bhKrnlTkYhLGE1Ca2/YAzGZ8v+Ac7QnUfUAEZMF6RdKPrvSYYpXQvP+4CbhYMs/6NChQ4eOfg19bj8DEIwB11/FntTrjMMrZFGfMlkCGRUfeBoEWusVCIkK3uvrm0DL2nrbLxgDNwTD1kUV/uGHOL73HdauWUPBxgN8tHFHcFR4zROEcI97w5EUrqi8+/NIv9izlF8gxw3kWan7qylFDF6tvhuO+xXI/fHXZi2HwpBFYuMkjpWyher31+Wc2VImsTVACn8/R1hF4u68804mT57MNddcw9SpU/nHP/7B3Llz+fjjj3nqqaf48MMPiYqK4vrrr+fuu+8O56nPLCiDVUuJ04jurJUouKURolKEwtJxXKjqETGek6jWgK1+kZVOHQzVvb961nXo0KFDR8jQ5/bTHMEYcKeCSKvaKLE0SSCjeb+rQeCNNt4f1zBawmLpFzv/T8gR5uP+vwpdOmWibPcX/ddCT9dx1ZsY3PhvFl9sZvGMYbQ//wjr93UFToXHHh4jOByOJHeD026DQy86jMsoyR1XB7Z6UvEoFCeP8qySJ0l0+cjr8rm6Ler3RisHXUE47lcgDgN/75emQ2GPpMUOv97zeOpzWhrFQI/SoPCfggi7ivvMmTP56quv+Pa3v838+fMZMWIEhw4dIj09nUceeYTbb7+dtLS0cJ/2zIRWFLz9uENsolVe7KRxkHW55yTqb8BWR+kDpbqfDM/6GaruqEOHDh19CX1uP40RjAHXmxHj3ohQNhXJj7tB4G290h/ZAeCbggxQ9DQU/QlsFji+Tj4bd5f343m71z1dx7kZYLHWShYs+HHgVPg557JoQgNzpqQQGxvnvM5gEYgjKRi6tTEa4nOc11b1CZS8AXFDTp4xqDyr6vVSIQm7tFfdFk1ngMaxwuF4C8S54+/9CtShoHVOJeKecYlE3LUcFqcQwm6g19XV8dprr1FeXo7VauXgwYOMGTOGbdu2kZiYGO7TndnQ6lDu1PSkcT1TSldH6Rt2Q0ux6znTL4YTm52dafQtvjtTuNFfBWt06NCh4zSCPrfr6HWEaz5XGyVVG6C1xNMg8Feuqi/WMME4JPwZPw17hUUZM0iut/IjGHun9+N5u9c9NdR8GGAuVPilS7VV4V8rYzkQF2Ni7nkDyV8Qy8KbxnhS4f3du0AcScHQrRt2y2fKtVktIuzWV2wLX5oJR14H7I7qSyGKqIXD8RaIc8ff++XPoeB+HxKyneeMSpEIetWnQnPH4OmwOIUQNgNdnYPW1tbGvHnzePXVV9m3bx/33Xcfl112GW+//XZg+SY6AoPWixwKNd0X3DucpUk1oEVJ7cbaQhmoYrJgzE9h5I/DdYX+odPqdejQoaPXoM/tOvoMvTGfezMIvBkkfamXE4xDwp/xkzIRyldLQAWgo0KOH6zYX08NtSAMfC1V+DX/epGC99dRVt3O6s3HWb35FXjoFU8qfDicOd33YJJ2xNX9nmfNA4xOIcITX/Qd28Ifg+LgcjHOjdESLKva0DMmirshrA7GeTtmIM++p+9X9QbY+xh0NohBPuFBGH2baw56yRuAQVTfG3Zra1CcAgibgT5+/Hiio6P54Q9/yN1338348eMBmDdvHhMnTuQHP/gBU6dO5T//+Q8XXHBBuE6rwx3+qOnBUsjcO1xzsSvFp2Yb2NqlPISyX18ayP1VsEaHDh06TgPoc7uOPkNvzOf9TaRWvQZrKgJbB6R4EfNVw5/xM+YOCZac2CzMyYgY38frrbVTiPe7WxV+/uU8W7WRXds2UvD5UQrW79GmwueNZtHkDubMnk1sxzehrT2Ve+At4upNq0lZS7sLu/UmfDmv3NuJLTDnhS97QKtWe82Xvo8Z6LPvSSpLxTpo3A+mRKlYVfkxTHnc9ZwGo7S9cY8EFevUGhQ2up0s/dxgD5uBvmzZMn7605+Snp7usW3u3LkUFhZy5ZVXMmvWLJ599lkWL14crlOfGaj+HBIv9/8ieaWml8jn/ryOgZRtUFN8TPFgj5XajRFx4fHcBYNTQbBGhw4dOk5R6HO7jj5DuOfz/qhRo1VGKhAj2Z/xY4yEUbfINSvrO1/H669rJ4MRw+BZ5ObPIjcfloI2Ff6NMpa/AXExhcydOpj8b49k4bWVwTF5XCjiBs86277ueV87fnw5VNzbcniFmzHvlprqq5KBcgx3h0DD3vCxW3rKfjCofreWyvVqlXZWnGDNKg2KinWSAhKMDXSSxoywGeiPPPKIz+0jRozgyy+/5Prrr+eWW25hx44dPPPMM+E6/emPwy9DQqy8KIG8ON46sz8KmXvHsdtcz5l2oXjSGvZKPcKOamivAGyQMEpKmpz4Euw+6o+GE/3NO65Dhw4dpxH0uV1HnyHc83kwhkBfLczVa7D6XRLtThoXHiM5GKP7FFo7aVLhCwooWP0fyipOsPrzclZ//iT84klPKrzB4P3Ayj0AZ8TVm2PjZBtuwTzb7vW/I9W18mMwHwdTEhhjZB9vlQyU+6FVq73mS+/OpHDqKfhC5jxhilgaICJW7I/iv4PVDDnXOXUX1BoUB0uc7YbgbCDlXp0EhF0kzhfi4+N5++23WbZsGb/73e/0STwY2MxQ6cfzo4a3zuyP1tRcDO3lEJUqvys+hLaj2jQXQxSkX6RSjm+Dkn9ARJRDrOIk5ISf7EFUhw4dOs4w6HP7GYZTZZ4NxhDoq4W5eg0WESNVdsJ1nlPI6A4V3VT4BQt49tln2LX+FQrWvEfBZ9+wbWeRJxV+0SIWLVrEnDlziI2N1T5oIMZvX7wfvvpVMM9WnepaWwhN30gwLXOuGOz+Khmoj6FZqz1b2qqOXAfDzrU0iP3QEIJWlsJsUKLjNZ9LPrq5FkrelDaqz+t+HXabtmikgn6ka9WnBrqCRx99lClTppyMU5+6UF54a4fU+GvYI50v2InR30DU1STlGpoPgdEEccN801xMKfLTXY+9RjxZJysnvB95v3To0KHjTII+t58hOFXm2WDyrPtqYd5fqeWnIAwnPic3+hNyvw1Lv5vL8eTfsbaw3pUKv3w5y5cvJy4ujrlz55Kfn8/ChQtdqfCBGL998X6Eu4qBkuoaPwyOfyx2Q+IY/5UMvDkK1FHpQ27tDIqdG+VaFrqpSIzmQK7XvR1Vn4pxHpUKESbP87o/W3dWsHv/60e6VifFQAe46qqrTtapT02MvBkSY+VlrtsmSoV1hd5VOoPt6EqHrN8DpmRIGA6ddWKgtx71T3NRXujYIRCVJp3NGOuoyble8kTcPYK94YXvR94vHTp06DiVMX78eH71q1/xgx/8gKioqIC+M3/+fF555RWeeOIJ9u3b18st1HFScKrMsyHRgnt5Ye7NGDxVWAn9CW7v4eC4Zk8q/Jo1FBQUUFZWxurVq1m9ejVAcFR46Jv3w5+qfLBIyJFIdfNhiEyCxHEwaon/SgbuSukTH4ZBszXaqer//u6P+7U17IXoNKHdDwhAJFELGTOE1l7yphjnsUNcz+vP0eDtmEp7T7IDLSwGeiiTuNls5o033tAn8UCRcQkkJsDAddBZDzEZYK72HkV3z3NSygxYGqDmC7C55YgrHbL1GFgaJUofOxQyv+XqbXKhueR41g61NMCxd6HlgDgRmr8B0wA5nrujoDe88OEaRPXJUocOHWc4brzxRu655x7uuusurrjiCubOncu5557L8OHDiYuLA6C1tZUjR46wfft2Pv74YwoKCoiKiuK+++47ya3X0WvoR1EmnwiFFnyyFuanCiuhpwjn2srHe+hKhX+WXbt2UVBQQEFBgYcq/JAhQ1i0aBH5+fneqfB98X74U5VXI5D7mDFD0lJL3oSYgYBV9vF3v92V0ivWuRroWvfd3/3RurbWYrETQh1HDEbJOfdGvccGB1/07FPhSiXoZYTFQNcn8T6CwSj5SnWF4n0yIBH16g1I2YBiyeeITBKqujFKXnx1mYG2ckeO+KWuHiulQ0YmyMsbmSy1BdUeJwW+aoceXgFdjRCZKJ+b6xB1zBmeHjJfXvhQB/FwDaJnymSpQ4cOHV5w//3389Of/pS///3vvPrqq6xcubI70hQZKcuHrq4uAOx2OxMnTuTRRx/l5ptvJikp6aS1W0cv42Qbs72BcCzMe2J8niqshFDgnn+sFSQKBQG+hwaDgdzcXHJzc1m6dKmHKnx5eTkvvPACL7zwgncqvPJ+KPnWxSvDH7zxpyqvRiBrVINRUlDjsoJ/rwxuv7XaGUpk2uXadktUvyciib6o9/E52n0qFPHIym+Cb1sPERYDXZ/E+xAZMyB1mlBPUiYKdWXfH6UWubUTmg8IRT1uKAy9QqLX6jID5hrZT7NUA2AwQES00FBCGTQTcmRA6KgSz1hshvyvdT5fXnhvHcjfBBgu79fpPFnq0KFDR4BITEzk5z//OT//+c8pKSlhy5YtFBUVUVtbC8DAgQMZN24cF154IcOHDz/JrdXRJ+hHUaZ+hZ449vsbKyGckW71ffEWJAoFIb6HmqrwgVLhe/KMA12/gn9V+UDXqIG+V+q2xWRIrrqlEWKzYPBcz/LJwd53zWvzIpLo7T75u3/u9wRc1ewVMbrm4uDFI5tbAr/WMCFsOej6JN5HUKLorSUSMW87BsZq6GqD6AHQ2QQYoemAUFPG/dy1zEBMlogzmFJcPVbq0gXeOmSgEeyJD4viPEDmZQiVpdTTQ5Z+sbNkW8pE+V+Bt8HnZCit9ofJUocOHTpOMnJycsjJyTnZzdCho+fobxo4/Y2VEM61lvq++AoSnQQETYXPG03+OWbmzJ5NbMc3wT3jQO9pIO9CoGvUQN8rddsMUTD0SqedgC1874Jy/uZDsv4vXgl1O2DAJGgtcyqtH9Kgpvu7f+73JHOe9OluNXuHGF3aBYE7LSo+cAQ+x4Z2vT1Ar4jE6ZN4L6D4Dcg8W17ujBmATSLnxmiIHw6Ne6HjBBgNQm3H6vyuNzqKGurSBeoOae0Qz9PAaeIYSL8YTmz27QEcPFt+/OHEZmfJtpovXcsjeK3jXgztZRA1UH63FOtKqzp06NChQ4eOwBEOA9TdyI/PDt2x399YCeFkEarXc96CRKFAff/js4UF2qIhSBwgAqLCv1nOC29CXEwhc6cOJv/bI1l4baWrKrw3BLp+DeRdCPca1f15m1Jg5I9l2+EV4XsXlGur3wnlq0VIuqIA4oYIJd0YDXFnuZZ7bi72X7cdvNs6ipp997UlSQqvWltLKyBZvUkM+44qqK0M7Xp7gJOm4n4yYTabeeSRR1i5ciX19fVMnjyZxx57jMsuu8zvd8vLy7n77rtZt24dNpuN2bNn89RTTzFixAiX/bwpQj7++OP86le/Cr7Rh5dDzUCJTg+eDRiF1t7VBk1fQ8wgyeNoKnI0ALDbnbUF/XV29/yaI29Ix4gfLqrxlgbxPKnroIfTq+re2bwNPpYmicY3H5YycJYm78fviYc82MlSF5XToUPHGYiGhgbeffddvv76a1paWkhISGDChAlceeWVpKSknOzm6dDhCXVkLGUSdDaGZnS4G/mjb3Fd+J9qjn33XHFFxyhQarT6mtWfKezIcK+P1Pe/s1HWvSYNQeIQoabCd3R0sH79egpWr6Zg9X8oqzjB6s/LWf35k/CLJwNThQ9m/eoPga5RA3VE+YrIB8soDeSdqN8jxnniGGjYKXpVQ66Qc7Qdcy333NUUWDu83ROP741w3a9qAxx4HjoqpEx0znUiPtdSIsb84LlQsRPoWyO9zwz0/jSJ33jjjaxatYqf//znjB49mldffZUFCxawfv16LrnkEq/fa2lpYfbs2TQ2NvLggw9iMpl46qmnmDlzJjt37mTgwIEu+1922WXccMMNLp+FXCO2qw2aa4Q6Pni288XJnCu1DQfPg3N+K1FpNZ2jbpsz+h3IoFi9CQ4+D437nJ4rkEnM0uRZBz1cXlWPfHgvHS0yCeLPEs9aZ5387/NaghSCCHUC0UXldOjQcYbh008/5ZprrmHy5MlMnDiR1NRUmpqaWLFiBffeey//+te/mD07ADaVDh19iepNIpzbXiXRscSxoVGtPYIMpRJ1PFXnfneacyCRbq21D2ivh8J9X9T3v7xAPkvXECQOA2JiYpg/fz7z58/n2eeeC00VPpj1a7jg/o4qa3r3ta6viHwg0Xp3586JL8De6f2diE4T47v5gOP/VKctED8U2rPBlAqtR8TGqdqg7egJBP7a31IixnlnvdRUL3lTGL2KjdJSzMmIZ/fJGfvTJF5YWMg//vEPnnjiCe69914AbrjhBiZOnMj999/Pli1bvH73ueee4+DBgxQWFnL++ecDUvN14sSJ/PGPf+T3v/+9y/5jxozh+uuvD1/j7UBbqdBNLA3y4liaxAOVdTkYI500kOb9YsDXb3dGv8H/gNVSIoa53eY4pw3iBotYhDHGex30oK5D6cjFkgsSmQSJI5ydxpexnDhCah3azPI7cYS3swRH0QrVwFbaeuR1oSwNmiODiS4qp0OHjtMcd9xxB6+88gr5+fke29asWcNPf/pTioqKTkLLdOjwAfcAx8BpoUW7TzetGl8050C/01Iin/eFyK76/ptSJILe/SyyQ9NRCgAhq8JPSyUz0PVrIAgksOT+jnY1qda6UcKKVTthQqXcuwgBVjiEAOd4fycG5ELiKAn6JU9wzUHHJkyDtmPiQKveBC1HnAziYN8lX+232xw2Uhl01kBEAljbxJEx8sfOMnURpuDOGQb0iYHenybxVatWERERwS233NL9WUxMDIsXL+bBBx/k2LFjDBs2zOt3zz///G7jHGDcuHFceuml/Otf//Iw0AHa29sxGAzExMT0rOGRcRCbAG2VUP6ub+9md4fcI0a9Ev1uKXFS2L116IQcsFrEuxebJcdPv8RZBsFXHXQ13AcOde66UmajvVzOlXOtazt8GcvB5N0EM3l6M+b9DYBKW9vLZUCp+lTqx/fWRK1T6XXo0NFPcOzYMebNm6e5be7cuRw7dqyPW6RDRwBIyJGAgzrAEco8erpp1YSi+G1pkPWo+3f6wnGhvv9xQ0UZvOFrCSTZbHBYQ2isF6BJhXdE1z1U4c8ZS/6s8eQvupTc9Es0q5gFvM4LJLDk/o62qBTMqz6Bkjck/zusQoAnhCru651IHOWb0YoR9j0B2KS6VPN+J4M43BUGar4AW4cY5nYrWCLFkaEuU5c0FvgytHOEiD4x0PvTJL5jxw7GjBnjUd5t2rRpAOzcuVPTQLfZbOzevZubb77ZY9u0adNYt24dzc3NJCYmdn/+6quv8txzz2G32zn77LN5+OGHue6660Jr+MjbwH5UaOspk6F+F7Qfl5fHHUqHrPhAaFxK9Dshx3+HzpghBnPJG2B1lG6LHQwjfuTsAKHkvahz19vK5dh2mzgCSt5wFYjzFfkOJjc8HMa8v/ultDVjNlSvF6rc8Ot7b6LWqfQ6dOjoJ5g1axb/8z//w29+8xsXkaTKykqWLVvGrFmzTl7jdOjwhnAZ1v1N2E1BqAZMKIrfRh/Bot52XLjXwK7Z6hQdbj/e8yh+CPfRhQqvpQq/az/bd+1n2dNvM2TIr7Wp8IGu8wJhiWq9o8pa12pxlFUOR8pqttga5QWiA5DzXSnzHMo7obS54gOxHTCIplbtNvjyJxARAx3VYLeEx7HQXi7nwAgGk7zLJoeNqNgGjXtDO34P0CcGen+axCsrtdUWlc8qKio0v1dXV4fZbPb73bFjRYr/oosu4pprrmH48OFUVFTw7LPP8sMf/pDGxkZ++tOfem2f2WzGbDZ3/9/U5BBHGHEdtO8QqnrDbvH81hWKV8n9BXUXfFN3iOKVvju0wSjiCCCGc0S05JKoDehA4D5wqHPXzTWOUhvtED1QzqFuR09oY1oDak+MeX8DYHfn3SOUpeHX9+5krddn16FDRz/Bq6++yu23305OTg6JiYkkJSXR1NRES0sLV155JStWrDjZTdShwxP91bAOF3wZeLYuOPCss7ztmDskPRICvy+BUOH7+v561MC2OQ3GqBQxIINFDwMiIVPhJ7SS6b7O01rPh7JWVq9tlVzxUJkO6vV2Zx3Y7MqVQ8o5ntWcgn0nsuaJndPZIJHtht3QtM+ZIjDsO+HRwrJa5JiRcWCIgIg4EZID5/2q/AZYE9o5QkSfGOj9aRJvb28nOjra43OFgt7e3u71e0DA3928ebPLPjfffDPnnXceDz74IDfeeKPTU+aGxx9/nEcffVS78eqO1VQEzUUaHXgDVCg1yOd5dgitDq1l1JpShPbib4DQ8ibabWCph8YimQTihkJ6HtRudZbZSDlHhOwiouX/+GyoWi9tt9th4HSISpZOEoz31d2z655f4837GbD6Y47rdl8e596go59uOW86dOg4ZZGWlsa//vUvWltbOXjwYLcA7OjRo4mPjz/ZzdOh48yEL0f+gWeh6E+ioH3csVYcd1dwx++P6xD3NsVkSoonyG+7j+96QyABkSDWeUFR4celkn9hEfkXDyM3vR7DzodkzWxKkggyhMYEUa917bbAUla9QSvvfEi+3KvW0sCO4ev+ZcyEiUbZVvpvqPtKUlIa94Kl1fv7F8zaW2ENH3lDKmMZY+Cs7wM20ftSvh87BfAeXO0N9ImB3p8m8djYWJcItYKOjo7u7d6+B4T0XYCoqCj+53/+h9tuu42vvvrKq1r8Aw88wD333NP9f1NTk5Ny707nOVji+oJWb4K9j0HjfmFr1BY6v+NLmE3LSxifLWUrygvEwI3PDtybWL0JylZLHordCpEJIgCROkU7J10RhVC3PXGsCEKARP0DNXC7B9RJcOxtqCkURciYLO/t9QV/A6Avj3Nv0NFPt5w3HTp0nPKIj48nNzf3ZDdDhw4d4NuAbtjrLG/VfED+DxbBqnr3JEAR6HHc29RcLEGe9Esk/bDkDadaeaDtCMQREeI6zxsVfs2aNRQWFrK9qI7tRXUse+UbhqRvYtHUePKn2Jlz2eXE2tqczoKeMBXc1dshuPvjL+/cbtMOGmrpOGndP/X6urNeqlI17JT9si530tDtNqewdfUmZ3qvKUkMbvUxte7B2DvlGiod7TQY4OALYFOp0MeGWIGrB+hT3XitSdxms/H66697lCPrLWRmZlJeXu7xeWWl1LfLysrS/F5qairR0dHd+wXzXQWKoV1XV+d1n+joaM0oPQeeh5QMMarTLwZsEJ8j2zLnOenrnQ1gcuTBWxqcJRWU0muK9230bT5yvouFGtRRKXQoU7IYzS777ZJjag2aLSXy/eiBQmPvrIPKjyH3d66dRD2wHF7h2fbKdULpD2bgUwbUqk8deSVAZ7yzXeFUf/QHX95Xf5OOt+2nOzVPhw4dpwX6em7XoUOHA74M6JSJEjlvPiBlrlImBn/8YFW9exKgCPQ43nKtq9dLTW3scpxg2hGIIyIMaYc+qfDr3qf8RDsvvN/OC+9D3B/fZO75meR/eyQLr9VO2Q0KPXlOagdG7BBIc9MiUIKGDUVScq3sXRh1Cww4RyLsiiMlkPs3YJKwes11UpItcaTkpNvMYico6+eDy+Xdbq+SKg2KQLava1LW1oq9UfWpQ4X+UmebTncDXQsWi4Wbbrqpzybx3Nxc1q9fT1NTk4tQ3NatW7u3a8FoNDJp0iS2b9/usW3r1q2MGDHCRSBOC8XFYiynp6cH3/ADz0B6jtC2oweD+bjTO6S8mJYGMYjNNUIdj81yllRoPiDlCgZrvLDuXkJLk5QV6GyQeo12i9T3VItAYJcIu1YOfEKO5Py0loK1VRQ+y98Vsbmxd3p655QyB12OthujpO0Q/MCnDKBHXpf22axS1zAiru9pWL68r/4GRV0MTocOHacw+npu16FDhwO+DOgxd8hvdQ56byBcejmhHke9FsQeWgncQCLM4aD7uwVkBg+a4aTCH13H+n//joLPj1GwpYKyE2ZWf17O6s+fhF88ydSpU8nPzyc/P5/c3FwMBk1deO8I9v4qbW0uhq5GYddidAYKFWYsyD6dDaJxYGmWWuOHX5T0g6hkuV9pFwR2/1rLJCg55ArZt/EbH+X9Jom907BHmCLKMX1F9JuLJagXleoQseakp3D0iYH+m9/8xus2i8XSF03oxtVXX82TTz7Jiy++2F0H3Ww288orrzB9+vTuKHdpaSltbW2MGzfO5bu/+tWv2L59O1OnTgVg//79fPrpp93HAjhx4oSHEd7c3Myf//xn0tLSOO+884JvuM0iudmN+8F4WCLbau+Q3QbH3oHOJvk7YSxMeFDqpisvbKXGCwsSka/f6RywIxLEwI8eKMZtZIKTrqLk8XS1i9GbMkm8TUdel88zZsjxhuRDRy20V8h+nfWuau3uZTpObIGYgRKpT5kCo5bI3wdLJFpvaZK8+6oNgeWSA3Q1S4czJTpLufUlfHlf/bERdDE4HTp09HP0p7ldhw4dAcAYGXzOeSgIpWSbt9K/oRjA6rXgweWy9g3F2FKCJdYOWYcOnCb0aqWd3eu8YtmusFaDoYr7CMjEZM9l/o+imf/tEp6NP4tdlUkUrFnrpMJv38727dtZtmwZQ4YM0VaF94Vg769LaeGjYqDHDpVrPbHZ9TrSLpBgXXOx2DAxg8V2sTTI/WnYLYHG0bf5T9t0b2fKRFHrd6fUdzZCy1GISpdU2fizAJvzPXOP6I++VQKHXU1yPc2HgAgYOFKqWBljpc0Khb4P0ScG+mOPPcbVV19NcnKyxzar1doXTejG9OnT+d73vscDDzxAdXU1o0aNYsWKFZSUlPD3v/+9e78bbriBDRs2YLc7lSVuv/12/va3v7Fw4ULuvfdeTCYTf/rTnxg0aBC/+MUvuvd79tlneeedd8jPzyc7O5vKykpefvllSktLWblyJVFRUcE33GiSsgIGpCZ5415XY7viA2jaKzkgNot4qup3QcV7onoYPRCSxkDqNIjLlMEEnB4vpS55wx4YeL54uECMa0UwoeQNiaZnLYSyd6C9UvK8OxsAg5M+BFLuIioJ2o+BtVki4opae8YM2P9XidJHmKQTWNudqomZc521DjE66flNRUJBgcAj6YEI2imTQ3y2g8pfGh5RN19ebPVgY2mS61OzEfqjCIsOHTp0qNCf5nYdOnT0I4RUss1L6d9AjtPTdniDEiyJSpYcaEuD6zrU3REQCusxwNLCBiB3MOROOTc4VfiFC71T4YO9P933I1WM2aiB8r9LBHuy0/ie+DAcfAkadsi+ESawG1Rr2xGBpW26tzP9Yte8cWzyY4Du4vLNRbKuriuEicjaXonodzZJALPoL7JvZILYAFEDxT5q3i/7GICO45DjtPH6Cn1ioE+aNInrrruORYsWeWzr6OjgpZde6otmdOO1115j6dKlrFy5kvr6eiZPnsyaNWvIy8vz+b3ExEQ+++wz7r77bh577DFsNhuzZs3iqaeecomYX3zxxWzZsoWXXnqJ2tpa4uPjmTZtGi+//DJz5swJqc3JPyzr/nvyiGZmTk5i5sXZzLj8+2RkzBAj1tYlUXaDSegk+58GczXYbGBpgYxZMORbcPBF10FEqQNorpd8cbsdhl/nzCXBJt9pLxPaetk7sm+ECdoqISoR0meJg0DdSTNmS2ewtELUABFqU8TsSt6AtmMOOkmbeL3MNeKIsDTJMZSBqaVEOotfJU0/CvZaUE8OnY3SGU3JvU8rd1fkV+rbK9c34kfO7QnZcn1qRcmeOA56Q11ehw4dZxz629yuQ4eOfoJQS7Zplf7tqRBaT77fHSzZIwzSlEnaec09YT2GGJAJShXeGxXe2/3xtk5U2tpeLuv1zlqJoCttdrkOh/GdMVN1rGy5j0oOeqAOE/fy0Uf+z+EsOSJibgdLhAJvSob0GRIANJ+AmEGSj16xTpgP3RH9TjHUuxpk35xr5TpsZoiIFdavKRGwQ1sZHP1nYO0MI/rEQP/JT36CzaZNDzCZTCxbtqwvmtGNmJgYnnjiCZ544gmv+3z22Weanw8dOpR///vfPo9/2WWXcdlll/WkiT6xu7iJ3cVN/PWdMrjvHY/tORlG8iYYyBtrJ2+MgVFZ0RjsFmg5oj2IKHUAO+sk0h4Z7VrX8vAK+c6gOUJntzuMObsNDI1ihB993VnKInG05Ko37oak8ZDuJhxRvNKVQh8RI+IPCSOkDZFJrhcUqJKmNwV7d6gHnsZvpPNFDxSHQWSCdO7eppW7K/Ir9e2V63PffiiM+eh6fruOkwXdOXRaob/N7Tp06DjF0N/ZgooBqSiDWxpF+8m9nYGWMA5Egd6f0apx3JiYGOZf/i3mnxvHs/dMY9fRLgo2V7Bm7VpPKnxmGovyv0P+FVd4p8J7WycqbWsuFlq4KcmzHLL7dYRT3Lh6k4hmd1RIXropAYZ+Gxr3yHblGRiMYIxwnN/x3YwZjoj+ixJ5t5kdwtkmV6q9pUHo700HwG4GjKLj1cfoEwP9tttu87otIiJCn8QDwLdnZPLFN80cr2nxu29JtY2S6iZeW+++ZS2wltSkKPImf0le7mDy8s2cM2s6kQPPFwo9BojOdB181B7E2KGSV6JEwGMyxYPWUQ2GCDj+AbQchOgMSBznmqujPp5S9iwiTnJ6Ok5IRzCapCOoc80DVdJ0V4H3ZmCrB57WEmgrh5YIKQlnSlANsNnSjmCU1pXjB2OA+Lu+cOej6/ntpzZOZSNXdw6dVtDndh06dPQIWtRlX+uuvoZ75NbbOs3dcG0pFm2nE19IvnOwCvQKtOZ7j3lUlQ5aV4jBlERudAy5t97G0kceESr8m3+i4K03+Gj7ccora3jhxRd54cUXiYuNYe5F48ifOZaFc6eTOeJc3zpI/oxtLVE9CN+apaVEjPPOernPXY2i1B+TBbGDnPulXQwVa8WhEpslrFqDEQbNlkBi035Z/1tahHWsptrbbTBgskTdG/aIPWEYBnwZWptDxElXcdcRGF596CKSYm3SGUc7FkU77qe0eB+bvm5lY5GdjUVQVOH/WHVNnbzzeSXvfF4Jz9wK3Oqy3WjcS15eNXl5ecycOZMLpk8jrlvEIVso8wmjhOZjMIK1S4zz6EHQViJ5G1EpkvOu1Ym1BuQTm73nmgfifVOU49urxFsWm+XdE6seeFqPCiUmebxE89Mvkqi/4v30FbnWMjYgeAPE3/WF28Pc3z3WOnzjVDZydeeQDh06dOhQ4L7+qdrQP+c3f+s0rVz0tgpHua45zvlOy9D3Zaxqzffu82iFoySxl/JigwcPZvEVE1h83jQ6Ysezfv2nFOyKpeCzPZRVnGD1JztZ/clOeOSfTB2XSn7+leTPu4jc6CgMwa4Tfa6LHUJ7qdO0g3eBICFHtLbMtUJft7ZLTntMuojGKbXLs+bBwKnaDpXWUhGPGzDZobs13XW7YsgPmi3v497fQOWG4NoZBugG+qmCkTeD4YQHTTw7PZIfXmznh5dESDmzmAyY9Kh858BfqDtRxeav69j4jZWNB0wU7m/1eyqbzc5nn33mleYPcO6YZPLOjiJvQhQzxsaRFtXsqDVpFZp6ix3q/gsYXQchb9G/oHLNNb6fMQMmPASHXhIqf8wgiYjbbZ4DgNpANaWIYW8wQtxQyFrg9KDtfEgGvJRJDmVIt/Z0D5IqJfvoNBmEUs4JnwHSU5GT3j7eycSpHE0OFf4qAPTn6z+VnENn4rvlB0aj0W8Zn5iYGIYOHcrs2bO57777GDlyZB+1TocOHf0OwY6jp6oTV7nOI6+LXtOgOZIDbTW7znfBOti9paUaomTdaTWL0ri1w3t5Meiee2Pa9zH/orOY/+PbeLb5CLs2vEbBlkrWbDpM4UEL24vq2F70CsueeEWo8LMmkr/gW8w5dyoBaMJrtxccdPJkqNkmbNe6wtAM9YwZkHOd5I1b20R7y2CX4J5L7fJSSdNVHCLFK51C0E1FTt0rQ6SUgPZ1vtRp0FALVAbWxjChVwx0fRLvBWRcAqq67d008agyEYSzIwrrxiiIHyYd1NpOalwH+efHk39JurOcgMEoeeXl79IRO55tmwrYsKuODV+b2bi7lk6L/3IC/z3QyH8PwJ/f1drawsjMTmZO+gd5520hLzeLnDw7hkF5rurtsUNkd2/12L3lmmsNbgajRPE7qkQ5vu0YmKvkM/fBT22gaim3K+epKxRvZEeVlGvwlnNU9al45DAIrclAeA2QcObv9MbxTiZO5WhyqOjuJ7vEKdZYJN5jJW2kP19/bziHesuQDvXdOo0N+0ceeYR3332Xr7/+mvnz5zNq1CgADh48yAcffMCkSZOYM2cOhw4d4pVXXuHNN99k48aNnHPOOSe55Tp06DgpCHYcDbcTt6/GY5fyY6WyLowdAmkqDab0i2HXUmfgx6IR+HGH1v3ImCH0+ZI3xSjtqKQ70TpxrGspuO7rL5b01MgkSJSccQOQO3YQudldLM1v47h5MGt32CnYFcVHG3cIFf7Nz3jhzc+Iu/W3ganCe3t+SpqsAYhOl7LOnQ2BV2ZSYDCKHTMgV5whzftFkLp6vVSEcj+vphB0kojDdXVIeeeaL5wloLXOl3U5VB8EdgXWxjChVwx0fRLvBRS/AZlnO+ngzYdkUZ4xExoPSik17BARD3U7oHablAuwAwMcdcUVQxZcvGkzzj+bGQsu5GG1kJtjP6vVyt69e9m4caP8fPYJ1TX1fpt7uLKTw5U1vLyuBvgvsMZle1qSkbyJCeTNMTLzu8lMmjiBCGyiwgiSL+It19ybd1URd4hMEM9a82GJLroPyGoDVRm8tM5jShKqUMMeGfC85RwdeR0wyCDRsFvK4CWNO/Wj06cCTlVve0+gFq1p3O8sGwL9//p7wzmktQAMlkaohVDfrdPYaZSVlUVNTQ1FRUWMGDHCZduhQ4eYNWsW48eP54knnuDgwYNceOGFPPjgg6xdu/YktViHDh0nFcGOo+F24vZ0PA7UwFeuUzEWE8fC8Otd96/aIJHejiqorIJkjcCP+7m11sUGoxj9cVlOJl2i27pTfU719Y++zXn9bnnzg01JLJ41gsUZM0QV/u1nKFj7oZMKH4gqvK/np6SxKiWjvSniB/IM1OkEjXskQOEuSK1+LimTobxAAprJ4yX33JSoirhrtMFuk/tX+eFJcbL3ioGuT+K9gMq10LJBvGY1XwqFpumAUEasZoiIgKg06DwBVevFqzbY8eJlzpO64moEWCc8IiKCc845h3POOYc777zTo264HTsl2//Nxo2fsXF3HRt313Oo0uL3cmqabLy1pYm3trwJj73psT0q6o/k5eWRd+5Z5J2TwfSLZxOTPdfNOxclBrlSfiw+WzpnW6mj8yXIYFC9yXvn9zZ4J+SAIdoREfdCgXHPOWrcI4r0WZefNgvyfo9TiTIdLqhTQmI+l//NtSK4eCZcvzu8Uep6aiSH+m6dxk6jJ554gjvuuMNjXgcYNWoUd9xxB48//jg33XQTo0eP5rbbbuPZZ5/tk7Y1NDRw//338/bbb9PW1sa0adP44x//yLnnnuv3uzfeeCMrVqzw+Hzs2LEUFRX1RnN16DgzEOw4Gm4nbk/H40ANfOU6G/dI5Hz49Z77KYGfwY7AT6pG4Mfj3KqyyAajR5BN7quPdWeANdbdEdO0jfnZO5h/azLP3jaHXZ1zWfPFcQoKCjxV4YcMYdHCheTPGM6cKQOJTRsjpYLVNoVaaE8x1DsbZc3s751QK7dbzUJxH3tnYHZMQrYwFcoLxBlgroHqzwADRMYHVh2qeT+0+mcWhxu9YqD350n8lEXyROjaL7QQm1lqlXc2AUbocii7RyERc2uH5L6Ya8SrFO9FjVzdYYpXBhZpcuvQBmD4wlkMH/VXflzyBkSMlXOOvlX2bSmhxpzC5gM2Nn7wDzZ+upbtB/3nwXd2Wvj440/4+GPlk//nsc/5k7KZOWEneZMHcEluFgPO/R8pofDNH6H5oNB5/HnnvA1e7hQiXxSY0ymn+1TDmXzvE3KcaSKRCVLH80y6fgVaC8CeLsrsNvmJO0tSZuKGOT/zNT7abeI0bKuQMTh2yGnlNCkrKyMy0vuyITIykmPHjnX/n5OTg9ls7vV22Ww2Fi5cyK5du7jvvvtIS0vjueeeY9asWXz11VeMHj3a7zGio6M96rYnJyf3VpN16DgzcLLn6J468QOdSwK5zoQcMUgtTZIjnnV56Pn4garfh8HRbGjYTW6OidxLH+bhhx8WVfi1aykoKOCjjz6ivLzcoQoPcTERzJ0ygPy557Pw6iVkTrrKeY2BKuK7R8ybi53K7eZaWZcr63F/zhy74wegyww2i6S+grPSlHsbbF1w4FkofQtai4WZbLLT1+gVA72/TuKnNBr3QmICpEyUCHpHNRgNEkWOiBZPUGQcRMaKOFpElORjpF8oVrTiATREieGp0EDsNjj0ohj1libX3BX3gcMb1aebbjNEBpL6XVJj0EG3SRsxgyvHG7nyyisdOehvSPsMJhg4nbaUWWz979dsfO9lNv63jI17muiy+u8M2/aUsm0PPPkP5ZO3XLaPGVbBHd8Zw8x8C2dZ15ASUevphPA2eHlQiHwMzKdTTvephjPh3vsSRoTw5Na5MWM8dBn6cw51930oljFMKXNjiAp9UVa9ScbF9nLJ84/Plt9q1oy37534wjH+miX/8DRymkyYMIHnn3+eH/3oRwwaNMhl2/Hjx3n++eeZMGFC92fFxcUMHuxDgCdMWLVqFVu2bOHf//43V199NQDXXHMNY8aMYdmyZbzxxht+jxEZGcn111/f203VoePMQk/n6J7mkPfUQRCogRvIdQbbFl/nDlT9PtTr1zq341kMbi1h8aJRLL75LTrMnaxfv56C15+k4KMvKDvRzuovalj9xfvw2/eZes5Y8r9znZMKj13bOFc7F7C5MgfSLhDjur1S/re2yXwfyDvVWgpRyXKeQy85Vd7tXWA0ipCcOw48C0V/kuBnV6s4VTojArtvYUSvGOj9dRI/pZG5UHLQ0y6U/y2NSM55AkSNhKFXQNQAUSdsKoIB5zhVyltKxQCPSoYTW6BxNySNdXTiCBGsiE4XGoelwbtogy+qj7ozW5pEYK15v6eQ25g75P/Kj6C9Ahq/Ia61hNkX38LsCT8R493aLnm1USlgacQaM4xd5fFsrBjNxi93s+HzrdQ1dfq9ZQeOtXDX0/+Fp38CQFJ8JGcNiidn1ATOGnMuZ511FmdlD+OsxJmcldpJxlmTMagHr2A9jydDHOo0FqTS4YAvYUT1BK3kS4XyLmgKqSSHN6e7t9F0QMYdU5K0WysfLVAo0YOoVNH7iBoo/3tz0qkVfDvKHWV19sj5+9t96gGefPLJbl2Zq666qltf5tChQ7zzzjtYLBZefvllADo6Onj11VeZP39+r7dr1apVDBo0iO985zvdn6Wnp3PNNdfw+uuvYzabiY6O9nEEgdVqpbW1lSS1IKsOHTpOHnqaQ95TB0EoBq6vYFYwzFV/5+7OkXbU6+5qdM49gdYtD+a6NZ5FzKCZzJ8/n/nnxvHsgefZtWsXa7aUU7ArmsJ9NWzftZ/tu5Y5qfCXnkv+hEbmTEkhNjbOeT71ceNzXJkDpiRImwathxyl2hrEzggELlWbEsHaAhGxYqDHDtVeMzXslUh78kT525QCtkigLrh72EP0ioHeXyfxUxojrhMV96oNEkGPiJaojnuZgqoNYmC7G5WWJqjbBpZWiIgE0zRoOQwdtRJtai6Wz32JNgRKt2kqguYi7f1ObHYwACrBXC11CC1N4uUypUj9cvMJ+T8yCYxRRESncO6iX3Buxkx+XrwSytOckfqkcdgTx1JcG8XGr9vZuOlzNm7cSHFxMSAUxUijldr6Fppau9hT3Mie4i2wbovHLY6JiSE7O1sM97PO4qzsbM4aMIKzBtrJGZNLVuqFvjvMyRCHCuWc4TTq+4uDIJB29Je2BotAKXY9ef/chVQA0meEN6e7t6Bct3sNWFOKtnc8ECiTens5GE3QWSuTuTcnnaaCr4/9T1HMmjWLLVu2sGzZMt566y3a29sBGTvnzp3Lr3/96+6c75iYGCoqKvqkXTt27ODcc8/FaHTtz9OmTePFF1/kwIEDTJo0yecx2traSEpKoq2tjQEDBnDttdfyv//7vyQkJPRm03Xo0OELJ1vTIxQD199cHOhc7e/c6hxpq9m5ngl17vElxgZ+bQADkJvwAbnjCnnYlMTxBjtri8dQsOGAkwr/WjkvALExkVx2XhqL5sewaE4umerjgltwbITQ1Bt2idO8s07sA39td2caps+AsgJxZJhSRFtK6zmkTITj6yRV1pQgEfzmJuBA8Pe0B+gVA72/TuKnNBRP2ZHXZRGYMVvEKJLGuXYgrbyU6k3iMYqIg+QJ0Pi1o9yBCaIHimfqxBZRgrY0iuCEVucOlG5TtQEOlkhnsjSJwV61QdrWUiwCdxGx0ika9kDCaPGItR8XGmlrKdjaoeUgRCVJRB2jZz6NQ5DNkDGDkYmbGJlWwk0Lb4SMv7saXlUbaN39DEcr6zlabeGo7TyO1kdz9OjR7p+Kigo6Ojo4cOAABw5od8KIiAiGDh3qNODdfrK7DhDjayLpDQOxpUQ8iqZkuZfl7wM23/TkcDoS+otidSDt6C9tDQTqd8XSEBhdO9CFjNZ76OJlTvEsFXiyFkmB9Jnutk3yXgM2WKRfLKlA9Xsg5RzJd0sc5T164qLg+ylEJksUIJC89VMMU6ZMYfXq1dhsNqqrqwHIyMjwMI77EpWVleTl5Xl8rpQCqqio8GmgZ2Zmcv/993Puuedis9n44IMPeO6559i1axefffaZz5Q9s9nskqLX1BRgZEeHDh3+cTKFYENds/mbL8M1n6orF2EU+nZkMoy+JbTUKn9rpEBsABXbbvC4HBZfMYPFdxtFFX79egr++QIF76+jrLqd1ZuPs3rzqwBMHZdK/oVF5F+STe78yzAYI5wpd9jEAW8wAQbRdkkc4aPtbqm8iqPBboPUc11z27Wew5g7ZN/jnwjzeMB50LI5+PvZQ/SKgQ79cxI/pXHwBWjfIfTJ1lIp4xCIAJGSS9nVKMZ3czHEZIiKZGyW5EtammDAuZ6UUPfBKf1iOaY/UQp1GajaQjHQFdq8Ei23dQJGEWlImyYibDazGJvRAyAiU/ZLHCu0lIoPHJ11KAycLk6GlIlOB4SvQSVjBvGTYfyIEsZ7GWQ7j31M2RdPc7SigaPVnZR0ns3RWoMY8MX7OVZRhcVi7TbovWHQgCiq6t92/Pc248f/QdTo8/LIO9vEkJb/hNdATMiRe1qzTYyq4+ugfpsrPTkYJkSwONne7WDa0V/aGgjcJ5tA6NreJk/3fqzoTijvod0m745SymXwXMnNUjt54OQskgJxqijX3dnoWQNWDX+LLXenSM0XMk5Zo8U4D6RWbeMeeV7Wdofya4n/vPVTFEajsVdS02w2G52d/lOYQITdDAYD7e3tmhT2mJgYgO4ggTc8/vjjLv//4Ac/YMyYMTz00EOsWrWKH/zgBz6/++ijjwbUXh06dASJkykyF6pTXz0XG9yqDbk7xHsynybkeFYuUge0goV7wMe9THEgz8JL1D8mJkao8Jd/i2ePf8auDa+zZtMhCr44QeGOIrYX1bG9qI5lr3zDkCF7hQo/YyRzplYT2/wV2M2yTklyCLu52x8tKmO76hNJl40bop0WmH6x5JkrqbY2m+h3Kc/BGCmGfG2h3M+6QrFT3HSuehu9ZqAraGtro76+HoCEhASdLhYqjv4bkuIkv6TqU9cai2q4DyjxZ0nE2mZzqL9bwDQAMh0lGQbkuhrcJzY7Ka3uQg3gQ5TC4bGKTBLKvMlBPzElSYepXi/R/6iBEJctkfvOOjEGDA7PX8o5ojxv7RQKv6UJDAboalYZ+kcdRvxA+Vxpvy/DKwCKUlRnOSMGmxgxzlGabshsocc6rtFq6eB4g42jpnkcbU51ib4rP62trVTVuy4s9+3bx759+1i+fLnGWf/BkCFDnAZ8Xh5nn322s55kIMiYIWkOnQ0SQazfI3+r6cneDBoN8Y+APcXK/k1FYhjV7wqsXEZvIZAJL5RJsS9p8YpyaMNeEUGxtsv7rUS1/dG1vU2eHmNCjmt/qVwnhqSy3Rjp6C8+ju3NOecLodzLQJwqgYrlBUM7bCsXoTdfNVK9taHpGzjxuVxve5mnmI3dBtWf+77uUwAtLS3dYq/Dhg0L29y+ceNGZs+e7X9H4JtvvmHcuHHExsZqCs12dHQAEBsbG3Q77r77bpYuXcrHH3/s00B/4IEHuOeee7r/b2pqYtiwYUGfT4cOHRo4mUKwoTr11fOB2tmr1nRRtvfE6ZAxQ1W56IBQsVuOyFpb2R7MesU94KOUKXbXoHEvoRYoHGsAw/GPyE07Su41A3n42iEcT/4dawvrXVXhXyvnhdcgNtrIZeemsChvLIsmtZCZinY+fNoFzvWd1SI2hJIKW/GBUzzWlAR1/4Wyd8Uestsg6WxP1oHC9o0aKKzlBE+GVm+j1wz0bdu2cf/99/P5559js9kA8bjPmDGDP/zhD0ydOrW3Tn16IsIkOSYNeyS/RKmx6C4M1XRIXqaoVPmNQSLRlkYxfAeOE7X31lJtFUh1rcHEUWIkRKVoe9PUg5fisYqIdqoeG6Mkb6R6vXyGXT4zRskx1DQVpWPFDhHBuq52B7V0iuSBNBUJ1aT6iBwHVRvC4Y30dgzHNUYMPIchEbsZMiSBi0Ze6/F1u91ObeHTHP38CV76oJr3dnRRWuv/tOXl5bz55pu8+eab2s1KSHAx4M877zyioqKcOxiM4k1sLZGBNSrFk57sjgDFP/yqVR9cLs4SX17NvsrzDmTCU2jLDXud7At/6EtavKIcarNIJYa4IXLv3J+jPwEaf8wBcH3Xwf8iJFDFWF8I5V4G0rcDFcsLhnaoOAqDrd2bMQO23wWN30i/iIj3FLOp3gSHX/Z9vH6M3p7bx40bxyuvvBLQvgqFPTMzk8rKSo/tymdZWVlBtyM2NpaBAwdSV+dbGCg6OjogATodOnScYgh1bamekw6vcASg3OadcDgdDEYYPFt+H1wu68C2Ukflpuc9ad7+1mLuAZ/OxvBp0NhtjipOb0pwztomATpLE4Pjmlm8eDGLFy8WKvwbD1Gw+m0KvqylrKqJ1V/UsfqLLwAwGvdgMPyBF395MTfm2TEOniPMtcgkGH2b0yly4gtX0eqazU7bpK0CrK2QPEkcG5FxntejsH2bD4sOzYDm4K43DOgVA33r1q3MmjWLqKgolixZwtlnnw2It/vNN98kLy+Pzz77jGnTpvXG6U9PxGbBWXmeNFf3RW90mryEzYfkpYodKlF0uw2a9kt5tqSx2gNNS4lrrUFLM0TGQO12V2+alnK74rEyDYCufSJGZwLSLgJzHWB3qEvuFlq7owSbq8eqxNmx7Aq1dKT8tByRPHlbl9B4zLWSd6M+RrDeSBdDJxtG3SIdUn2MAAdog8FAmvEwaVk1nHdTF9xkEJpQwggY8zMY+WOOV1awac3f2LhpExsLv2H3fv/aCy0tLbz33nu89957Xve5+OKLmTl1OHnnDOGiGbNJTIzzpCe7NFbDkAvWU+zinPlUDBpwplT0dZ53IF52RaDQZpbf6rr23ozecNLilXOoPbkJIzyVQxPHSF+NyYIhV3o+x2ANXfd3OGseYHReKzaHZkQQi5BQ7kso3wmlb3u7P/76srK9fhfYI6RCRlsFJAwXxddAcsmrN8k4aTAIoyQqxVPMRrkPpyD6Ym4fPHgwN954Y1Dfyc3NZdOmTdhsNpc0uq1btxIXF8eYMWOCbkdzczM1NTWkp6cH/V0dOnScBghHpLunAaRAmGdKu468Tvda+/inkhobGSt2w8SHxZj3dx6Q/TsbnazIcKyDqjdJEK/tmNgKSsDRTS8mJiaG+QuvYP6YCp61drDrmzLWbDxIwbYWCg9ZEZ+wjcW/38Ti3wN8zk+vGsVjj99EqrIGtNuc7FpFtNpud1Zk6WwUJ0TzAbGTUiZ6tjcySWwnRZQuIjG46w0DesVAf+ihhxgyZAiff/65R47ar3/9ay6++GIeeughPvroo944/emJkYth5OU+BJIcHcfaLh6iqIGiPBw/DLBLmbWUaNf8zO6OXyzeorZK6KgBS718PypFOioGV2+alnK7Ylg37ZM2tB0VA3rY1ZC1QBbMDXtEgC7rcmcncqfNFK8U41w9EIz4kXgCG3fLgGHvgqg0yLnWOViF4o10X8iPvs2TRhzMAG1tl/bZIiSybDXLoOAQyRs8eAbf+8kyvnfFBk9qTs2XNDW38MW+ZjYeG8bGr0r4/PPAaLCbN29m8+bN/B6AP3psnzhxIjNnzuyOwmvmjQY7iSj7V30qTg0Mck3u9On+lOfta5IJ1agLBi5K3w5PbuxQ2ZYxw/HumB3e4HjIvEyb1h7sZOmNAq52TqgNdl/vuDq1wdIoQpDeRCXdkZAj7JmqT8ShZ2nwb/SG0re93Z9uBsUeEalsOiT7a2lnHP8QWo9JDdTWw1JxwhAZmEMnIgpiBsukbowR/Y8dD8j3MueJM1B5x04x9Ne5/eqrr2bVqlW89dZb3XXQa2pq+Pe//01+fr5LhPvw4cMAjBw5EhAavMViITHRdQH229/+FrvdzuWXX95HV6FDh45+hVDXlur5IT5b6NO+gibu31HPKf7Ez9TsOXCutTtrpSISaSKeWrnOt4HujRUZLg2alhIxzKMHSkAnJh0Gz9PWi3H8b2gpITfpG3KHdvDw9+o5XtPKLX/rpGBbm8vuz79ziOffuQKQyh3PP/88554701W0Wl2RJXk8ZORJm0zJUk7NfS2SkCOidG3HHPc7O/hr7iF6LYL+yCOPaBoCgwYN4pZbbuG3v/1tb5z69EXGJdoLWXcDImUSdLXIy9jVKQvM+GzAKItDRSgBnDTV9jIxsuKzJWJuGCBCbbFDpO56zZdiwLvnGKsHL8VjVbxSjNKoJDH2W8vFO6UIUGXO8x7917qehBw5jylFIv8Dp8ngM3gejL1TtrkPhgbwqWIO8p2KD8SDljJJjI1AqL3Kd5XakyARyYyZcpzKdUKdsZkgYZTQ8puLZIAAOY67AdGwF2xmkoacx7fid/Otq+aKU2LnQyL65mifJWMR/22cyIYNG9iwYQMbN26kpaXF35vD3r172bt3L88++6zm9uzsbPLyZpCXO5S8yQMZM+kC13rwWnDx2BqcVQXg5Cmu+oMvY9ubURdOgRrlHFq1tQHaq6XPWVpgyEJREg32OrTgb5ERzCJE6bPWDsk0SRgLcZni5APfNLqMGbK4UFJhTnzhymIIFzzuT7b014oPhOpm7RQaYMMuud/KxKw848Qx0u8MkWCIkN+dDYE7dGKHyP+R8fL3wRdloRQRLdH1iQ/DyJuB/4T3uvsA/XVuv/rqq7ngggu46aab2LdvH2lpaTz33HNYrVYPAbdLL70UgJKSEgCOHz/OlClTuPbaaxk3bhwAH374Ie+99x6XX345V155ZZ9eiw4dOk5BeBMZ9Rb8cYe3OcU9lfTI/8k63WqGnOtc18F2m3OtbYyReQ9krvaH7vOcI3OnukJUuJgEMY5Uo4g417a7Q70mKXrakaLbzuAUI6uf+BYYo2hoamHZqwf5yyrXqkuFhYWcd955cpqICF58YTk3LrgFY2uJPJeOKsAAMYPERrG1w+GXnNo7ynOs/FCClXbZnSCkocKFXjHQjUYjXV1dXrdbrVZdzT1c0BJvAlkE29qhbDUknCWROgOuHjpF9dCU6qSlR8bDoHmQfLbzeGohOW8dU+3Baz0iCsZ2oPpjqP9KDFVjtNPbp7TZ3Sga8SPntvhsycXd8YA4EDobZVviGPG6KcdRD2ydjXKdvlTMle/UFjo8i1WQ7IX2r4bScZUIW0e1XGNdIUw0Og0qJcc5IgEq13oafR5OlYniBFEbXBrtMw0YxfRx05k+fTr333+/Z/PsdoqKiti4cWP3T1lZme9rAkpLS3n99f/j9de1tycnJ3dH32fOnMmUKVOk7JDaY9u4R5s+HcxA3tuCbL4mGW9GbzgFapRzeNTWzpZ3qvWQKId2NkLqVJkwgr2O3obSZwc4JnGDwZk24I9urzja4ob0LsPC/f7YbXBoubNOekKOpBJEpUq73UXy0i6QdtpLZfyxdwmbKFiHjqUBjrwhaUN2m+S5dTbI+Qxnhfea+wj9dW6PiIjgvffe47777uMvf/kL7e3tnH/++bz66quMHTvW53dTUlJYtGgRH330EStWrMBqtTJq1Ch+//vfc++99+prFR06dPhHT0RGwfuc4p5KauuAznZJ8zzyhnzXlOKaHmqMhrTpYK6SOScuS9ZmvtZY/pTnfa2DgqHhB7u+i0yS/RWqeeZ8sLWRYtrL07+9jKf/eQc2jKxcuZJbb73VRSzUarWyeMlPWOz4//Ybr+Kxa4wMiLdD1XrHM5rjer+V59h8QIImmZInT4v/tXS40SsG+kUXXcSzzz7Lddddx1lnuS5ESktLee6557j44gAEmnT4h5qaqUTiTEmyCLbboHarI/fiABx6CWxWVQd2qB42fy0RsbZSR9Tnu868E3B2zkCQMUOi3JYGifw27Ja/M2Z4DlTeouXKQFC1Afb+Bhr3y8AVEScOg7RpkseLTQzkkjecteEr1six02c41Ru1BoSWErlPg+dKRD71fLlf6gHJW/3w5gPQfERYAsqiW7musXf6r1+t5VRxd4IUr3Rr3zS/hpjBYODss8/m7LPP5tZbb9Xcp6ysjE2bNnUb8Pv27fPzQKGxsZGCggIKCgq87pN3/ljyLplG3uWdXHTxJcSHYnQFm1sdrEHvy9juC6NXOaZ7DrrdJk6e9ipxyCT6cRb1pqqtv3vq3mfBd1kWd6jzvC1N3ekfQTtjfLXT/f4cXuFaJ72j2uEgqROPflupI+c/A8xHJe9swoNSgkUR3InLdq1pnpAjfbvqU4lkWBpEH0OpgqE4QCOjIWoAtB0XTY+ogfKsO/cGfq39CP15bh8wYAAvvfQSL730ks/9lMi5gpSUFFauXNmLLdOhQ8dpBa35pycio+A9SKDl9G0/5nAwt4voWlyW6KWoDU5TMkx8JHAxYJ/K8xppcOr5OpC1m3ud9OKVga3bEkcIE81mdvxu89ASMg6ayY9//GN+/GNhKezcuZM77riDLVu2uBzquVff4blX5e9pYxN4/rY0zu0qcDjgs12ZtdHpsl7ozpM/TSjuv//978nLy2PcuHF8+9vf7hZo2b9/P++++y6RkZEedUd19ADeyg20l8sL17xf/u9qh5g0ZwdWVA+POBYn8cNl0VpXCEffFEqmQkkJxhiIHSy5Gy2H5cW3GzzppoHk5rSUiPFrjIAus0S96neKV9CULLQXO+JwUGrDm1KcKuaKeqNy/errSMgRyr6lSTpfbKZ/cbPuAXiSQxm/WRwecVnOwTSQ+tVaBpa7kyU+27V9asaAGkEaqUOHDuXaa6/l2ms9lehBjPEtW7Z0G/DuA5w3bNy2n43b9sNT2gvd3Nzc7ij8jBkzyMjI8Nwp2Nxqj0nBSy51IPenL0q5eDvH4RVirGc6nDED/Ttjeg3+Jlp3RwY22FvoWpalaoMrZVyrjmrFB+I8rPlcjFxfdDcFviiE7u1UQ1n4dNdJnyqim0pJyLJ3Jc+sqQhM8VC3DbLmw7n/z5kG1HxAdAPUi4z6nbI4ioiStoAsGKwd0m9jBgs9PnYIGGOlIkXcMGjZD7HjgDVBPJj+AX1u16FDxxkPf+mZMVnaaz9f8BYkcE8lBce8Y3KUJDbJ+qFzr8w33bowI4ITA/alPF/hxjKD0EWGgw3EuN8Xdb1z93M51gi5iSVs/s9jYICGim9Y9tyn/OUl15Sywv0tnHd3C1BChNHAi0+ex40/AKPCXG07DnGDnHnyMed4b2MvoVcM9ClTprB161YeeughVq9eTVubJPTHxcVx+eWX89hjjzF+/PjeOPWZCffOoRjezcVw/GPJgU6ZBE0HoeMElBdAZLIscltKnHnrtk5ZbNbtlG3RA53HD9Rwqd4kNJuIKIksDf2u0GEVdXSFbupLmE1BQo4Y+C3FYpzHDBa6qVLnu9wR0R2ySBb5CWOELt5RCRiFnlr7hbMecfNh5/UkZMPIJXJ/QATyrB1O6q7WNasX+smTxKiPz3bkoKsGEfWzCKR+tXLfXATrbhFVeSXPHVX0Dlzp9nWFMkAbY2RbD4zM5ORk5s+fz/z58zW3m81mtm/f7kKjV/q3L+zcuZOdO3fyl7/8RXP78OHDyTt/DHkj6smb1MLIYakY/Hmd3e+11iQCfVcmLVQk5Miz8+eM6Qv4m2i1SpqlrnMty+JOGQdPUUiQPm1pEKpeyZv+89HdKYTWdlmEuNcad3daKWk/Wg6DwyvE2Zc0Fhr3igFvSnJet7f70U3Xz5LrrvoUSt8Cg03aVLdNqmFEDZCxShHCqd4EB4/KuU5BTJkyhS+//JKHH35Yn9t1eMXrr7/Oj370I81t3/rWt/jggw/6uEU6dIQR/tIzQ0nR02LDuh/DYBRHtsK4tDSIg7nyY3GQR2dIlSQt4TUIXL9Giyln7ZBUVS2mnD96vPoagg3EaAU2tDRm3B335gboaiAFA0//IIWnH/sUW9oMVj67lFvvexJzpzNVy2qzs/ieJ1h8zxMA3P6dsTz2/WgGDP4W5P5O2tDU5L2NvYReq4M+fvx43n77bWw2GydOnAAgPT1dz+fqKbQipu600eYDQgsZ+WP5fXC5fG6MEqNVKaFWtlrE4AyqSG9TEVg3yQtprhVauS9Dyb09incrYYR05I4qV2G6brppAJ0zY4YIKh16Cep2QHSqXIPBEZGPSpEIesNu+dzaDhUFTmM1Os21jmH9Djj+kSvToLVEKLqtR4Vh0Fkr3k+ta9aipiuUVja5PotgRdI8Bi2HQ0MxdA6WAEZPkSolr7Y7T8bH/QwDoqOjufjii7n44ot54IEHPLbbbDa++eYbFyG748eP+z3ukSNHOHLkCCtcPv1n91+pqaku9eBzc3OJ0KRbm8V5Ur1eBOyi0+T5pvhwvJxsnMyccnfEZ4uRXV4g40G8H1qXwSiLgdYSp5AkaPdxtYFtaXSMQ/XSVzvr/NPj1X2k+ZAwhMw10rfVtca9eei1nnt8tny3o9qxr0HaEz9UxGkqP4L2CrDZpFyNuj8nZMt1lLwpv2MGye/2KhmXBkyWY2uJ7VR+w6kYQQeYMGGCPrfr8InJkyd3pw1YrVb++te/8tVXX2EwGPqdKr7ZbOaRRx5h5cqV1NfXM3nyZB577DEuu+yyoI/1u9/9jocffpgJEyawd6/TCdfS0sITTzzB1q1bKSwspL6+nldeeSXocoI6+gn8pWeGikBYge4R9fbjMu8oDnL1fOOOQNcaWjoutYXieFZ0l9Qll7v3L4a6/zqEYKOcgqnq9vS0Mo43jRlrh9gvdqtD3LpQnOTRaRINL/8QI0Z+vHAcP/7+x2C3sfP9/+WOP21jy946l1M899Z+nnsLYDfTJq7g+T8+wqjhQ4NrZxjQawa6AqPRyKBBg3r7NGcOqjfBgedFeEhRcVTEyZRoqlo1XP0yH18HzQfBlOhUMhw00zXSW7VBRN4MBimTppQyU8Odalq9BcyV0p6B02Sw8NaRg+mcBiMMmi0K6Zoq7dlyjsp1Mng0Fcl1Zc6Vgaq5WM4RN0yup6vdSVFXR7ziR4gYRGScUIbSLwysfrhCf1UbAqEaW1r3xZenUU23d8mT8XE/+wBGo5EJEyYwYcIEbr/9ds19SktLXfLgi4qK/B63rq6Od955h3feeUdze0SEkbwLJjNzbBd54w4xPbueOOzQEuVMefD2vvlLEwhFvC6Y7/R0Yg+nuJ5arTRQ5VIt2rtWXXWX93kXDBgMDTtE4dzuUDhXjxXucPHSx0jk25QirJqIBOd+3vqN5n1yXGNkApgSIP0iKQtZtwP2PyWeeLsNks4WVou6P9sdP8o+KbnQViIMJlubOAYVloA7+6XZVXm2v6K0tDSg/dzFKLOz+z5fT0f/weTJk5k8eTJlZWVcc801fPXVV1xyySX85S9/YcqUKSe7eS648cYbWbVqFT//+c8ZPXo0r776KgsWLGD9+vVccsklAR+nrKyM3//+98THx3tsq6mp4Te/+Q3Z2dmcc845fPbZZ2G8Ah19jt5yqgfCCnRntLk7yJX51tu6INCqRO5Mucp1Tm0p96pH7mXe2hw58so1aaXJKVo87hVg/K1n3JkGTUXO6H5njWjBlL8r631sjiBAtLTJjaWau+ABNufJMRoqdrPsjRr+8kahyyMp3FvJed/6qd9H1xsIi4Ee6CTuDn0SDwEtJWKcd9Z7UkNbSiTf2n1hqvw0FTkX3MYIedH9CZj5EkuzmUWYwtoGXc3Sps5GEagzRIoyeleboxSX49ihDGxag4ra59NaKtcdPwwqj8OJLYARrC1SZs5SL4PKgEmSI6rU7lby2Nur5L6kXyiDRcNeuUZ/ho43QyAUY8vbffHmzFBEqpoPQ2SieE1HLTm50dcAkZ2dzQ9/+EN++MMfam6vq6tj8+bN3QZ8YWGh5n5qWK021m/eyfrN6k9djYZzJ48hb/ZbzMzdxIyJAxg4bKKrcIqSOzxwmkPxFIfWQEPg+c4KtKK4yrnCrVIfbE6XL7Q4+kX6DCeTQ93XvE2eLu9vtqRnKGktyrZuA9vB9BngUNduLpI6pC3FrmOFLxXY2m1Q+i8w14lWRpcqgp6Qg2a9da375H69SePlPPuekLEhPkccYJFxnve0tVQWBYNmSaS99kuhtA+9FDA4dTyqHToOitLusXeh2r9Tqj8gJycHgyH4+jJWq7UXWqPjVMLevXuZN28etbW1PP3009x5550hvUu9icLCQv7xj3/wxBNPcO+99wJwww03MHHiRO6///6ANVgA7r33Xi644AKsVis1NTUu2zIzM6msrGTw4MFs376d888/P6zXoaOP0VuaNd5Ygb4Yp97WjoHUT7fbYP9fZb/OGjBEO6sS+XIEGGO0gx0tJapa57UiOm1pgEOvuArjKm3UYgt4S9u0dcGBZ2V9HhEjQTUsTi2qtlJpf+JwaPgaMMga2W4Twbf4oRKgVLNUR/64W5A6pbWEp2+N5umf/gCbzcDKf77LrX9rw2wJ/XH2FGEx0PVJvA+RkCORanOteKgiTM5O6y86nTlPolSWBoidBEPy5RiBGMrqhXlTkXinolPA7KCxW9uE0tJeKcqSdqtQXQxGiV4fXC7HCcSA9WYEePtcnRseM8hRhqJJ6K9RSbJIj84UpsGAXGft7vRZcOIziXhZ28XYbTsm25T2+jKqvN3vUCKa/oTj3J+RWqQqJk3uN8bey13u7RJoqnOktpSQPy2H/EX/q3mOjo4Otm3bxsaNG7up9J2dnX4P/9/dB/jv7gP82cv2UUMTyRtrJe+cw+RN2UDOoBgM0SmqkilzxLnjy4hU4B4trvjAKYxmt8g7mXOtpzCa+j67sEVyvJ+vuVjo3lGp8ru5OPSFg78xxJszwENDwU1bwm4DbHJNdV9Ba7mwVYgE7OIAsTjKKB5cjl9qX9M3YLAL7dze5WAEqc5jiJAap9FpznrrWg41reut3uRgKHWKurspSbQtvN0r9bgTESXPOH64s5xc1aeuSrud9RKxPwXw8ssv9zujSkf/R0lJCXPnzsVisbBhwwYuuOCCk90kTaxatYqIiAhuueWW7s9iYmJYvHgxDz74IMeOHWPYsGF+j7Nx40ZWrVrFjh07uPPOOz22R0dHM3jw4LC2XcdpCC36dmuJbwagN2eBer6r+kRo53FDPOftkjdl3Y4NotyqEvlqm7ccd3Wt84HTZP7tqJA00vhsKS0L4pBvOyZ/d1TDwRel4lTLQe20zQPPQtEfJehmNUvVlZwfQeNuybsHR4WUejDFCauuq1kc8KNvlZSzg6Xa99ItwGA8+Dd+nGfkxzNihQp/fAAbDyVw13OHtJ5aryEsBvqpNon3JOeovLycu+++m3Xr1mGz2Zg9ezZPPfUUI0aM8Nj373//O08++SRHjhxh2LBh/OxnP9McvINCxgyhtSsqjjFZKkEGdeQq27NsmJILrmVkKTQXb94rj/zReqjfLh3FrhhHBmRhbZI66rXbpY0Zs0QUyV/+r1r4rNbRhggvbVAPMu50l+YiEcPrrBWVdeXddKfhNO2VHJnRtwBGMbwMRinX1rjHKdQRSFkKr57LHkQ0fXlpXUSqfHhXw2VYhzNK28NzxMTEMGPGDGbMmMFDDz3ksd3aZWHvxtfYuGE9G/9bxsbCb6iurvZ7+kNlzRwqg5c/OQoc9dienryVvPGR5OVWMHPaMSZ9y4Yxc7b2wdSGn6XJ6RhrLRUqtdUsE6a7MJr6HnQ2SpcyJfu+511NMvk1H5J8bHU0OVj4m4TVk379Lih/X/prwx4ZFwbNcfYddVurNsDex2RC7jguDJsIE2AQA9vWCdhEM8PS7J/ah0G85aZE2V+hBlVvkom++YBMzmnTnZO8ljGudb3FK6WsWnSGjCdpFzvTiLzdK2XcUbQOwHkuq1kM95TJQuc3GKGrMcgHc3Kg58jqCBY2m43rrruO1tZWNm7c6JfSbrFYaGwMrD+kpqaGVetgx44djBkzhqSkJJfPp02bBoi4qT8D3Wq1cuedd7JkyRImTZoUtrbpOAOhJcLqvmb3Bve1XkK2k0nWVi77xA52deK3lMiaISJW1svmOkgYGZwjQH1+bJAwXH4y58kcXl4gwYPmQ1Jm1GZ2pMc2SURb0Y+xmR3zbroY7ye2wIBznW1p2CvGORGyXmivEq2h2CGuIqwVH0CNIxBi63RWiFFQsc7ZXuX+qlmAFR9IACAiRliVMenkXv5zRkSO5q7n8n08vPAjLAb6qTaJh5pz1NLSwuzZs2lsbOTBBx/EZDLx1FNPMXPmTHbu3MnAgQO7933hhRe47bbb+O53v8s999zDpk2b+NnPfkZbWxu//OUvg2909edw4oS8rKMd+RAK1UNNv1UiV1UbXNXSwXf02p/omHtE0Bgrhm9ELDR+A5FG6RCRyRCVKAa5wSA5mNXrxWvmLz9a3YaOKqkBbmly1DxHDOj2MjECGlRGgHvt9IMlgEHuja3TQYepdNLW7TahroJQmdNniNhbdJqD4r7bmcsTVD6rY+Hg8Z1iZw6Pcs6MmZ6K7L6MaF/igIpInpZyZrgM61DuQ7jOESQiIk2cM2cx58xZjIs7rGoD7P0NNO6n5EQXGw6nsrFsOBu3HeDQIf+e0RONFv7zhYX/fFEMzxcDH7psj4qKcgrZzbiE6cNvIqarUvrHic/lXexqFrZJ/HChgrlfo/oeKFUKuunmXu6HKUk801EOWll7hXcFVS10P8Ni6W+RSWIoa33X3fFQtU683zYzwuAwyITp3tcr10kait0q+0ZGSTvtRlk0JI0VJ8aJL2RSBt/vGzaIzRBqW1yW9CmX+zcJKt20GdRCNupxRXFeqq8xIlauPe1CSR1R1zdX7ovWuKMY/1nz6GYAdNZDxWrHQiUZRv4EasuAp3w/Fx1nFOx2e0AVMfoKcXFxIQVeXn/9db744gtefvnlgPLNN2/ezOzZXhydbjhy5Ag5OTlBt8kbKisryczM9Phc+ayiosLvMZYvX87Ro0f5+OOPw9YuHTqA4Kj07mu9UbfI/FXyhmxXxOQiE5xO/IQccZTbLfKd6FQYekVoqZKKc1w5v8EodHal5LPRJE4AxRZoLpYgE0bAJo7s1lJZIxgiwRjpqgeVMhHK3nKsUWJlvZM4FoZf78qw02K9Ku2rWOcM/rWWuAbtXOyPakg9Txzqg+fBuLuguSX4e9JD9LpIXH9DT3KOnnvuOQ4ePEhhYWF3DtH8+fOZOHEif/zjH/n9738PQHt7Ow899BALFy5k1apVAPzkJz/BZrPx29/+lltuuYUBAwYE1/DDL0OszaHWvlNyqZVyQxFRkDHHqVwN8vL7M3bcaevWDukEbaVQ9RkkjhQvHLgZgzESFa/5UjqeKV46WkQcnPUDKXN2/GNImgANO2URnnaBs9yRN3hbXHc1ScdpL5cOXPWpd4NfLUBx/GO5rgGTJBqpRMRd6p0bZfF9cLlQVLHLdcRnI97AbFeF/KYiWYzbbd7rprsrYXc2wJHHHAYKnjk+gRjR3nKalftmaRDjxu6WJx0mo9cr9TmckfWeqnv6gt0mntHOBkiZSE5MNTnTvsWPc3+nmYNeEz2dzYV72bjpczZ+VcL2Xfv9nqKzs5OPP/7Y50Jt2kjIOzuSvCktXHLBGAa4X6P6HphSAhO4szQJHbulWK6vrVQ80XEaCqpaUK6/vUz6V/xZ2uqrIH24fqfDORjroGsnAgnSFvWE6dFWZJLGiFyYXZx5HVXOqLoxEtIvEKpb1XphwkSYxMlR9LQ42moLHc6ODqktPmqJOLzAqazeUiJ54zGDnWOPO4MmmFrvvnL5wLGoMEKXGRKyoPmIjJ8jfiTjheJssRsgdQoMXYJuoOtQo62tjYSE/pP60NLSoil45g/PPPMMkyZN4qabbgpo/3POOYePPvoooH290cRtNltAaU4gdHPF8dDe3k50dLTHPjExMd3bfaG2tpZHHnmEpUuXkp6eHtD5dejoFbiv9VpLHSzLITIPWppkXWCKFwMVZP5KnS7rVUUF3jQgtCCL1lpTKT2nCMKpc9DtNslRb6+Q+dyUKKy4iDhInyvzuCnF2ZYxd0gUvnytsBATz3auNboN8myndpBSaamblbsVWo9Jrn3iaIeY3PuATdIIu22gSRKkNJ846WVvzzgDvSc5R6tWreL88893EfgYN24cl156Kf/617+6DfT169dTW1vroWJ9xx138H//93+sXbuW66+/PriG28yQcp68+A17nR3BXCOL8+r1QnPFLovJtAu8GztaVPKuJnmxzScAo3zHjuPHph11HpCr3fGqN0kHaSuRThaVLMa8Vp1jd0V4Q5R8J3kspE6TzqGUbsuYLdfpywhQYDBC2jRZOKvVLbXydQ1Gx/08R+hALYckj/5giXghR98GFe+LCn7lh2Jgp57v3fB1V8Jur5Jri0yUz9xzfLQGNncvoDeHi/JzeIUY5+7btYzeUKLe3qjP4XAAqCO4aRc4Irg5nikaPRkkqzfJc2uvEoMwcaxz4FWuYYCDnpw0jrSRV3Hl+Ku48katdpbQZhzM1iORYsA7xOy6urq8nNyJwsNQeLiLJ9coNPq3XbaPGTOGvPNHM3NKFnm5E8ke0ClR6ax52u979SZh0FjbxSNsNcs7b+0E7J7PQ+vZK9cfNVB0GKJSZaKq+MDzHTmx2ekcVCj4Xc0yTiQ7+qVWH48dJHoQti5RRI/JBGuz6ECU/tPRv2dCa7HUdO1qE2PeXAuRMVCzWRwPxmgwV4PBhEysh5zRbHCOWV2tjn52FA6+IOPcqCUybpW/L/oYMemAwTNn32B0OiKOvC6MB2u7jF/qXD5MULoKWo6I883SBnRKBYsTG2WhkXOtjI1RyXIPlYVT3Hl+3xUdOk411NTUsH37dh5//PGAvzNgwADmzp3bo/Nu3Lgx4Cj8N998w7hxkrMaGxuL2Wz22Kejo6N7uy88/PDDpKam9jx1UYeOnsJbgMMYDeZyMYZN8RLcis9x1g6PHQwJowNXgQ/o/A5GZ/FK+Xzkjz2/a0BKJUfGgxWJWHe1OSqfNHkK0RkjYerTkH21a5vc02/tyHyrDmY2H5D1A5GyNqjbIRpax9dB/TanYLTd0S61/XEShZfPOAM91Jwjm83G7t27ufnmmz22TZs2jXXr1tHc3ExiYiI7duwAYOrUqS77nXfeeRiNRnbs2BG8ga7ueCkT5aVr2C056OkXitGO3Un/NiWJYamVu6JFJTcgQgvmGtc87NZS2d896myMdK3FqHRkcEbKj7zu2iYt481daVKpx65uc/1OYQqYa+R6tYyAQI9Xv1PaYd0nbav/L2R/R5UvahHqsdoLOfLHYqy0V4uXr7FaImFdLeLQcKf0uitDGwzSho4qMaAM6a6ll7wJVamjfL4cLuB6DIOK7h6fLTn2aqGxUKLe3qhW4Yh6awmMgXaKhoJgJ4+WEukTmXPlXRw4TUNd3M81qO5BHDB7OMyec6nrPo7Se1ZLB7u/PsjGfW1s2Gdlw1fHqGux+70VBw4c4MCBA7z0f+5b/h8gESR1PfgJMcUYbZ3iHGspRmYYHPlkAwITeVOuv73MQUOrEwO4rlAMT2+MjPpd4qhSaLBaTgRFJfbImxIhNyXA8B/K9w+9KDoQcUNl/Gktlv5mjBajOHmi5KzbLBAb6/CopzoMYZv00/YK1/rpirK6KVHSCsxV0k87KiVKP+QKoeW3lcqPKUn6StV6Z25a5jxJ4yl6Ss5ttzoqUxhlfDBGibOt4n3JfzdGSL+OGqBiNLTLfkfegOHXebJw7J/7fRd0nFmIi4ujpaXvaZTeEBcXF/R3vvnmG+x2e1Cl1Do7O6mrqwto3/T0dCIiIjw+HzduHK+88kpAx1BT2jMzMykvL/fYp7KyEoCsrCyvxzl48CAvvvgif/7zn12o8B0dHVgsFkpKSkhKSiI1NTWgdunQ0SP40o9xD6S5s8K01t3BrhMzZshxK9bJPHzsXVdD2V1BvqVUDPSsy8Upb64RR4FWWxRorUO10gIVZ3h3MHMiNB2QAEFknMzriWNF7LqzwbFW3yU2UNK43hNCDhJnnIEeas5RXV0dZrPZ73fHjh1LZWUlERERZGRkuOwXFRXFwIEDfeY1mc1mF49uU5MjV2TkzWA44aRtKKrE3UaXQ4SpfI289Ak53nNXvFHJMy+T2uDNh4SimTRKKKxHPtfO/VbQ3ZEdFGHF8zT8OslJadjj3fBxj8Aq9dgVVG2QCGFElO8a5eCkMTcfcNZqdD+eKUnuj9kmUfLaQhj2HaczQ6GKaxlrSlTc7kgtiE2XhXmaW5sUmm15gZwr8zJZ9B96Cep3SAkKRVlaLXKnrgvZdEDupyI65cvhAp50dy1dAm/3PFTau/t5Ay2b5w6t9oDvNqonD4OPEiJqdoYxWt7PxDFiTKrV0t2dGKHCcS0RA89hythapoxK4K7vD4a2gULfShgBqedirymkuLyejbsb2XgklY3bDlBcXOz38MePH+df//oX//rXvzS3x0ZB3jgjM8cbyMsbytTLpuFC4PRFQ1PnoDcfcIieeWFkKMamweD0Mmup0Vd8AGXvyjgSkybRcFOKjGHH3oL63TJ5Dvu2CF+2lQu9vbNB+khElEOlvVLeZ0s7GB0CcbZOcSYc/xCq58Gg2SpnQzlgdxjKJuk/nQ0yYdvtYmB3tcqYUrNV+mrTAenjtYXive9qgah0idhHZ8KQK+U6ildI261tOJLggS7oPOG8fmsL2KKg5bBcV/xwR5rNYUfpvrWBvE06ziAYDIaQKOX9Ca2trQBB5a5v2bKlxznogwcPDkkLKTc3l/Xr19PU1OQStNm6dWv3dm8oLy/HZrPxs5/9jJ/97Gce24cPH85dd93Fn//856DbpUNH0PAWRNH67PAK3+tucKwVOiTY1LDH1RHu7fwYhcmnDv61FAvrLCLKtXqNMle7M2bVDgIlAq/+zFsVp4bdst622SUN1mqW4JkhStbWRoe5awci4uW7USnygbJ/xkxZDypr0JNspJ9xBnqoOUfK54F8t729naioKM3jxMTE+Mxrevzxx3n00Uc9N2RcAuqov3unU6id7n9rwVvHqPuv1Ba2NMoi1mCHstVAlyr3e4inGJmy6DclQ802WQi3ljjp4f7KMqhrIys53t1ethJZiA+6VJWXa9SOoFZvksV1R5U4HpLHakSaRwj1lBqIzZIonBIlV9gA7s4PcC1RR5oY2YPmSLvbj8uiXTFuLA0ySCjPAgMMni3nsbV7Gj1aubEKfbjbUTDCt1iIenA+vELumTfjNpy53urzhioY54ua5a2NakPz+Cdw6AXJiY5KgYkPi7HmbsSrPbN2m2uE3t2JEQrsNnn2bRXCrIjJgvSLHOIszY68LxuYazBgYeSEixg5ZDc3DbnS89xVG6gu/DObdlawcXcDG4ts7NzrX8iuvRM+3G3jw92d8I+P4HbPKNgFY2PJm/AZeecO5ZJrUknWmtjdRc+U+592odC6qzeBtVUEZ1pLZJuWA6X5gBiuEQlCV4+Ik2MdfF4Md2ubRNENRqHXdVRJ5QWs8qyyFoh33VIjE6y9A2yRQKfsExEnjpV9f3Q+g/gciDsLkicLJb2zRo4ZlSLOgPqvREXd1gV0ORyA0RJ1B3mGpgFC828tESdEV7NE5I1Rch3WDue1Wlu1H4bdUYO9YYewkawOpXpDBLTZ/D5LHTpONSjG81tvvRVQVRwITw56qLj66qt58sknefHFF7s1icxmM6+88grTp093YVO2tbVRWlpKWloaaWlpTJw4kbffftvjmA8//DDNzc08/fTTjBw5Mqzt1aEjLAhkDZiQI2vamm2yFj3+IexE2yGvoKVE5sbodDGKT2wR4WhLrRjAtg448n+yxtYK7ijHdDARXaL34L+KU0I21O2Co2+Kc762UNiSSlnThBHipE8aJ86DhBxZw5f8QxwIZauhrEDS8dTBxpNEcz/jDPRQc46UzwP5bmxsrFfBko6ODp95TQ888AD33HNP9/9NTU0B1eHspnaq8xy9wVvHOPK65DGbEqUzdXXIQjZrkTP3O2WiRLZs5m5BLWIHiwHUsEc6cnS6LMwr10Hu7wKgxeDMh28qkpxOJSKq5KUHIk6m0JgHO2jMqdO0I8051zo8etFiRMVnO/Nx1CXp1FCXqFMi1OoSWjWfOwW2rJ3S2Yfkuz4Lf4OiO304yY1uowW/6u4a5wlH1FurDd7K4/mDr/Z4a6P6Gs21YgRGpUmOecU6MdDdo8WRSXQr8zcVyQAelRKYd7j7Oje4UqGV9wLkHihRX6tZjPOxd4oXuHm/sDqqPhVj3douz1id8+V2TzKmwXfHl/DdW3IAmzBkGvc7+lgGrbYkvjzYJQb8ARMbv9yNzebf8Ptyfztf7m/nD2/Vw8NXeGwfP348eVNHkjfOQN6UoQw5a7SDPo848cpXixPP1gkJI8EW4dyuMBIqHUyW6HR5/7vaIGag9L2MGc7cboMROpug/D151yNiIS5NxOAiE8UwNkaKs9DmyKs3qEQe7BY5dv0u2PtbST1RaHWjlkDiKBGLNCXDqJvFQ95eIU4Um0Xy3yKiZFHRWSeGvCkR4iOkzJopBdpLJRWm8Wt5bjaLPA/83WuDOBBsZnHMKV5Tu823A1WHjlMU48aN41vf+hbLly+nqqqKefPmkZOTw5w5c7wGLcKRgx4qpk+fzve+9z0eeOABqqurGTVqFCtWrKCkpIS///3vLvsWFhYye/Zsli1bxq9//WvS0tK46qqrPI6pRMzdtz3zzDM0NDR0MygLCgooKysD4M477yQ5OTns16dDhyYCWQNmzJA1dGeDzOP1eyRn290h785UtDTK3B/hEH2NHwYnisHSKgw6W4enhpI73NfCFR8IBb693LUMsnsVJxCHfUSUMOSUOus514kj3dIkawHssi6IHwoYIDZTNIjKCyQ4aTRB7X9FVK7liBwjNvC0nXChVwz0nTt38s0333Dttdd2f/bhhx/yu9/9DrPZzHXXXcddd93VG6f2i1BzjlJTU4mOju7ez9d3MzMzsVqtVFdXu9DcOzs7qa2t9ZnXFB0drRml94tgoqLeqDApEx2L7ybAANEDZIHauEci58Ovl05h75RFcN026QBRA8RQj8+R/M76PUJDrdkq+afu1GMtmGtksZ0yWZwBJW9K+SRv+TFaVN2EHDF4umnMGuqLBqMYTeoouUs+jpdcG/dIsfL9piL5we4U2Op0eAvdn4W/QVH9DCNipP2BKnC7UL2TVGJrIwLL4wkW7oPyiS+g5aBrebxAqfPBULMUqO+lMRZObHAcS7WPe59QqgEoYiKd9VC73Ulrrt7kmwlQvcnVSK4tdGU/KH1j0BxXtofSjqpPHU6cbHmvk8Z5986635PDK2SiVKK8nXXERxu49NJ8Lj1vt9Cv3aLwXeWfsGPVXWzcUcrGIti4t4WGVv+W4b59+9i3bx/LvWzPGmBg5uRk8kZamJm7h3G5MzBYmlzZH5Z6KVXSetTRr+LknShfJw8p+WwpmdLZ5IhexzsFYyxNMr4MWQipU4VuXv6uGMcg9xiTGOqWVvltjITWMrk/ipOy8iMZozobxEA2GGW/rAVQt12eIzandx2bHLuzVt6NiBhHe9pkbAKHoa2CMdZZ/cEFEVK20dru+K77doPGZ/0fRqPRL305JiaGoUOHMnv2bO677z49iniGYdWqVTz66KO8/fbbrF27ls7OTubPn8977713spumiddee42lS5eycuVK6uvrmTx5MmvWrCEvLy+s53nyySc5evRo9/9vvfUWb731FgDXX3+9bqDr6DsEsgY0GGV90loiAQY6xYHeXiYOea0qRIYoMXYtjc4006hUsR+MtY61QKx/1qZ7OdfarWIjtJXLfB6V5sm2VX/XahGHe/RAx/rCkSJa8YEwAY7vkRQ2Y7SsNaIGynejUqCjTkRprR3QFSNOgZaS08dAv//++4mLi+s20I8cOcK3v/1tBg4cSFZWFvfccw+xsbEuSup9hVBzjoxGI5MmTWL79u0e27Zu3cqIESNITEx0Ocb27dtZsGBB937bt2/HZrP5zGsKGeGIio65Q7xHSsRp5E1Cx2wpceZGW5qc0XKrWTxNipdqyv+TxfLxddI5mw+rDG0vhq97iafq9Y7jRkmnatgj+Ztj7/TshO4OiUDvgZbxE0xOtkv94/UiptV6TMSkOmrEe5eYLSUtMlXCWe7ntdtcI/eKuF4gz1AxItW14avWu97v0bf1zAj3hSqH5oGlQYQ2ogdq154ON9yN5xE/EoO347i0JTZL7jl4vg9KNYCUyUJrMsYCBmd5EeW5exNHaSlxNZItDa7vijcnmdKOI6/L+RQPcNI478/H/Trjs2XyaK/qjqBL9H+3myjgUHGQNewlsrWE84d3cv6weH4xvxnsMc7ovikBe9IkDsbfzIb1n7Bxwyds3NtEaWWj30dQUW/nzQ0NvLkBoAL4p+PHcRtijeRNSCDv/FHkDTnCeTl2oqLt8ow6G6D5axhzF5x1nUTOTfGi7D7qZqm80LBXnIVj7hCDOiEbqj9zUMQBugCLlG80Rjlo59UyaccNdarI1m4XzQdTgoNZ8QFgFOpdVr4Y/3aDjDs1W/5/e+cdHlW1/f3vzGQy6QlpJAFiCBBCCSVKEKQERAVRQI20KxJQ0Sv6KgoKXK8EpYgo/GwgKIamgkSF61URUQglXHovIaQIhJiEtEkvM+f9Y8+ZTM2c6ZOwPs+TB+bUdfYpa6+9V2HPg0LlOg+OGd4NpaokcA3NruwiafM9EknQXLaBn1F3A7yjgZjngYI/2PehqR5QVkMdfyRqnQb622+/jV27duHixYsYM2YMunbtCoAlzNq9ezfi4uIwcuRIXLt2Dampqfj2229x4MAB9O3b18mSE47Cx8cHK1euxMqVKwEwr8D33nsPZWVl5peXdQAeHh5a8hojMTERHGf6nd2/f7/B5Xl5eRZIRxA2wNLwQ77vcm09M44rs1kfoqG8ue/Klyfjq+B4dW9Olir2YP2rpipm6PIx6AbLsGrKGMlCZKuvs+PfPgQWHgZmqIvdWI6crDy2r26ZVF0vWb4vVn8baKxiCWsBpuPrm5hXnCwQCOjP+tGKRqbb68sA8XWnJXa1i4F+9uxZzJs3T/178+bNkEgkOH36NIKDgzFp0iR8/vnnTjHQhcYcXb9+HTU1NepyHPy+8+fPx4kTJ9QZ2jMzM/Hnn3+qjwUAI0eORGBgINauXatloK9duxZeXl4YO3as7S/MFrOiYjegx6vsTxOteBDVjLZPZzar1VDGZookMuZawo+4NcqZS6rEHfCP067RrpnwIXdrs9uKpht9/i4We6o7u8ljzE2/pTYw9pES4n1gbF9VfxtSX2YIeEeyzNGKGlX8qtj4h9CYISjkHqoHNjRqw/Ou9bZI/maKgj1sVNXNl8X4gmNJwAwl+7BUORjCWJvx4QeaAxuGngf1ffYAQhNZNQTd8iLGkuj5RGkbyZ4R2s+KsQEi3RwDFS0kTTR2nd1msdh63r0+bBQgFrN3TjMpYHWeKtFaE3PxEklYrLVIlVgtaCBz2fLpBlH4KMS4NyLmiX54bngtO5c8k9UeV9QCikb8XSXFwbwQHDhXhgPn5Th33XQHtapWiV9OyPHLiVMaS6s1/q3GkL7vY9jDMzAs+gEM7lwL35B45n4edr/+AUOHA52eAP76BmioVLWpKnmcsq75+sSqsBL3QNYmV9dquKRzwPXv2ay6VyTg5slc4G/sBIr3s2eA413XAUDMBis5EXtWuEbVccQqoxxsdl0kVWV3r2MDdBKZyvvlQSD2VVbz/Py7qvqrpez4YimgEAEoMtmWrkZERARu376NK1euIDo6WmvdtWvXkJiYiJ49e2LlypXIysrCoEGDsHDhQvz8MyXFu1MJCQmBp6enRVnhCYKwAS1lZG+pfyYSs9/5v7JJO49QACLWB9Itbcb3n8MfZPvxSY/dfFjuGqkqxJCDdvI3zRBB3Wo+XaYz+6PwT6C+lJVnVTYwGfgEyrr9XENesnzOodp8VXhePdPXHAdIJGwAofQ08/qryoMqkxwgVv1XfgUoyrLb7TGGXQz0iooKBAUFqX//8ssveOCBBxAcHAwAeOCBB/Drr7/a49QmERpz9PTTTyM9PV1rxPTFF1/EF198gbFjx2Lu3LmQSqVYtWoV2rdvj9dff129naenJ959913Mnj0bTz75JB566CEcPHgQW7duxdKlS1tf2Q1Dmda7v8xiz3VHqfj6weUXmFtLfbF+jXYerZnz/aw+I1/fvPZvNqupO7vJY8mAhLGPlJCZd2P7asb+85mtG8oBr07sQ9CSkWxNNnV+X92BDT423trkb0LgXw2RDAiMB8IeNGyAW1LWzRjG2kzIs6B7nw1VQwBangnXNJI1vSMA08+kUA8PQ9UIqq6rsq2rBiLEbqpcCWLtpIClp1j7yMKAhirA3QcQ1bM4sPpSNoIceDcLgeDrmfMJ9Gr/VrmkNzKD1N0XYRHheHLAWDz5wAXmZuYexDKUR00D+i+HXC7HkV/W4cAvqThw8i8culTT8j1QcehsIQ6dfQ/L1Es2A3hV/at3bGcMu7cPhvWPwPARoxAW/yGLJ8/7lt0XTskMck7JDGL3AFWFhkCm1LM3sTrnXANQUwCgicW1191i8XSNpcCZfwHyS2x2Wyxhg01iH6C+QGWsi9lAjJs3c21381CVWZMx5S6Ssnb3DAcq85jhLfFn21XmsOPLQlR1Wf2aPS/qigBx60wSt3LlSsyePVvPOAeArl27Yvbs2Vi+fDlmzJiBbt264YUXXsBnn33mBEkJV+CTTz5BSkoKnn76actC9wiCsJ6W+pqm+mdFB1mt8CbVpJNvdzYgrumNaKw8WdbnbPCaz1fVKNeuMKR5LmMyhg5lMeR53wISqcqDTdRyP5fvi/HJo/O+YcZ5SCKgVLI+TlMV8+rjB965JjCj3I3ZNMpGVpLNO1IVn37ShjdEGHYx0MPDw3H58mUALD775MmTmDFjhnp9VVUVxGILZ9BsgKUxR76+vti/fz/mzJmDJUuWQKlUIjExEatXr0ZISIjWti+++CKkUik+/PBD/Oc//0GnTp2wevVq62LvbTkTac55vCP1DRZDo1T8y6Du+EvZiFtNARt9Cx0BVFzQLqPVfiQbHfPt3myca8a+6M5uWtM2xj4AQoz9lmZVNWNl+NhbY1nkNbEmmzq/r2Z+gNChhg1OexDxIHPdbShnLvVdn2WJ2Qxhy7Ju1rSZofts6L63OBM+wvh16mLomRQykFCYDhT8BlTnsgGggDi2vzFFqtkmskA2a9xQzJK0SL2Za7s0gLnFB6m8G7Tc/VWDbtIA5jYmC2VeK+6BQEAvIGIMEP5Qc0iDVwd1GIGfnx8eGhCKhyJigacCgdKTzFgWSYCoaWjslYJTf2xA+u7tSP/fRRw4X46qWoXJprtwJRcXruRizUYAWKu3PjLEDcN6yjAs1g3DYpWIiZBD5B7EvlUAaxPPDqwj0VDJOgluPkBDIRsMlPqz+6msB6SeLCGmmz8wcD1waTnLqSD1Zsa1RzAblFDUM4PduyNLNAeOLau+AbjJmDJvrACaylkce0kGGzTwimQz+2VnAZ9uQF0+UHYbgH4+E1fn5s2bcHMz3m1wc3PDjRs31L+joqIMJlYl7gw2b96MqVOnYtWqVc4WhSDuXAz1m7TCJA0kX+OpymOD1wG92UyyRxgQPor1z3lvREP5kvh+H5+vqrGcuZZL3JurMmmFCEZqlyf2UelyPVsjkull3j6oVCWoNVZe9/aRZk9T7GcD+8oaJodIzAxxsWq/pgrWT3APYPH2QQnMo5BvNwdjFwN9/Pjx+OSTT1BXV4ejR49CJpPhscceU68/e/aswRF4RyEk5shYHFHHjh2xY8cOQed57rnn8Nxzz1kiomFsORNpznm6GSmXZsjg0TTGCv9gL5FExl68on1sllyrjNb55plzUy7sLRnhQtrGFgZxS4nf5FcA+WWV0WMki7wm1uQNsMTF35aEDgd6G3ArN0RL7W7uoJMtci2YOqet2tHS97VgD4uplvqxjO8e4UzGnC3GR5gBVQb15hh0uHkypdZUpZ0wkL9Wg6XtPJhWCOyvH6pgKIwAaL6/dSqXbbG7qlQaIHWXYWB8Lwz0jcAbTwRp50YoTAd3ah6uZOXiQKYUBy5U4cClOty83Wiyia4XN2FrehO2pmsuPQ1gJADA398fwwb2wvD4ThgWG4b+sj1waygEwLFZ9aZKwL83UKEqtyb1Bjo8zMoh/r2XvcsiCWt/kRTw78nc4eSZzJgHACgBrzDVCLyEfeMUjYBICTQ1sf0V9UBTA1sn9mSDBrUFzJuhFdKrVy+sXbsW06ZNQ/v27bXW/f3331i7di169eqlXpaTk2Pz0lhE6+H48ePOFoEgCEP9JkP5nzw76PeLfaKYHqzMZIZx/d+sLyC4hPJ5tl9AHJsYUDQY6QvCeKloo6VgDfSvNPtdNfmqAQGNiUBFDVB4lRnlDWWqQQNVPiLfWCD8AdUAQTTzsiw+rEoAHALge3Nb3irsYqAvWbIExcXF2LJlCwICArBx40a1MpfL5UhLS8Ps2bPtceq2TWUOGwlyD2T/VubYxxjTm/G83lwn3BSaxpiikRnnmm7Y/Eyv5rkMveDmvJAGZc4TPjNqCk5VUsk7iv02lvitML15VE83i7wxo9BSQ9CcfS3xvLClEdtSu5trxNrCeNY7pxJq13FbeqZY4znAgc3IKhVsVrilXAm6bcLHcbd0D4WWttNsB2Ptri6V+CtLEMmBVYCIeFDfXV8zXCV0KESd/4Eeom/Ro4cUzz+mcl1z92+Oa+MacTP3Eg5easCBy404cFmJSzcMl7DUpKKiAj/tycBPe4xtUYdhvS5gWJw/hsXfhUEjn4BP/9fY9YY/yDK9VuYydzdlPSD2BiS+gFcNGzCRyICamywGXuzBXN6b5KokfNUAFGwZJMw9viqHeRMV/gHUFQD1rdPd94MPPlAnh5swYYI6Sdy1a9ewc+dONDY24quvvgLASopu3LgRY8aMcabIBEEQdzYtTaYZ8mLVJHSoyj29XKXDy1mYnyGXdt39AKb/S48xne4RYbgqE2C4VLRu4jhOtZ1PJJD/m04YYF5zMl++31V/WzUgoPI0DejN8tAo6wFOwgbRJR4sX4/EE+DqWbimIS9Ludzau2A2djHQfXx88PXXXxtdd/PmTUoYYglNchYjWnmNxTs22emBURsCqphqY+UMDKHZ8efLb2m6YZtyLwaMGxZaBo+qNiK/jY8BN3xdLDXuig4CWeubDTpjid9saYjaEkvObUt5W2p3W7q/C0X3nLdUtT1tfW8s9djQDR+IMJKV3tQAU0v30JLSdqbw7c7isaV+bPSZH6UvPcaSytQVsm00BxYMuq6pFLBSCVxZjY6BEkwZ6okpg8BGvX37Af3eY/vf2o2K6xnIyGxU1YOXIOP4BUHiHrhYhwMX64BthQCOAXhTa32/zlIM6xeOYX3dMHRIL4T6ewOKSsDNncXtBw9koQBid/ZdVtSr4tgAll1GBadks/SKeubN0FgDNDahNZKYmIiMjAwsWrQIP/zwA2prawEwr7RRo0YhJSUF8fHx6mV8zWeCIAjChdCc4TbkxaqJZxibaS49xXQZn11d4sHW87re0ASUep2qCpSbn2HD3ieK6dXCP5mubCwHitKb+978oD0/gF9fxjwNdcNJfaKYTr7xA8vY3q4fEPEI85orPsL25UuuuvmpCrA0shw3br6O6YMKxC4GOk91dTXkcjl8fX3h48NqzYrFYqr3aClSP1W5pSAW4yj1s895NEe+So6xF7E6jy0z9eAaqxduzoy1kFjbRjmTrTKTLevyLEt8xZdo4kuW2QKhRqQtDFF75BmwxAh2lOFsTdiBrc4J2OdaLfXYMBY+YO4Ak6PuoaHsq5qeLVI/FrNWfp6NxAtNrFeYrqp9rmQz7wDg0YHNXhfwgyp18Pdxw5gHBmPM9NHN70v2JlYJIqAP6otO40RJDxzYswMHTubiwBUONQLCos/kNuJM7nV8/ON1APrlNaPCfTC8byCGx3fEsPBKRAcpIOKULGmiSAzWmxCxzoaEn4l3V8Wqi9Gc2b510b9/f/znP/+BUqlEURELawgNDXVqXhmCIAjCDIT2T4oOMsNWUctcxt08mZHbrg/rh/M5pUxNBrS0De+lKpawUsXugapKTr+zuPD2I4H8/zbLnf8TABGrZqMbTho6FLiexmQVASg9wc4jDWDhbWEj2XKfbmwSpOQISz5Xc4slcuXj8wvTWT8DYJMkHm2gDnpeXh7ef/99/Pzzz7h586Z6eYcOHfDoo49i7ty56Ny5s61P2/YpOsTcOcTuLPGRZ0c2S2UP+BeqKo8ZwBa56FpoaJpwiQWgEe99pVm2v/c2z4Le/h8bGLCVMWKtEckp2WhgzS2W1d5QnA+PPWba+RHFwj9Y2EFjuaqGcwv3w1GGsy1iyq09J6dkz06ZBR4jLdGS8WmqtIktYuAdcQ8NZpzP00j8EsVcwA2FfZiCN+4jHmbPrlLBvnseEWy9sr651IpuTXmNa5d5eOG+xDG4L/EhLLiwhCll9wCWkT90OJQF+3D5j1VIzziJ9MsKHDhXgb/LTMfB5xVUIa+gCpt2X9dZw+LvA30lGNYnCMO6yDEszhv9YqMgCR0AFGcAtbnC2sCFEYvFFF9OEATR2jCnf16Vxwxbn2jmMu4dxZaVn2c63SdK2GSAyUzy61k/oknOJiLLL6jC/OrZrLp7QHM5N6k/0+Pl55nhzZd2A5rLnkpkTL7Kq+xYnZ/S8BjowKqzFKazAXRpO+aVzBv6RQdZUlw+7r70GHDX63A0NjXQd+3ahWnTpqGqqgpRUVF49NFH4evri8rKSpw7dw5r167F5s2bsXXrVowfP96Wp277ZH8FeCjYw+Ibq528yV5Y08EXamjqfiigbNklVjfe296zoID1RiQ/AilxZx+D4EHGj2GPWc/Qoaz0HV8Sr/gIG8Aw5pbE78PLY0/D2ZGJ7Yydkx+s4GOlKq8AWXlsnb3ksmYgxpBy5Y+pucwR97DoIPNkqSs0XLnAGhl8olTxYZVAyBBVLdWA5u9EVq7xQSet80aydVV5QIdxei744kvL0MvjFHoNq8OLo8MAt3AWjyZxZ/FrQQm4XnsXDp4vw4Gj53Ag4ySuZJvOwF5aqcDOw0XYeRgA6gAUA6CkWQRBEIQTMaf/wdsBtTeZESsSMT2vm0TWlK3Qkj2h7vfGsX6E/Aqb5Q4exKrZ+HYHOk9tDoFrLANu/kflrg72p0lAb5YPp/Iqkzmgt374be7XrNqNsonli/GLbZ5AqMpjAwAiCSsJV3EVyNtmdjNbi80M9EuXLmHSpEmIjo7GunXrMHSofkfs4MGDeOGFFzB58mScPHkSPXv2tNXp2z7KeqDd3YZni3hs7R5tTedaqKGp+6HwjmrZJZZHs956QG/2p2mw23K20Fojkh+BbD+yuaSVsftij1lPkZid06uD9v0AzI9RbovYwmPEXKwZiDGkXAHD99Lce2juN4Sf5TbkagZY9xwZq1TAu59BAtSVALKg5kEnQ89vYTpwrQUX/MZyFovGKVhWV3dVObqSY8yt7+YuRPpE4R99O+AfSXObj5n1OUsS11iB0sJbOHw6GweucDhwhcOxa0rzr9dF6dOnj1nbi0QinD171k7SEARBEFZhTv9DrYc1Ysh1K8IIsRVa2obv9zZWMONfFsZqlDfKDeevyt7EZtRDhzUnsuaLinBKZg8ED2HHCxsFxMzW7hNkb2K6mwMz0EUipvND7mO6XX6FzeTXqwx4kRgoO2luK1uNzQz0ZcuWITg4GIcOHUJgYKDBbYYOHYqDBw+iT58+WL58ObZs2WKr07d9hBhttnaPtqZzLdTQ1P1QAMJcYosPN9dbv/0/Fg9jquyDszDH6LbXrKchGZyRoM1RWDJY5ch4eN1zeUcyxSDU5Uz3vgG2uZfmfkP4WW5LXNgB4/fJVEnFaxrucMEJ2vVQW0wuqdM2PlFs8Kr2b5agxs0b8OvK/vWMAMA114RX1utnipX6A7ePI9C9CY/Gi/HoPRJAyQGeoWzgoLYIEAF17l1wvKwvDpzOx4GT17H/yBk0NLSORHGBgYEQiZqnKBobG5GRkYE+ffqgXbt2TpSMIAiCMBtz+jpC7ABrt9Ht92qWNzPUDzYkP99n4D0hpX4spjywPzu3Zv/KO5KVPZVI2XayQKBdPDtn1ufMRR5uTO9zYIP4SscPutvMQN+3bx+effZZo8Y5T2BgIGbOnIkNGzbY6tR3Bl1mAqLilo02VzK4hBqaui8aH0tiaj9LS8HZIwmbKcwxuu01c21MBkcnaHMUlgxWOTIeXvdcUJrvcqZXw9zKe2kqntzQu2OszYS+Z8buU9FB4OpaoO4WCwuJmsoyvmsZ3Cp3OD4WrkluIrnkWZbTomAPGyGPeBAIGcpi0Qv2MNe5+gJWJ7X0uKrMWwNzkWso1c4doZkBVwQgsC/LcCuSMGXvEa6qtiEBJJ7wUPyNocH1GDo+Av96rCvkYYvh322s+ffICezfv1/r9+3btxEaGopVq1Zh5MiRzhGKIAiCsAxn5P5pCUNhh8YwVvaY7zOUnWbZ3YMGMgvXkLdot1nMZZ4P+/SIYO2g2f/xCAYaREBdMcA1AtXZdrt8Y9jMQC8pKUFUVJSgbTt37oySkhJbnfrOIHQI4Gcia7szMmIbQ6ihacyN1dR+ll6rM8qduYK7uCEZXO0jbUssGayy5D5ZOuCje67sTcKz/BtSTjzW3EvdeHK/GDZynL2peYT62nr9d8dQmwl9z4zdp6o8Zpw3lAH1JUDet815E/iEi5JiJmPQQDZzX5Vj+FiaVSlu7WZGtbKJ1Trv/yEQNoL9aWR+R/lZluvDtyszvKvyAIhZGTVlE2sL7yh2H9382Wh8QB/mJucZBtzYBShrWJkXiUw1Wi9jir/8PBtQbKVozqYTBEEQrQxX6JMaQnMWvEQ1C86XctNNKKdb9pjvM3CNbAa85BibPTfoLXpdp8RrFPTyX/nEAAH92WA+1wDU/gXAdPJYW2IzAz04OBi5ucIy0+bm5iI4ONhWpyZ4nGVwWTMrbemHwtJrtdTLQPcaDbng2Hsm3taY0/bO8DywBkcNVhkzRM1tL6HyGlNO/HmF3EtlE3D1s+b8DTGzWU1Q3Xhyj3Dg9hGWJIXPD6GoY3VIy88zJWrsuoS+Z8au2yeKzZzXlzA3M4m0eSRcM+FiVBJTtADLSVGTzzLN8iPigHaOgRvfM7mUjYA8E7j2JVsnEuvI4sGMfgD46xugIpPNlNf9DXS80BxeI3YHOo1n7cbH51VeBdz9gPCHgVu/sCR2Ug+WdKbwT1UFjkjT94kgCIIg7hT4/lTlVWYkh41qLuWmmTfGUN/CJwpoqmdecm7eTIcHDjDuLWpokkQz/1XwQOZll7WeJciTlQOodGhz2MxAT0xMxIYNG/Dqq6+26OZeWlqKDRs2YMSIEbY6NcEjxOCyh6HVmmalbTXzXnZGo5PuoGt2Js64x9Zgreu1UDTdrQv/BHK3qlYotQ1poOX2EjrgZIswlqufAVdWMSP1b1Wdz9hX9OPJvSO1k+YBbB3v/l16jLWlUMPbHBf50KHMrT3vW2ac8+7lxhIuFqazwQQ+83qIgUoJPlGAyI0NMnAKACLg9iGgKJ3VnudnxQGmmEOHAjlbmGEt9VVdfzmrzVpX0BwGwGeW59+PBlVm2YYSAEpAImEdBpGYzcp3fgrw6GvePSMIgiCItoyx8DXNfrqxPnzoUJaPpvoaAA4QiwHPcKZ3Q4eqQvh+A2pvALd+Zb/5wXn1cfn+TzfmCVeZBwTfC7j5Au2KAcx3XFvAhgb6woULkZaWhmHDhmH9+vUYPHiw3jYZGRl4/vnnUVJSggULFtjq1IQ52MPQcqXYd1PYaua9/ELruWZb0JruMWB8AMfWzz+vLAr/ZDHMELHje0eZ115CB5x8osyvaa9L+QVmnGvWCAWMxMXnNSvCiAfZ+sZywzHqmhh6z4y1vaHrFon1XdBayptQlcdm+tvfb7xSQuhQoOss4KKqFrrEHWisBvJ/A8rOacejQdw8q+4ewNzeRADcPIHaWyzGTbOsnOb7UXaWlYWpuMDKtYncmLHu2Yl5LFTlAZXVQu8WQRAEQTgffpC9MoflfNEsWWoLj0rdbO66pdwA4314kZgleis7A4BjseM1Bc39I5EYKDve7A1Xclw7nJavDFV2nuWcyfmaeb7JwoHQwSyUzcHYzEDv2bMnvvnmGzz99NMYOnQooqKi0LdvX6066Lm5ufDw8MDWrVvRq1cvW536zsEWs3/2MLRcKfbdFLaaeQ/ozWbQW8M12wJXusfWvAe2fv555ZC7FYAICB0BVJxny+zRXsZq2ptzDYZqhAJGErXoJmwUs3KGjXI22mzsugy9Z+a2vTl5E4Q8nyIxEPv/mGIu+EVVWq0JqLkBFO1n/8oCmfHOe0IEDwI6PMpiyKX+zD29MpNVjSg7z8rBVF5j96T6ZrN7vVc48zQAgKZqwCOEuczxIQO1LhweosOpU6e0fldUVAAAsrKyEBAQYHCf+Ph4e4tFEHajvr4eb7/9NrZs2YKysjL06dMHS5YswQMPPNDifsnJydi0aZPR9Tdv3kSHDh1QVVWFlStX4ujRozh27BjKysqQmpqK5ORkG18JQdgQfpC9Nh+o/ot52Xl2ZOtsMWFjLJt7zhb9HFWGzucbzSYwKjOZl1/Z8WYvv8ocoPoG854TubP8Nrd2a09I3P4fu7aKi+x4Uj+W20Z+HpBEW399ZmIzAx0AHn/8cfTr1w/vv/8+/vvf/2Lnzp3qdeHh4Xj22Wcxb948dO3a1ZanvXOwxeyfPQyt1pZszBIDz9CHw9DsXltCq50i2exjVR4bOa1SlbRyRiy6Ne+BrZ9/zRHYrM+ZcW5ONQJLzmeopr0534GY2exfzRh0Y+eyZWJBW7S9MeVsjlxB9wBlp9jz7dkB8O4I1F5nse61BQDHse3Kz7Gkb/XFbLYdSsA7gm3bKGcz6/V/A7kbWWdFGgAoxMy9XuqnHc8f9iBLaJf/E7tv1Y6vqWop99xzj8HEcC+++KLeMo7jIBKJoFAoHCEaQdiF5ORkpKWl4dVXX0W3bt2wceNGPPzww9i3bx+GDBlidL/nn38eo0aN0lrGcRxeeOEFREVFoUOHDgBYJYR33nkHkZGR6Nu3r16lBIJwSfhBdvdANjDtHqRdflQTS/rZuvq9MN28vl7oUKazDXn5NcnZ7wY5IBYxnf73b2yywj0ACLyn+doAAGKg5m9WI11RDwT0M6upbIFNDXQAiI6Oxueffw4AkElhGaQAADo/SURBVMvlqKyshK+vL/xMZSAnTGOL2T97GNOumhHSGJYYeIausTVdszFM1Zvma0I2ypszVBcfUZWfclIsujXvga2ff3X75ahilfzYKK7mSK+yCcj8RD8pm6VYY+hySjYiLQ1gZUY4ALlfW65AzUFo29tCsRujKJ0ZyZyC3YNO44B2fZmBDQCKWgAck6HmBlB3mxnlatd5P6DbC0w2+RWg8goz6CuzmasfRKymeu3f7J0BmuvDA9r3rZWQmprqbBGINkBdXR08PDycLYZJjh07hm3btmHlypWYO3cuAODpp59G79698cYbbyAjI8PovoMGDcKgQYO0lh06dAg1NTX4xz/+oV4WHh6OgoIChIWF4cSJExgwYIB9LoYgbAnf96jNV5UfLVElPY3S39YWE4qWeN2FP8gyuJefZ/0cb1VCVqkfiy1vqGCD7pAC1X8DMn8WwiYLa742N29AyQFuClbJpfYWUHHJPNltgM0NdE38/PzIMLcl9pyBsgWtJdN3a4untictfUTVo6X+zF23sRwQSdnII5+kyxltZ817YOvnX7f9ur2gf2xjSdksxZpBBk15GyuYge7ub//BFnO+DfZMSHhrDyC/ypK+NciZYu4+HGpX/oYydu6am4B7O8DNi8X6q5+16ObnpzAdyMpliltZzwZpZMEseZ7Uj8W5+XZn7u6V15jB7n0XABEQcR+A721zTXZm+vTpzhaBaGU88MADqK6uxooVK/DWW2/h2LFjePrpp7Fu3Tpni2aStLQ0SCQSzJo1S73Mw8MDzzzzDBYuXIgbN26gU6dOgo/3zTffQCQSYerUqeplMpkMYWFhNpWbIOwO39cwFIOuiy362Zb09USqP93/+0SzsMCGMjY4r6hmpVAbOBbq5tkR6Phw87XV3gJKTrAEcW6+gKwvgLPmyW8ldjHQn3nmGaxevZqMc1vjyq7knJLNEmolWoJrGr5tJZ7aFrT0EVW303lmyAXEAVXZzN3HmW3nSu+BECVkLCmbpQgdZDD0bGnKm/8T2y50qP0HW9RGt8obQzP5i+7zbu8BNJHuvxrtWbgPkHoB9WKgqYq5vvlEMzc3z06sTfmkM3w+gMpc5iov9mBZYxU1QEBfJrtI1BzXphmz5+tC326CsDHnzp1DQEAAJkyYgOeeew5Tp041K7SxsbFRnevAFIGBgRCLbaczT58+jZiYGL3+a0JCAgDgzJkzgg30xsZGfPfddxg8eDCioqJsJiNBOARDfQihExy26Gdb0terus7yxYTw/ZrrQHvVsQITWI6ZgDig5CQz1pW1TD6vcO1r0ypHOwIImwZgtfnXYAVWGejLli0zuDwtLQ3t27eHj48PFi5caM0pCE34jiSfEVk3cYIzKTrISiLV3ABkQWyZq85Mu5KB5+zyZS19RPl2ubWbzQo2VjBDJHhQc2kpZ7SdM0IqjA2kCFFCxpKymXMeSzD0bGnK6x7ABl5sMdhiSm7e6Jb6A7ePMyVZlcsMXM1nSSRmRmxDBRtA0HRRswW8+1tjOeAZwX5ryp/7DSDxBjo+ykI5FPVAzXX2XfO+C6j5q/n54/MBeGvkA/CKZEn0NN3YNWP2pIFsdv7KR7a7JjtQXV0Nd3d3SKVSAMDhw4fxyy+/AAAefvhh3Hfffc4Uj3BhioqKUFRUhJqaGhw/fhyxsbFmH+Pw4cOCS/Hm5uba1PgtKChAeHi43nJ+2a1btwQf67fffkNJSYmWeztBtBqs6Z/aop9tSV/PWJ9MJGaTAnySWzcvts4nmrnqu+tkaS8+3FxK+fb/ALdu5stvJVYZ6P/+97+RkJCAHj16gOMT64CNGubk5MDLy8tqAQkDONuoM0RVHqtX7B4I1JcAEi/XzWzuSjHzjna31zWkQu5rlkP3I6o7IOTqoQv2gG+vW7uZYSf1Y7XCgea2AVpWQkKTsgGm321D96/4sOF7Y+jZip6mIW8kM9Crr1s/2GJKbk1vDBFU3hg5bFDPK0J7H2MuaraAN6x175dmdtqa6+yc7oEsnMM9kMnqHqidEIdTMkO/Jr85e7tuckBOyToEfMxedS5QVwjUNNnwomzPsGHDsGnTJvTu3RtffvklFi5ciMmTJ0MkEiEpKQlLlizBM88842wxCU2c7Y2l4ty5cwBY6V1LjHMA6Nu3L37//XdB2xpzFVcqlWhoaBB0DJlMpk6EWFtbC5lMP0cEHz9fW1sr6JgAc2+XSqWYOHGi4H0IwmWwpn/qrH52S30yzXWN5c35lDw7qnLIaKB37dftLrouVhnohw4dwmuvvQZ/f38sXrxY7RK0e/dufPzxxwgNDbWJkIQOrhhD7RPFZlcBwM0HiJriWi74lmLvTo+QGVhbyGDK0LRFje62CG+4VV5lhlXYKDb6yr9zQtpG7CY85tzUu61rCJedaR7l1TWM+Wer7CyTWX6F7c+7qdkSU3JremOUHGMz5Ip6ZgD7xwFF+5pLm1XmGXZRMxfN98Y7EoASKNjL1kU8aHgwI3QEk8W3OxtMKT4C1PEJcUrZN45/R4sOsrJpEndA0cCyt2s+E7wMInFzXFv5eaDoAODOASi14KIcQ1ZWFnr3Zp4eH374If744w/ExcUBAF544QU88sgjZKC7Gi4ycH/+PCszOWnSJK3lUVFRKCoqglgshq+vLyZOnIgPP/wQbm763dB27drpZUM3lwMHDgiehb98+bJ6MMHT0xP19fV629TV1anXC6Gqqgq7du3CQw89hKCgIIFSE4QLYax/6iKDgQZlCblPZ10660PouuhzypYrMelduw09+QRilYE+aNAgZGRkYP369bj33nsxZ84cPPvsswZLshA2xJViqHkMjVq1hVlWe3d6hMzA2kIGU4YmYRi14RkHFBQyA8s3xn7vnCGjujC9+X3SNYTLLxg3jHVDFCqvAFl5bJmt77khZVaYrh+7pumN0VjODNyifaos6hx7RoPvtc33TfO9aagAGsuAuiLmNVB6DOgt1h/MqDjPjPDOTzFZ2/Vjs+eNcu0M/YDqXjRoZHgP0P/mGSobU5ULVF627JocREBAAPLz89GhQweUlZWhe/fu6nVdunRBcXGxE6UjDOIiA/fnzp1DeHg4oqOj9dbt2bMHQ4YMQVZWFoYNG4bY2Fj885//1NuuoaEBpaXCBrBCQkIgkUj0lsfGxgquQKDp0h4eHo78/Hy9bQoKCgAAERERgo65c+dOveztBNGqMNY/dZHBQIOyaE5aNFQwbzipgUS4piZXdK/do699r8MAVieJE4lEeP7555GUlIS33noLAwYMQFVVlS1kI4zhSjHUPC097K402mYudk9YJWAG1hYyONrQbCvwhltjBeDfXTu5mT0wZVTrGsIBvZkyMmTM8s9WVR5QmWnfjrvuN4lTAtcMKHDNsInCdFU5sio2w91+pKo0iqqUGT/rXJXTfA7+uyHkm6KbEK++lGVjBVQx8Hn6gxm6x9N9NzXP21gOiNyFDyTwCeYCBwCKIAA7BDevo3nppZcwffp0fPHFF3jttdcwe/ZsLFq0CACwdOlSPPjgg06WkNDDRQbuz507h759W+7MduvWDUOHDsXFixcNrs/IyLA6Bj0sLAzJycmCjqFJv379sG/fPsjlcq1EcUePHlWvF8LXX38NHx8fjBs3zmwZCMIlMNY/dZHBQG1Z4oDCP4HrPwAijnnD3fov20btjWeGnLrXLpfbQ/oWsVkW96CgIKxduxZnzpxBeno6ZXC3J63N5diVRtvMxRU6PbaQwdGGZlvB0Z4hpoxqXXlC7mvZTQuwfxiFoX1ztph21b+2nm2jqAXE7sw41yxlBhj/bgj5pmhetzQAANc8g+4VYXgww1QCTv68ijpV0sRwwKs7iz039S5pXjNce4DyjTfegLe3N4YMGYKamhpUVFRgw4YNkMlkSEpKwoYNG5wtIqGLCwzcKxQKXLp0CQ888ECL22VmZuLgwYN49913Da63RQy6pSQlJeGDDz7A+vXr1XXQ6+vrkZqaioEDB2plcK+pqcH169cRHByM4OBg9fLi4mLs3bsXU6ZMoVxMRNvDFfrFurIU/sny6Uj9mW4u2qfyaoNryGkBVhvomZmZuHLlCu699160b98cKJiRkYGRI0dae3iiLeBKo23mYkmnx9YeA7boeLXVEAR746zBsJYykerKY0o+e4dRGMwWH8mUZP5PqlJlOvFbmt+EsrOAXyz705Svpe9GZQ5LvOYeyP6tzNGXV/M4xmLQzW0HXiZ3f6BUlY2+9m+2ji+9Zuy94vf1jwNKhRkfzmT27Nn45z//iZs3byI/Px+enp6IiYkhg8NVcYGB+6ysLNTV1RmdQR8zZgwkEgkCAwORnJyMmTNnGtzOFjHoljJw4EA8+eSTWLBgAYqKitC1a1ds2rQJeXl5egNTx44dw4gRI7Bo0SKkpKSol2/fvh1NTU0turd/+umnKC8vV2eF/+mnn3Dz5k0AwMsvvwx/f3+j+xKEU3GBwUA9WXK3AhABIcOB/F0AJwI6PgK06wtU33C+nBZglYG+YcMGzJkzBz169MCNGzewYsUKzJ8/H4MHD8by5csxd+5c9QgkcQfjSqNt5mJJp8fWHgO26Hi5QOeNMANbKkB7h1EY2tdblSEeYP9yOvtofhMkHsybo6UZcN3vRpOcxa1XXgNEbkDZKSBbrD34ZOi6w+43fh2ckoUWVF5l7nINFfrt4BPFZvuLM4CmGsDTjXk6NJazbO2A8Xbjr6doHyvb5uKUlZXhxx9/xMWLF1FdXY2OHTti4MCBJmdHiTsXPkFcnz59DK7/9ddfMWTIEEeKZBGbN2/Gv//9b2zZsgVlZWXo06cP/vvf/2LYsGGC9v/6668RGhra4iDDBx98gL/++kv9+4cffsAPP/wAAHjqqafIQCdcF1fqT2omZc36HCjezyYH3ANYQtrAeKDLdGdKaDFWGejLly9Heno6+vfvj2PHjmHIkCE4efIk4uLicOnSJYwdO9blDPTy8nK88cYb+PHHH1FTU4OEhAR8+OGHiI+PF7T/5cuXMWfOHBw6dAju7u4YO3YsVq1ahZCQEPU2eXl56Ny5s8H9v/32W0yePNkm19JqcKXRNkfQmj0GiGacmTvBUgVoqczWDKIZ2rcqj80yh6piv6p1SpQI+Sa0tI3Ujw0CuAexGPWSY6pSZhYOiHFKIPMTNvJeX8wSKfp212+H0KEsCU3ZWUAsAeRZgMSNGfSmki5qjvRXNwK4aZ6MDiQ9PR1JSUno378/OI5Deno6Jk+ejF9//RWLFi3Czp07qUoLoceTTz6pVXK3teLh4YGVK1di5cqVLW6XmJho8HqPHDli8hx5eXmWikcQhC66M+mhI1jS16q8Vlsq2CoDvbi4GP379wcA3H333eA4Tl2apWfPnoKzcDoKpVKJsWPH4uzZs5g3bx6Cg4OxZs0aJCYm4uTJk+jWreVC9Ddv3sSwYcPg7++PZcuWoaqqCh988AHOnz+PY8eOwd3dXWv7KVOm4OGHH9ZaNmjQIJtfl8vjrNE2ZxlYrdljoDXgqPvqyrkTjLWBpTKbMphbanNj+7b0Dhj7JhgrmVKV13wukZjFqXt2ZNcp8WKlzqwZECs6COR9AzSUARIfVlYtKEG/HURiFtfmF8sGIIozWBm9xgpA7NGcIM9QW2mO9Fd8Yp58Dmb27NnYtm0b7r+feRzs3r0bH330EQ4fPoyVK1di9uzZ2LHDdZPcEQRBEHcQujPpFeeb+x6u3JdrAasM9Li4OCxduhSTJ0/Gli1b0KlTJ+zcuROPPfYYfvrpJ4NlNpxJWloaMjIysGPHDiQlJQEAJk6ciJiYGCxatAjffPNNi/svW7YM1dXVOHnyJCIjWUxlQkICHnjgAWzcuBGzZs3S2j4+Ph5PPfWUfS6GMI2zXkprPAZac8Z7R+Go++oqnhCGngljbWBKZlPGo7Hra6nNDe1r6TsgtM675vEby1m98nIjpemEUJUHSGSALBioLwE82jO3e35/ZRObYS/YC9T9DShq2LYB/YHQwcxo1703ijomT5BGQkaRmA06BP0PwPfCZHMCN27c0MohM2rUKEybNg0AM96XLl3qLNEIgiAIwjCG+h6mkta6KFYZ6J999hmmTZuG999/Hy+//DI2b96MsWPH4qWXXkJNTQ2+++47W8lpE9LS0tC+fXs8/vjj6mUhISGYOHEitm7divr6eshkMqP7f//993jkkUfUxjnAOi4xMTH47rvv9Ax0AKiuroZUKtWbXSccgKUGlrVGsjUeA610pM+hOMJw5pTM8KvJB+pvAx46Wb8dOZBi6Jkw1gamvDcsfb7MbXNL3wGhdd41j88pWSb7W7uZq7v8iul4cF18otg9BtiM/F2TACiB7E1sXekp4NJ77JlQNgESTwAiIDIJ6P6y9r3XTSSnG59efBgoOW5euziYfv36Yc2aNZg9ezYAltCqV69eAACJRAKRSORM8YhWCLl0EwShxl59KEN9j1bq1WqVgd63b1+cO3dOa1leXh6ys7MRExPjcqXWTp8+jfj4eIjF2g9BQkIC1q9fj6tXryIuLs7gvvn5+SgqKsI999yjty4hIQG//PKL3vLFixdj3rx5EIlEuPvuu6l+rKOx9KV0ppHsKrO2rowjPrZFB4HbR5jrtKIBCBmkPQvsyGfE0DNhrA1MzVxb+nw5os0NDYq0VOddV8H7xlhe71233aAErq4D6m4BClVZtKY6VvccCpaYzs1TVb4NbMae39c7UjuRnCwEUNY1y8PfAxdm7dq1GD9+PFJSUsBxHAICArBz504AwNWrVzFjxgznCkgQBEG0XhzZh7ImhM+J2KwOOk+7du1wzz33QKlUYvPmzXj66adtfQqLKSgoMJiFMzw8HABw69YtowZ6QUGB1ra6+5eWlqpn4MViMR588EE89thj6NChA3JycrBq1SqMGTMG//nPfzB27FijMtbX16O+vrnzJpfLzbpGQgNL3WydaSS30pE+h8B/RCtzgOB7WaIwn2j7JB2sygOUDUD7+5vraBuaJXXEM2LomTD2bJuaubb0+RLyLlmr5AwNisTMNl7nXVfBB99r+buj227Zm5hx3lDGXN7FUkAsZm7r4FhtVd6tXVeObrOA4EHNieTKLwD+Ggnn+HvgwvTs2ROXL19GZmYmAKB79+5wc2Pdhbi4OKxatcqZ4hEEQRCtGUf2oawJ4XMiNjfQeRobGzFjxgy7GehKpRINDQ2CtpXJZBCJRKitrTXowu7h4QEAqK2tNXoMfp2p/WUyGSIjI/Hbb79pbTNt2jT07NkTr7/+eosG+vLly7F48WLTF0WYxlI3W0NGjKNG2O60jPfmoGcIveBYo9ic9bbEWA17S55tS58vIeezVskZGhQRuxk/r66Cl/qxZ8IW745PFJs5ry9htdbd2wFenVjpNWU9EHg3iysPuQ84++/m0myNFUDVde1EcuXngUCNhHOhQ4Eu1XDlGHQAcHNzU7u1a6JUKrF161aXGnwnCIIgWhGuNBnlop6rVhno77zzjtF1jY2N1hzaJAcOHMCIESMEbXv58mXExsbC09NTa3aap66uDgDg6elp9Bj8Okv3DwwMxIwZM/Dee+/h5s2b6Nixo8HtFixYgNdee039Wy6Xo1OnTkaPS9gBQ0aMo0bYXKm+pKvhyI+oKUPWkQMptnwm7Pl8WXt/zFXYettH2+7aQocCUVOBvG8BiRTw7AB0e17/2IXpLO69rhAoKNSeKZd4sCRxvjHaCedEYiDU9WtBG8Peg+8EQRBEG8eVJqNcabBAA6sM9CVLliApKQn+/v566xQKhTWHNklsbCxSU1MFbcu7pYeHh6td1TXhl0VERJg8hrH9AwMDW0wwB0BtaJeWlho10GUymcnjEHbGkBHjoiNsdxSO/IiaMmRpIEUfU/fHlBeKuQrbngpeJGbJ34y51/NU5bGZ+7BR+jPl9pLNAThz8J0gCIJo49irD2WJt6srDRZoYHWZtalTp+KRRx7RW1dXV4cvv/zSmsO3SFhYGJKTk83ap1+/fjh48CCUSqVWorijR4/Cy8sLMTExRvft0KEDQkJCcOLECb11x44dQ79+/UyePycnBwDLHE+0Mlx0hO2OwkU/ooQKU/fHlBeKuQrb3oMkQo7vE2V8prwVD+A4c/DdEgoKCvDRRx/h6NGjOHHiBKqqqrBv3z4kJiYKPkZ+fj7mzJmDPXv2QKlUYsSIEVi9erXLlYslCIIgjGCJt6uLTrhYZaA/99xzUCqVBtdJpVIsWrTImsPbnKSkJKSlpeGHH35Q10G/ffs2duzYgUcffVRr5jo7OxsA0KVLF/WyJ554Aps2bcKNGzfUs+F//PEHrl69ijlz5qi3Ky4u1jPC8/Pz8dVXX6FPnz4GE80RLg4Zh87HRT+ihApT96cteqG00e+CMwffLSEzMxMrVqxAt27dEBcXhyNHjpi1f1VVFUaMGIGKigosXLgQUqkUq1evxvDhw3HmzBkEBQXZSXKCIAjCZrShfoZVBvoLL7xgdJ1EInFJA/3ee+/FjBkzcOnSJQQHB2PNmjVQKBR6idnuv/9+ANq1OxcuXIgdO3ZgxIgReOWVV1BVVYWVK1ciLi5Oq+zMG2+8gezsbNx///2IiIhAXl4e1q1bh+rqanz00UcOuVbCxpBxSBDW0Ra9UNrod6G1Db7ffffdKCkpQWBgINLS0vDkk0+atf+aNWuQlZWFY8eOYcCAAQCAMWPGoHfv3vjwww+xbNkye4hNEARB2JI21M8QcRzHOVsIR1JWVoZ58+Zh586dqK2txYABA/DBBx/o1TePiooCoG2gA8DFixfx2muv4dChQ3B3d8fYsWPx4Ycfon379uptvv32W3z++ee4fPkyysrKEBAQgKFDh+Ktt95CfHy8WfLK5XL4+/ujoqLC5erKEwRBCMZFa406A/qu2w/eQDfHxT0hIQEAC1fT5KGHHkJ2djauXbsm+Px0bwmCIJyEnfoZzviu263MmqvSrl07fPnllyZd9HQNc55evXrplVDTZcqUKZgyZYqlIhIEQbQ92uhsM9G6USqVOHfuHGbOnKm3LiEhAXv27EFlZSV8fX2dIB1BEAQhmDbUz7gzpy8IgiAIgrjjKS0tRX19vcHcMPyyW7duGd2/vr4ecrlc648gCIIgrOGOm0EnCIIgCMI1USqVaGhoELStTCaDSCSy6ny1tbXqY+ni4eGhtY0hli9frpfDhiAIgiCsgWbQCYIgCIJwCQ4cOABPT09Bf5mZmVafz9PTEwCbCdelrq5OaxtDLFiwABUVFeq/GzduWC0TQRAEcWdDM+gEQRAEQbgEsbGxSE1NFbStLUqWBgYGQiaToaCgQG8dvywiIsLo/jKZzODsO0EQBEFYChnoBEEQBEG4BGFhYUhOTnbY+cRiMeLi4nDixAm9dUePHkV0dDQliCMIgiAcChnoLg5fBY8SzxAEQbQN+O/5HVbl1CW4fv06ampqEBsbq16WlJSE+fPn48SJE+qSq5mZmfjzzz8xd+5cs45POpsgCKJt4QydfcfVQW9t5OTkoEuXLs4WgyAIgrAx2dnZiI6OdrYYbYIlS5YAAC5evIht27Zh5syZ6Ny5MwDgrbfeUm+XmJiI9PR0rY5WZWUl+vfvj8rKSsydOxdSqRSrVq2CQqHAmTNnEBISIlgO0tkEQRBtE0fqbDLQXZzy8nK0a9cO169fh7+/v7PFuWOQy+Xo1KkTbty4AT8/P2eLc0dAbe4cqN0dT0VFBSIjI1FWVoaAgABni9MmaCmbu2Y3x5CBDgA3b97EnDlzsGfPHiiVSiQmJmL16tXo2rWrWXKQznY89A1zDtTujofa3Dk4Q2eTi7uLIxazRPv+/v70MjoBPz8/ancHQ23uHKjdHQ//fSesR+hcw/79+w0u79ixI3bs2GG1HKSznQd9w5wDtbvjoTZ3Do7U2dQ7IAiCIAiCIAiCIAgXgAx0giAIgiAIgiAIgnAByEB3cWQyGRYtWkR1Vh0MtbvjoTZ3DtTujofavO1C99bxUJs7B2p3x0Nt7hyc0e6UJI4gCIIgCIIgCIIgXACaQScIgiAIgiAIgiAIF4AMdIIgCIIgCIIgCIJwAchAJwiCIAiCIAiCIAgXgAx0F6OgoADz58/HiBEj4OvrC5FIZLRuqzHy8/MxceJEBAQEwM/PD+PHj0dOTo59BG4jlJeXY9asWQgJCYG3tzdGjBiBU6dOCdo3OTkZIpFI7y82NtbOUrcO6uvr8eabbyIiIgKenp4YOHAgfv/9d0H70rNsOZa2e0pKisHn2cPDwwFSt26qqqqwaNEijB49GoGBgRCJRNi4caPg/a35DhGOh/S18yCdbT9IZzse0teOx9X1tZvNjkTYhMzMTKxYsQLdunVDXFwcjhw5Ytb+VVVVGDFiBCoqKrBw4UJIpVKsXr0aw4cPx5kzZxAUFGQnyVsvSqUSY8eOxdmzZzFv3jwEBwdjzZo1SExMxMmTJ9GtWzeTx5DJZPjyyy+1lvn7+9tL5FZFcnIy0tLS8Oqrr6Jbt27YuHEjHn74Yezbtw9Dhgwxuh89y9ZhabvzrF27Fj4+PurfEonEnuK2CW7fvo133nkHkZGR6Nu3r1nGmi2+Q4RjIX3tHEhn2xfS2Y6H9LXjcXl9zREuhVwu50pKSjiO47gdO3ZwALh9+/YJ3n/FihUcAO7YsWPqZZcvX+YkEgm3YMECW4vbJti+fTsHgNuxY4d6WVFRERcQEMBNmTLF5P7Tp0/nvL297Sliq+Xo0aMcAG7lypXqZbW1tVyXLl24QYMGtbgvPcuWY027L1q0iAPAFRcX21vMNkddXR1XUFDAcRzHHT9+nAPApaamCtrX2u8Q4XhIXzsH0tn2g3S24yF97RxcXV+Ti7uL4evri8DAQIv3T0tLw4ABAzBgwAD1stjYWNx///347rvvbCFimyMtLQ3t27fH448/rl4WEhKCiRMnYteuXaivrxd0HIVCAblcbi8xWyVpaWmQSCSYNWuWepmHhweeeeYZHDlyBDdu3GhxX3qWLcOadufhOA5yuRwcVeIUjEwmQ1hYmEX72uo7RDgO0tfOgXS2/SCd7XhIXzsHV9fXZKC3IZRKJc6dO4d77rlHb11CQgKys7NRWVnpBMlcm9OnTyM+Ph5isfbrkJCQgJqaGly9etXkMWpqauDn5wd/f38EBgZi9uzZqKqqspfIrYbTp08jJiYGfn5+WssTEhIAAGfOnDG4Hz3L1mFpu2sSHR0Nf39/+Pr64qmnnkJhYaE9RCVU2OI7RLQe6BtnOaSz7QfpbMdD+rr14Qh9TQZ6G6K0tBT19fUIDw/XW8cvu3XrlqPFcnkKCgqsarPw8HC88cYbSE1Nxbfffotx48ZhzZo1GD16NJqamuwic2vB0ralZ9k6rHmm27Vrh5deegnr1q1DWloann32WWzfvh1Dhw6l2SY7Yu13iGhd0DfOckhn2w/S2Y6H9HXrwxH6mpLE2RGlUomGhgZB28pkMohEIqvOV1tbqz6WLnxGR36btoolbV5bW2tVmy1fvlzr9+TJkxETE4N//etfSEtLw+TJkwVK3/awtG3pWbYOa57pV155Rev3E088gYSEBPzjH//AmjVrMH/+fNsKSwCw7p4R1kP62jmQznYtSGc7HtLXrQ9H6GuaQbcjBw4cgKenp6C/zMxMq8/n6ekJAAZjH+rq6rS2aatY0uaenp42b7M5c+ZALBZj79691l1QK8fStqVn2Tps/UxPnToVYWFhd/zzbE/s8R0ihEP62jmQznYtSGc7HtLXrQ9H6GuaQbcjsbGxSE1NFbStIVcJcwkMDIRMJkNBQYHeOn5ZRESE1edxZSxp8/DwcJu3maenJ4KCglBaWmr2vm2J8PBw5Ofn6y031bb0LFuHpe3eEp06dbrjn2d7Yo/vECEc0tfOgXS2a0E62/GQvm59OEJfk4FuR8LCwpCcnOyw84nFYsTFxeHEiRN6644ePYro6Gj4+vo6TB5nYEmb9+vXDwcPHoRSqdRK+HD06FF4eXkhJibGbDkqKytx+/ZthISEmL1vW6Jfv37Yt28f5HK5VgKUo0ePqtcbgp5l67C03Y3BcRzy8vLQv39/W4pJaGCP7xAhHNLXzoF0tmtBOtvxkL5ufThCX5OLeyvm+vXruHLlitaypKQkHD9+XOsjmZmZiT///BNPPvmko0VsFSQlJaGwsBA//PCDetnt27exY8cOPProo1pxJtnZ2cjOzlb/rqurM5iZ9N133wXHcRg9erR9hXdxkpKSoFAosH79evWy+vp6pKamYuDAgejUqRMAepZtjTXtXlxcrHe8tWvXori4+I5/nm1FQUEBrly5gsbGRvUyc75DROuDvnG2g3S2/SCd7XhIX7s2ztLXIo6K5rkcS5YsAQBcvHgR27Ztw8yZM9G5c2cAwFtvvaXeLjExEenp6Vp1DysrK9G/f39UVlZi7ty5kEqlWLVqFRQKBc6cOXPHjw4bQqFQYMiQIbhw4QLmzZuH4OBgrFmzBtevX8fx48fRvXt39bZRUVEAgLy8PPW//fv3x5QpUxAbGwsA+O233/DLL79g9OjR+Pnnn/XKMNxpTJw4ET/++CPmzJmDrl27YtOmTTh27Bj++OMPDBs2DAA9y/bA0nb38vLCpEmTEBcXBw8PDxw6dAjbtm1D3759cfjwYXh5eTnrkloFn376KcrLy3Hr1i2sXbsWjz/+uHom4+WXX4a/vz+Sk5OxadMm5Obmqr8p5nyHCNeB9LXjIZ1tX0hnOx7S187BpfU1R7gcAIz+aTJ8+HC9ZRzHcTdu3OCSkpI4Pz8/zsfHh3vkkUe4rKwsR4nfKiktLeWeeeYZLigoiPPy8uKGDx/OHT9+XG+7u+66i7vrrrvUv8vKyrinnnqK69q1K+fl5cXJZDKuV69e3LJly7iGhgYHXoHrUltby82dO5cLCwvjZDIZN2DAAG737t1a29CzbHssbfdnn32W69mzJ+fr68tJpVKua9eu3JtvvsnJ5XJHit9queuuu4x+v3NzczmO47jp06dr/eYR+h0iXAfS186BdLb9IJ3teEhfOwdX1tc0g04QBEEQBEEQBEEQLsCd7cdDEARBEARBEARBEC4CGegEQRAEQRAEQRAE4QKQgU4QBEEQBEEQBEEQLgAZ6ARBEARBEARBEAThApCBThAEQRAEQRAEQRAuABnoBEEQBEEQBEEQBOECkIFOEARBEARBEARBEC4AGegEQRAEQRAEQRAE4QKQgU4QBEEQBEEQBEEQLgAZ6ARBEARBEARBEAThApCBThCtgLVr1yI+Ph5SqRQpKSla686cOYP77rsPfn5+iI6OxpdffmnwGEeOHIFYLMaSJUscIDFBEARB3Dm0pKcvXryIYcOGwc/PDz179sT+/fv19n///ffRqVMn+Pr6on///qisrHSM4ARBuBxkoBNEKyA8PBwpKSl44okn9NZNmzYNDz30EMrLy5GWloY5c+bg8uXLWtsolUrMmTMHAwYMcJTIBEEQBHHHYExPNzY2Yvz48UhKSkJZWRk+/vhjJCUloaSkRL3NZ599ht27d+Pw4cOQy+XYtGkT3N3dHX0JBEG4CGSgE3cMGzduhEgkQl5enrNFaZH3338fsbGxUCqV6mUTJkzAuHHjEBAQoLd9Xl4epkyZArFYjPj4ePTo0QNXrlzR2mb9+vUYOHAgevTo4VC5ncHnn3+OyMhI1NfXO1UOQ9jjGXTEc+3KbUoQRNuhLerpzMxMlJWV4f/9v/8HiUSCUaNGoX///vjxxx8BAAqFAkuXLsUXX3yByMhIiEQi9OnTBzKZzGy5UlJSIBKJcPv2bYuvwxm4qo6x1/NIepswBRnoBOFCyOVyrFixAm+++SbEYmGv58svv4ytW7eiqakJx44dw/Xr13Hvvfeq15eUlOD//u//sHjxYoP784qC//Pw8EBMTAxeeuklFBYWqrfLyMhASkoKysvLbSK3vUhOTkZDQwPWrVvnVDlsSUtt7wjaYpsSBEFYgiX6juM4vd8XL14EANy8eRM1NTVIS0tD+/bt0b17d3zxxRda2wvV0/a+DnvRFnUM6W3CGshAJwgX4quvvkJTUxOmTJkieJ8xY8Zg8+bN8PDwwODBg7FixQqEh4er1//rX//Cq6++anD2XZN33nkHW7ZswaefforBgwdj7dq1GDRoEGpqagAwZbN48WKDysYSue2Fh4cHpk+fjlWrVul1ipzNtGnTUFtbi7vuusus/Vpqe0uPaQ6u3KYEQRCOxFx91717dwQEBGDVqlVobGzE7t27kZ6ejurqagBAfn4+KioqcPXqVeTl5WHHjh1YuHAhDh48qHcsU3rantdhT1xVx1ijX0lvE9ZABjpBuBCpqakYN24cPDw8BG1fWlqKsWPHYuXKlaivr8epU6ewYMECnDp1CgBw+vRpHD9+HM8995zJY40ZMwZPPfUUnn32WWzcuBGvvvoqcnNzsWvXLpvLbW8mTpyIv/76C/v27XO2KACg7ohJJBJ4eHhAJBLZ7Nj2OKYhXK1NCYIgnIG5+k4qlWLnzp3YtWsXwsLCsHr1akyaNAkdO3YEAHh6egIA3n77bXh6eqJPnz6YPHkyfvnlF71jWaOnrb0Oe+NKOsaeOtuex9XFldqUMA8y0Ik7mtOnT2PMmDHw8/ODj48P7r//fvzvf//T227//v2455574OHhgS5dumDdunXqWC9bkZubi3PnzmHUqFGC98nOzoa3tzeSkpIgkUjQp08fDB48GOnp6QCA9PR0ZGZmokOHDggLC8P27duxYsUKzJgxw+SxR44cqZYrJSUF8+bNAwB07txZ7WaXl5fXotzPPvssgoODsX37dr11v/76K0QiEX7++WfB17t9+3bEx8fD09MTPXr0wN69e8FxHHr16oWlS5eqt7v77rsRGBhostOSlpYGkUikbi9N1q1bB5FIhAsXLgAA/vrrL7z44ovo3r07PD09ERQUhCeffFIvhox/Li5duoSpU6eiXbt2GDJkCAD9uDMhx2yp7Q0dk0fIs83Leu3aNSQnJyMgIAD+/v6YMWOG3oyM0DYlCIKwJa1dTwNAnz59kJ6ejpKSEvz222/IyclBQkICACAmJgbu7u5acgqVWVNPa3L79m1MnDgRfn5+CAoKwiuvvIK6ujpB12ErvW2OfgGE6Rhn62yhx7VEb9taZwttU8I1cXO2AAThLC5evIihQ4fCz88Pb7zxBqRSKdatW4fExESkp6dj4MCBANhHc/To0QgPD8fixYuhUCjwzjvvICQkxKbyZGRkAADi4+P11jU1NaGpqQkKhQJNTU2oq6uDVCpFTEwMampqsGvXLowbNw6XL1/GwYMH8cILLwAAZs2ahcmTJ6uP88orr6Bz586YP3++SXmys7MBAEFBQRg0aBCuXr2Kb7/9FqtXr0ZwcDAAICQkBDt37jQq95NPPokDBw5g8eLFmDRpkno5x3FYsGABhg0bhrFjxwpqn7feegtLly5FcnIynnnmGXz00Ud4+umn8cUXX+DmzZt46aWXtLaPj4/H4cOHWzzm2LFj4ePjg++++w7Dhw/XWrd9+3b06tULvXv3BgAcP34cGRkZmDx5Mjp27Ii8vDysXbsWiYmJuHTpEry8vPSuvVu3bli2bJlR9zIhx3z88ceNtr0xhD7bPBMnTkTnzp2xfPlynDp1Cl9++SVCQ0OxYsUKs9uUIAjCVrQFPS2RSHDu3DnExMRAqVTis88+g1KpxOjRowFAPci+dOlSfPzxx8jJycH27duRlpZmUh5NPa3JxIkTERUVheXLl+N///sfPv74Y5SVlWHz5s0mr8OWepuXRYh+4eVpScc4W2cLPa65etteOltImxIuCkcQdwipqakcAC43N5fjOI6bMGEC5+7uzmVnZ6u3uXXrFufr68sNGzZMvezRRx/lvLy8uPz8fPWyrKwszs3NjbPlK/TWW29xALjKykq9dYsWLeIAaP2lpqZyHMdxu3fv5vr27cv5+PhwkZGR3HvvvWf0HNOnT+feffddrWV8u+zdu5crLi7mbty4wW3bto0LCgriPD09uZs3b3Icx3ErV67Uaj8hcnMcx33wwQecRCLhGhoa1Mu2bNnCAeAyMjKENA134MABDgD35ptvqpelpaVxALjevXtrLeeZNWsW5+npafLYU6ZM4UJDQ7mmpib1soKCAk4sFnPvvPOOellNTY3evkeOHOEAcJs3b1Yv4+/VlClT9LbXfQaFHtNY2xs6JscJf7Z5WWfOnKl1zMcee4wLCgrSO5fQNiUIgrCEtqqnX331Vc7f35/z9fXlHn/8ca6goEBr37KyMu7xxx/nfHx8uKioKG7dunVa64XqaV6GcePGae3/4osvcgC4s2fPmrwOjrON3jZXv3CcMB3jTJ1tznHN0dv20tkcR3q7tUIu7sQdiUKhwJ49ezBhwgRER0erl4eHh2Pq1Kk4dOgQ5HI5FAoF9u7diwkTJiAiIkK9XdeuXTFmzBibylRSUgI3Nzf4+PjorUtJSQHHcVp/ycnJAICHHnoIZ86cQWVlJf766y+8+eabRs+xceNGvPXWWwbXjRo1CiEhIejUqRMmT54MHx8f/Pjjj+jQoYPFcgPMfU+hUKhd8BoaGvD2229jwoQJGDRoUIvH5vnoo4/Qrl07LdmjoqIAANeuXcOcOXP09mnXrh1qa2tNJs+ZNGkSioqKsH//fvWytLQ0KJVKrdkDPk4QYHVtS0pK0LVrVwQEBKhj/jXhvRhawtxjCkHos92SrEOHDkVJSYnedkLblCAIwlrakp5evXo1ysvLIZfL8f333yMsLExr34CAAHz//feorKxEbm4uZs2aZfD8QvX07NmztX6//PLLAKCOa3eE3uYRql8AYTrGmTrbkuOawp46GyC93VohA524IykuLkZNTQ26d++ut65Hjx5QKpW4ceMGioqKUFtbi65du+ptZ2jZ2rVrER8fD6lUipSUFL1zjh07Ft7e3ujevTv++OMPm12PLfjss8/w+++/Y9++fbh06RJycnLw0EMPWX1cvp2uXr0KgLXR9evXsWzZMkH788przJgxBjsTM2bMQPv27fWWcyoXNVOxfKNHj4a/v79WvN327dvRr18/xMTEqJfV1tbi7bffRqdOnSCTyRAcHIyQkBCUl5ejoqJC77idO3c2eW3mHlMIQp9tTSIjI7V+t2vXDgBQVlamtVxomxIEQVgL6Wl9hOrpbt26af3u0qULxGKx4Lrb1uptTYTqF0CYjnGmzrbkuKawp84GSG+3VigGnSBsSHh4OFJSUvDNN9/orZs9ezbCwsJQXFyMvXv3YuLEicjKykJgYCAAFkPW1NSEyspK+Pr6Olp0JCQk4J577jF7P1NyR0dHQywWIysrC5WVleo48h49egg6fk5ODiorK/Vi5YqLiwHozxTwlJWVwcvLS2u02xAymQwTJkzAjz/+iDVr1qCwsBCHDx/W64i8/PLLSE1NxauvvopBgwbB398fIpEIkydPhlKp1DuuqfNackx7IZFIDC7ndOLwhLYpQRCEq3In6mld48zeelsTofoFEKZjnKmzLTmuPbB1mxKuBxnoxB1JSEgIvLy8kJmZqbfuypUrEIvF6NSpE7y9veHh4YFr167pbWdo2YQJEwBArzxKVVUVdu7ciZycHHh5eWHcuHGIi4vDrl271BnVY2NjAbDsqn369LH2Em2OsdFXU3LLZDJ06NABWVlZWLlyJSorK/VmLVqCN8T5JCs8y5cvN7icJzc3V3BnYtKkSdi0aRP++OMPXL58GRzHabnKAcyFbvr06fjwww/Vy+rq6gzWOBWK0GOaM/It9Nm2BHPalCAIwhpIT1tOVlaW1ozwtWvXoFQq1aFh9tbbliJUxzhLZ5tzXKF62546GyC93VohF3fijkQikeDBBx/Erl27tFy+CgsL8c0332DIkCHw8/ODRCLBqFGjsHPnTty6dUu93bVr1/Drr78KPl9WVhZ8fHzUdU8BIC4uDhcvXlT/5uO6Tpw4YcWV2Q9vb28A0FNCQuTu2rUrMjIysGrVKrz88sta7WAKf39/AFCXTgGAb775BgcOHAAArdIxmpw6dQqDBw8WdI5Ro0YhMDAQ27dvx/bt25GQkKDn7iaRSPRGpz/55BMoFArB16KL0GMaa3tjxxTybFuCOW1KEARhDaSnLeezzz7T+v3JJ58AgDom395621KE6hhn6WxzjitUb9tTZwOkt1srNINO3LEsWbIEv//+O4YMGYIXX3wRbm5uWLduHerr6/H++++rt0tJScGePXtw33334Z///CcUCgU+/fRT9O7dG2fOnBF0rqqqKr0PrJ+fH0pKStS/o6Oj0bt3b+zduxczZ860yTXakrvvvhsA8K9//QuTJ0+GVCrFo48+Kkjurl274osvvkBAQAAWLFhgcBuRSIThw4drJX4BWAxW586d8fHHH8PLywtisRjvvfceJk6ciO+++w4pKSl47bXXEBcXp97n5MmTKC0txfjx4wVdm1QqxeOPP45t27ahuroaH3zwgd42jzzyCLZs2QJ/f3/07NkTR44cwd69e/XK25iD0GMaa3u+A6CL0GfbHMxtU4IgCGshPW0Zubm5GDduHEaPHo0jR45g69atmDp1Kvr27QtA2HVYo7ctwRwd4yydbc5xzdHb9tDZAOnt1gzNoBN3LL169cLBgwfRu3dvLF++HIsXL8Zdd92Fffv2adWcvPvuu/Hrr7+iXbt2+Pe//40NGzbgnXfewf333w8PDw9B5/Lx8dHLrimXy/WSns2cORM//fQTamtrrb9AGzNgwAC8++67OHv2LJKTkzFlyhS1+7kpubt06QIAmD9/vjqZiSZVVVUAWGygLmKxGD/88APi4+OxYsUKfPTRR3j99dexbds2zJw5E1u3btXLnLpjxw5ERkZi5MiRgq9v0qRJajkmTpyot56vu/7111/j9ddfR0FBAfbu3Ws0C64QhB6zpbY3hNBn2xwsaVOCIAhrID1tGdu3b4dMJsP8+fPx888/46WXXsKGDRu0trGn3rYEc3WMM3S2Occ1R2/bQ2cDpLdbNQ4t6kYQbYjx48dzXbt2Nbju+eef5xYtWqT+XVlZyUmlUnWtUo7juMTERO6rr77S2q+8vJwLDAzkvvzyS7vIbC9Myb1q1SoOAFdaWmpw/c8//8yJRCLu3LlzVstSV1fHhYWFcf/3f/9n9bEIBrUpQRCtEdLTxiG93bahNm3d0Aw6QQhAd4Q5KysLv/zyCxITE7WWNzU1oa6uDgqFQuv/Pj4+GD9+PBYtWoTa2lr897//xblz5/Tcjvz9/fHGG29g5cqVDs3ibS2m5L5w4QI6duxocBQeAPbt24fJkydrualbSmpqKqRSqeCapoRpqE0JgnB1SE+bB+nttg21aetGxHEGcvITBKFFeHg4kpOTER0djb/++gtr165FfX09Tp8+rVVvNCUlBYsXL9baNzU1FcnJySguLsb06dOxf/9+dOzYEWvWrMGoUaMcfSlOISEhAcHBwXpZcwmCIAjCFpCeti2ktwnCeZCBThACmDFjBvbt24e///4bMpkMgwYNwrJly/RqcxP6cBwHX19fvPjii1YlOyEIgiAIY5Ceth2ktwnCuZCBThAEQRAEQRAEQRAuAMWgEwRBEARBEARBEIQLQAY6QRAEQRAEQRAEQbgAZKATBEEQBEEQBEEQhAtABjpBEARBEARBEARBuABkoBMEQRAEQRAEQRCEC0AGOkEQBEEQBEEQBEG4AGSgEwRBEARBEARBEIQLQAY6QRAEQRAEQRAEQbgAZKATBEEQBEEQBEEQhAtABjpBEARBEARBEARBuABkoBMEQRAEQRAEQRCEC0AGOkEQBEEQBEEQBEG4AGSgEwRBEARBEARBEIQLQAY6QRAEQRAEQRAEQbgAZKATBEEQBEEQBEEQhAtABjpBEARBEARBEARBuABkoBMEQRAEQRAEQRCEC/D/Aa5kgzV+XfLZAAAAAElFTkSuQmCC", "text/html": [ "\n", "
\n", "
\n", " Figure\n", "
\n", " \n", "
\n", " " ], "text/plain": [ "Canvas(toolbar=Toolbar(toolitems=[('Home', 'Reset original view', 'home', 'home'), ('Back', 'Back to previous …" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "def plot_correlation(ax, isotope, k):\n", " try:\n", " i = iso_full_name.index(isotope)\n", " except ValueError:\n", " print(f\"Isotope {isotope} not found in the data.\")\n", " return\n", " \n", " y = iso_abu[:, i] / iso_abu_0[i]\n", " x = mc_fac[:, k]\n", "\n", " r = stats.pearsonr(x, y)\n", " slope, intercept, r_value, p_value, std_err = stats.linregress(np.log10(x), np.log10(y))\n", "\n", " x_fit = np.log10(x)\n", " y_fit = slope * x_fit + intercept\n", "\n", " rp_text = r\"$r_\\mathrm{P}$\"\n", " ax.scatter(np.log10(x), np.log10(y), s=5, label=rf'{rp_text}$={{{r[0]:.2f}}}$', rasterized=True, color='orange', alpha=0.5)\n", " if intercept > 0:\n", " #ax.plot(x_fit, y_fit, color='red', label=f'Fit: y={slope:.4f}*log10(x) + {intercept:.4f}')\n", " ax.plot(x_fit, y_fit, color='black', label=rf'$\\zeta={{{slope:.2f}}}$')\n", " else:\n", " #ax.plot(x_fit, y_fit, color='red', label=f'Fit: y={slope:.4f}*log10(x) - {np.abs(intercept):.4f}')\n", " ax.plot(x_fit, y_fit, color='black', label=rf'$\\zeta={{{slope:.2f}}}$')\n", " \n", "\n", " ele, A = isotope.split('-')\n", " rewrote_isotope = rf'$^{{{A}}}\\mathrm{{{ele}}}$'\n", "\n", " ele2 = name[k][0] + name[k][1:].lower()\n", " rewrote_isotope2 = rf'$^{{{mass[k]}}}\\mathrm{{{ele2}}}$'\n", "\n", " react = rf\"${{{rtypes[k]}}}$\".replace('p', '_PROTON_PLACEHOLDER_')\n", " react = react.replace('a', r'\\alpha').replace('g', r'\\gamma').replace('n', r'\\mathrm{n}')\n", " react = react.replace('_PROTON_PLACEHOLDER_', r'\\mathrm{p}')\n", "\n", " ax.set_ylabel(rewrote_isotope+r' $\\log_{10}(X/X_{\\mathrm{no~variation}})$', fontsize=12)\n", " ax.set_xlabel(r'$\\log_{10}$(' + rewrote_isotope2 + react + ' variation)', fontsize=12)\n", "\n", " ax.set_xlim(-1,1)\n", " #ax.set_title(f'[{rewrote_isotope} | {rewrote_isotope2}{react}]',fontsize=25)\n", " ax.legend(frameon=False, fontsize=12)\n", " ax.tick_params(axis='y', labelsize=12)\n", " ax.tick_params(axis='x', labelsize=12)\n", "\n", "ifig = 13\n", "plt.close(ifig)\n", "fig, axes = plt.subplots(2, 2, figsize=(10,6))\n", "axes = axes.flatten()\n", "\n", "isotopes = ['Se-74', 'Ru-98', 'Os-184', 'Hg-196']\n", "ks = [6, 1435, 1889, 635]\n", "\n", "for ax, isotope, k in zip(axes, isotopes, ks):\n", " plot_correlation(ax, isotope, k)\n", "\n", "plt.tight_layout()\n", "plt.savefig('correlation_example.pdf',dpi=300)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "#### Write out correlations and slope" ] }, { "cell_type": "code", "execution_count": 27, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Se-74\n", "Kr-78\n", "Sr-84\n", "Mo-92\n", "Mo-94\n", "Ru-96\n", "Ru-98\n", "Pd-102\n", "Cd-106\n", "Cd-108\n", "In-113\n", "Sn-112\n", "Sn-114\n", "Sn-115\n", "Te-120\n", "Xe-124\n", "Xe-126\n", "Ba-130\n", "Ba-132\n", "La-138\n", "Ce-136\n", "Ce-138\n", "Sm-144\n", "Gd-152\n", "Dy-156\n", "Dy-158\n", "Er-162\n", "Er-164\n", "Yb-168\n", "Hf-174\n", "Ta-180\n", "W-180\n", "Os-184\n", "Pt-190\n", "Hg-196\n", "Output written to PPM50_correlated_rates.txt\n" ] } ], "source": [ "output_file = mixing_case+\"_correlated_rates.txt\"\n", "\n", "with open(output_file, \"w\") as f:\n", " \n", " f.write(f\"idx ele A rtype r_p slope\\n\")\n", " f.write('--------------------------\\n')\n", " for isotope in pnuclei:\n", " print(isotope)\n", " try:\n", " i = iso_full_name.index(isotope)\n", " except ValueError:\n", " f.write(f\"Isotope {isotope} not found in the data.\\n\")\n", " continue\n", "\n", " y = iso_abu[:, i] / iso_abu_0[i]\n", "\n", " f.write(f\"\\nIsotope Index: {i} Isotope Name: {iso_full_name[i]}\\n\")\n", "\n", " for k in range(n_fac):\n", " x = mc_fac[:, k]\n", " r = stats.pearsonr(x, y)\n", " slope, intercept, r_value, p_value, std_err = stats.linregress(np.log10(x), np.log10(y))\n", "\n", " if np.abs(r[0]) >= rmin: f.write(f\"{k} {name[k]} {mass[k]} {rtypes[k]} {r[0]:.4f} {slope:.4f}\\n\")\n", "\n", " f.write(\"\\n\")\n", " \n", "print(f\"Output written to {output_file}\")" ] }, { "cell_type": "code", "execution_count": 30, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "\n", "\\begin{deluxetable*}{llcc}\n", "\\tabletypesize{\\scriptsize}\n", "\\tablewidth{0pt}\n", "\\tablecaption{FILLER\n", "\\label{tab:FILLER}}\n", "\\tablehead{\n", "\\colhead{\\textbf{Isotope}} & \\colhead{\\textbf{Reaction}} & \\colhead{$r_\\mathrm{P}$} & \\colhead{$\\zeta$}\n", "}\n", "\\startdata\n", "$^{132}\\mathrm{Ba}$ & $^{132}\\mathrm{Ce}(\\gamma,\\mathrm{n})$ & -0.2763 & -0.0392 \\\\ \n", " & $^{133}\\mathrm{Ce}(\\gamma,\\mathrm{n})$ & -0.1933 & -0.0269\\\\ \n", " & $^{132}\\mathrm{Ce}(\\gamma,\\mathrm{p})$ & -0.2505 & -0.0328\\\\ \n", " & $^{132}\\mathrm{Ce}(\\gamma,\\alpha)$ & -0.3079 & -0.0427\\\\ \n", " & $^{134}\\mathrm{Ce}(\\gamma,\\alpha)$ & -0.1822 & -0.0232\\\\ \n", "$^{138}\\mathrm{La}$ & $^{137}\\mathrm{La}(\\gamma,\\mathrm{n})$ & -0.7482 & -0.4462 \\\\ \n", "$^{136}\\mathrm{Ce}$ & $^{138}\\mathrm{Nd}(\\gamma,\\mathrm{n})$ & -0.4242 & -0.0938 \\\\ \n", " & $^{138}\\mathrm{Nd}(\\gamma,\\mathrm{p})$ & 0.6632 & 0.1415\\\\ \n", " & $^{140}\\mathrm{Nd}(\\gamma,\\alpha)$ & 0.2518 & 0.0553\\\\ \n", "$^{138}\\mathrm{Ce}$ & $^{138}\\mathrm{Nd}(\\gamma,\\mathrm{n})$ & -0.3300 & -0.0413 \\\\ \n", " & $^{139}\\mathrm{Nd}(\\gamma,\\mathrm{n})$ & -0.3059 & -0.0377\\\\ \n", " & $^{138}\\mathrm{Nd}(\\gamma,\\mathrm{p})$ & -0.3066 & -0.0362\\\\ \n", " & $^{138}\\mathrm{Nd}(\\gamma,\\alpha)$ & -0.2369 & -0.0234\\\\ \n", "$^{144}\\mathrm{Sm}$ & $^{142}\\mathrm{Sm}(\\gamma,\\mathrm{n})$ & -0.3553 & -0.0566 \\\\ \n", " & $^{143}\\mathrm{Sm}(\\gamma,\\mathrm{n})$ & -0.4988 & -0.0869\\\\ \n", " & $^{196}\\mathrm{Pb}(\\gamma,\\mathrm{n})$ & 0.1863 & 0.0268\\\\ \n", " & $^{142}\\mathrm{Sm}(\\gamma,\\mathrm{p})$ & -0.2896 & -0.0431\\\\ \n", "$^{152}\\mathrm{Gd}$ & $^{158}\\mathrm{Er}(\\gamma,\\mathrm{n})$ & 0.1790 & 0.0141 \\\\ \n", " & $^{152}\\mathrm{Dy}(\\gamma,\\alpha)$ & -0.5049 & -0.0487\\\\ \n", "$^{156}\\mathrm{Dy}$ & $^{158}\\mathrm{Er}(\\gamma,\\mathrm{n})$ & 0.1939 & 0.0890 \\\\ \n", " & $^{156}\\mathrm{Er}(\\gamma,\\alpha)$ & -0.4353 & -0.2681\\\\ \n", " & $^{158}\\mathrm{Er}(\\gamma,\\alpha)$ & -0.1830 & -0.0729\\\\ \n", " & $^{160}\\mathrm{Er}(\\gamma,\\alpha)$ & 0.2463 & 0.1535\\\\ \n", "$^{158}\\mathrm{Dy}$ & $^{158}\\mathrm{Er}(\\gamma,\\mathrm{n})$ & -0.2777 & -0.0229 \\\\ \n", " & $^{158}\\mathrm{Er}(\\gamma,\\alpha)$ & -0.5273 & -0.0499\\\\ \n", "$^{162}\\mathrm{Er}$ & $^{168}\\mathrm{Hf}(\\gamma,\\mathrm{n})$ & 0.1657 & 0.0674 \\\\ \n", " & $^{162}\\mathrm{Yb}(\\gamma,\\alpha)$ & -0.4922 & -0.3021\\\\ \n", " & $^{164}\\mathrm{Yb}(\\gamma,\\alpha)$ & -0.1648 & -0.0680\\\\ \n", "$^{164}\\mathrm{Er}$ & $^{164}\\mathrm{Yb}(\\gamma,\\mathrm{n})$ & -0.3121 & -0.1700 \\\\ \n", " & $^{202}\\mathrm{Pb}(\\gamma,\\mathrm{n})$ & 0.1642 & 0.0921\\\\ \n", " & $^{164}\\mathrm{Yb}(\\gamma,\\alpha)$ & -0.5595 & -0.5141\\\\ \n", "$^{168}\\mathrm{Yb}$ & $^{168}\\mathrm{Hf}(\\gamma,\\mathrm{n})$ & -0.2766 & -0.1217 \\\\ \n", " & $^{168}\\mathrm{Hf}(\\gamma,\\alpha)$ & -0.5464 & -0.5672\\\\ \n", "$^{174}\\mathrm{Hf}$ & $^{174}\\mathrm{W}(\\gamma,\\mathrm{n})$ & -0.3009 & -0.1274 \\\\ \n", " & $^{174}\\mathrm{W}(\\gamma,\\alpha)$ & -0.5343 & -0.3736\\\\ \n", "$^{180}\\mathrm{Ta}$ & $^{179}\\mathrm{Ta}(\\gamma,\\mathrm{n})$ & -0.8740 & -0.0045 \\\\ \n", "$^{180}\\mathrm{W}$ & $^{180}\\mathrm{Os}(\\gamma,\\mathrm{n})$ & -0.3821 & -0.2063 \\\\ \n", " & $^{196}\\mathrm{Pb}(\\gamma,\\mathrm{n})$ & 0.1918 & 0.1054\\\\ \n", " & $^{180}\\mathrm{Os}(\\gamma,\\alpha)$ & -0.5190 & -0.4565\\\\ \n", "$^{184}\\mathrm{Os}$ & $^{184}\\mathrm{Pt}(\\gamma,\\mathrm{n})$ & -0.1634 & -0.0494 \\\\ \n", " & $^{196}\\mathrm{Pb}(\\gamma,\\mathrm{n})$ & 0.1600 & 0.0429\\\\ \n", " & $^{184}\\mathrm{Pt}(\\gamma,\\alpha)$ & -0.5505 & -0.2915\\\\ \n", "$^{190}\\mathrm{Pt}$ & $^{190}\\mathrm{Hg}(\\gamma,\\mathrm{n})$ & -0.3023 & -0.1298 \\\\ \n", " & $^{196}\\mathrm{Pb}(\\gamma,\\mathrm{n})$ & 0.2011 & 0.0758\\\\ \n", " & $^{190}\\mathrm{Hg}(\\gamma,\\alpha)$ & -0.4940 & -0.2991\\\\ \n", "$^{196}\\mathrm{Hg}$ & $^{196}\\mathrm{Pb}(\\gamma,\\mathrm{n})$ & -0.7625 & -0.5966 \\\\ \n", " & $^{202}\\mathrm{Pb}(\\gamma,\\mathrm{n})$ & 0.1808 & 0.1120\\\\ \n", "\\enddata\n", "\\tablecomments{This is the table comments.}\n", "\\end{deluxetable*}\n", "\n" ] } ], "source": [ "def txt_to_latex_table(file_path,start=None,stop=None):\n", " # Read the file and parse data\n", " data = []\n", " pass_start, pass_stop = False, False\n", " with open(file_path, 'r') as file:\n", " for line in file:\n", " parts = line.split()\n", "\n", " if parts == []: continue\n", "\n", "\n", " if parts[0] == 'Isotope':\n", " isotope = parts[-1]\n", " \n", " \n", " if not pass_start:\n", " if start == None: pass_start = True\n", " else:\n", " if isotope == start: pass_start = True\n", " \n", " if pass_stop: break\n", " \n", " \n", " elif parts[0] == 'idx':\n", " continue\n", "\n", " elif len(parts) == 6:\n", " \n", " #boring = False\n", "\n", " if len(parts[1]) == 2:\n", " fp = parts[1][0] + parts[1][1].lower()\n", " elif len(parts[1]) == 1:\n", " fp = parts[1]\n", " \n", " ele, A = isotope.split('-')\n", " iso = fr\"^{{{A}}}\"+fr\"\\mathrm{{{ele}}}\" \n", " \n", " react = parts[3].replace('p', '_PROTON_PLACEHOLDER_')\n", " react = react.replace('a', r'\\alpha').replace('g', r'\\gamma').replace('n', r'\\mathrm{n}')\n", " react = react.replace('_PROTON_PLACEHOLDER_', r'\\mathrm{p}')\n", " \n", " reaction = fr\"^{{{parts[2]}}}\"+ fr\"\\mathrm{{{fp}}}\" + react\n", " \n", " \n", " rp = parts[4]\n", " zeta = parts[5]\n", "\n", " \n", " if stop == None: pass\n", " else:\n", " if isotope == stop: pass_stop = True \n", "\n", " \n", " # boring filter (cut out adjacent (g,n) stuff)\n", " #if ele == fp and parts[3] == '(g,n)':\n", " # if int(A) - 1 == int(parts[2]): boring = True\n", " # if int(A) + 1 == int(parts[2]): boring = True \n", " \n", " \n", " if pass_start:# and not boring:\n", " data.append([iso, reaction, float(rp), float(zeta)])\n", " \n", " \n", " # Convert to DataFrame\n", " df = pd.DataFrame(data, columns=[\"Isotope\", \"Reaction\", \"r_P\", \"ζ\"])\n", " \n", " # Generate LaTeX table\n", " latex_table = \"\"\"\\\\begin{table}[h]\\n\\\\centering\\n\\\\begin{tabular}{llcc}\\n\\hline\\n\\\\textbf{Isotope} & \\\\textbf{Reaction} & $r_\\mathrm{P}$ & $\\zeta$ \\\\\\\\ \\hline\n", " \"\"\"\n", " \n", " latex_table = \"\"\"\\\\begin{deluxetable*}{llcc}\\n\\\\tabletypesize{\\\\scriptsize}\\n\\\\tablewidth{0pt}\\n\\\\tablecaption{FILLER\\n\\\\label{tab:FILLER}}\\n\\\\tablehead{\\n\\colhead{\\\\textbf{Isotope}} & \\colhead{\\\\textbf{Reaction}} & \\colhead{$r_\\mathrm{P}$} & \\colhead{$\\zeta$}\\n}\\n\\startdata\\n\"\"\"\n", "\n", " \n", " \n", " last_isotope = None\n", " for _, row in df.iterrows():\n", " isotope = row[\"Isotope\"]\n", " reaction = row[\"Reaction\"]\n", " rp = row[\"r_P\"]\n", " zeta = row[\"ζ\"]\n", " \n", " if isotope == last_isotope:\n", " latex_table += f\" & ${reaction}$ & {rp:.4f} & {zeta:.4f}\\\\\\ \\n\"\n", " elif last_isotope != None:\n", " latex_table += f\"${isotope}$ & ${reaction}$ & {rp:.4f} & {zeta:.4f} \\\\\\ \\n\"\n", " else:\n", " latex_table += f\"${isotope}$ & ${reaction}$ & {rp:.4f} & {zeta:.4f} \\\\\\ \\n\"\n", " \n", " last_isotope = isotope\n", " \n", " latex_table += \"\\enddata\\n\\\\tablecomments{This is the table comments.}\\n\\end{deluxetable*}\"\n", " \n", " return latex_table\n", "\n", "# Example usage\n", "\n", "mixing_case_read_in = \"PPM50\" #mixing_case\n", "file_path = mixing_case_read_in+\"_correlated_rates.txt\"\n", "latex_code = txt_to_latex_table(file_path, start='Ba-132')\n", "print()\n", "print(latex_code)\n", "print()" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "file_path = \"MLT_correlated_rates.txt\"\n", "\n", "isotopes = []\n", "rates = []\n", "reactions = []\n", "\n", "with open(file_path, \"r\") as file:\n", " for line in file:\n", " if \"Isotope Name:\" in line:\n", " current_isotope = line.split(\":\")[-1].strip()\n", " elif \"(g,p)\" in line: \n", " parts = line.split()\n", " rate = float(parts[-2])\n", " \n", " if len(parts[1]) == 2: parts[1] = parts[1][0] + parts[1][1].lower()\n", " \n", " reaction = fr\"$^{{{parts[2]}}}$\" + parts[1] + parts[3] # Element + Reaction Type\n", " \n", " isotopes.append(current_isotope)\n", " rates.append(rate)\n", " reactions.append(reaction)\n", "\n", "plt.figure(figsize=(12, 6))\n", "plt.scatter(isotopes, rates, color=\"blue\", alpha=0.7)\n", "\n", "for isotope, rate, reaction in zip(isotopes, rates, reactions):\n", " plt.annotate(reaction, (isotope, rate), textcoords=\"offset points\", xytext=(0,5), ha='center', fontsize=8)\n", "\n", "plt.xticks(rotation=90, fontsize=10)\n", "plt.ylabel(\"Pearson Correlation\")\n", "plt.title(\"10x3D-insp. Correlations\")\n", "plt.grid(True, linestyle=\"--\", alpha=0.5)\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Plot a lognormal distribution of the mass fraction \n", "\n", "for which\n", "\n", "$\\log_{10}\\mu (X) = \\mu (\\log_{10}X) + \\frac{1}{2}\\sigma^2(\\log_{10}X)$." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "MLT : Hg-196 is bifurcated; Sm-144 is maybe (?); Dy-156 is maybe (?)" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "ifig = 100; close(ifig); figure(ifig, figsize=(10, 8))\n", "\n", "# Define the isotope to plot\n", "isotope = \"Cd-108\" # Replace with the isotope you're interested in\n", "\n", "# Find the index of the specific isotope in the full list\n", "try:\n", " i = iso_full_name.index(isotope)\n", "except ValueError:\n", " print(f\"Isotope {isotope} not found in the data.\")\n", " raise\n", "\n", "# Calculate log-ratio abundance for the specific isotope\n", "numerator = iso_abu[:, i]\n", "denominator = get_sol_abu(isotope)\n", "with np.errstate(divide='ignore', invalid='ignore'):\n", " ratio = np.where(denominator != 0, numerator / denominator, np.nan)\n", " yh = np.log10(ratio)\n", "yh = yh[np.isfinite(yh)] # Remove infinities and NaNs\n", "\n", "if len(yh) == 0:\n", " print(f\"No valid data found for isotope {isotope}.\")\n", "else:\n", " # Calculate the mean and standard deviation of the log-ratio abundances\n", " mu_log = np.mean(yh)\n", " sigma_log = np.std(yh)\n", "\n", " # Define the range for plotting the lognormal distribution\n", " x_vals = np.linspace(np.min(yh), np.max(yh), 1000)\n", "\n", " # Calculate the lognormal PDF with the calculated mean and standard deviation\n", " pdf_vals = lognorm.pdf(x_vals, sigma_log, scale=np.exp(mu_log))\n", "\n", " # Plot the lognormal distribution\n", " #plt.plot(x_vals, pdf_vals, label=f'Lognormal fit: $\\mu = {mu_log:.2f}$, $\\sigma = {sigma_log:.2f}$')\n", "\n", " # Plot the data points (histogram for the isotope's log-ratio abundance)\n", " plt.hist(yh, bins=50, density=True, alpha=0.5, facecolor='g', lw=2, edgecolor='black')\n", "\n", " # Add labels, title, and other plot elements\n", " plt.xlabel('$\\log_{10}(X/X_{\\odot})$', fontsize=14)\n", " plt.ylabel('Probability Density', fontsize=14)\n", " plt.title(f'Lognormal Distribution Fit to {isotope} Abundance Ratios', fontsize=16)\n", " plt.tight_layout()\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### If the above distribution is double-peaked, find out which isotope cases the bifurcation" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "ifig=101;close(ifig);figure(ifig)\n", "\n", "### ADAPT TO MAKE IT ABOUT ISOTOPES\n", "\n", "isotope = 'Te-120' # 'La'\n", "\n", "i = iso_full_name.index(isotope)\n", "\n", "yh = np.linspace(0,0,mc_runs)\n", "imc = -1\n", "yh2 = np.linspace(0,0,mc_runs)\n", "imc2 = -1\n", "\n", "# select an isotope on which i process path is likely to bifurcate\n", "reaction = 'PB-196' # 'BA-139' # 'NI-66'\n", "ibif = 181\n", "facbif = 1.0 # the reaction rate factor for bifurcation\n", "\n", "for mc in range(mc_runs):\n", " if mc_fac[mc][ibif] >= facbif: # this is the reaction that bifurcates the n-capture path\n", " imc += 1\n", " yh[imc] = log10(iso_abu[mc,i]/get_sol_abu(isotope))\n", " else:\n", " imc2 += 1\n", " yh2[imc2] = log10(iso_abu[mc,i]/get_sol_abu(isotope))\n", "\n", "x_template = log10(iso_abu_0[i]/get_sol_abu(isotope))\n", "\n", "\n", "bins = 50\n", "\n", "# the histogram of the data\n", "n, mybins, patches = plt.hist(yh[0:imc], bins, density=0, facecolor=CB_color[0], alpha=0.65)\n", "n2, mybins2, patches2 = plt.hist(yh2[0:imc2], bins, density=0, facecolor=CB_color[8], alpha=0.65)\n", "\n", "# best fit of data\n", "#(fit_mu, fit_sigma) = norm.fit(yh[0:imc])\n", "#(fit_mu2, fit_sigma2) = norm.fit(yh2[0:imc2])\n", "\n", "# add a 'best fit' line\n", "#y = 250.*norm.pdf(mybins, fit_mu, fit_sigma)\n", "#l = plt.plot(mybins, y, color=CB_color[7], linewidth=2)\n", "\n", "#y2 = 230.*norm.pdf(mybins2, fit_mu2, fit_sigma2)\n", "#l2 = plt.plot(mybins2, y2, color=CB_color[7], linewidth=2)\n", "\n", "# use the next 7 lines to plot a Gaussian of an observed abundance for given mu and sigma\n", "mu = 2.8\n", "sigma = 0.19\n", "s = np.random.normal(mu, sigma, 1000)\n", "count, obsbins, ignored = plt.hist(s, bins, density=0, facecolor=CB_color[0], alpha=0.0)\n", "ynorm = 0.5*(mc_runs*sigma/np.sqrt(8*np.pi))/(sigma * np.sqrt(2 * np.pi)) * np.exp( - (obsbins - mu)**2 / (2 * sigma**2) )\n", "y3 = np.linspace(0,0,len(ynorm))\n", "\n", "xlabel('$\\log_{10}\\,(X(\\mathrm{'+isotope+'})/X_\\odot(\\mathrm{'+isotope+'}))$')\n", "ylabel('number of MC runs out of 1000')\n", "\n", "\n", "xmax = max(np.max(yh), np.max(yh2))\n", "xmin = min(np.min(yh), np.min(yh2))\n", "\n", "ymax = max(np.max(n),np.max(n2))\n", "\n", "#yp = [0.,yhmax]\n", "#xt = [x_template,x_template]\n", "#plot(xt,yp,color='k',linestyle='dashed',linewidth=2)\n", "#ylim(0,yhmax)\n", "\n", "plt.xlim(xmin-0.1,xmax+0.1)\n", "plt.ylim(0,ymax*1.1)\n", "\n", "#title('bifurcation at '+name[ibif]+' '+str(mass[ibif]))\n", "#text(1.55,0.92*yhmax,'bifurcation of '+element+' abundance at '+name[ibif]+'-'+str(mass[ibif]))\n", "\n", "if len(name[ibif]) > 1: elename = name[ibif][0] + name[ibif][1:].lower()\n", "else: elename = name[ibif]\n", "title(f'Bifurcation for {isotope} abundance at {elename}-{mass[ibif]} {rtypes[ibif]}')" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "# ifig=101;close(ifig);figure(ifig)\n", "\n", "element = 'Sn' # 'La'\n", "\n", "i = el_name.index(element)\n", "el_to_plot=utils.get_el_from_z(i)\n", "\n", "yh = np.linspace(0,0,mc_runs)\n", "imc = -1\n", "yh2 = np.linspace(0,0,mc_runs)\n", "imc2 = -1\n", "\n", "# select an isotope on which i process path is likely to bifurcate\n", "reaction = 'PB-196' # 'BA-139' # 'NI-66'\n", "ibif = 453\n", "facbif = 1.0 # the reaction rate factor for bifurcation\n", "\n", "for k in range(n_el):\n", " if float(k)==z_el[i] and k != 0 and k != 43 and k != 61:\n", " for mc in range(mc_runs):\n", " if mc_fac[mc][ibif] >= facbif: # this is the reaction that bifurcates the n-capture path\n", " imc += 1\n", " yh[imc] = log10(el_abu[mc,i]/el_abu_sol[k])\n", " else:\n", " imc2 += 1\n", " yh2[imc2] = log10(el_abu[mc,i]/el_abu_sol[k])\n", " #yh = np.log10(el_abu[::2,i]/el_abu_sol[k]) # skipping every other element (to reduce the number of MC sims)\n", " x_template = log10(el_abu_0[i]/el_abu_sol[k])\n", "\n", "print (imc,imc2) \n", "\n", "bins = 50\n", "\n", "# the histogram of the data\n", "n, mybins, patches = plt.hist(yh[0:imc], bins, density=0, facecolor=CB_color[0], alpha=0.65)\n", "n2, mybins2, patches2 = plt.hist(yh2[0:imc2], bins, density=0, facecolor=CB_color[8], alpha=0.65)\n", "\n", "# best fit of data\n", "(fit_mu, fit_sigma) = norm.fit(yh[0:imc])\n", "(fit_mu2, fit_sigma2) = norm.fit(yh2[0:imc2])\n", "\n", "# add a 'best fit' line\n", "y = 250.*norm.pdf(mybins, fit_mu, fit_sigma)\n", "#l = plt.plot(mybins, y, color=CB_color[7], linewidth=2)\n", "\n", "y2 = 230.*norm.pdf(mybins2, fit_mu2, fit_sigma2)\n", "#l2 = plt.plot(mybins2, y2, color=CB_color[7], linewidth=2)\n", "\n", "# use the next 7 lines to plot a Gaussian of an observed abundance for given mu and sigma\n", "mu = 2.8\n", "sigma = 0.19\n", "s = np.random.normal(mu, sigma, 1000)\n", "count, obsbins, ignored = plt.hist(s, bins, density=0, facecolor=CB_color[0], alpha=0.0)\n", "ynorm = 0.5*(mc_runs*sigma/np.sqrt(8*np.pi))/(sigma * np.sqrt(2 * np.pi)) * np.exp( - (obsbins - mu)**2 / (2 * sigma**2) )\n", "y3 = np.linspace(0,0,len(ynorm))\n", "\n", "xlabel('$\\log_{10}\\,(X(\\mathrm{'+el_to_plot+'})/X_\\odot(\\mathrm{'+el_to_plot+'}))$')\n", "ylabel('number of MC runs out of 1000')\n", "\n", "\n", "yp = [0.,yhmax]\n", "xt = [x_template,x_template]\n", "plot(xt,yp,color='k',linestyle='dashed',linewidth=2)\n", "ylim(0,yhmax)\n", "\n", "#title('bifurcation at '+name[ibif]+' '+str(mass[ibif]))\n", "text(1.55,0.92*yhmax,'bifurcation of '+element+' abundance at '+name[ibif]+'-'+str(mass[ibif]))" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### If it is necessary, find the isotope that causes the secondary bifurcation" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "# the reaction I135(n,g) (mc_fac[:][4]) bifurcates the i process band path\n", "# therefore, we make two histogram plots for the cases when mc_fac[:][4] >= 1.0 and mc_fac[:][4] < 1.0\n", "\n", "ifig=ifig+1; close(ifig); figure(ifig)\n", "\n", "#i = 56 # charge number of the element to plot\n", "#kbif = 14\n", "#kbif2 = 4 # 15\n", "\n", "#i = 58 # charge number of the element to plot\n", "#kbif = 20\n", "#kbif2 = 19\n", "\n", "#i = 65 # charge number of the element to plot\n", "#kbif = 87\n", "#kbif2 = 81\n", "\n", "# select an element to plot its abundance histogram\n", "element = 'Ca'\n", "\n", "i = el_name.index(element)\n", "el_to_plot=utils.get_el_from_z(i)\n", "\n", "yh = np.linspace(0,0,mc_runs)\n", "imc = -1\n", "yh2 = np.linspace(0,0,mc_runs)\n", "imc2 = -1\n", "yh21 = np.linspace(0,0,mc_runs)\n", "imc21 = -1\n", "yh22 = np.linspace(0,0,mc_runs)\n", "imc22 = -1\n", "\n", "# select two isotopes on which i process path is likely to bifurcate\n", "reaction = 'Pt-184'\n", "kbif = reac_full_name.index(reaction)\n", "reaction = 'Pt-184' \n", "kbif2 = reac_full_name.index(reaction)\n", "facbif = 1.0 # the reaction rate factor for bifurcation\n", "\n", "for k in range(n_el):\n", " if float(k)==z_el[i] and k != 0 and k != 43 and k != 61:\n", " for mc in range(mc_runs):\n", " if mc_fac[mc][kbif] >= 1.0:\n", " if mc_fac[mc][kbif2] >= 1.0:\n", " imc += 1\n", " yh[imc] = log10(el_abu[mc,i]/el_abu_sol[k])\n", " else:\n", " imc21 += 1\n", " yh21[imc21] = log10(el_abu[mc,i]/el_abu_sol[k])\n", " else:\n", " if mc_fac[mc][kbif2] >= 1.0:\n", " imc2 += 1\n", " yh2[imc2] = log10(el_abu[mc,i]/el_abu_sol[k])\n", " else:\n", " imc22 += 1\n", " yh22[imc22] = log10(el_abu[mc,i]/el_abu_sol[k])\n", " #yh = log10(el_abu[:,i]/el_abu_sol[k])\n", " #yh = log10(el_abu[::2,i]/el_abu_sol[k]) # skipping every other element (to reduce the number of MC sims)\n", " x_template = log10(el_abu_0[i]/el_abu_sol[k])\n", "# the histogram of the data\n", "n, mybins, patches = hist(yh[0:imc], bins, density=0, facecolor=CB_color[4], alpha=0.55)\n", "n2, mybins2, patches2 = hist(yh2[0:imc2], bins, density=0, facecolor=CB_color[3], alpha=0.55)\n", "n21, mybins21, patches21 = hist(yh21[0:imc21], bins, density=0, facecolor=CB_color[6], alpha=0.55)\n", "n22, mybins22, patches22 = hist(yh22[0:imc22], bins, density=0, facecolor=CB_color[1], alpha=0.55)\n", "\n", "# best fit of data\n", "(fit_mu, fit_sigma) = norm.fit(yh[0:imc])\n", "(fit_mu2, fit_sigma2) = norm.fit(yh2[0:imc2])\n", "\n", "# add a 'best fit' line\n", "#y = 100.*normpdf(mybins, fit_mu, fit_sigma)\n", "#l = plot(mybins, y, color=CB_color[7], linewidth=2)\n", "\n", "#y2 = 100.*normpdf(mybins2, fit_mu2, fit_sigma2)\n", "#l2 = plot(mybins2, y2, color=CB_color[7], linewidth=2)\n", "\n", "xlabel('$\\log_{10}\\,(X(\\mathrm{'+el_to_plot+'})/X_\\odot(\\mathrm{'+el_to_plot+'}))$')\n", "ylabel('number of MC runs out of 10000')\n", "#title(\"$\\mathrm{Histogram\\ of\\ \"+el_to_plot+\"\\ abundances}$\")\n", "#title(\"$\\mathrm{\\ caused\\ by}\\ f(\"+\"^{\"+mass[kbif2]+\"}\\mathrm{\"+name[kbif2]+\"})$\")\n", "\n", "\n", "yhmax = float(100*((int(max(n))/100)+1))\n", "yhmax = 500\n", "\n", "text(1.05,0.92*yhmax,\"$\\mathrm{bifurcation\\ at\\ }^{\"+\\\n", " mass[kbif]+\"}\\mathrm{\"+name[kbif]+\"}\\mathrm{\\ and\\ }^{\"+mass[kbif2]+\"}\\mathrm{\"+name[kbif2]+\"}$\")\n", "\n", "yp = [0.,yhmax]\n", "xt = [x_template,x_template]\n", "plot(xt,yp,color='k',linestyle='dashed',linewidth=2)\n", "\n", "#plt.xlim(1.3,2.8)\n", "#plt.xlim(0.8,2.2)\n", "# plt.ylim(0.,yhmax)\n", "# xlim(1.0,2.5)\n", "\n", "grid(False)\n", "tight_layout()\n", "show()\n", "\n", "#plt.savefig(\"/Users/dpa/Documents/RAWD_MC_sims_results/Ba_hist3.pdf\")" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "figure(figsize=(10,6))\n", "\n", "dilute =0.0041803\n", "\n", "i1=56\n", "i2=73\n", "ni=i2-i1+1\n", "\n", "for i in range(i1,i2):\n", " el_to_plot=utils.get_el_from_z(i)\n", " #yh = np.log10(el_abu[:,i]/el_abu_sol[i])\n", " yh = np.log10((dilute*el_abu[:,i]+(1.-dilute)*el_abu_init[i])/el_abu_sol[i])-\\\n", " np.log10((dilute*el_abu[:,26]+(1.-dilute)*el_abu_init[26])/el_abu_sol[26])\n", " # the histogram of the data\n", " if i != 43 and i != 61:\n", " n, mybins, patches = plt.hist(yh, 50, normed=0, facecolor='green', alpha=0)\n", "\n", " area = ((n/3)) \n", "\n", " nn = len(n)\n", " x = np.linspace(i,i,nn)\n", " y = np.linspace(0,0,nn)\n", " for j in range(nn):\n", " y[j] = 0.5*(mybins[j]+mybins[j+1])\n", "\n", " plt.scatter(x, y, marker='o', s=area, c=n, alpha=0.55, edgecolor='', cmap='jet')\n", "\n", "x0 = np.linspace(0,0,ni)\n", "y0 = np.linspace(-99.,-99.,ni)\n", "ii = 0\n", "for i in range(i1,i2):\n", " if i != 43:\n", " x0[ii] = float(i)\n", " #y0[ii] = np.log10(el_abu_0[i]/el_abu_sol[i])\n", " y0[ii] = np.log10((dilute*el_abu_0[i]+(1.-dilute)*el_abu_init[i])/el_abu_sol[i])-\\\n", " np.log10((dilute*el_abu_0[26]+(1.-dilute)*el_abu_init[26])/el_abu_sol[26])\n", " ii += 1\n", "plt.plot(x0,y0,'k*',markersize=12)\n", " \n", "ax = plt.colorbar()\n", "ax.set_label('number of MC runs out of 10000')\n", "plt.xlim(i1-1,i2)\n", "plt.ylim(0.5,3.5)\n", "#plt.ylim(-0.8,4.4)\n", "plt.xlabel('proton number')\n", "#plt.ylabel('$\\log_{10}\\,X/X_0$')\n", "plt.ylabel('[X/Fe]')\n", "#plt.minorticks_on()\n", "#plt.hlines(0,0,85)\n", "for i in range(i1,i2):\n", " if i != 43:\n", " el_to_plot=utils.get_el_from_z(i)\n", " if i%2 == 0:\n", " plt.text(i,3.25,el_to_plot,ha='center')\n", " #plt.text(i,4.0,el_to_plot,ha='center')\n", " else:\n", " plt.text(i,0.75,el_to_plot,ha='center')\n", " #plt.text(i,-0.4,el_to_plot,ha='center')\n", " \n", "plt.errorbar(z,xfe,yerr,yerr,'ko',markersize=6) \n", "\n", "#grid()\n", "\n", "tight_layout()\n", "plt.show()\n", "#plt.savefig(\"/Users/dpa/Documents/RAWD_mppnp_MC_results/uncertainties.png\")" ] }, { "cell_type": "code", "execution_count": 129, "metadata": {}, "outputs": [ { "ename": "AttributeError", "evalue": "'Rectangle' object has no property 'normed'", "output_type": "error", "traceback": [ "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", "\u001b[0;31mAttributeError\u001b[0m Traceback (most recent call last)", "\u001b[0;32m\u001b[0m in \u001b[0;36m\u001b[0;34m\u001b[0m\n\u001b[1;32m 13\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 14\u001b[0m \u001b[0;31m# the histogram of the data\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m---> 15\u001b[0;31m \u001b[0mn\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mbins\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mpatches\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mplt\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mhist\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0myh\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;36m1\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0mj\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;36m40\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mnormed\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;36m0\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mfacecolor\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;34m'blue'\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0malpha\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;36m0.55\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 16\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 17\u001b[0m \u001b[0mplt\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mxlabel\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m\"$f(\"\u001b[0m\u001b[0;34m+\u001b[0m\u001b[0;34m\"^{\"\u001b[0m\u001b[0;34m+\u001b[0m\u001b[0mmass\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0mk\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m+\u001b[0m\u001b[0;34m\"}\\mathrm{\"\u001b[0m\u001b[0;34m+\u001b[0m\u001b[0mname\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0mk\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m+\u001b[0m\u001b[0;34m\"})\\geq 1.0$\"\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", "\u001b[0;32m/local/jupyter2021/lib/python3.8/site-packages/matplotlib/pyplot.py\u001b[0m in \u001b[0;36mhist\u001b[0;34m(x, bins, range, density, weights, cumulative, bottom, histtype, align, orientation, rwidth, log, color, label, stacked, data, **kwargs)\u001b[0m\n\u001b[1;32m 2683\u001b[0m \u001b[0morientation\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;34m'vertical'\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mrwidth\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;32mNone\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mlog\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;32mFalse\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mcolor\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;32mNone\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 2684\u001b[0m label=None, stacked=False, *, data=None, **kwargs):\n\u001b[0;32m-> 2685\u001b[0;31m return gca().hist(\n\u001b[0m\u001b[1;32m 2686\u001b[0m \u001b[0mx\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mbins\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mbins\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mrange\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mrange\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mdensity\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mdensity\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mweights\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mweights\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 2687\u001b[0m \u001b[0mcumulative\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mcumulative\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mbottom\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mbottom\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mhisttype\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mhisttype\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", "\u001b[0;32m/local/jupyter2021/lib/python3.8/site-packages/matplotlib/__init__.py\u001b[0m in \u001b[0;36minner\u001b[0;34m(ax, data, *args, **kwargs)\u001b[0m\n\u001b[1;32m 1436\u001b[0m \u001b[0;32mdef\u001b[0m \u001b[0minner\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0max\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m*\u001b[0m\u001b[0margs\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mdata\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;32mNone\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m**\u001b[0m\u001b[0mkwargs\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 1437\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0mdata\u001b[0m \u001b[0;32mis\u001b[0m \u001b[0;32mNone\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m-> 1438\u001b[0;31m \u001b[0;32mreturn\u001b[0m \u001b[0mfunc\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0max\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m*\u001b[0m\u001b[0mmap\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0msanitize_sequence\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0margs\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m**\u001b[0m\u001b[0mkwargs\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 1439\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 1440\u001b[0m \u001b[0mbound\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mnew_sig\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mbind\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0max\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m*\u001b[0m\u001b[0margs\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m**\u001b[0m\u001b[0mkwargs\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", "\u001b[0;32m/local/jupyter2021/lib/python3.8/site-packages/matplotlib/axes/_axes.py\u001b[0m in \u001b[0;36mhist\u001b[0;34m(self, x, bins, range, density, weights, cumulative, bottom, histtype, align, orientation, rwidth, log, color, label, stacked, **kwargs)\u001b[0m\n\u001b[1;32m 6818\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0mpatch\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 6819\u001b[0m \u001b[0mp\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mpatch\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;36m0\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m-> 6820\u001b[0;31m \u001b[0mp\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mupdate\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mkwargs\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 6821\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0mlbl\u001b[0m \u001b[0;32mis\u001b[0m \u001b[0;32mnot\u001b[0m \u001b[0;32mNone\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 6822\u001b[0m \u001b[0mp\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mset_label\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mlbl\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", "\u001b[0;32m/local/jupyter2021/lib/python3.8/site-packages/matplotlib/artist.py\u001b[0m in \u001b[0;36mupdate\u001b[0;34m(self, props)\u001b[0m\n\u001b[1;32m 994\u001b[0m \u001b[0mfunc\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mgetattr\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34mf\"set_{k}\"\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;32mNone\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 995\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0;32mnot\u001b[0m \u001b[0mcallable\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mfunc\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 996\u001b[0;31m raise AttributeError(f\"{type(self).__name__!r} object \"\n\u001b[0m\u001b[1;32m 997\u001b[0m f\"has no property {k!r}\")\n\u001b[1;32m 998\u001b[0m \u001b[0mret\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mappend\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mfunc\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mv\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", "\u001b[0;31mAttributeError\u001b[0m: 'Rectangle' object has no property 'normed'" ] } ], "source": [ "ifig += 1;fig=figure(ifig)\n", "size=10\n", "fig.canvas.layout.height = str(0.9*size)+'in' # This is a hack to prevent ipympl\n", "fig.canvas.layout.width = str(1.1*size)+'in'\n", "\n", "k = 4 # 14\n", "yh = np.linspace(0,0,mc_runs)\n", "j = 0\n", "for mc in range(mc_runs):\n", " if mc_fac[mc,k] >= 1.0:\n", " j = j+1\n", " yh[j] = mc_fac[mc,k]\n", "\n", "# the histogram of the data\n", "n, bins, patches = plt.hist(yh[1:j], 40, normed=0, facecolor='blue', alpha=0.55)\n", "\n", "plt.xlabel(\"$f(\"+\"^{\"+mass[k]+\"}\\mathrm{\"+name[k]+\"})\\geq 1.0$\")\n", "plt.ylabel('N')\n", "#plt.grid(True)\n", "tight_layout()\n", "plt.show()" ] }, { "cell_type": "code", "execution_count": 130, "metadata": {}, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "e6109c675db242c0b58b424338ec519f", "version_major": 2, "version_minor": 0 }, "text/plain": [ "Canvas(toolbar=Toolbar(toolitems=[('Home', 'Reset original view', 'home', 'home'), ('Back', 'Back to previous …" ] }, "metadata": {}, "output_type": "display_data" }, { "ename": "AttributeError", "evalue": "'Rectangle' object has no property 'normed'", "output_type": "error", "traceback": [ "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", "\u001b[0;31mAttributeError\u001b[0m Traceback (most recent call last)", "\u001b[0;32m\u001b[0m in \u001b[0;36m\u001b[0;34m\u001b[0m\n\u001b[1;32m 13\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 14\u001b[0m \u001b[0;31m# the histogram of the data\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m---> 15\u001b[0;31m \u001b[0mn\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mbins\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mpatches\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mplt\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mhist\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0myh\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;36m1\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0mj\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;36m40\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mnormed\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;36m0\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mfacecolor\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;34m'blue'\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0malpha\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;36m0.55\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 16\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 17\u001b[0m \u001b[0mplt\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mxlabel\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m\"$f(\"\u001b[0m\u001b[0;34m+\u001b[0m\u001b[0;34m\"^{\"\u001b[0m\u001b[0;34m+\u001b[0m\u001b[0mmass\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0mk\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m+\u001b[0m\u001b[0;34m\"}\\mathrm{\"\u001b[0m\u001b[0;34m+\u001b[0m\u001b[0mname\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0mk\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m+\u001b[0m\u001b[0;34m\"})\\leq 1.0$\"\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", "\u001b[0;32m/local/jupyter2021/lib/python3.8/site-packages/matplotlib/pyplot.py\u001b[0m in \u001b[0;36mhist\u001b[0;34m(x, bins, range, density, weights, cumulative, bottom, histtype, align, orientation, rwidth, log, color, label, stacked, data, **kwargs)\u001b[0m\n\u001b[1;32m 2683\u001b[0m \u001b[0morientation\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;34m'vertical'\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mrwidth\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;32mNone\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mlog\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;32mFalse\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mcolor\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;32mNone\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 2684\u001b[0m label=None, stacked=False, *, data=None, **kwargs):\n\u001b[0;32m-> 2685\u001b[0;31m return gca().hist(\n\u001b[0m\u001b[1;32m 2686\u001b[0m \u001b[0mx\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mbins\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mbins\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mrange\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mrange\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mdensity\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mdensity\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mweights\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mweights\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 2687\u001b[0m \u001b[0mcumulative\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mcumulative\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mbottom\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mbottom\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mhisttype\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mhisttype\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", "\u001b[0;32m/local/jupyter2021/lib/python3.8/site-packages/matplotlib/__init__.py\u001b[0m in \u001b[0;36minner\u001b[0;34m(ax, data, *args, **kwargs)\u001b[0m\n\u001b[1;32m 1436\u001b[0m \u001b[0;32mdef\u001b[0m \u001b[0minner\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0max\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m*\u001b[0m\u001b[0margs\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mdata\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;32mNone\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m**\u001b[0m\u001b[0mkwargs\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 1437\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0mdata\u001b[0m \u001b[0;32mis\u001b[0m \u001b[0;32mNone\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m-> 1438\u001b[0;31m \u001b[0;32mreturn\u001b[0m \u001b[0mfunc\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0max\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m*\u001b[0m\u001b[0mmap\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0msanitize_sequence\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0margs\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m**\u001b[0m\u001b[0mkwargs\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 1439\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 1440\u001b[0m \u001b[0mbound\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mnew_sig\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mbind\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0max\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m*\u001b[0m\u001b[0margs\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m**\u001b[0m\u001b[0mkwargs\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", "\u001b[0;32m/local/jupyter2021/lib/python3.8/site-packages/matplotlib/axes/_axes.py\u001b[0m in \u001b[0;36mhist\u001b[0;34m(self, x, bins, range, density, weights, cumulative, bottom, histtype, align, orientation, rwidth, log, color, label, stacked, **kwargs)\u001b[0m\n\u001b[1;32m 6818\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0mpatch\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 6819\u001b[0m \u001b[0mp\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mpatch\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;36m0\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m-> 6820\u001b[0;31m \u001b[0mp\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mupdate\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mkwargs\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 6821\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0mlbl\u001b[0m \u001b[0;32mis\u001b[0m \u001b[0;32mnot\u001b[0m \u001b[0;32mNone\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 6822\u001b[0m \u001b[0mp\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mset_label\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mlbl\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", "\u001b[0;32m/local/jupyter2021/lib/python3.8/site-packages/matplotlib/artist.py\u001b[0m in \u001b[0;36mupdate\u001b[0;34m(self, props)\u001b[0m\n\u001b[1;32m 994\u001b[0m \u001b[0mfunc\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mgetattr\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34mf\"set_{k}\"\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;32mNone\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 995\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0;32mnot\u001b[0m \u001b[0mcallable\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mfunc\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 996\u001b[0;31m raise AttributeError(f\"{type(self).__name__!r} object \"\n\u001b[0m\u001b[1;32m 997\u001b[0m f\"has no property {k!r}\")\n\u001b[1;32m 998\u001b[0m \u001b[0mret\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mappend\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mfunc\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mv\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", "\u001b[0;31mAttributeError\u001b[0m: 'Rectangle' object has no property 'normed'" ] } ], "source": [ "ifig += 1;fig=figure(ifig)\n", "size=10\n", "fig.canvas.layout.height = str(0.9*size)+'in' # This is a hack to prevent ipympl\n", "fig.canvas.layout.width = str(1.1*size)+'in'\n", "\n", "k = 10 # 14\n", "yh = np.linspace(0,0,mc_runs)\n", "j = 0\n", "for mc in range(mc_runs):\n", " if mc_fac[mc,k] <= 1.0:\n", " j = j+1\n", " yh[j] = 1./mc_fac[mc,k]\n", "\n", "# the histogram of the data\n", "n, bins, patches = plt.hist(yh[1:j], 40, normed=0, facecolor='blue', alpha=0.55)\n", "\n", "plt.xlabel(\"$f(\"+\"^{\"+mass[k]+\"}\\mathrm{\"+name[k]+\"})\\leq 1.0$\")\n", "plt.ylabel('N')\n", "#plt.grid(True)\n", "tight_layout()\n", "plt.show()" ] }, { "cell_type": "code", "execution_count": 131, "metadata": {}, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "6fdc42b0c2594d7d9fc48d118bda4e7d", "version_major": 2, "version_minor": 0 }, "text/plain": [ "Canvas(toolbar=Toolbar(toolitems=[('Home', 'Reset original view', 'home', 'home'), ('Back', 'Back to previous …" ] }, "metadata": {}, "output_type": "display_data" }, { "ename": "AttributeError", "evalue": "'Rectangle' object has no property 'normed'", "output_type": "error", "traceback": [ "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", "\u001b[0;31mAttributeError\u001b[0m Traceback (most recent call last)", "\u001b[0;32m\u001b[0m in \u001b[0;36m\u001b[0;34m\u001b[0m\n\u001b[1;32m 8\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 9\u001b[0m \u001b[0;31m# the histogram of the data\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m---> 10\u001b[0;31m \u001b[0mn\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mbins\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mpatches\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mplt\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mhist\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0myh\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;36m1\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0mj\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;36m40\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mnormed\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;36m0\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mfacecolor\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;34m'blue'\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0malpha\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;36m0.55\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 11\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 12\u001b[0m \u001b[0mplt\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mxlabel\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m\"$\\log_{10}\\,f(\"\u001b[0m\u001b[0;34m+\u001b[0m\u001b[0;34m\"^{\"\u001b[0m\u001b[0;34m+\u001b[0m\u001b[0mmass\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0mk\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m+\u001b[0m\u001b[0;34m\"}\\mathrm{\"\u001b[0m\u001b[0;34m+\u001b[0m\u001b[0mname\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0mk\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m+\u001b[0m\u001b[0;34m\"})$\"\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", "\u001b[0;32m/local/jupyter2021/lib/python3.8/site-packages/matplotlib/pyplot.py\u001b[0m in \u001b[0;36mhist\u001b[0;34m(x, bins, range, density, weights, cumulative, bottom, histtype, align, orientation, rwidth, log, color, label, stacked, data, **kwargs)\u001b[0m\n\u001b[1;32m 2683\u001b[0m \u001b[0morientation\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;34m'vertical'\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mrwidth\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;32mNone\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mlog\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;32mFalse\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mcolor\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;32mNone\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 2684\u001b[0m label=None, stacked=False, *, data=None, **kwargs):\n\u001b[0;32m-> 2685\u001b[0;31m return gca().hist(\n\u001b[0m\u001b[1;32m 2686\u001b[0m \u001b[0mx\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mbins\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mbins\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mrange\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mrange\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mdensity\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mdensity\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mweights\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mweights\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 2687\u001b[0m \u001b[0mcumulative\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mcumulative\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mbottom\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mbottom\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mhisttype\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mhisttype\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", "\u001b[0;32m/local/jupyter2021/lib/python3.8/site-packages/matplotlib/__init__.py\u001b[0m in \u001b[0;36minner\u001b[0;34m(ax, data, *args, **kwargs)\u001b[0m\n\u001b[1;32m 1436\u001b[0m \u001b[0;32mdef\u001b[0m \u001b[0minner\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0max\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m*\u001b[0m\u001b[0margs\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mdata\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;32mNone\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m**\u001b[0m\u001b[0mkwargs\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 1437\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0mdata\u001b[0m \u001b[0;32mis\u001b[0m \u001b[0;32mNone\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m-> 1438\u001b[0;31m \u001b[0;32mreturn\u001b[0m \u001b[0mfunc\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0max\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m*\u001b[0m\u001b[0mmap\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0msanitize_sequence\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0margs\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m**\u001b[0m\u001b[0mkwargs\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 1439\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 1440\u001b[0m \u001b[0mbound\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mnew_sig\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mbind\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0max\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m*\u001b[0m\u001b[0margs\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m**\u001b[0m\u001b[0mkwargs\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", "\u001b[0;32m/local/jupyter2021/lib/python3.8/site-packages/matplotlib/axes/_axes.py\u001b[0m in \u001b[0;36mhist\u001b[0;34m(self, x, bins, range, density, weights, cumulative, bottom, histtype, align, orientation, rwidth, log, color, label, stacked, **kwargs)\u001b[0m\n\u001b[1;32m 6818\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0mpatch\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 6819\u001b[0m \u001b[0mp\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mpatch\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;36m0\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m-> 6820\u001b[0;31m \u001b[0mp\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mupdate\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mkwargs\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 6821\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0mlbl\u001b[0m \u001b[0;32mis\u001b[0m \u001b[0;32mnot\u001b[0m \u001b[0;32mNone\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 6822\u001b[0m \u001b[0mp\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mset_label\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mlbl\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", "\u001b[0;32m/local/jupyter2021/lib/python3.8/site-packages/matplotlib/artist.py\u001b[0m in \u001b[0;36mupdate\u001b[0;34m(self, props)\u001b[0m\n\u001b[1;32m 994\u001b[0m \u001b[0mfunc\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mgetattr\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34mf\"set_{k}\"\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;32mNone\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 995\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0;32mnot\u001b[0m \u001b[0mcallable\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mfunc\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 996\u001b[0;31m raise AttributeError(f\"{type(self).__name__!r} object \"\n\u001b[0m\u001b[1;32m 997\u001b[0m f\"has no property {k!r}\")\n\u001b[1;32m 998\u001b[0m \u001b[0mret\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mappend\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mfunc\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mv\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", "\u001b[0;31mAttributeError\u001b[0m: 'Rectangle' object has no property 'normed'" ] } ], "source": [ "ifig += 1;fig=figure(ifig)\n", "size=10\n", "fig.canvas.layout.height = str(0.9*size)+'in' # This is a hack to prevent ipympl\n", "fig.canvas.layout.width = str(1.1*size)+'in'\n", "\n", "k = 4 # 14\n", "yh = np.log10(mc_fac[:,k])\n", "\n", "# the histogram of the data\n", "n, bins, patches = plt.hist(yh[1:j], 40, normed=0, facecolor='blue', alpha=0.55)\n", "\n", "plt.xlabel(\"$\\log_{10}\\,f(\"+\"^{\"+mass[k]+\"}\\mathrm{\"+name[k]+\"})$\")\n", "plt.ylabel('N')\n", "#plt.grid(True)\n", "tight_layout()\n", "plt.show()" ] }, { "cell_type": "code", "execution_count": 132, "metadata": {}, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "50e69427e27b4710a7a3e1f42ef0b28e", "version_major": 2, "version_minor": 0 }, "text/plain": [ "Canvas(toolbar=Toolbar(toolitems=[('Home', 'Reset original view', 'home', 'home'), ('Back', 'Back to previous …" ] }, "metadata": {}, "output_type": "display_data" }, { "name": "stdout", "output_type": "stream", "text": [ "56 Ba\n", "257 CE 132 -0.23570879302607162 4.316406379634146e-14\n", "259 CE 134 -0.20707935735943314 3.7908111609844454e-11\n", "287 ND 140 -0.4901482111002412 1.4676044376899714e-61\n", "1611 ND 140 -0.2601449299551381 6.24120834583882e-17\n", "\n", "\n", "57 La\n", "285 ND 138 -0.1520242381615736 1.3686755374731715e-06\n", "286 ND 139 -0.3983407450987935 2.2729066265296263e-39\n", "287 ND 140 -0.33073285779141165 5.954199401634389e-27\n", "1611 ND 140 -0.37795223756692287 2.6190959411609336e-35\n", "\n", "\n", "58 Ce\n", "287 ND 140 -0.6231000139724677 1.2768992541633119e-108\n", "1611 ND 140 -0.31004891707639004 1.0084274370861603e-23\n", "\n", "\n", "59 Pr\n", "287 ND 140 -0.3937343072760525 1.9923966213579532e-38\n", "320 SM 141 -0.3504040373519225 2.9178493463320983e-30\n", "982 SM 141 -0.3951091557306071 1.0460364773078912e-38\n", "983 SM 142 -0.1886980958305845 1.8122506321408035e-09\n", "1611 ND 140 -0.24917601092582775 1.2827908600345353e-15\n", "\n", "\n" ] } ], "source": [ "#figure(figsize=(10,8))\n", "\n", "ifig += 1;fig=figure(ifig)\n", "size=10\n", "fig.canvas.layout.height = str(0.9*size)+'in' # This is a hack to prevent ipympl\n", "fig.canvas.layout.width = str(1.1*size)+'in' # to adjust horizontal figure size\n", "\n", "iso_name_plot=[\" \" for x in range(n_fac)]\n", "\n", "iplot = [56,57,58,59,60,62,63,64,65,66,67,68,69,70,71,72]\n", "\n", "i_sub = 0\n", "\n", "kmin = []\n", "\n", "rmin = 0.15 # the minimum value for the correlation coefficient\n", "\n", "#for ip in range(len(iplot)):\n", "for ip in range(0,4):\n", "#for ip in range(4,8):\n", "#for ip in range(8,12):\n", "#for ip in range(12,16):\n", " i = iplot[ip]\n", " k_plot = -1\n", " i_sub += 1\n", " y = np.log10(el_abu[:,i]/el_abu_0[i])\n", " #y = (el_abu[:,i]/el_abu_0[i])\n", " #y = el_abu[:,i]\n", " #y = np.log10(el_abu[:,i])\n", "\n", " print (i, el_name[i])\n", "\n", " x_plot = np.linspace(0,0,n_fac)\n", " y_plot = np.linspace(0,0,n_fac)\n", "\n", " for k in range(n_fac):\n", " x = mc_fac[:,k]\n", " r = stats.pearsonr(x, y)\n", " x_plot[k] = k\n", " y_plot[k] = r[0]\n", " if np.abs(y_plot[k]) >= rmin:\n", " sign = '+'\n", " kmin.append(k)\n", " if r[0] < 0:\n", " sign = '-'\n", " k_plot += 1\n", " iso_name_plot[k_plot] = '$^{'+mass[k]+'}$'+name[k]+' ('+str(k)+sign+')' \n", " \n", " if np.abs(r[0]) >= rmin:\n", " print (k, name[k], mass[k], r[0], r[1])\n", " print (\"\\n\")\n", "\n", " plt.subplot(2,2,i_sub)\n", " #plt.plot(x_plot,y_plot,'ro')\n", " plt.plot(x_plot,y_plot,color=CB_color[6],marker='o',markerfacecolor=CB_color[1],markersize=8)\n", " plt.xlim(min(kmin)-5,max(kmin)+5)\n", " plt.ylim(-1,1)\n", " plt.xlabel('Reaction index',fontsize=14)\n", " plt.ylabel('Correlation coefficient, $r_{\\mathrm{P}}$',fontsize=14)\n", " plt.minorticks_on()\n", " plt.text(min(kmin)-4.5+0.1*(max(kmin)-min(kmin)),-0.8,el_name[i],fontsize=18)\n", " if k_plot > -1:\n", " for kk in range (k_plot+1):\n", " plt.text(max(kmin)+2.0-0.7*(max(kmin)-min(kmin)),0.65-(kk-1)*0.15,iso_name_plot[kk],fontsize=12)\n", " \n", " xx = [-0.5,294.5]\n", " yy = [rmin,rmin]\n", " plt.plot(xx,yy,'k--')\n", " xx = [-0.5,294.5]\n", " yy = [-rmin,-rmin]\n", " plt.plot(xx,yy,'k--')\n", " xx = [-0.5,294.5]\n", " yy = [0,0]\n", " plt.plot(xx,yy,'k-')\n", " \n", "tight_layout()\n", "plt.show()\n", "#plt.savefig(\"/Users/dpa/Documents/RAWD_mppnp_MC_results/MC_correlations_rmin15_BaLaCePr.png\")" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "i1 = 17\n", "i2 = 30\n", "\n", "rmin = 0.15 # the minimum value for the correlation coefficient\n", "\n", "for i in range(i1,i2+1):\n", "# y = np.log10(el_abu[:,i]/el_abu_0[i])\n", " y = (el_abu[:,i]/el_abu_0[i])\n", "# y = el_abu[:,i]\n", "# y = np.log10(el_abu[:,i])\n", "\n", " print (i, el_name[i])\n", "\n", " for k in range(n_fac):\n", " x = mc_fac[:,k]\n", "# x = np.log10(mc_fac[:,k])\n", " r = stats.pearsonr(x, y)\n", " if np.abs(r[0]) > rmin:\n", " print (k, name[k], mass[k], rtypes[k], r[0], r[1])\n", " print (\"\\n\")" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "i1 = 20\n", "i2 = 22\n", "\n", "rmin = 0.15\n", "\n", "y = el_abu[:,i1]/el_abu[:,i2]\n", "\n", "print (el_name[i1], \"/\", el_name[i2])\n", "\n", "for k in range(22):\n", " x = mc_fac[:,k]\n", " r = stats.pearsonr(x, y)\n", " if np.abs(r[0]) > rmin:\n", " print (k, fac[k][0], fac[k][1], r[0], r[1])" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "i = 20 \n", "k = 20 # \n", "#y = np.log10(el_abu[:,i]/el_abu_0[i])\n", "y = (el_abu[:,i]/el_abu_0[i])\n", "#y = np.log10(el_abu[:,i1]/el_abu[:,i2])\n", "#y = el_abu[:,i]\n", "#y = np.log10(el_abu[:,i])\n", "#x = np.log10(mc_fac[:,k])\n", "x = np.log10(mc_fac[:,k])\n", "\n", "ifig=ifig+1\n", "# close(ifig),select_fig(ifig)\n", "plt.plot(x,y,'co',markersize=4)\n", "#plt.xlabel(\"$\\log_{10}\\,f(\"+\"^{\"+fac[k][1]+\"}\\mathrm{\"+fac[k][0]+\"})$\")\n", "plt.xlabel(\"$\\log_{10}\\,f(\"+\"^{\"+mass[k]+\"}\\mathrm{\"+name[k]+\"})$\")\n", "el_to_plot=utils.get_el_from_z(i)\n", "#plt.ylabel('$\\log_{10}\\,X(\\mathrm{'+el_to_plot+'})/X_0(\\mathrm{'+el_to_plot+'})$')\n", "plt.ylabel('$X(\\mathrm{'+el_to_plot+'})/X_0(\\mathrm{'+el_to_plot+'})$')\n", "plt.minorticks_on()\n", "plt.grid(True)\n", "tight_layout()\n", "plt.show()\n", "print (np.min(y), np.max(y))\n", "\n", "#plt.savefig(\"/Users/dpa/Documents/RAWD_mppnp_MC_results/MC_correlations_BaCs137.pdf\")" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "i = 59\n", "k = 26\n", "#y = np.log10(el_abu[:,i]/el_abu_0[i])\n", "y = el_abu[:,i]/el_abu_0[i]\n", "#y = np.log10(el_abu[:,i1]/el_abu[:,i2])\n", "#y = el_abu[:,i]\n", "#y = np.log10(el_abu[:,i])\n", "#x = np.log10(mc_fac[:,k])\n", "x = np.log10(mc_fac[:,k])\n", "\n", "ifig=ifig+1\n", "# close(ifig),select_fig(ifig)\n", "plt.plot(x,y,'co',markersize=4)\n", "plt.xlabel(\"$\\log_{10}\\,f(\"+\"^{\"+mass[k]+\"}\\mathrm{\"+name[k]+\"})$\")\n", "el_to_plot=utils.get_el_from_z(i)\n", "#plt.ylabel('$\\log_{10}\\,X(\\mathrm{'+el_to_plot+'})/X_0(\\mathrm{'+el_to_plot+'})$')\n", "plt.ylabel('$X(\\mathrm{'+el_to_plot+'})/X_0(\\mathrm{'+el_to_plot+'})$')\n", "plt.minorticks_on()\n", "plt.grid(True)\n", "tight_layout()\n", "\n", "print (np.min(y), np.max(y))\n", "\n", "#plt.savefig(\"/Users/dpa/Documents/RAWD_mppnp_MC_results/MC_correlations_PrLa141.pdf\")" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "figure(figsize=(10,8))\n", "\n", "iso_name_plot=[\" \" for x in range(n_fac)]\n", "\n", "i1 = 17\n", "i2 = 20\n", "\n", "i_sub = 0\n", "kmax = [88,19,20,26]\n", "\n", "for i in range(i1,i2+1):\n", " i_sub += 1\n", " y = el_abu[:,i]/el_abu_0[i]\n", " k = kmax[i_sub-1]\n", " x = np.log10(mc_fac[:,k])\n", "\n", " plt.subplot(2,2,i_sub)\n", " plt.plot(x,y,'k.',markersize=3,alpha=0.2)\n", " plt.xlabel(\"$\\log_{10}\\,f(\"+\"^{\"+mass[k]+\"}\\mathrm{\"+name[k]+\"})$\",fontsize=14)\n", " el_to_plot=utils.get_el_from_z(i)\n", " #plt.ylabel('$\\log_{10}\\,X(\\mathrm{'+el_to_plot+'})/X_0(\\mathrm{'+el_to_plot+'})$')\n", " plt.ylabel('$X(\\mathrm{'+el_to_plot+'})/X_{f_i=1}(\\mathrm{'+el_to_plot+'})$',fontsize=14)\n", " plt.minorticks_on()\n", " plt.grid(True)\n", " \n", "tight_layout()\n", "plt.show()\n", "\n", "#plt.savefig(\"/Users/dpa/Documents/RAWD_mppnp_MC_results/MC_max_correlations.pdf\")" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "ab_max = 0.\n", "mc_max = -1\n", "for mc in range(mc_runs):\n", " ab = 0.\n", " for ii in [56,57,58,59]:\n", " ab0 = (el_abu[mc,ii]/el_abu_0[ii])\n", " ab2 = ab0**2\n", " ab = ab+ab2\n", " if np.sqrt(ab) > ab_max:\n", " ab_max = np.sqrt(ab)\n", " mc_max = mc\n", "print (mc_max)\n", "for ii in [56,57,58,59]:\n", " print (ii, el_name[ii], np.log10(el_abu[mc_max,ii]/el_abu_0[ii]))" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "ifig=ifig+1\n", "# close(ifig),select_fig(ifig)\n", "\n", "i = 20 # the i-th isotope will be plotted\n", "\n", "yh = np.log10(iso_abu[:,i])\n", "#yh = np.log10(iso_abu[::2,i]) # skipping every other element (to reduce the number of MC sims)\n", "\n", "# the histogram of the data\n", "n, mybins, patches = plt.hist(yh, 30, normed=0, facecolor=CB_color[2], alpha=0.75)\n", "\n", "plt.xlabel('$\\log_{10}\\,(X(^{'+str(int(iso_a[i]))+'}\\mathrm{'+iso_name[i]+'}))$')\n", "plt.ylabel('number of MC runs out of 10000')\n", "#plt.title(\"$\\mathrm{Histogram\\ of\\ \"+el_to_plot+\"\\ abundances}$\")\n", "\n", "# best fit of data\n", "(fit_mu, fit_sigma) = norm.fit(yh)\n", "\n", "# add a 'best fit' line\n", "y = 390*normpdf(mybins, fit_mu, fit_sigma)\n", "#l = plt.plot(mybins, y, color=CB_color[7], linewidth=2)\n", "\n", "yhmax = float(100*((int(max(n))/100)+1))\n", "#yhmax = 600\n", "plt.ylim(0.,yhmax)\n", "\n", "#plt.grid(True)\n", "tight_layout()\n", "plt.show()\n", "#plt.savefig(\"/Users/dpa/Documents/RAWD_mppnp_MC_results/Ba138_hist.pdf\")" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "i = 597 # choose an isotope from the above list\n", "\n", "y = iso_abu[:,i]\n", "\n", "print (i, iso_name[i], int(iso_a[i]), \"\\n\")\n", "\n", "for k in range(n_fac):\n", " x = mc_fac[:,k]\n", " r = stats.pearsonr(x, y)\n", " if np.abs(r[0]) > 0.1:\n", " print (k, name[k], mass[k], r[0], r[1])" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [] } ], "metadata": { "anaconda-cloud": {}, "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.6.9" } }, "nbformat": 4, "nbformat_minor": 4 }